WO2017002682A1 - 熱応答性液晶エラストマーを含む単繊維、フィラメント糸、繊維製品 - Google Patents

熱応答性液晶エラストマーを含む単繊維、フィラメント糸、繊維製品 Download PDF

Info

Publication number
WO2017002682A1
WO2017002682A1 PCT/JP2016/068536 JP2016068536W WO2017002682A1 WO 2017002682 A1 WO2017002682 A1 WO 2017002682A1 JP 2016068536 W JP2016068536 W JP 2016068536W WO 2017002682 A1 WO2017002682 A1 WO 2017002682A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
single fiber
compound
group
fiber according
Prior art date
Application number
PCT/JP2016/068536
Other languages
English (en)
French (fr)
Inventor
井関 清治
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to EP16817790.5A priority Critical patent/EP3318663A4/en
Priority to CN201680034795.5A priority patent/CN107709638A/zh
Priority to US15/738,373 priority patent/US20180187337A1/en
Publication of WO2017002682A1 publication Critical patent/WO2017002682A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2081Heterocyclic amines; Salts thereof containing at least two non-condensed heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/046Shape recovering or form memory
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/06Details of garments

Definitions

  • the present invention relates to a single fiber, a filament yarn, and a fiber product containing a thermoresponsive liquid crystal elastomer.
  • Liquid crystal polymer fibers for example, liquid crystal polyester fibers
  • high strength and high modulus fibers for example, Patent Documents 1 to 3
  • compression clothing such as elastic stockings for medical use, compression shirts, compression tights, and compression socks make it easier to return blood to the heart by squeezing the body part from the outside to improve venous return. It has functions such as reducing swelling, dullness, and imparting a tightening effect.
  • the pressure garment exerts the above function by strongly pressing the body part, but has a problem that it is difficult to wear because it is contracted.
  • An object of the present invention is to provide a single fiber containing a thermoresponsive liquid crystal elastomer that reversibly expands and contracts in response to heat, a filament yarn containing the single fiber, and a fiber product using these.
  • the present invention relates to a single fiber including a thermoresponsive liquid crystal elastomer that reversibly stretches at a transition temperature (Ti) at which a phase transition from a liquid crystal phase to an isotropic phase or from an isotropic phase to a liquid crystal phase.
  • Ti transition temperature
  • the single fiber of the present invention is a fiber that reversibly expands and contracts at the transition temperature (Ti) of the thermoresponsive liquid crystal elastomer as a raw material. Therefore, if the single fiber is used, the fiber product can be contracted or expanded at a preset temperature.
  • thermoresponsive liquid crystal elastomer comprises at least a liquid crystalline urethane compound obtained by reacting a mesogen group-containing compound having an active hydrogen group, an alkylene oxide and / or a styrene oxide, and a diisocyanate compound, and the activity of the liquid crystalline urethane compound.
  • a heat-responsive liquid crystal polyurethane elastomer obtained by reacting a trifunctional or higher functional compound that reacts with a hydrogen group or an isocyanate group is preferred.
  • the liquid crystalline urethane compound is a prepolymer obtained by reacting these raw materials with a diisocyanate compound.
  • the single fiber which has liquid crystallinity and rubber elasticity in a low temperature state can be obtained.
  • the mesogenic group-containing compound is preferably a compound represented by the following general formula (1).
  • R 1 is a single bond, —N ⁇ N—, —CO—, —CO—O—, or —CH ⁇ N—
  • R 2 is a single bond, or —O—
  • R 3 is a single bond or an alkylene group having 1 to 20 carbon atoms, except when R 2 is —O— and R 3 is a single bond.
  • the alkylene oxide is preferably at least one selected from the group consisting of ethylene oxide, propylene oxide, and butylene oxide.
  • the alkylene oxide and / or styrene oxide are added to 1 mole of the mesogen group-containing compound.
  • the number of added moles is less than 2 moles, it is difficult to sufficiently lower the temperature range in which the liquid crystalline urethane compound exhibits liquid crystal properties, and it becomes difficult to produce single fibers by liquid crystal spinning. is there.
  • the added mole number exceeds 10 moles, the liquid crystalline urethane compound tends not to exhibit liquid crystallinity.
  • the single fiber containing the heat-responsive liquid crystal polyurethane elastomer is a heat-responsive liquid crystal containing the liquid crystal urethane compound and a trifunctional or higher polyfunctional compound that reacts with an active hydrogen group or an isocyanate group of the liquid crystal urethane compound.
  • the polyurethane elastomer raw material composition is obtained by liquid crystal spinning and has liquid crystallinity and rubber elasticity at low temperatures.
  • thermoresponsive liquid crystal polyurethane elastomer has no melting point of mesogen between the glass transition temperature (Tg) and the transition temperature from the liquid crystal phase to the isotropic phase (Ti), and the liquid crystal between Tg and Ti. It is preferable that is expressed.
  • the transition temperature (Ti) of the thermoresponsive liquid crystal elastomer is preferably 0 to 100 ° C.
  • the transition temperature (Ti) of the thermoresponsive liquid crystal elastomer is preferably 20 to 35 ° C.
  • the stretch rate of the single fiber can be adjusted to 102 to 300% depending on the use of the fiber product.
  • the present invention also relates to a filament yarn containing the single fiber, a fiber product using the single fiber or the filament yarn.
  • the fiber product may be one in which the degree of expansion / contraction is changed for each part using two or more types of single fibers or filament yarns having different expansion / contraction ratios.
  • the single fiber of the present invention includes a thermoresponsive liquid crystal elastomer that reversibly expands and contracts in response to heat
  • the fiber product can be contracted or expanded at a preset temperature when the single fiber is used. it can.
  • the mesogen groups are aligned in a uniaxial direction, so that when heat is applied, the degree of orientation of the mesogen groups decreases and shrinks in the alignment direction, and heat is removed. It exhibits a characteristic response behavior in which the degree of orientation of mesogenic groups increases and extends in the orientation direction.
  • the heat-responsive liquid crystal polyurethane elastomer is made from a liquid crystalline urethane compound having a low temperature range in which liquid crystallinity is developed, and has a network structure by crosslinking. Therefore, the single fiber containing the thermoresponsive liquid crystal polyurethane elastomer has liquid crystallinity and rubber elasticity in a low temperature state (for example, room temperature and near body temperature).
  • the single fiber of the present invention includes a thermoresponsive liquid crystal elastomer that reversibly stretches at a transition temperature (Ti) at which a phase transition from a liquid crystal phase to an isotropic phase or from an isotropic phase to a liquid crystal phase.
  • Ti transition temperature
  • thermoresponsive liquid crystal elastomer examples include liquid crystal polyurethane elastomer, liquid crystal silicone elastomer, liquid crystal acrylate elastomer, poly N-substituted (meth) acrylamide (for example, poly N-isopropyl acrylamide), and polyvinyl ether.
  • thermoresponsive liquid crystal elastomer those having a transition temperature (Ti) in the range of 0 to 100 ° C. are preferably used.
  • a liquid crystal polyurethane elastomer in order to obtain a single fiber having liquid crystallinity and rubber elasticity in a low temperature state (for example, room temperature and around body temperature).
  • thermoresponsive liquid crystal polyurethane elastomer is not particularly limited as long as it has liquid crystallinity and rubber elasticity in a low temperature state.
  • a mesogen group-containing compound having an active hydrogen group, alkylene oxide and / or styrene oxide is a liquid crystal polyurethane elastomer obtained by reacting a liquid crystalline urethane compound obtained by reacting a diisocyanate compound with a trifunctional or higher polyfunctional compound that reacts with an active hydrogen group or isocyanate group of the liquid crystalline urethane compound. Is preferred.
  • the liquid crystalline urethane compound is obtained by reacting at least a mesogenic group-containing compound having an active hydrogen group, alkylene oxide and / or styrene oxide, and a diisocyanate compound.
  • the mesogenic group-containing compound having an active hydrogen group is not particularly limited as long as it is a compound having an active hydrogen group and a mesogenic group, but is preferably a compound represented by the following general formula (1).
  • R 1 is a single bond, —N ⁇ N—, —CO—, —CO—O—, or —CH ⁇ N—
  • R 2 is a single bond, or —O—
  • R 3 is a single bond or an alkylene group having 1 to 20 carbon atoms, except when R 2 is —O— and R 3 is a single bond.
  • Examples of X include OH, SH, NH 2 , COOH, and secondary amine.
  • thermoresponsive liquid crystal polyurethane elastomer having a transition temperature (Ti) from the liquid crystal phase to the isotropic phase or from the isotropic phase to the liquid crystal phase 0 to 100 ° C. (preferably 20 to 35 ° C.) It is preferable to use a compound having a skeleton (R 1 is a single bond).
  • R 3 is an alkylene group, the number of carbon atoms is preferably 2 to 10.
  • the alkylene oxide to be added is not particularly limited, and examples thereof include ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, cyclohexene oxide, epichlorohydrin, epibromohydrin, methyl glycidyl ether, and allyl. Examples thereof include glycidyl ether.
  • the styrene oxide to be added may have a substituent such as an alkyl group, an alkoxyl group, or a halogen on the benzene ring.
  • thermoresponsive liquid crystal polyurethane elastomer having a transition temperature (Ti) from a liquid crystal phase to an isotropic phase or from an isotropic phase to a liquid crystal phase, 0 to 100 ° C. (preferably 20 to 35 ° C.) It is preferable to use at least one oxide selected from the group consisting of propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and styrene oxide.
  • the alkylene oxide and / or styrene oxide is preferably added in an amount of 2 to 10 mol, more preferably 2 to 8 mol, per 1 mol of the compound represented by the general formula (1).
  • diisocyanate compound a known compound in the field of polyurethane can be used without particular limitation.
  • the blending ratio of the diisocyanate compound is preferably 10 to 40 wt%, more preferably 15 to 30 wt% with respect to the total raw materials of the liquid crystalline urethane compound.
  • the blending ratio of the diisocyanate compound is less than 10 wt%, it is difficult to produce a single fiber containing a thermoresponsive liquid crystal polyurethane elastomer by liquid crystal spinning because the high molecular weight by the urethanization reaction becomes insufficient. It is in.
  • the blending ratio of the diisocyanate compound exceeds 40 wt%, the blending ratio of the mesogen group-containing compound is lowered, and thus the liquid crystalline urethane compound tends to hardly exhibit liquid crystallinity.
  • a tri- or higher functional isocyanate compound may be blended.
  • the trifunctional or higher functional isocyanate compound is not particularly limited, and examples thereof include compounds described below.
  • the liquid crystalline urethane compound may be produced by reacting at least a raw material composition containing the mesogenic group-containing compound, the alkylene oxide and / or styrene oxide, and the diisocyanate compound, or the mesogenic group-containing compound. And an alkylene oxide and / or a styrene oxide may be reacted to obtain an oxide-added mesogen group-containing compound, and the oxide-added mesogen group-containing compound may be reacted with the diisocyanate compound or the like.
  • the temperature at which the mesogenic group-containing compound is reacted with the alkylene oxide and / or styrene oxide is preferably about 110 to 130 ° C.
  • the reaction tends to be difficult to proceed. If the temperature exceeds 130 ° C., side reactions tend to occur, and it is difficult to obtain a compound containing an oxide-added mesogen group having hydroxyl groups at both ends, which is the target product.
  • the liquid crystalline urethane compound preferably has a transition temperature (Ti) from the liquid crystal phase to the isotropic phase or from the isotropic phase to the liquid crystal phase of 15 to 150 ° C., more preferably 25 to 125 ° C.
  • the single fiber of the present invention can be produced by liquid crystal spinning the thermoresponsive liquid crystal elastomer.
  • the molecular chain is highly oriented in the fiber axis direction.
  • the single fiber may contain, for example, an inorganic compound, a reinforcing agent, a thickener, a release agent, a coupling agent, a flame retardant, a flame retardant, a pigment, and a colorant as a filler or an additive. Good.
  • the single fiber containing the heat-responsive liquid crystal polyurethane elastomer is a heat-responsive liquid crystal containing the liquid crystal urethane compound and a trifunctional or higher polyfunctional compound that reacts with an active hydrogen group or an isocyanate group of the liquid crystal urethane compound.
  • the raw material composition for polyurethane elastomer can be produced by liquid crystal spinning.
  • the said liquid crystalline urethane compound may be used by 1 type, and may use 2 or more types together.
  • the said raw material composition may contain the thermoplastic resin as a fiber raw material.
  • the polyfunctional compound is a raw material for imparting rubber elasticity to the thermoresponsive liquid crystal polyurethane elastomer by introducing a crosslinking point into the thermoresponsive liquid crystal polyurethane elastomer to form a network structure.
  • the polyfunctional compound is not particularly limited as long as it is a compound having three or more functional groups that react with the active hydrogen group or isocyanate group of the liquid crystalline urethane compound.
  • a trifunctional or higher functional isocyanate compound a trifunctional or higher functional group is available. Examples thereof include a hydrogen group-containing compound.
  • trifunctional or higher functional isocyanate compound examples include triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, lysine ester triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,6,11-undecane triisocyanate. 1,8-diisocyanate-4-isocyanate methyloctane, triisocyanates such as bicycloheptane triisocyanate; tetraisocyanates such as tetraisocyanate silane, and the like. Also, multimerized diisocyanate may be used.
  • the multimerized diisocyanate is an isocyanate-modified product or a mixture thereof that has been multimerized by adding three or more diisocyanates.
  • modified isocyanate include 1) trimethylolpropane adduct type, 2) burette type, and 3) isocyanurate type. These may be used alone or in combination of two or more.
  • trifunctional or higher functional active group-containing compound examples include, for example, a polyether polyol, polyester polyol, polycarbonate polyol, and high molecular weight polyol having a hydroxyl number of 3 or more (molecular weight 400 or more) such as polyester polycarbonate polyol; trimethylolpropane, glycerin, Low such as 1,2,6-hexanetriol, pentaerythritol, tetramethylolcyclohexane, methylglucoside, sorbitol, mannitol, dulcitol, sucrose, 2,2,6,6-tetrakis (hydroxymethyl) cyclohexanol, and triethanolamine Molecular weight polyols; low molecular weight polyamines such as diethylenetriamine. These may be used alone or in combination of two or more.
  • the blending ratio of the polyfunctional compound is preferably 2 to 20 wt%, more preferably 4 to 10 wt% with respect to the total raw materials of the thermoresponsive liquid crystal polyurethane elastomer.
  • the blending ratio of the polyfunctional compound is less than 2 wt%, the memory of the orientation state after orienting the mesogenic group is lowered, and therefore, reversible shape deformation (thermal responsiveness) tends to be lost.
  • the blending ratio of the polyfunctional compound exceeds 20 wt%, the crosslinking density increases, so that the glass transition temperature rises and the temperature range in which liquid crystallinity is expressed becomes narrow. Therefore, it tends to be difficult to produce a single fiber containing a liquid crystal polyurethane elastomer having thermal response by liquid crystal spinning. Further, the polyurethane elastomer tends to hardly exhibit liquid crystallinity.
  • the liquid crystalline urethane compound When liquid crystal spinning is performed using a raw material composition for a thermoresponsive liquid crystal polyurethane elastomer, the liquid crystalline urethane compound preferably has a viscosity of 10 to 5000 Pa ⁇ s in a temperature range where liquid crystallinity is exhibited, and more preferably 100 ⁇ 2000 Pa ⁇ s.
  • the spinning temperature is preferably near the transition temperature (Ti) of the liquid crystalline urethane compound. Further, the draw ratio during spinning is preferably about 150 to 500%.
  • the draw ratio When the draw ratio is less than 150%, it tends to be difficult to obtain a single fiber containing a liquid crystal polyurethane elastomer that is deformed by a thermal response. On the other hand, when the draw ratio exceeds 500%, the single fiber containing the heat-responsive liquid crystal polyurethane elastomer tends to break during spinning.
  • the filament yarn of the present invention is obtained by twisting a plurality of the single fibers. Only one type of single fiber may be used, or two or more types of single fibers having different transition temperatures (Ti) may be used in combination. When two or more types of single fibers having different transition temperatures (Ti) are used in combination, the shrinkage temperatures of the single fibers are different from each other, so that the tightening degree due to fiber shrinkage based on the temperature change can be gradually changed. Further, the filament yarn may be a twist of the single fiber and a general-purpose fiber.
  • the fiber product of the present invention is manufactured using the single fiber or the filament yarn.
  • textile products include sportswear, underwear, innerwear, men's clothing, women's clothing, medical clothing, nursing clothing, and work clothes, elastic stockings, pressure shirts, and pressure tights.
  • pressure garments such as pressure socks, footwear, heels, hats, gloves, socks, support bands, bandages, car seats, supporters, and the like.
  • the monofilament or filament yarn of the present invention is particularly useful as a fiber material for pressure garments.
  • the fiber product may be one in which the degree of expansion and contraction is changed for each part using two or more types of single fibers or filament yarns having different expansion and contraction rates. Thereby, an appropriate fastening function can be imparted to each part of the textile product.
  • Tg, Tm, and Ti were measured using a differential scanning calorimeter DSC (trade name: X-DSC 7000, manufactured by Hitachi High-Tech Science Co., Ltd.) at 20 ° C./min.
  • the presence or absence of liquid crystallinity of the liquid crystalline urethane compound and the heat-responsive liquid crystal polyurethane elastomer is determined using a polarizing microscope (Nikon Corporation, trade name: LV-100POL) and a differential scanning calorimeter DSC (Hitachi High-Tech Science Corporation, trade name). : X-DSC 7000) under the conditions of 20 ° C./min.
  • the stretching force (clamping force) of the single fiber was measured by using a tensile tester equipped with a thermostatic bath to measure the stress generated when the fiber length changed before and after the transition temperature (Ti). Specifically, the stress (kPa) generated when a single fiber sample is set between the chucks so as not to sag in a bath adjusted to 0 ° C. and heated to a temperature higher than the transition temperature (Ti + 10 ° C.). was measured.
  • Example 1 BH6 (500 g), KOH 19.0 g, and DMF 3000 ml are mixed in a reaction vessel, and then 5 equivalents of propylene oxide is added to BH6 (1 mol) and reacted at 120 ° C. for 2 hours under pressure. It was. Thereafter, 15.0 g of oxalic acid was added to stop the addition reaction, the salt was removed by suction filtration, DMF was removed by distillation under reduced pressure, and the target mesogendiol A (containing structural isomers) was obtained. Also good). The reaction is shown below.
  • Liquid crystalline urethane compound A1 is melted in an extrusion molding machine, and 2 parts by weight of HDI-based isocyanurate (Sumidule N3300, manufactured by Sumika Bayer Urethane Co., Ltd.) is used as a side feeder for liquid crystalline urethane compound A1 (98 parts by weight) It was added, extruded into a fiber shape while kneading, and wound up while being stretched (stretching temperature 10 ° C., stretch ratio 200%) to produce a single fiber made of a thermoresponsive liquid crystal polyurethane elastomer. The wound single fiber was cured at 10 ° C. for 24 hours.
  • HDI-based isocyanurate SudI-based isocyanurate
  • Example 2 BH6 (500 g), KOH 19.0 g, and DMF 3000 ml are mixed in a reaction vessel, and then 4 equivalents of propylene oxide are added to BH6 (1 mol) and reacted at 120 ° C. for 2 hours under pressure. It was. Thereafter, 15.0 g of oxalic acid was added to stop the addition reaction, the salt was removed by suction filtration, DMF was further removed by distillation under reduced pressure, and the target mesogen diol B (containing structural isomers) was obtained. Also good).
  • Liquid crystalline urethane compound B1 is melted in an extrusion molding machine, and 2 parts by weight of HDI-based isocyanurate (Sumidule N3300, manufactured by Sumika Bayer Urethane Co., Ltd.) is used as a side feeder for liquid crystalline urethane compound B1 (98 parts by weight). It was added, extruded into a fiber shape while being kneaded, and wound up while being stretched (stretching temperature 25 ° C., stretch ratio 200%) to produce a single fiber made of a thermoresponsive liquid crystal polyurethane elastomer. The wound single fiber was cured at 25 ° C. for 24 hours.
  • HDI-based isocyanurate SudI-based isocyanurate
  • Example 3 Single fibers were produced in the same manner as in Example 2 except that the draw ratio was changed to 300%.
  • Example 4 BH6 (500 g), 19.0 g of KOH, and 3000 ml of DMF are mixed in a reaction vessel, and then 3 equivalents of propylene oxide is added to BH6 (1 mol) and reacted at 120 ° C. for 2 hours under pressure. It was. Thereafter, 15.0 g of oxalic acid was added to stop the addition reaction, the salt was removed by suction filtration, DMF was removed by distillation under reduced pressure, and the target mesogendiol C (containing structural isomers) was obtained. Also good).
  • the liquid crystalline urethane compound C1 is melted in an extrusion molding machine, and 2 parts by weight of HDI-based isocyanurate (Sumijoule N3300, manufactured by Sumika Bayer Urethane Co., Ltd.) is used as a side feeder for the liquid crystalline urethane compound C1 (98 parts by weight). It was added, extruded into a fiber shape while being kneaded, and wound up while being stretched (stretching temperature 25 ° C., stretch ratio 200%) to produce a single fiber made of a thermoresponsive liquid crystal polyurethane elastomer. The wound single fiber was cured at 25 ° C. for 24 hours.
  • HDI-based isocyanurate SudI-based isocyanurate
  • Example 5 Single fibers were produced in the same manner as in Example 4 except that the draw ratio was changed to 300%.
  • Example 6 BH4 (500 g), 19.0 g of KOH, and 3000 ml of DMF are mixed in a reaction vessel, and then 3 equivalents of propylene oxide are added to BH4 (1 mol) and reacted at 120 ° C. for 2 hours under pressure. It was. Thereafter, 15.0 g of oxalic acid was added to stop the addition reaction, the salt was removed by suction filtration, DMF was further removed by distillation under reduced pressure, and mesogenic diol D (containing a structural isomer), which was the target product. Also good). The reaction is shown below.
  • the liquid crystalline urethane compound D1 is melted in an extrusion molding machine, and 2 parts by weight of HDI-based isocyanurate (Sumidule N3300, manufactured by Sumika Bayer Urethane Co., Ltd.) is used as a side feeder with respect to the liquid crystalline urethane compound D1 (98 parts by weight). It was added, extruded into a fiber shape while being kneaded, and wound up while being stretched (stretching temperature 25 ° C., stretch ratio 200%) to produce a single fiber made of a thermoresponsive liquid crystal polyurethane elastomer. The wound single fiber was cured at 25 ° C. for 24 hours.
  • HDI-based isocyanurate SudI-based isocyanurate
  • the single fiber or filament yarn of the present invention has a function of reversibly expanding and contracting in response to heat, it can be used as a raw material for various fiber products that provide this function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本発明は、熱に応答して可逆的に伸縮する熱応答性液晶エラストマーを含む単繊維、当該単繊維を含むフィラメント糸、及びこれらを用いた繊維製品を提供することを目的とする。本発明の単繊維は、液晶相から等方相へ、又は等方相から液晶相へ相転移する転移温度(Ti)を境に、可逆的に伸縮する熱応答性液晶エラストマーを含む。

Description

熱応答性液晶エラストマーを含む単繊維、フィラメント糸、繊維製品
 本発明は、熱応答性液晶エラストマーを含む単繊維、フィラメント糸、繊維製品に関する。
 高強度、高弾性率の繊維としては、液晶ポリマー繊維(例えば、液晶ポリエステル繊維など)が知られており、これまで多くの液晶ポリマー繊維が開発されている(例えば、特許文献1~3)。
 これら従来の液晶ポリマー繊維は、熱に応答して可逆的に伸縮する繊維ではない。
 一方、医療用弾性ストッキング、着圧シャツ、着圧タイツ、及び着圧ソックスなどの着圧衣類は、体の部位を外側から強く圧迫することにより血液を心臓に戻りやすくして静脈還流を改善したり、むくみ又はだるさを軽減したり、引き締め効果を付与するなどの機能を有する。
 前記着圧衣類は、体の部位を強く圧迫することで上記機能が発現するが、収縮しているため装着し難いという問題があった。
特開2009-167584号公報 特開2010-84301号公報 特開2013-82804号公報
 本発明は、熱に応答して可逆的に伸縮する熱応答性液晶エラストマーを含む単繊維、当該単繊維を含むフィラメント糸、及びこれらを用いた繊維製品を提供することを目的とする。
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す単繊維により上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、液晶相から等方相へ、又は等方相から液晶相へ相転移する転移温度(Ti)を境に、可逆的に伸縮する熱応答性液晶エラストマーを含む単繊維、に関する。
 本発明の単繊維は、原料である熱応答性液晶エラストマーの前記転移温度(Ti)を境に、可逆的に伸縮する繊維である。そのため、当該単繊維を用いれば、予め設定した温度で繊維製品を収縮させたり、又は拡張させることができる。
 前記熱応答性液晶エラストマーは、少なくとも、活性水素基を有するメソゲン基含有化合物、アルキレンオキシド及び/又はスチレンオキシド、及びジイソシアネート化合物を反応させて得られる液晶性ウレタン化合物と、当該液晶性ウレタン化合物の活性水素基又はイソシアネート基と反応する3官能以上の多官能化合物とを反応させることにより得られる熱応答性液晶ポリウレタンエラストマーであることが好ましい。
 活性水素基を有するメソゲン基含有化合物に、アルキレンオキシド及び/又はスチレンオキシドを付加することによりメソゲン基の熱的安定性が低下し、それにより液晶性ウレタン化合物の液晶性が発現する温度範囲を低下させることができる。また、前記液晶性ウレタン化合物は、これら原料にジイソシアネート化合物を反応させてプレポリマー化したものである。当該液晶性ウレタン化合物を用いることにより、無溶媒でかつ液晶紡糸により熱応答性液晶ポリウレタンエラストマーを含む単繊維を製造することができる。また、液晶性が発現した状態で前記液晶性ウレタン化合物を反応硬化させることにより、メソゲンの結晶性を阻害して結晶相の形成を防ぐことができる。それにより、低温状態で液晶性とゴム弾性を有する単繊維を得ることができる。
 前記メソゲン基含有化合物は、下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000002
(式中、Xは活性水素基であり、Rは単結合、-N=N-、-CO-、-CO-O-、又は-CH=N-であり、Rは単結合、又は-O-であり、Rは単結合、又は炭素数1~20のアルキレン基である。ただし、Rが-O-であり、かつRが単結合である場合を除く。)
 また、前記アルキレンオキシドは、エチレンオキシド、プロピレンオキシド、及びブチレンオキシドからなる群より選択される少なくとも1種であることが好ましい。
 また、前記アルキレンオキシド及び/又はスチレンオキシドは、前記メソゲン基含有化合物1モルに対して2~10モル付加していることが好ましい。付加モル数が2モル未満の場合には、液晶性ウレタン化合物の液晶性が発現する温度範囲を十分に下げることが難しくなり、また、液晶紡糸により単繊維を製造することが困難になる傾向にある。一方、付加モル数が10モルを超える場合には、液晶性ウレタン化合物が液晶性を発現しなくなる傾向にある。
 前記熱応答性液晶ポリウレタンエラストマーを含む単繊維は、前記液晶性ウレタン化合物と、当該液晶性ウレタン化合物の活性水素基又はイソシアネート基と反応する3官能以上の多官能化合物とを含有する熱応答性液晶ポリウレタンエラストマー用原料組成物を液晶紡糸して得られるものであり、低温状態で液晶性とゴム弾性を有する。
 前記熱応答性液晶ポリウレタンエラストマーは、ガラス転移温度(Tg)と液晶相から等方相への転移温度(Ti)との温度間にメソゲンの融点が存在せず、TgからTiの温度間で液晶が発現するものであることが好ましい。
 前記熱応答性液晶エラストマーの前記転移温度(Ti)は、0~100℃であることが好ましい。
 また、本発明の単繊維を着圧衣類の原料として用いる場合には、前記熱応答性液晶エラストマーの前記転移温度(Ti)は、20~35℃であることが好ましい。それにより、体の部位(例えば、腕、足、腰など)に装着しやすく、装着後には体温等によって収縮して体の部位を強く圧迫することが可能な着圧衣類を得ることができる。
 前記単繊維の伸縮率は、繊維製品の用途により102~300%に調整することが可能である。
 また、本発明は、前記単繊維を含むフィラメント糸、前記単繊維又は前記フィラメント糸を用いた繊維製品、に関する。
 前記繊維製品は、伸縮率が異なる2種以上の単繊維又はフィラメント糸を用いて、部分ごとに伸縮度合いを変化させたものであってもよい。
 本発明の単繊維は、熱に応答して可逆的に伸縮する熱応答性液晶エラストマーを含むため、当該単繊維を用いれば、予め設定した温度で繊維製品を収縮させたり、又は拡張させることができる。特に、本発明で用いる熱応答性液晶ポリウレタンエラストマーは、メソゲン基が一軸方向に配向しているため、熱が加わることによりメソゲン基の配向度が減少して配向方向に縮み、熱を除くことによりメソゲン基の配向度が増加して配向方向に伸びるという特徴的な応答挙動を示す。また、前記熱応答性液晶ポリウレタンエラストマーは、液晶性が発現する温度範囲が低い液晶性ウレタン化合物を原料としており、かつ架橋によるネットワーク構造を有している。そのため、前記熱応答性液晶ポリウレタンエラストマーを含む単繊維は、低温状態(例えば、室温、体温付近)で液晶性とゴム弾性を有する。
 本発明の単繊維は、液晶相から等方相へ、又は等方相から液晶相へ相転移する転移温度(Ti)を境に、可逆的に伸縮する熱応答性液晶エラストマーを含むものである。
 前記熱応答性液晶エラストマーとしては、例えば、液晶ポリウレタンエラストマー、液晶シリコーンエラストマー、液晶アクリレートエラストマー、ポリN置換(メタ)アクリルアミド(例えば、ポリN-イソプロピルアクリルアミド)、及びポリビニルエーテルなどが挙げられる。前記熱応答性液晶エラストマーとしては、前記転移温度(Ti)が0~100℃の範囲内にあるものを用いることが好ましい。特に、低温状態(例えば、室温、体温付近)で液晶性とゴム弾性を有する単繊維を得るために、液晶ポリウレタンエラストマーを用いることが好ましい。
 熱応答性液晶ポリウレタンエラストマーは、低温状態で液晶性とゴム弾性を有するものであれば特に制限されないが、例えば、少なくとも、活性水素基を有するメソゲン基含有化合物、アルキレンオキシド及び/又はスチレンオキシド、及びジイソシアネート化合物を反応させて得られる液晶性ウレタン化合物と、当該液晶性ウレタン化合物の活性水素基又はイソシアネート基と反応する3官能以上の多官能化合物とを反応させることにより得られる液晶ポリウレタンエラストマーであることが好ましい。
 前記液晶性ウレタン化合物は、少なくとも、活性水素基を有するメソゲン基含有化合物と、アルキレンオキシド及び/又はスチレンオキシドと、ジイソシアネート化合物とを反応させて得られるものである。
 前記活性水素基を有するメソゲン基含有化合物は、活性水素基とメソゲン基とを有する化合物であれば特に制限されないが、下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000003
(式中、Xは活性水素基であり、Rは単結合、-N=N-、-CO-、-CO-O-、又は-CH=N-であり、Rは単結合、又は-O-であり、Rは単結合、又は炭素数1~20のアルキレン基である。ただし、Rが-O-であり、かつRが単結合である場合を除く。)
 Xとしては、例えば、OH、SH、NH、COOH、又は二級アミンなどが挙げられる。
 液晶相から等方相へ、又は等方相から液晶相への転移温度(Ti)が、0~100℃(好ましくは20~35℃)である熱応答性液晶ポリウレタンエラストマーを得るために、ビフェニル骨格(Rが単結合)を有する化合物を用いることが好ましい。また、Rがアルキレン基の場合、炭素数は2~10であることが好ましい。
 付加するアルキレンオキシドは特に制限されず、例えば、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド、シクロヘキセンオキシド、エピクロロヒドリン、エピブロモヒドリン、メチルグリシジルエーテル、及びアリルグリシジルエーテルなどが挙げられる。付加するスチレンオキシドは、ベンゼン環にアルキル基、アルコキシル基、又はハロゲンなどの置換基を有していてもよい。
 液晶相から等方相へ、又は等方相から液晶相への転移温度(Ti)が、0~100℃(好ましくは20~35℃)である熱応答性液晶ポリウレタンエラストマーを得るために、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド、及びスチレンオキシドからなる群より選択される少なくとも1種のオキシドを用いることが好ましい。
 アルキレンオキシド及び/又はスチレンオキシドは、一般式(1)で表される化合物1モルに対して2~10モル付加することが好ましく、より好ましくは2~8モルである。
 ジイソシアネート化合物は、ポリウレタンの分野において公知の化合物を特に限定なく使用できる。例えば、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネートなどの芳香族ジイソシアネート、エチレンジイソシアネート、2,2,4-トリメチルヘキサメチレン-1,6-ジイソシアネート、2,4,4-トリメチルヘキサメチレン-1,6-ジイソシアネート、1,6-ヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート、1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネートなどの脂環式ジイソシアネートが挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。
 ジイソシアネート化合物の配合割合は、液晶性ウレタン化合物の全原料に対して10~40wt%であることが好ましく、より好ましくは15~30wt%である。ジイソシアネート化合物の配合割合が10wt%未満の場合には、ウレタン化反応による高分子量化が不十分になるため、熱応答性液晶ポリウレタンエラストマーを含む単繊維を液晶紡糸により製造することが困難になる傾向にある。一方、ジイソシアネート化合物の配合割合が40wt%を超えると、メソゲン基含有化合物の配合割合が低下するため、液晶性ウレタン化合物が液晶性を発現し難くなる傾向にある。
 液晶性ウレタン化合物の分子量又は粘度を調整するために、3官能以上のイソシアネート化合物を配合してもよい。3官能以上のイソシアネート化合物は特に制限されず、例えば、後述する化合物が挙げられる。
 液晶性ウレタン化合物は、少なくとも前記メソゲン基含有化合物と、前記アルキレンオキシド及び/又はスチレンオキシドと、前記ジイソシアネート化合物とを含む原料組成物を反応させて製造してもよく、あるいは、前記メソゲン基含有化合物と、前記アルキレンオキシド及び/又はスチレンオキシドとを反応させてオキシド付加メソゲン基含有化合物を得て、当該オキシド付加メソゲン基含有化合物に前記ジイソシアネート化合物等を反応させて製造してもよい。なお、前記メソゲン基含有化合物と、前記アルキレンオキシド及び/又はスチレンオキシドとを反応させる際の温度は、110~130℃程度であることが好ましい。110℃未満では反応が進行し難くなる傾向にあり、130℃を超えると副反応が起こりやすくなり、目的物である両末端が水酸基のオキシド付加メソゲン基含有化合物を得難くなる傾向にある。
 液晶性ウレタン化合物は、液晶相から等方相へ、又は等方相から液晶相への転移温度(Ti)が、15~150℃であることが好ましく、より好ましくは25~125℃である。
 本発明の単繊維は、前記熱応答性液晶エラストマーを液晶紡糸することにより製造することができる。得られた単繊維は、分子鎖が繊維軸方向に高配向している。
 前記単繊維は、充填剤又は添加剤として、例えば、無機化合物、補強剤、増粘剤、離型剤、カップリング剤、難燃剤、耐炎剤、顔料、及び着色剤などを含有していてもよい。
 前記熱応答性液晶ポリウレタンエラストマーを含む単繊維は、前記液晶性ウレタン化合物と、当該液晶性ウレタン化合物の活性水素基又はイソシアネート基と反応する3官能以上の多官能化合物とを含有する熱応答性液晶ポリウレタンエラストマー用原料組成物を液晶紡糸することにより製造することができる。前記液晶性ウレタン化合物は、1種で用いてもよく、2種以上を併用してもよい。また、前記原料組成物は、繊維原料として熱可塑性樹脂を含有していてもよい。
 前記多官能化合物は、熱応答性液晶ポリウレタンエラストマー内に架橋点を導入してネットワーク構造を形成し、熱応答性液晶ポリウレタンエラストマーにゴム弾性を付与するための原料である。
 前記多官能化合物は、液晶性ウレタン化合物の活性水素基又はイソシアネート基と反応する官能基を3つ以上有する化合物であれば特に制限されず、例えば、3官能以上のイソシアネート化合物、3官能以上の活性水素基含有化合物などが挙げられる。
 3官能以上のイソシアネート化合物としては、例えば、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、及びビシクロヘプタントリイソシアネートなどのトリイソシアネート;テトライソシアネートシランなどのテトライソシアネートなどが挙げられる。また、多量化ジイソシアネートを用いてもよい。多量化ジイソシアネートとは、3つ以上のジイソシアネートが付加することにより多量化したイソシアネート変性体又はそれらの混合物である。イソシアネート変性体としては、例えば、1)トリメチロールプロパンアダクトタイプ、2)ビュレットタイプ、3)イソシアヌレートタイプなどが挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。
 3官能以上の活性水素基含有化合物としては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びポリエステルポリカーボネートポリオールなどの水酸基数3以上の高分子量ポリオール(分子量400以上);トリメチロールプロパン、グリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、テトラメチロールシクロヘキサン、メチルグルコシド、ソルビトール、マンニトール、ズルシトール、スクロース、2,2,6,6-テトラキス(ヒドロキシメチル)シクロヘキサノール、及びトリエタノールアミンなどの低分子量ポリオール;ジエチレントリアミン等の低分子量ポリアミンなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 前記多官能化合物の配合割合は、熱応答性液晶ポリウレタンエラストマーの全原料に対して2~20wt%であることが好ましく、より好ましくは4~10wt%である。前記多官能化合物の配合割合が2wt%未満の場合には、メソゲン基を配向させた後の配向状態の記憶が低下するため、可逆的な形状変形(熱応答性)を失う傾向にある。一方、前記多官能化合物の配合割合が20wt%を超えると、架橋密度が高くなるため、ガラス転移温度が上昇し、液晶性を発現する温度域が狭くなる。そのため、熱応答性を有する液晶ポリウレタンエラストマーを含む単繊維を液晶紡糸により製造することが困難になる傾向がある。また、ポリウレタンエラストマーが液晶性を発現し難くなる傾向にある。
 熱応答性液晶ポリウレタンエラストマー用原料組成物を用いて液晶紡糸する場合、前記液晶性ウレタン化合物は、液晶性が発現する温度範囲における粘度が10~5000Pa・sであることが好ましく、より好ましくは100~2000Pa・sである。前記粘度が10Pa・s未満の場合には、紡糸時におけるメソゲン基の配向状態が緩和により低下する傾向にあり、前記粘度が5000Pa・sを超える場合には、紡糸し難くなるためメソゲン基を高度に配向させることが困難になる傾向にある。また、紡糸する際の温度は、液晶性ウレタン化合物の前記転移温度(Ti)付近であることが好ましい。また、紡糸する際の延伸倍率は、150~500%程度であることが好ましい。延伸倍率が150%未満の場合には、熱応答によって変形する液晶ポリウレタンエラストマーを含む単繊維を得難くなる傾向にある。一方、延伸倍率が500%を超えると、紡糸時に熱応答性液晶ポリウレタンエラストマーを含む単繊維が破断し易くなる傾向にある。
 本発明のフィラメント糸は、複数本の前記単繊維を撚り合わせたものである。使用する単繊維は、1種のみ用いてもよく、前記転移温度(Ti)が異なる2種以上の単繊維を併用してもよい。前記転移温度(Ti)が異なる2種以上の単繊維を併用した場合、各単繊維の収縮温度がそれぞれ異なるため、温度変化に基づく繊維収縮による締め付け度合を漸次的に変化させることができる。また、前記フィラメント糸は、前記単繊維と汎用繊維とを撚り合わせたものであってもよい。
 本発明の繊維製品は、前記単繊維又は前記フィラメント糸を用いて作製されるものである。繊維製品としては、例えば、スポーツウェア、アンダーウェア、インナーウェア、紳士衣料、婦人衣料、医療用衣料、介護用衣料、及び作業着などの衣料品、医療用弾性ストッキング、着圧シャツ、着圧タイツ、及び着圧ソックスなどの着圧衣類、履物、鞄、帽子、手袋、靴下、支持帯、包帯、カーシート、サポーターなどが挙げられるが、これらに限定されない。本発明の単繊維又はフィラメント糸は、特に着圧衣類の繊維材料として有用である。
 前記繊維製品は、伸縮率が異なる2種以上の単繊維又はフィラメント糸を用いて、部分ごとに伸縮度合を変化させたものであってもよい。それにより、当該繊維製品の各部分に適切な締め付け機能を付与することができる。
 以下、本発明を実施例を上げて説明するが、本発明はこれら実施例に限定されるものではない。
 [測定、評価方法]
 (液晶性ウレタン化合物及び熱応答性液晶ポリウレタンエラストマーのガラス転移温度(Tg)、メソゲンの融点(Tm)、及び液晶相から等方相への転移温度(Ti)の測定)
 Tg、Tm、及びTiは、示差走査熱量分析器DSC(株式会社日立ハイテクサイエンス社製、商品名:X-DSC 7000)を用いて、20℃/分の条件で測定した。
 (液晶性ウレタン化合物の粘度の測定)
 液晶性ウレタン化合物の粘度は、キャピラリーレオメーター(安田精機製、商品名:セミオートマチックキャピラリーレオメーター(SAS-2002))を用い、JIS K 7199に準拠して、60℃、せん断速度1000sec-1で測定した。
 (液晶性の評価)
 液晶性ウレタン化合物及び熱応答性液晶ポリウレタンエラストマーの液晶性の有無は、偏光顕微鏡(ニコン社製、商品名:LV-100POL)及び示差走査熱量分析器DSC(株式会社日立ハイテクサイエンス社製、商品名:X-DSC 7000)を用いて、20℃/分の条件で評価した。
 (伸縮率の評価)
 伸縮率は、単繊維の転移温度(Ti)前後の長さを測定し、下記式により算出した。 
 伸縮率(%)=(L1/L2)×100
 L1:転移温度(Ti)未満での繊維長
 L2:転移温度(Ti)以上での繊維長
 なお、実施例のサンプルについては、L1は10℃での繊維長を採用し、L2は80℃での繊維長を採用した。
 (伸縮力の測定)
 単繊維の伸縮力(締付力)は、転移温度(Ti)前後の繊維長変化時に発生する応力を、恒温槽付きの引張試験機を用いて測定した。詳しくは、0℃に温度調節された槽内で、チャック間に、単繊維サンプルをたるまないようにセットし、転移温度以上に昇温(Ti+10℃)させた時の発生応力(kPa)を測定した。
 実施例1
 反応容器にBH6(500g)、KOH19.0g、及びDMF3000mlを入れて混合し、その後、プロピレンオキシドをBH6(1モル)に対して5当量添加し、加圧条件下で120℃で2時間反応させた。その後、シュウ酸15.0gを添加して付加反応を停止させ、吸引ろ過により塩を除去し、さらにDMFを減圧蒸留により除去して、目的物であるメソゲンジオールA(構造異性体を含んでいてもよい)を得た。当該反応を下記に示す。
Figure JPOXMLDOC01-appb-I000004
 (式中、m+n=5である。)
 メソゲンジオールA500g、ヘキサメチレンジイソシアネート(HDI)124g、及び触媒(東ソー社製、TEDA-L33)5gを混合し、当該混合物を100℃で2時間反応させて液晶性ウレタン化合物A1を得た。
 液晶性ウレタン化合物A1を押出成形機内で溶融させ、液晶性ウレタン化合物A1(98重量部)に対して、HDI系イソシアヌレート(住化バイエルウレタン社製、スミジュールN3300)2重量部をサイドフィーダーで添加し、混練しながら繊維状に押出し、延伸(延伸温度10℃、延伸倍率200%)を加えながら巻き取って熱応答性液晶ポリウレタンエラストマーからなる単繊維を製造した。巻き取った単繊維は、10℃で24時間養生した。
 実施例2
 反応容器にBH6(500g)、KOH19.0g、及びDMF3000mlを入れて混合し、その後、プロピレンオキシドをBH6(1モル)に対して4当量添加し、加圧条件下で120℃で2時間反応させた。その後、シュウ酸15.0gを添加して付加反応を停止させ、吸引ろ過により塩を除去し、さらにDMFを減圧蒸留により除去して、目的物であるメソゲンジオールB(構造異性体を含んでいてもよい)を得た。
 メソゲンジオールB500g、ヘキサメチレンジイソシアネート(HDI)137g、及び触媒(東ソー社製、TEDA-L33)5gを混合し、当該混合物を100℃で2時間反応させて液晶性ウレタン化合物B1を得た。
 液晶性ウレタン化合物B1を押出成形機内で溶融させ、液晶性ウレタン化合物B1(98重量部)に対して、HDI系イソシアヌレート(住化バイエルウレタン社製、スミジュールN3300)2重量部をサイドフィーダーで添加し、混練しながら繊維状に押出し、延伸(延伸温度25℃、延伸倍率200%)を加えながら巻き取って熱応答性液晶ポリウレタンエラストマーからなる単繊維を製造した。巻き取った単繊維は、25℃で24時間養生した。
 実施例3
 延伸倍率を300%に変更した以外は実施例2と同様の方法で単繊維を製造した。
 実施例4
 反応容器にBH6(500g)、KOH19.0g、及びDMF3000mlを入れて混合し、その後、プロピレンオキシドをBH6(1モル)に対して3当量添加し、加圧条件下で120℃で2時間反応させた。その後、シュウ酸15.0gを添加して付加反応を停止させ、吸引ろ過により塩を除去し、さらにDMFを減圧蒸留により除去して、目的物であるメソゲンジオールC(構造異性体を含んでいてもよい)を得た。
 メソゲンジオールC500g、ヘキサメチレンジイソシアネート(HDI)113g、及び触媒(東ソー社製、TEDA-L33)5gを混合し、当該混合物を100℃で2時間反応させて液晶性ウレタン化合物C1を得た。
 液晶性ウレタン化合物C1を押出成形機内で溶融させ、液晶性ウレタン化合物C1(98重量部)に対して、HDI系イソシアヌレート(住化バイエルウレタン社製、スミジュールN3300)2重量部をサイドフィーダーで添加し、混練しながら繊維状に押出し、延伸(延伸温度25℃、延伸倍率200%)を加えながら巻き取って熱応答性液晶ポリウレタンエラストマーからなる単繊維を製造した。巻き取った単繊維は、25℃で24時間養生した。
 実施例5
 延伸倍率を300%に変更した以外は実施例4と同様の方法で単繊維を製造した。
 実施例6
 反応容器にBH4(500g)、KOH19.0g、及びDMF3000mlを入れて混合し、その後、プロピレンオキシドをBH4(1モル)に対して3当量添加し、加圧条件下で120℃で2時間反応させた。その後、シュウ酸15.0gを添加して付加反応を停止させ、吸引ろ過により塩を除去し、さらにDMFを減圧蒸留により除去して、目的物であるメソゲンジオールD(構造異性体を含んでいてもよい)を得た。当該反応を下記に示す。
Figure JPOXMLDOC01-appb-I000005
 (式中、m+n=3である。)
 メソゲンジオールD500g、ヘキサメチレンジイソシアネート(HDI)162g、及び触媒(東ソー社製、TEDA-L33)5gを混合し、当該混合物を100℃で2時間反応させて液晶性ウレタン化合物D1を得た。
 液晶性ウレタン化合物D1を押出成形機内で溶融させ、液晶性ウレタン化合物D1(98重量部)に対して、HDI系イソシアヌレート(住化バイエルウレタン社製、スミジュールN3300)2重量部をサイドフィーダーで添加し、混練しながら繊維状に押出し、延伸(延伸温度25℃、延伸倍率200%)を加えながら巻き取って熱応答性液晶ポリウレタンエラストマーからなる単繊維を製造した。巻き取った単繊維は、25℃で24時間養生した。
Figure JPOXMLDOC01-appb-T000006
 本発明の単繊維又はフィラメント糸は、熱に応答して可逆的に伸縮する機能を有するため、当該機能を付与する各種の繊維製品の原料として用いることができる。

Claims (12)

  1. 液晶相から等方相へ、又は等方相から液晶相へ相転移する転移温度(Ti)を境に、可逆的に伸縮する熱応答性液晶エラストマーを含む単繊維。
  2. 前記熱応答性液晶エラストマーは、少なくとも、活性水素基を有するメソゲン基含有化合物、アルキレンオキシド及び/又はスチレンオキシド、及びジイソシアネート化合物を反応させて得られる液晶性ウレタン化合物と、当該液晶性ウレタン化合物の活性水素基又はイソシアネート基と反応する3官能以上の多官能化合物とを反応させることにより得られる熱応答性液晶ポリウレタンエラストマーである請求項1に記載の単繊維。
  3. 前記メソゲン基含有化合物が、下記一般式(1)で表される化合物である請求項2に記載の単繊維。
    Figure JPOXMLDOC01-appb-I000001

    (式中、Xは活性水素基であり、Rは単結合、-N=N-、-CO-、-CO-O-、又は-CH=N-であり、Rは単結合、又は-O-であり、Rは単結合、又は炭素数1~20のアルキレン基である。ただし、Rが-O-であり、かつRが単結合である場合を除く。)
  4. 前記アルキレンオキシドは、エチレンオキシド、プロピレンオキシド、及びブチレンオキシドからなる群より選択される少なくとも1種である請求項2又は3に記載の単繊維。
  5. 前記アルキレンオキシド及び/又はスチレンオキシドは、前記メソゲン基含有化合物1モルに対して2~10モル付加している請求項2~4のいずれかに記載の単繊維。
  6. 前記熱応答性液晶ポリウレタンエラストマーは、ガラス転移温度(Tg)と前記転移温度(Ti)の温度間にメソゲンの融点が存在せず、TgとTiの温度間で液晶が発現する請求項2~5のいずれかに記載の単繊維。
  7. 前記転移温度(Ti)が、0~100℃である請求項1~6のいずれかに記載の単繊維。
  8. 前記転移温度(Ti)が、20~35℃である請求項1~6のいずれかに記載の単繊維。
  9. 伸縮率が102~300%である請求項1~8のいずれかに記載の単繊維。
  10. 請求項1~9のいずれかに記載の単繊維を含むフィラメント糸。
  11. 請求項1~9のいずれかに記載の単繊維、又は請求項10に記載のフィラメント糸を用いた繊維製品。
  12. 伸縮率が異なる2種以上の単繊維又はフィラメント糸を用いて、部分ごとに伸縮度合いを変化させた請求項11に記載の繊維製品。
     
     
PCT/JP2016/068536 2015-07-01 2016-06-22 熱応答性液晶エラストマーを含む単繊維、フィラメント糸、繊維製品 WO2017002682A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16817790.5A EP3318663A4 (en) 2015-07-01 2016-06-22 SINGLE FIBER COMPRISING LIQUID CRYSTAL THERMOSENSITIVE ELASTOMER, FILAMENT YARN, AND FIBROUS PRODUCT
CN201680034795.5A CN107709638A (zh) 2015-07-01 2016-06-22 含有热响应性液晶弹性体的单纤维、长丝纱线、纤维产品
US15/738,373 US20180187337A1 (en) 2015-07-01 2016-06-22 Single fibre including thermally responsive liquid-crystal elastomer, filament yarn, and fibre product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-132560 2015-07-01
JP2015132560A JP6616600B2 (ja) 2015-07-01 2015-07-01 熱応答性液晶エラストマーを含む単繊維、フィラメント糸、繊維製品

Publications (1)

Publication Number Publication Date
WO2017002682A1 true WO2017002682A1 (ja) 2017-01-05

Family

ID=57608752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068536 WO2017002682A1 (ja) 2015-07-01 2016-06-22 熱応答性液晶エラストマーを含む単繊維、フィラメント糸、繊維製品

Country Status (5)

Country Link
US (1) US20180187337A1 (ja)
EP (1) EP3318663A4 (ja)
JP (1) JP6616600B2 (ja)
CN (1) CN107709638A (ja)
WO (1) WO2017002682A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047389A1 (ja) * 2016-09-09 2018-03-15 東洋ゴム工業株式会社 液晶性繊維材料、及び繊維製品
JP2019112606A (ja) * 2017-12-22 2019-07-11 Toyo Tire株式会社 シリコーン含有液晶性ポリマー、及びシリコーン含有液晶性ポリマーの製造方法
JP2019112605A (ja) * 2017-12-22 2019-07-11 Toyo Tire株式会社 液晶性ポリマー、及び液晶性ポリマーの製造方法
US11434352B2 (en) * 2019-04-25 2022-09-06 Toyo Tire Corporation Rubber composition and pneumatic tire

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015084422A1 (en) 2013-12-05 2015-06-11 Massachusetts Institute Of Technology Object of additive manufacture with encoded predicted shape change
US10611195B2 (en) * 2015-07-31 2020-04-07 Kb Seiren, Ltd. Tire bead fiber
AU2016376548B2 (en) * 2015-12-24 2018-11-22 Toyo Tire & Rubber Co., Ltd. Thermoresponsive material, and heat control device and fiber using thermoresponsive material
US10689480B2 (en) * 2016-03-01 2020-06-23 Toyo Tire Corporation Liquid-crystal compound, thermally responsive material, and production method therefor
US11052597B2 (en) 2016-05-16 2021-07-06 Massachusetts Institute Of Technology Additive manufacturing of viscoelastic materials
US10633772B2 (en) * 2017-01-12 2020-04-28 Massachusetts Institute Of Technology Active woven materials
US10549505B2 (en) 2017-01-12 2020-02-04 Massachusetts Institute Of Technology Active lattices
CA3059108A1 (en) 2017-04-04 2018-10-11 Massachusetts Institute Of Technology Additive manufacturing in gel-supported environment
JP7008480B2 (ja) * 2017-11-16 2022-01-25 Toyo Tire株式会社 熱応答性布帛
JP2019090137A (ja) * 2017-11-16 2019-06-13 Toyo Tire株式会社 熱応答性布帛
JP2019090138A (ja) * 2017-11-16 2019-06-13 Toyo Tire株式会社 熱応答性布帛
JP6937228B2 (ja) * 2017-11-16 2021-09-22 Toyo Tire株式会社 熱応答性布帛
CN113802209B (zh) * 2021-08-24 2023-06-06 华南师范大学 一种可螺旋弯曲的液晶弹性体纤维及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351413A (ja) * 1986-08-19 1988-03-04 バイエル・アクチエンゲゼルシヤフト 線状ポリウレタンエラストマ−およびその製造法
JPH05195322A (ja) * 1992-01-17 1993-08-03 Toyobo Co Ltd ポリウレタン系弾性繊維
JPH07292062A (ja) * 1994-04-22 1995-11-07 Toyobo Co Ltd ポリウレタンおよび弾性繊維
JP2000281743A (ja) * 1999-03-31 2000-10-10 Asai Shokusan Kk 過冷却液晶性ポリウレタン
JP2007247074A (ja) * 2006-03-13 2007-09-27 Nissan Motor Co Ltd 機能性繊維、機能性繊維集合体、及びそれらからなる車両用部品
JP2007538168A (ja) * 2004-05-20 2007-12-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フィラメント又はファイバ
CN103087296A (zh) * 2013-01-29 2013-05-08 复旦大学 一种侧链式线性偶氮苯液晶高分子材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0411349D0 (en) * 2004-05-21 2004-06-23 Koninkl Philips Electronics Nv A filament of fibre
CN101560302A (zh) * 2008-04-18 2009-10-21 香港理工大学 具有双向形状记忆效应的液晶弹性体或纤维及其制备方法
WO2010026069A2 (de) * 2008-08-25 2010-03-11 Basf Se Textile flächengebilde mit reversiblem formgedächtnis
CN103289707B (zh) * 2013-06-09 2015-07-01 石家庄诚志永华显示材料有限公司 一种快速响应液晶组合物
CN103524678B (zh) * 2013-10-10 2016-08-31 湖北大学 用于光致动器的液晶弹性体复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351413A (ja) * 1986-08-19 1988-03-04 バイエル・アクチエンゲゼルシヤフト 線状ポリウレタンエラストマ−およびその製造法
JPH05195322A (ja) * 1992-01-17 1993-08-03 Toyobo Co Ltd ポリウレタン系弾性繊維
JPH07292062A (ja) * 1994-04-22 1995-11-07 Toyobo Co Ltd ポリウレタンおよび弾性繊維
JP2000281743A (ja) * 1999-03-31 2000-10-10 Asai Shokusan Kk 過冷却液晶性ポリウレタン
JP2007538168A (ja) * 2004-05-20 2007-12-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フィラメント又はファイバ
JP2007247074A (ja) * 2006-03-13 2007-09-27 Nissan Motor Co Ltd 機能性繊維、機能性繊維集合体、及びそれらからなる車両用部品
CN103087296A (zh) * 2013-01-29 2013-05-08 复旦大学 一种侧链式线性偶氮苯液晶高分子材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3318663A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047389A1 (ja) * 2016-09-09 2018-03-15 東洋ゴム工業株式会社 液晶性繊維材料、及び繊維製品
JPWO2018047389A1 (ja) * 2016-09-09 2019-06-24 Toyo Tire株式会社 液晶性繊維材料、及び繊維製品
JP2019112606A (ja) * 2017-12-22 2019-07-11 Toyo Tire株式会社 シリコーン含有液晶性ポリマー、及びシリコーン含有液晶性ポリマーの製造方法
JP2019112605A (ja) * 2017-12-22 2019-07-11 Toyo Tire株式会社 液晶性ポリマー、及び液晶性ポリマーの製造方法
US11434352B2 (en) * 2019-04-25 2022-09-06 Toyo Tire Corporation Rubber composition and pneumatic tire

Also Published As

Publication number Publication date
EP3318663A4 (en) 2019-02-20
CN107709638A (zh) 2018-02-16
US20180187337A1 (en) 2018-07-05
JP6616600B2 (ja) 2019-12-04
EP3318663A1 (en) 2018-05-09
JP2017014663A (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6616600B2 (ja) 熱応答性液晶エラストマーを含む単繊維、フィラメント糸、繊維製品
KR101163271B1 (ko) 폴리우레탄우레아 탄성 섬유
JP6152056B2 (ja) エラストマー樹脂、その繊維および布、ならびにそれらの使用
ES2403419T3 (es) Elastano obtenido a partir de poli(tetrametilén-co-etilén éter)glicoles mezclados con glicoles poliméricos
JP6418610B2 (ja) 複合繊維、その製造方法及び使用方法、並びにそれを含む織物
JP5895312B2 (ja) 弾性布帛
CN105696101B (zh) 由薄规格恒定压缩弹性纤维构成的高强度织物
TW201211333A (en) Bicomponent spandex with reduced friction
US20160053408A1 (en) High strength constant compression elastic fibers and fabrics thereof
JP2017014393A (ja) 液晶性ウレタン化合物、熱応答性液晶ポリウレタンエラストマー及びその製造方法
KR20180053350A (ko) 열응답성 재료, 및 열응답성 재료를 이용한 열제어 장치 및 섬유
JP6237113B2 (ja) ポリウレタンエラストマー、及び弾性繊維
JP6660474B2 (ja) 液晶性繊維材料、及び繊維製品
JP2008163498A (ja) 編地及び衣料
JP2733321B2 (ja) 着用感の優れた編地
JP6150226B2 (ja) ポリウレタン弾性繊維、その製造方法、および弾性布帛
CN116419936A (zh) 聚氨酯弹性纱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE