WO2017002216A1 - 冷媒漏洩検知装置 - Google Patents

冷媒漏洩検知装置 Download PDF

Info

Publication number
WO2017002216A1
WO2017002216A1 PCT/JP2015/068902 JP2015068902W WO2017002216A1 WO 2017002216 A1 WO2017002216 A1 WO 2017002216A1 JP 2015068902 W JP2015068902 W JP 2015068902W WO 2017002216 A1 WO2017002216 A1 WO 2017002216A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
sensor
detection
inspection
detection device
Prior art date
Application number
PCT/JP2015/068902
Other languages
English (en)
French (fr)
Inventor
基志 那須
井上 琢也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1717743.7A priority Critical patent/GB2554582A/en
Priority to PCT/JP2015/068902 priority patent/WO2017002216A1/ja
Priority to JP2017525733A priority patent/JPWO2017002216A1/ja
Publication of WO2017002216A1 publication Critical patent/WO2017002216A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid

Definitions

  • the present invention relates to a refrigerant leakage detection device that detects refrigerant leakage in a cooling device.
  • a refrigerant leakage detection device is provided in a cooling device such as an air conditioner or a refrigerator in order to detect refrigerant leakage from the cooling device.
  • a refrigerant leakage detection device is provided in a cooling device such as an air conditioner or a refrigerator in order to detect refrigerant leakage from the cooling device.
  • a refrigerant leakage detection device is provided in a cooling device such as an air conditioner or a refrigerator in order to detect refrigerant leakage from the cooling device.
  • Patent Document 1 the presence or absence of a refrigerant leak is determined from the refrigerant concentration detected by a sensor. When it is determined that the refrigerant is leaking, an alarm sound is emitted from an alarm buzzer and a shut-off valve is closed. It describes that the refrigerant flow is cut off and the ventilation fan is turned to lower the refrigerant concentration in the room.
  • the refrigerant leakage detection function is an important function related to safety. However, if the refrigerant leakage detection device or the refrigerant sensor fails, refrigerant leakage cannot be detected.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a highly reliable refrigerant leak detection device.
  • the refrigerant leakage detection device determines the presence or absence of refrigerant leakage based on a plurality of detection circuits that detect the output of the refrigerant sensor and the outputs from the plurality of detection circuits, and whether or not there is an abnormality in the plurality of detection circuits. And a control means for determining.
  • the presence or absence of refrigerant leakage is determined based on the outputs from the plurality of detection circuits, and the presence or absence of abnormality in the plurality of detection circuits is determined. Even when an abnormality occurs, the refrigerant leakage can be determined, and the detection circuit where the abnormality has occurred can be specified, so that the reliability is improved.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to Embodiment 1.
  • FIG. It is a figure which shows the apparatus connected to the internal structure of the refrigerant
  • 3 is a flowchart showing a flow of a refrigerant leakage detection process in the first embodiment. 3 is an example of a layout diagram displayed on the centralized controller according to the first embodiment.
  • FIG. 6 is a schematic configuration diagram of an air-conditioning system according to Embodiment 2.
  • FIG. 6 is a schematic configuration diagram of an air-conditioning system according to Embodiment 2.
  • FIG. 10 is a flowchart showing a flow of processing in an inspection mode according to the third embodiment. It is the schematic diagram which looked at the state by which the refrigerant
  • coolant leak detection apparatus. 10 is a graph showing transition of output values of two refrigerant sensors in the fourth embodiment.
  • FIG. 1 is a schematic configuration diagram of an air-conditioning system 10 according to Embodiment 1 of the present invention.
  • the air conditioning system 10 of the present embodiment performs cooling and heating in the building 100 by performing a vapor compression refrigeration cycle operation.
  • the air conditioning system 10 includes an outdoor unit 1 installed outside the building 100, a shunt controller 2 installed inside the building 100, and a plurality of indoor units 31, 32, and 33.
  • a solid line connecting the components indicates a refrigerant pipe, and a broken line indicates a communication line.
  • the outdoor unit 1 supplies cold or warm heat into the building 100 and is installed outside the building 100.
  • the outdoor unit 1 constitutes a part of a refrigerant circuit, and includes a compressor 11, an outdoor heat exchanger (not shown), a four-way valve (not shown), an expansion valve (not shown), and outdoor heat.
  • a fan 12 for supplying air to the exchanger and a control device 13 are provided.
  • the operation capacity of the compressor 11 and the rotational speed of the fan 12 are controlled by the control device 13.
  • the control device 13 is communicably connected to a control device (not shown) and a centralized controller 40 provided in the shunt controller 2 and the indoor units 31 to 33, respectively.
  • the shunt controller 2 is arranged between the outdoor unit 1 and the indoor units 31 to 33, and controls the flow of the refrigerant to the indoor units 31 to 33.
  • the shunt controller 2 is disposed, for example, in the back of the ceiling of the monitoring room 101 of the building 100.
  • the indoor units 31 to 33 constitute a refrigerant circuit together with the outdoor unit 1, and each include an indoor heat exchanger (not shown) and a fan (not shown) for supplying air to the indoor heat exchanger.
  • the indoor unit 31 is embedded in the ceiling of the living room 102 and cools and heats the living room 102.
  • the indoor unit 32 is installed by being embedded in the ceiling of the living room 103, and performs cooling and heating of the living room 103.
  • the indoor unit 33 is installed on the floor of the living room 103 and performs cooling and heating of the living room 103 together with the indoor unit 32.
  • the indoor units 31, 32, and 33 are provided with remote controllers 41, 42, and 43, respectively.
  • the remote controllers 41 to 43 By operating the remote controllers 41 to 43, the operation / stop of the indoor units 31 to 33, the operation mode, the set temperature, and the like can be controlled.
  • a centralized controller 40 that manages the entire air conditioning system 10 is disposed.
  • the centralized controller 40 communicates with the shunt controller 2 and the control devices (not shown) of the indoor units 31 to 33 via the outdoor unit 1, and information such as the operating state of the shunt controller 2 and the indoor units 31 to 33. To get.
  • a plurality of refrigerant sensors 51, 52, 53, and 54 for detecting refrigerant are arranged in a building 100.
  • the plurality of refrigerant sensors 51 to 54 are, for example, semiconductor type gas detection sensors, and detect the same or equivalent gas as the refrigerant used in the refrigerant circuit of the air conditioning system 10.
  • the refrigerant sensor 51 is incorporated in the flow dividing controller 2 and is disposed in or around the product, such as a pipe joint.
  • the refrigerant sensor 52 is installed on the floor of the living room 102 or a wall near the floor.
  • the refrigerant sensor 53 is incorporated in the indoor unit 32 of the living room 103 and is disposed, for example, in the vicinity of the indoor heat exchanger.
  • the refrigerant sensor 54 is installed on the floor of the living room 103 or a wall near the floor.
  • the refrigerant sensors 51 to 54 may be installed so as to be removable. As a result, it can be exchanged in the event of a failure or when the reaction has deteriorated due to prolonged use.
  • the detection signals of the refrigerant sensors 51, 52, 53 and 54 are output to the refrigerant leakage detection devices 61, 62, 63 and 64, respectively.
  • the refrigerant leakage detection devices 61 to 64 determine the presence or absence of refrigerant leakage based on the detection signals of the refrigerant sensors 51 to 54, and activate the safety device when it is determined that refrigerant leakage has occurred.
  • the refrigerant leak detection device 61 is disposed in the monitoring chamber 101 and determines whether or not there is a refrigerant leak from the branch controller 2 based on the detection signal of the refrigerant sensor 51.
  • the refrigerant leak detection device 62 is arranged in the living room 102 and determines whether or not there is a refrigerant leak from the indoor unit 31 based on the detection signal of the refrigerant sensor 52.
  • the refrigerant leak detection device 63 is disposed in the living room 103 and determines whether or not there is a refrigerant leak from the indoor unit 32 based on the detection signal of the refrigerant sensor 53.
  • the refrigerant leak detection device 64 is arranged in the living room 103 and determines whether or not there is a refrigerant leak from the indoor unit 33 based on the detection signal of the refrigerant sensor 54.
  • the refrigerant leakage detection devices 61 to 64 may be provided independently of the branch controller 2 and the indoor units 31 to 33, or may be incorporated in the branch controller 2 or the indoor units 31 to 33.
  • alarm devices 71, 72, and 73 are installed in the monitoring room 101 and the living rooms 102 and 103, respectively, for notifying the user of refrigerant leakage.
  • the alarm device 71 is installed in the monitoring room 101 and emits an alarm sound when refrigerant leakage is detected by the refrigerant leakage detection device 61.
  • the alarm device 72 is installed in the living room 102 and emits an alarm sound when refrigerant leakage is detected by the refrigerant leakage detection device 62.
  • the alarm device 73 is installed in the living room 103 and emits an alarm sound when refrigerant leakage is detected by the refrigerant leakage detection device 63 or 64.
  • the alarm device 73 may be set to emit a different alarm sound for each refrigerant sensor in which refrigerant leakage is detected. Specifically, the alarm device 73 may vary the level of the alarm sound between when the refrigerant leak is detected by the refrigerant sensor 53 and when the refrigerant leak is detected by the refrigerant sensor 54. Thereby, even when a plurality of refrigerant sensors are arranged in the living room 103, the occurrence location of the refrigerant leakage can be estimated by the pitch of the alarm 73. Further, the alarm devices 71 to 73 may be incorporated in the refrigerant leak detection devices 61 to 64, respectively.
  • shut-off valves 81, 82, and 83 are arranged as safety devices in the refrigerant piping that connects the diversion controller 2 and the indoor units 31, 32, and 33, respectively.
  • the shut-off valve 81 is disposed between the branch controller 2 and the indoor unit 31 and is closed when refrigerant leakage is detected by the refrigerant leakage detection device 62.
  • the shut-off valve 82 is disposed between the branch controller 2 and the indoor unit 32, and is closed when refrigerant leakage is detected by the refrigerant leakage detection device 63.
  • the shut-off valve 83 is disposed between the flow dividing controller 2 and the indoor unit 33, and is closed when refrigerant leakage is detected by the refrigerant leakage detection device 64.
  • ventilation devices 90, 91 and 92 are installed in the monitoring room 101 and the living rooms 102 and 103 as safety devices, respectively.
  • the ventilation devices 90 to 92 are, for example, propeller fans driven by a fan motor (not shown).
  • the ventilation device 90 is installed on the wall surface between the monitoring room 101 and the living room 102 and is activated when refrigerant leakage is detected by the refrigerant leakage detection device 61 to ventilate the refrigerant in the monitoring room 101.
  • the ventilator 90 may be disposed on the wall facing the outside of the monitoring room 101 and discharge the refrigerant in the monitoring room 101 to the outside.
  • the ventilation device 91 is installed on the wall surface of the living room 102 and is activated when refrigerant leakage is detected by the refrigerant leakage detection device 62, and discharges the refrigerant in the living room 102 to the outdoors.
  • the ventilation device 92 is installed on the wall surface of the living room 103 and is activated when refrigerant leakage is detected by the refrigerant leakage detection device 63 or 64, and discharges the refrigerant in the living room 103 to the outdoors.
  • FIG. 2 is a diagram showing an internal configuration of the refrigerant leak detection device 62 and devices connected to the refrigerant leak detection device 62.
  • the internal configuration of the refrigerant leak detection devices 61, 63 and 64 is substantially the same as that of the refrigerant leak detection device 62, and here, the refrigerant leak detection device 62 will be described as a representative.
  • the refrigerant leakage detection device 62 includes a detection circuit 621 that detects an output from the refrigerant sensor 52, a control unit 622 that controls the entire refrigerant leakage detection device 62, and a drive circuit 623 that drives a safety device. And a power supply circuit 624 that supplies power to each unit, a storage unit 625, a communication unit 626 that communicates with the indoor unit 31, and signal output units 627, 628, and 629 connected to the safety device.
  • the detection circuit 621 detects the detection signal of the refrigerant sensor 52, performs A / D conversion, and outputs it to the control means 622 as an output value such as a DC voltage value.
  • the control means 622 controls each part of the refrigerant leakage detection device 62, and is constituted by a microcomputer, for example. In another embodiment, the detection circuit 621 may be included in the control unit 622.
  • the drive circuit 623 drives the signal output means 627, 628 and 629 in response to the control signal from the control means 622.
  • An alarm device 72 is connected to the signal output means 627, a cutoff valve 81 is connected to the signal output means 628, and a ventilator 91 is connected to the signal output means 629.
  • the power supply circuit 624 converts, for example, an AC power supply AC, which is a commercial power supply, into a DC power supply such as DCI2V and DC5V, and supplies it to the drive circuit 623 and the control means 622.
  • the refrigerant leakage detection device 62 is supplied with power independently of the indoor unit 31 and always operates.
  • the power supply circuit for the indoor unit 31 is used. May be configured to operate in conjunction with the indoor unit 31.
  • the storage means 625 is constituted by, for example, a semiconductor memory and stores various data and programs used for controlling the refrigerant leakage detection device 62.
  • the communication unit 626 transmits and receives data to and from the control device (not shown) of the indoor unit 31 by wired or wireless communication.
  • the communication unit 626 can communicate with the remote controller 41 and the centralized controller 40 via the indoor unit 31.
  • the communication unit 626 may be configured to directly communicate with the centralized controller 40 or the remote controller 41.
  • FIG. 3 is a flowchart showing the flow of the refrigerant leak detection process performed by the refrigerant leak detection device 62.
  • the detection signal of the refrigerant sensor 52 is acquired by the detection circuit 621, converted into an output value, and output to the control means 622 (S1).
  • the control means 622 compares the output value with a set value that serves as a criterion for refrigerant leakage (S2).
  • the set value is a value defined in an industry standard or the like, and is stored in the storage unit 625.
  • the setting value may be variably adjusted according to the installation situation at the site.
  • a mechanism that cannot be adjusted by a general user prevents easy relaxation of refrigerant leakage detection. If the output value is less than the set value (S2: NO), it is determined that no refrigerant leakage has occurred, and the process returns to step S1.
  • the output value is greater than or equal to the set value (S2: YES)
  • the signal output means 627 is driven by the drive circuit 623 that has received the leakage signal, and the alarm device 72 is activated (S3).
  • the signal output means 628 and 629 are driven by the drive circuit 623, and the safety device is activated (S4). Specifically, the shutoff valve 81 connected to the signal output means 628 is closed, and the ventilator 91 connected to the signal output means 629 is driven.
  • shutoff valve since the shutoff valve is not connected to the refrigerant leak detection device 61, a signal instructing the outdoor unit 1 to stop the compressor 11 is transmitted instead of operating the shutoff valve. Thereby, the flow of the refrigerant to the diversion controller 2 can be stopped.
  • control means 622 transmits a signal notifying that a refrigerant leak has occurred to the indoor unit 31 via the communication means 626 (S5).
  • the notification signal is transmitted from the indoor unit 31 to the centralized controller 40 via the outdoor unit 1. Further, the date and time when the refrigerant leakage occurred and the output value of the refrigerant sensor 52 at that time are stored in the storage means 625 by the control means 622 (S6).
  • the central controller 40 grasps the occurrence of the refrigerant leak by transmitting a signal notifying that the refrigerant leak has been detected by the refrigerant leak detection device 62 to the central controller 40 via the indoor unit 31. Can do.
  • the centralized controller 40 together with the operating states of the indoor units 31 to 33, the refrigerant sensors 51 to 54, the refrigerant leak detection devices 61 to 64, the alarm devices 71 to 73, the shut-off valves 81 to 83, and the ventilation devices 90 to 92 are displayed.
  • the state can be grasped, and these can be displayed on the layout diagram.
  • FIG. 4 is an example of a layout diagram displayed on the centralized controller 40.
  • the centralized controller 40 includes display means 410 configured with a liquid crystal display or the like.
  • the display means 410 includes a layout of the building 100, refrigerant leak detection devices 61 to 64, refrigerant sensors 51 to 54, alarm devices 71 to 73, shutoff valves 81 to 83, and ventilation devices 90 to 90 arranged in each room.
  • An icon indicating 92 is displayed.
  • the centralized controller 40 receives the signal notifying that the refrigerant leak has been detected, the centralized controller 40 identifies the refrigerant sensor in which the refrigerant leak has been detected, and the alarm device, the shut-off valve, and the ventilator that are activated by the refrigerant leak.
  • the display means 410 includes at least one of refrigerant leakage detection devices 61 to 64, refrigerant sensors 51 to 54, alarm devices 71 to 73, shutoff valves 81 to 83, and ventilation devices 90 to 92 disposed in each room. One should be displayed.
  • the location or scale of occurrence of refrigerant leakage can be quickly determined. I can grasp it. Thereby, appropriate evacuation guidance etc. can be performed and safety can be improved.
  • one refrigerant sensor is connected to one refrigerant leak detection device.
  • one refrigerant leak detection device includes a plurality of refrigerant leak detection devices.
  • the refrigerant sensor may be connected.
  • FIG. 5 is a diagram illustrating devices arranged in the living room 102 according to the modification of the first embodiment.
  • a refrigerant sensor 55 incorporated in the indoor unit 31 is provided in addition to the refrigerant sensor 52 arranged near the floor of the living room 102.
  • the refrigerant leak detection device 62 receives the detection signals of the refrigerant sensor 52 and the refrigerant sensor 55, respectively, compares the detection signals with the set values, and determines that the refrigerant leak has occurred when either of them exceeds the set value. .
  • refrigerant sensors are arranged on the ceiling and the floor as in the example of FIG. 5, it is possible to estimate the refrigerant leakage speed and amount by calculating the time difference at which each refrigerant sensor operates. .
  • the time difference during which the refrigerant sensors 52 and 55 are operated is small, the refrigerant leakage speed is fast and there is a possibility that a large amount of leakage occurs. Therefore, in this case, it is determined that immediate evacuation is necessary, and an alarm is issued from the alarm device 72 so as to perform immediate evacuation.
  • the refrigerant leakage speed is slow and a small amount of leakage occurs. There is a possibility. Therefore, in this case, it may be determined that immediate evacuation is not necessary, and instead of issuing an alarm sound from the alarm device 72, a display indicating that maintenance is to be performed, an instruction by voice, or the like may be performed. Further, the sound and volume of the alarm device 72 may be changed according to the leakage speed and leakage amount of the refrigerant.
  • FIG. 6 is a schematic configuration diagram of an air conditioning system 10A in the present embodiment.
  • the heat source machine 1 ⁇ / b> A is arranged in a machine room 104 in the building 100.
  • the heat source machine 1A supplies cold or warm heat into the building 100, and includes a compressor 11, a water heat exchanger 14, a four-way valve (not shown), an expansion valve (not shown), and a control.
  • a device 13 In addition, a cooling tower 15 and a water pump 16 for supplying water to the water heat exchanger 14 are disposed outside the room.
  • the machine room 104 is provided with a refrigerant sensor 56, a refrigerant leak detection device 65, an alarm device 74, and a ventilation device 93 in order to detect refrigerant leakage from the heat source unit 1A.
  • the configuration of the refrigerant sensor 56, the refrigerant leak detection device 65, the alarm device 74, and the ventilation device 93 includes the refrigerant sensors 51 to 54, the refrigerant leak detection devices 61 to 64, the alarm devices 71 to 73, and the ventilation device 90 to the first embodiment. 92.
  • the refrigerant leakage detection device 65 the same refrigerant leakage detection process as that in FIG. 3 of the first embodiment is performed. However, the refrigerant leakage detection device 65 activates the ventilation device 93 and stops the operation of the compressor 11 in step S4 of FIG.
  • addresses are also set for the refrigerant sensor 56, the refrigerant leakage detection device 65, the alarm device 74, and the ventilation device 93, respectively, and the states of the refrigerant sensor 56, the refrigerant leakage detection device 65, the alarm device 74, and the ventilation device 93 are the centralized controller. It is displayed in 40 layout diagrams.
  • the central controller 40 can quickly grasp the occurrence of refrigerant leakage in the heat source device 1A.
  • Embodiment 3 a third embodiment of the present invention will be described.
  • the control unit of the refrigerant leak detection device executes a normal mode for detecting a refrigerant leak at normal times and an inspection mode for checking whether or not the refrigerant leak detection system is operating normally. This is different from the first embodiment.
  • the refrigerant leakage detection device 62A in the third embodiment and the refrigerant sensor 52, the alarm device 72, the shut-off valve 81, and the ventilation device 91 connected to the refrigerant leakage detection device 62A will be described as an example. To do.
  • FIG. 7 is a diagram showing an internal configuration of the refrigerant leakage detection device 62A and devices connected to the refrigerant leakage detection device 62A in the present embodiment.
  • the refrigerant leakage detection device 62A includes a detection circuit 621, a control unit 622, a drive circuit 623, a power supply circuit 624, a storage unit 625, and a communication unit 626 similar to those in the first embodiment.
  • a display means 631 and an operation means 632 are provided.
  • the display means 631 is composed of, for example, an LED.
  • the operation means 632 is constituted by, for example, a slide switch.
  • detection signals from the flow sensor 810 and the wind speed sensor 910 are input to the detection circuit 621 in addition to the detection signal from the refrigerant sensor 52.
  • the flow sensor 810 is attached to the downstream side of the cutoff valve 81 and detects the flow rate of the refrigerant on the downstream side of the cutoff valve 81.
  • the wind speed sensor 910 is attached to the ventilator 91 and detects the wind speed of the ventilator 91.
  • the control means 622 executes a normal mode for detecting refrigerant leakage at normal times and an inspection mode for checking whether or not the refrigerant leakage detection system is operating normally.
  • the refrigerant leakage detection procedure (FIG. 3) of the first embodiment is performed.
  • the control unit 622 includes a mode switching unit 21, an inspection instruction unit 22, a determination unit 23, a display control unit 24, and a time measuring unit 25 that are displayed in FIG.
  • Each of the above units is a functional unit realized by software, and is realized by executing a program by the control unit 622.
  • the mode switching unit 21 switches between the normal mode and the inspection mode in accordance with the operation of the operation means 632. Note that the mode switching unit 21 may switch between the normal mode and the inspection mode based on the operation signal from the centralized controller 40 or the remote controller 41 received via the communication unit 626. In addition, when the mode switching unit 21 is switched to the inspection mode, the mode switching unit 21 transmits a signal instructing the stop of the fan 310 of the indoor unit 31 to the indoor unit 31 via the communication unit 626.
  • the inspection instruction unit 22 When the inspection instruction unit 22 is switched to the inspection mode, the inspection instruction unit 22 transmits an inspection signal instructing the driving circuit 623 to perform the inspection.
  • the determination unit 23 determines whether or not each unit is operating normally based on the output value from the detection circuit 621.
  • the inspection result in the determination unit 23 is stored in the storage unit 625 together with the inspection date and time.
  • the display control unit 24 controls the display means 631 to perform a display for prompting inspection and a display indicating the inspection mode state.
  • the timer 25 measures the time after switching to the inspection mode.
  • the refrigerant leakage detection device 62A and the refrigerant sensor 52, the alarm device 72, the shut-off valve 81, and the ventilation device 91 connected to the refrigerant leakage detection device 62A are periodically inspected.
  • the alarm warning inspection of the alarm device 72 is performed at least once a month, and other devices are inspected at least once a year. Therefore, in the present embodiment, when the inspection deadline is approaching, the display control unit 24 displays the display unit 631 to prompt the inspection. It should be noted that the timing at which the display for prompting the inspection is variable, for example, two weeks before the legal inspection deadline, so that it is possible to remember to ask the inspector.
  • the display control unit 24 may instruct the remote controller 41 or the centralized controller 40 to perform a display for prompting inspection via the communication unit 626, or may transmit it by e-mail through the Internet line. If the e-mail destination is a maintenance inspection company, it is possible to place an order automatically.
  • FIG. 8 is a flowchart showing the flow of processing in the inspection mode. This process is started when the mode switching unit 21 switches to the inspection mode.
  • the centralized controller 40 or the remote controller 41 displays the inspection mode (S21). Specifically, “inspection” may be displayed on the remote controller 41 or the centralized controller 40, or an LED indicating the inspection mode may be turned on. Thereby, it can notify outside that it is in inspection mode.
  • the centralized controller 40 or the remote controller 41 is not connected, it may be displayed on a display unit of a device such as the indoor unit 31 or may be displayed on the display unit 631 of the refrigerant leakage detection device 62A. Further, in addition to the display, the inspection mode may be notified by voice or the like.
  • the fan 310 of the indoor unit 31 is stopped by an instruction from the mode switching unit 21 (S22).
  • the mode switching unit 21 S22.
  • the refrigerant diffuses and the concentration decreases, so that the refrigerant is difficult to detect. Therefore, the refrigerant is easily detected by stopping the fan 310 in the inspection mode.
  • the refrigerant leakage detection device 62A, the refrigerant sensor 52, the alarm device 72, the shut-off valve 81, and the ventilation device 91 are inspected (S23). These inspections may be performed individually for each device, or may be performed in conjunction with all devices. For example, when a large number of refrigerant sensors are connected to the refrigerant leakage detection device 62A, the alarm device 72, the shut-off valve 81, and the ventilation device 91 are separated and individually inspected to reduce the number of inspections. it can. Moreover, since it is not necessary to operate the shut-off valve 81 every time the refrigerant sensor is inspected, the operation of the indoor unit 31 can be continued.
  • the refrigerant leakage detection device 62A, the refrigerant sensor 52, the alarm device 72, the shut-off valve 81, and the ventilation device 91 are individually checked will be described.
  • the refrigerant sensor 52 In the inspection of the refrigerant sensor 52, the refrigerant is blown onto the refrigerant sensor 52, and when the determination unit 23 determines that the output value of the refrigerant sensor 52 is equal to or higher than the reference value, the refrigerant sensor 52 and the refrigerant leakage detection device 62A are normal. It is determined to operate. At this time, the output value of the refrigerant sensor 52 may be displayed on the display means 631, the remote controller 41, the centralized controller 40, or the like to determine whether or not the value is an appropriate value.
  • the refrigerant blown to the refrigerant sensor 52 is the same or equivalent refrigerant as the refrigerant used in the refrigerant circuit of the air conditioning system 10. However, in the inspection mode, the operation of the refrigerant sensor 52 may be confirmed using a refrigerant having a low concentration.
  • FIG. 9 is a schematic view of the state in which the refrigerant sensor 53 and the refrigerant leakage detection device 63 are accommodated in the indoor unit 32 as viewed from the side. In the example shown in FIG.
  • the casing 321 of the indoor unit 32 is the casing of the refrigerant leakage detection device 63 and the refrigerant sensor 53.
  • the indoor unit 32 is arranged with a casing 321 embedded in the ceiling.
  • An opening 322 is formed at a position of the housing 321 facing the refrigerant sensor 53.
  • the opening 322 may be a small hole into which a nozzle for blowing refrigerant gas is inserted.
  • the opening 322 is normally closed, and can be opened without a tool during inspection. Thereby, even when the refrigerant sensor 53 is incorporated in the indoor unit 32, the inspection can be performed without removing the exterior panel of the indoor unit 32, and the working efficiency is improved.
  • an inspection signal is transmitted from the inspection instruction unit 22 to the drive circuit 623, and whether or not the alarm device 72 and the refrigerant leakage detection device 62A are normally operated based on the alarm device 72 is notified.
  • the drive circuit 623 that has received the inspection signal drives the alarm device 72 by driving the signal output means 627.
  • the alarm device 72 emits an alarm sound, it is determined that the alarm device 72 is operating normally.
  • a microphone may be attached to the alarm device 72, connected to the refrigerant leakage detection device 62A, and the operation of the alarm device 72 may be confirmed by the determination unit 23 based on the output value of the microphone.
  • an operation switch may be provided in the alarm device 72 and it may be confirmed whether or not the alarm is issued by operating the operation switch. In this case, the inspection can be performed independently from the refrigerant leakage detection device 62A.
  • the drive circuit 623 may operate the alarm device 72 at a lower volume in the inspection mode than in the normal mode. As a result, it is possible to prevent reporting at a volume higher than necessary during the inspection.
  • shut-off valve 81 In the inspection of the shut-off valve 81, an inspection signal is transmitted from the check instructing unit 22 to the drive circuit 623, and whether or not the shut-off valve 81 and the refrigerant leakage detection device 62A operate normally is determined based on the output value of the flow sensor 810. Check. Specifically, the drive circuit 623 that has received the inspection signal drives the signal output means 628 to operate the shut-off valve 81. When the shutoff valve 81 is normally closed, the flow rate detected by the flow sensor 810 decreases. The determination unit 23 determines whether the cutoff valve 81 operates normally based on the output value of the flow sensor 810 by opening / closing the cutoff valve 81.
  • a pressure sensor may be attached to the downstream side of the shutoff valve 81 instead of the flow sensor 810, and the operation of the shutoff valve 81 may be checked based on a change in pressure. Further, a flow sensor or a pressure sensor may be attached before and after the shutoff valve 81, and the operation of the shutoff valve 81 may be confirmed based on a difference in flow rate or pressure before and after the shutoff valve 81.
  • an inspection signal is transmitted from the inspection instruction unit 22 to the drive circuit 623, and whether or not the ventilation device 91 and the refrigerant leakage detection device 62A operate normally based on the output value of the wind speed sensor 910.
  • the drive circuit 623 that has received the inspection signal drives the signal output means 629 to operate the ventilation device 91.
  • the ventilation device 91 operates normally, the wind speed detected by the wind speed sensor 910 increases.
  • the determination unit 23 determines whether the ventilator 91 operates normally based on the output value of the wind speed sensor 910.
  • an inspection signal may be transmitted from the inspection instruction unit 22 to the drive circuit 623, and it may be visually confirmed whether or not the ventilation device 91 rotates. Moreover, it replaces with the wind speed sensor 910, a flow sensor may be attached to the ventilator 91, and operation
  • each device is not limited to the above, and various changes are possible. Further, it is not necessary to inspect all of the refrigerant sensor 52, the alarm device 72, the shutoff valve 81, and the ventilation device 91, and the inspection object is selected from the refrigerant sensor 52, the alarm device 72, the shutoff valve 81, and the ventilation device 91. May be checked. In addition, when performing inspection with all the devices linked, the alarm device 72, the shut-off valve 81, and the ventilation device 91 are activated when the refrigerant is sprayed on the refrigerant sensor 52 and the output value reaches a predetermined concentration. You can confirm.
  • the inspection result in the determination unit 23 and the output value of each sensor may be displayed on the display means 631, the remote controller 41 or the centralized controller 40.
  • the inspection mode determines whether or not to end the inspection mode (S24).
  • the inspection mode has been switched to the normal mode based on the operation of the operation means 632, the centralized controller 40, or the remote controller 41.
  • the inspection mode is ended (S24: YES)
  • the inspection date or inspection date and time and the inspection result are stored in the storage means 625 (S26).
  • the inspection result stored here is the pass / fail of the operation check of the refrigerant sensor 52, the alarm device 72, the shutoff valve 81, and the ventilation device 91, or the refrigerant sensor 52, the flow sensor 810, the wind speed sensor 910, and the output value of the microphone. .
  • the concentration of the refrigerant gas used for the inspection in association with the actually measured value of the refrigerant sensor 52, it is possible to record the sensing accuracy.
  • the inspection date / time and the inspection result may be stored not only in the storage unit 625 but also in an external memory such as an SD card (registered trademark).
  • the inspection result and the inspection date / time may be transmitted to the remote controller 41, the centralized controller 40, or other external devices via the communication unit 626.
  • the inspection date and the inspection result may be output as a form.
  • the refrigerant leakage detection device 62A may be provided with a form output means, or the inspection date and result and the inspection result are transmitted to an external device having a form output function via the communication means 626, and the external device You may instruct to output the check date and the check result.
  • the inspection mode is not terminated (S24: NO)
  • the inspection time is a time required for performing the inspection, and is set in advance and stored in the storage unit 625. If the inspection time has elapsed (S25: YES), the process proceeds to step S26, and the inspection date and result and the inspection result are stored in the storage means 625 (S26). In this way, when the predetermined time has elapsed, the inspection mode is automatically terminated, so that it is possible to prevent forgetting to switch to the normal mode.
  • the return to the normal mode may be notified by display or sound. Furthermore, the user may be prompted to input an extension of the inspection time, and when there is an input of an extension of the inspection time, the inspection time may be extended and the inspection may be continued.
  • the fan 310 of the indoor unit 31 is activated (S27), the display indicating that the remote controller 41, the centralized controller 40 or the display means 631 is in the inspection mode is turned off (S28), and the inspection mode is terminated.
  • the display indicating the inspection mode may be turned off, and the return to the normal mode may be notified by display or sound. Thereby, it can be recognized that the inspector has returned to the normal mode.
  • the inspection mode may be terminated during the inspection in step S23.
  • how far the inspection has been performed may be stored in the storage unit 625, and the inspection may be continued from the next time the inspection mode is selected.
  • the inspection date and time and the inspection result in the inspection mode can be stored and displayed as data, or the form can be output to confirm that the inspection has been carried out reliably and its contents. be able to.
  • the single refrigerant sensor 52 is inspected.
  • the present invention is not limited to this.
  • the refrigerant sensors 51 to 54 in the air conditioning system 10 may be removed, put together in a container, and the reaction may be confirmed by spraying a refrigerant for inspection. With such a configuration, when there are a large number of refrigerant sensors, the inspection work can be performed efficiently.
  • the refrigerant sensor 52 may be calibrated based on the output value of the refrigerant sensor 52. Specifically, the concentration of the refrigerant sprayed on the refrigerant sensor 52 and the measured value of the refrigerant sensor 52 are displayed on the remote controller 41, the centralized controller 40, or the display means 631. Then, while watching the display, the refrigerant sensor 52 can be calibrated by operating the remote controller 41, the centralized controller 40 or the operating means 632 to increase or decrease the detection level of the refrigerant sensor 52. Alternatively, the refrigerant sensor 52 may be calibrated by bringing a separately calibrated densitometer and comparing and adjusting the values. Furthermore, two refrigerant
  • a mechanism for leaking a small amount of the refrigerant of the indoor unit 31 may be provided, and the refrigerant sensor 52 may be inspected using the refrigerant leaked from the indoor unit 31 in the inspection mode. In this case, the inspection can be automatically performed without blowing the refrigerant to the refrigerant sensor 52.
  • the fan 310 of the indoor unit 31 is stopped in step S22 of the inspection mode.
  • the operation of the indoor unit 31 may be stopped.
  • the shutoff valve 81 may be closed to stop the refrigerant flow to the indoor unit 31.
  • the indoor unit 31 not only the indoor unit 31 but also the other indoor units 32 or 33 may be stopped, or the outdoor unit 1, the shunt controller 2 and the indoor units 31 to 33 of the same refrigerant system may be stopped.
  • all the refrigerant systems may be stopped. It may be possible for the inspector to select which unit or system to stop.
  • FIG. 10 is a diagram showing an internal configuration of the refrigerant leak detection device 62B and devices connected to the refrigerant leak detection device 62B in the present embodiment.
  • the refrigerant leakage detection device 62B of the present embodiment includes two detection circuits 621a and 621b, and refrigerant sensors 52a and 52b are connected to the two detection circuits 621a and 621b, respectively.
  • the two detection circuits 621a and 621b have the same specifications.
  • the refrigerant sensors 52a and 52b are arranged in the same place (for example, the floor of the living room 102 or a wall near the floor).
  • the refrigerant sensor 52a is an expensive high precision sensor
  • the refrigerant sensor 52b is an inexpensive low precision sensor.
  • the control means 622 compares the output values of the detection circuits 621a and 621b with the set values, respectively, and determines that refrigerant leakage has occurred when either of them is greater than or equal to the set value.
  • the control means 622 compares the output values of the detection circuits 621a and 621b with the set values, respectively, and determines that refrigerant leakage has occurred when either of them is greater than or equal to the set value.
  • FIG. 11 is a graph showing the transition of the output values of the refrigerant sensors 52a and 52b.
  • the vertical axis indicates the sensor output value
  • the horizontal axis indicates time.
  • the output value of the refrigerant sensor 52a is indicated by a solid line
  • the output value of the refrigerant sensor 52b is indicated by a broken line.
  • the output value is in a state where the output value is fixed or only slightly fluctuated.
  • the present embodiment it is possible to detect refrigerant leakage even when any refrigerant sensor or detection circuit is in an abnormal state by duplicating the refrigerant sensor and the detection circuit. Reliability is improved. Further, by comparing the output values of the two refrigerant sensors, it is possible to determine which refrigerant sensor or detection circuit is in an abnormal state.
  • FIG. 12 is a diagram showing an internal configuration of the refrigerant leak detection device 62C and devices connected to the refrigerant leak detection device 62C in the present embodiment.
  • the refrigerant leakage detection device 62 ⁇ / b> C of the present embodiment includes two detection circuits 621 a and 621 b corresponding to one refrigerant sensor 52.
  • the control means 622 compares the output values of the detection circuits 621a and 621b with the set values, respectively, and determines that a refrigerant leak has occurred when either of them exceeds the set value.
  • a refrigerant leak has occurred when either of them exceeds the set value.
  • the refrigerant leakage can be detected even when any of the detection circuits is in an abnormal state by duplicating the detection circuit, and the reliability is improved. Further, by using one refrigerant sensor that is relatively unlikely to cause an abnormality, it is possible to reduce the number of parts and the cost.
  • FIG. 13 is a diagram showing an internal configuration of the refrigerant leak detection device 62D and devices connected to the refrigerant leak detection device 62D in the present embodiment.
  • the refrigerant leakage detection device 62D of the present embodiment further includes an input switching circuit 630.
  • a detection signal of the refrigerant sensor 52 and a reference voltage (for example, 2.5 V) from the power supply circuit 624 are input to the input switching circuit 630.
  • the input switching circuit 630 periodically switches the detection signal and reference voltage of the refrigerant sensor 52 under the control of the control means 622 and outputs the switching signal to the detection circuit 621.
  • the control means 622 monitors the output value of the detection circuit 621, and determines that the detection circuit 621 has failed when the output value when the reference voltage is input is different from the reference voltage. When it is determined that the detection circuit 621 has failed, the control unit 622 transmits a failure signal to the drive circuit 623.
  • the drive circuit 623 that has received the failure signal drives the signal output means 628 to close the shut-off valve 81, drives the signal output means 627 to operate the alarm device 72, and issues an alarm for notifying the failure.
  • an abnormality in the detection circuit can be quickly found, and the reliability can be improved.
  • FIG. 14 is a diagram showing an internal configuration of the refrigerant leak detection device 62E and devices connected to the refrigerant leak detection device 62E in the present embodiment.
  • the refrigerant leak detection device 62E of the present embodiment includes two detection circuits 621a and 621b and two input switching circuits 630a and 630b.
  • a detection signal of the refrigerant sensor 52 and a reference voltage (for example, 2.5 V) from the power supply circuit 624 are input to the input switching circuits 630a and 630b, respectively.
  • the input switching circuits 630a and 630b periodically switch the detection signal and reference voltage of the refrigerant sensor 52 under the control of the control means 622 and output them to the detection circuits 621a and 621b, respectively.
  • the communication line between the control means 622 and the input switching circuits 630a and 630b is omitted.
  • the control means 622 monitors the output values of the detection circuits 621a and 621b, and determines that the detection circuit 621a or 621b is out of order when the output value when the reference voltage is input is different from the reference voltage. When it is determined that the detection circuit 621a or 621b has failed, the control unit 622 transmits a failure signal to the drive circuit 623.
  • the drive circuit 623 that has received the failure signal drives the signal output means 628 to close the shut-off valve 81, drives the signal output means 627 to operate the alarm device 72, and issues an alarm for notifying the failure.
  • the present embodiment it is possible to quickly find an abnormality in the detection circuit. Further, by duplicating the detection circuit, it is possible to detect refrigerant leakage even when a failure occurs in any one of the detection circuits, and it is possible to further improve the reliability.
  • the presence or absence of the refrigerant leakage is determined based on the output value of the refrigerant sensor 52 that directly detects the refrigerant gas.
  • the refrigerant sensor 52 instead of the refrigerant sensor 52, the output of a pressure sensor, a temperature sensor, or the like.
  • the presence or absence of refrigerant leakage may be determined based on the value.
  • the control unit 622 may determine the presence or absence of refrigerant leakage by a known method based on the refrigerant temperature or the refrigerant pressure detected by the pressure sensor or the temperature sensor.
  • the refrigerant leak detection devices in the third to seventh embodiments may be used not only in a cooling system such as the air conditioning system 10 but also in a single cooling device such as a room air conditioner or a refrigerator.
  • the refrigerant sensor or the detection circuit is configured to be duplicated, but it may be tripled or more.
  • a configuration may be adopted in which a plurality of refrigerant detection devices arranged in a plurality of rooms are connected and managed by a detection system.
  • a plurality of refrigerant detection devices arranged in a plurality of rooms are connected and managed by a detection system.
  • the contact is “closed” at the time of leakage and failure, and the contact is “open” at the time of normal operation and power failure.
  • FIG. 15 is a schematic diagram when contacts of a plurality of refrigerant leak detection devices 60 are connected in series.
  • the contact output is opened at the time of leakage, and the contact Y is energized when the signal output means X in the detection system 500 is not excited. Thereby, the alarm device 510 is turned ON.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

信頼性の高い冷媒漏洩検知装置を提供する。 冷媒漏洩検知装置は、冷媒センサの出力を検知する複数の検知回路と、複数の検知回路からの出力に基づいて、冷媒漏れの有無を判定し、複数の検知回路の異常の有無を判定する制御手段と、を備える。

Description

冷媒漏洩検知装置
 本発明は、冷熱機器における冷媒の漏洩を検知する冷媒漏洩検知装置に関するものである。
 従来、空気調和機または冷凍機などの冷熱機器において、冷熱機器からの冷媒の漏洩を検知するために、冷媒漏洩検知装置を設けることが知られている。例えば、特許文献1には、センサによって検知された冷媒濃度から冷媒漏れの有無を判断し、冷媒が漏れていると判断された場合に、警報ブザーから警報音を発するとともに、遮断弁を閉じて冷媒の流れを遮断し、換気扇を回して室内の冷媒濃度を低下させることが記載されている。
特開2012-193884号公報
 ここで、冷媒漏洩検知機能は、安全に係わる重要な機能である。しかしながら、冷媒漏洩検知装置または冷媒センサが故障した場合には、冷媒漏れを検知できなくなってしまう。
 本発明は、上記のような課題を解決するためになされたものであり、信頼性の高い冷媒漏洩検知装置を提供することを目的とする。
 本発明に係る冷媒漏洩検知装置は、冷媒センサの出力を検知する複数の検知回路と、複数の検知回路からの出力に基づいて、冷媒漏れの有無を判定し、複数の検知回路の異常の有無を判定する制御手段と、を備える。
 本発明に係る冷媒漏洩検知装置によると、複数の検知回路からの出力に基づいて、冷媒漏れの有無を判定し、複数の検知回路の異常の有無を判定することで、何れかの検知回路に異常が発生した場合でも冷媒漏れを判定することができ、また、異常が発生した検知回路を特定することができるため、信頼性が向上する。
実施の形態1における空気調和システムの概略構成図である。 実施の形態1における冷媒漏洩検知装置の内部構成および冷媒漏洩検知装置に接続される機器を示す図である。 実施の形態1における冷媒漏洩検知処理の流れを示すフローチャートである。 実施の形態1における集中コントローラに表示されるレイアウト図の一例である。 実施の形態1の変形例における居室に配置される機器を示す図である。 実施の形態2における空気調和システムの概略構成図である。 実施の形態3における冷媒漏洩検知装置の内部構成および冷媒漏洩検知装置に接続される機器を示す図である。 実施の形態3の点検モードにおける処理の流れを示すフローチャートである。 実施の形態3における室内機内に冷媒センサおよび冷媒漏洩検知装置が収容された状態を側面から見た模式図である。 実施の形態4における冷媒漏洩検知装置の内部構成および冷媒漏洩検知装置に接続される機器を示す図である。 実施の形態4における2つの冷媒センサの出力値の推移を示すグラフである。 実施の形態5における冷媒漏洩検知装置の内部構成および冷媒漏洩検知装置に接続される機器を示す図である。 実施の形態6における冷媒漏洩検知装置の内部構成および冷媒漏洩検知装置に接続される機器を示す図である。 実施の形態7における冷媒漏洩検知装置の内部構成および冷媒漏洩検知装置に接続される機器を示す図である。 変形例における複数の冷媒検知装置の接点を直列接続した場合の模式図である。
 以下に、本発明における冷媒漏洩検知システムの実施の形態を図面に基づいて詳細に説明する。以下では、冷熱システムの一例として空気調和システムにおける冷媒漏洩を検知する冷媒漏洩検知システムについて説明する。なお、各実施の形態の図面において、同じ構成要素については、同じ符号を付す。
 実施の形態1.
 図1は、本発明の実施の形態1における空気調和システム10の概略構成図である。本実施の形態の空気調和システム10は、蒸気圧縮式の冷凍サイクル運転を行うことによって、建物100内の冷房および暖房を行う。図1に示すように、空気調和システム10は、建物100の外に設置される室外機1と、建物100内に設置される分流コントローラ2と、複数の室内機31、32および33とを備える。なお、図1において、各構成要素を繋ぐ実線は、冷媒配管を示し、破線は通信線を示す。
 室外機1は、建物100内に冷熱または温熱を供給するものであり、建物100の外に設置される。室外機1は、冷媒回路の一部を構成し、圧縮機11と、室外熱交換器(図示せず)と、四方弁(図示せず)と、膨張弁(図示せず)と、室外熱交換器に空気を供給するためのファン12と、制御装置13と、を備えている。圧縮機11の運転容量およびファン12の回転数は制御装置13によって制御される。制御装置13は、分流コントローラ2および室内機31~33がそれぞれ備える制御装置(図示せず)ならびに集中コントローラ40と、通信可能に接続される。
 分流コントローラ2は、室外機1と室内機31~33との間に配置され、室内機31~33への冷媒の流れを分流制御する。分流コントローラ2は、例えば建物100の監視室101の天井裏などに配置される。
 室内機31~33は、室外機1とともに冷媒回路を構成し、それぞれ室内熱交換器(図示せず)および室内熱交換器に空気を供給するためのファン(図示せず)を備える。室内機31は、居室102の天井に埋設して設置され、居室102の冷房および暖房を行う。室内機32は、居室103の天井に埋設して設置され、居室103の冷房および暖房を行う。室内機33は、居室103の床に設置され、室内機32とともに居室103の冷房および暖房を行う。
 室内機31、32および33は、リモコン41、42および43をそれぞれ備えている。リモコン41~43を操作することで、室内機31~33の運転/停止、運転モードおよび設定温度などを制御することができる。また、監視室101には、空気調和システム10の全体を管理する集中コントローラ40が配置される。集中コントローラ40は、室外機1を介して、分流コントローラ2および各室内機31~33の制御装置(図示せず)と通信し、分流コントローラ2および各室内機31~33の運転状態などの情報を取得する。
 次に、本実施の形態の空気調和システム10における冷媒漏洩検知システムについて説明する。図1に示すように、建物100内には、冷媒を検知するための複数の冷媒センサ51、52、53および54が配置される。複数の冷媒センサ51~54は、例えば半導体式のガス検知センサであり、空気調和システム10の冷媒回路に用いられる冷媒と同じもしくは同等のガスを検知する。冷媒センサ51は、分流コントローラ2内に組み込まれ、例えば配管の接合部などの製品内もしくは製品周囲に配置される。冷媒センサ52は、居室102の床または床近傍の壁に設置される。冷媒センサ53は、居室103の室内機32内に組み込まれ、例えば室内熱交換器の近傍などに配置される。冷媒センサ54は、居室103の床または床近傍の壁に設置される。なお、冷媒センサ51~54は、取り外し可能に設置されてもよい。これにより、故障時および長時間の使用によって反応が悪くなった場合などに交換することができる。
 冷媒センサ51、52、53および54の検知信号は、冷媒漏洩検知装置61、62、63および64にそれぞれ出力される。冷媒漏洩検知装置61~64は、冷媒センサ51~54の検知信号に基づいて冷媒漏れの有無を判定し、冷媒漏れが発生したと判定した場合に安全装置を作動させる。冷媒漏洩検知装置61は、監視室101に配置され、冷媒センサ51の検知信号に基づいて分流コントローラ2からの冷媒漏れの有無を判定する。冷媒漏洩検知装置62は、居室102に配置され、冷媒センサ52の検知信号に基づいて室内機31からの冷媒漏れの有無を判定する。冷媒漏洩検知装置63は、居室103に配置され、冷媒センサ53の検知信号に基づいて室内機32からの冷媒漏れの有無を判定する。冷媒漏洩検知装置64は、居室103に配置され、冷媒センサ54の検知信号に基づいて室内機33からの冷媒漏れの有無を判定する。なお、冷媒漏洩検知装置61~64は、分流コントローラ2および室内機31~33とは独立して設けられてもよく、もしくは分流コントローラ2または室内機31~33内に組み込まれてもよい。
 また、監視室101、居室102および103には、使用者に冷媒漏れを報知するための警報器71、72および73がそれぞれ設置される。警報器71は、監視室101に設置され、冷媒漏洩検知装置61により冷媒漏れが検知された場合に警報音を発する。警報器72は、居室102に設置され、冷媒漏洩検知装置62により冷媒漏れが検知された場合に警報音を発する。警報器73は、居室103に設置され、冷媒漏洩検知装置63または64により冷媒漏れが検知された場合に警報音を発する。ここで、警報器73は、冷媒漏れが検知された冷媒センサごとに異なる警報音を発するように設定されてもよい。具体的には、警報器73は、冷媒センサ53によって冷媒漏れが検知された場合と、冷媒センサ54によって冷媒漏れが検知された場合とで、警報音の高さを異ならせてもよい。これにより、居室103内に複数の冷媒センサが配置される場合でも、警報器73の音の高さによって冷媒漏れの発生箇所を推定することができる。また、警報器71~73は、冷媒漏洩検知装置61~64内にそれぞれ組み込まれてもよい。
 また、分流コントローラ2と、各室内機31、32および33とを接続する冷媒配管には、安全装置として、遮断弁81、82および83がそれぞれ配置される。遮断弁81は、分流コントローラ2と室内機31との間に配置され、冷媒漏洩検知装置62によって冷媒漏れが検知された場合に閉じられる。遮断弁82は、分流コントローラ2と室内機32との間に配置され、冷媒漏洩検知装置63によって冷媒漏れが検知された場合に、閉じられる。遮断弁83は、分流コントローラ2と室内機33との間に配置され、冷媒漏洩検知装置64によって冷媒漏れが検知された場合に閉じられる。
 さらに、監視室101、居室102および103には、安全装置として、換気装置90、91および92がそれぞれ設置される。換気装置90~92は、例えばファンモータ(図示せず)によって駆動されるプロペラファンである。換気装置90は、監視室101と、居室102との間の壁面に設置され、冷媒漏洩検知装置61によって冷媒漏れが検知された場合に作動され、監視室101内の冷媒を換気する。なお、換気装置90は、監視室101の屋外に面した壁面に配置され、監視室101内の冷媒を屋外に排出するものであってもよい。換気装置91は、居室102の壁面に設置され、冷媒漏洩検知装置62によって冷媒漏れが検知された場合に作動され、居室102内の冷媒を屋外へ排出する。また、換気装置92は、居室103の壁面に設置され、冷媒漏洩検知装置63または64によって冷媒漏洩が検知された場合に作動され、居室103内の冷媒を屋外へ排出する。
 図2は、冷媒漏洩検知装置62の内部構成および冷媒漏洩検知装置62に接続される機器を示す図である。なお、冷媒漏洩検知装置61、63および64の内部構成は、冷媒漏洩検知装置62と略同様であり、ここでは冷媒漏洩検知装置62を代表として説明する。図2に示すように、冷媒漏洩検知装置62は、冷媒センサ52からの出力を検知する検知回路621と、冷媒漏洩検知装置62全体を制御する制御手段622と、安全装置を駆動する駆動回路623と、各部に電源を供給する電源回路624と、記憶手段625と、室内機31と通信する通信手段626と、安全装置に接続される信号出力手段627、628および629と、を備える。
 検知回路621は、冷媒センサ52の検知信号を検知してA/D変換し、直流電圧値などの出力値として制御手段622に出力する。制御手段622は、冷媒漏洩検知装置62の各部を制御するものであり、例えばマイクロコンピュータで構成される。なお、別の実施の形態において、検知回路621は、制御手段622に含まれる構成としてもよい。駆動回路623は、制御手段622からの制御信号に応じて、信号出力手段627、628および629を駆動する。信号出力手段627には警報器72が接続され、信号出力手段628には遮断弁81が接続され、信号出力手段629には換気装置91が接続される。なお、警報器72、遮断弁81および換気装置91以外の装置に接続される信号出力手段をさらに備えてもよい。
 電源回路624は、例えば商用電源である交流電源ACを、DCI2VおよびDC5Vなどの直流電源に変換して、駆動回路623および制御手段622に供給する。なお、本実施の形態では、冷媒漏洩検知装置62に室内機31とは独立して電源供給を行い、常時作動する構成となっているが、別の実施の形態では、室内機31の電源回路によって電源供給を行い、室内機31と連動して作動する構成としてもよい。記憶手段625は、例えば半導体メモリなどで構成され、冷媒漏洩検知装置62の制御に用いられる各種データおよびプログラムなどを記憶する。通信手段626は、有線または無線通信によって室内機31の制御装置(図示せず)とデータの送受信を行う。通信手段626は、室内機31を介してリモコン41および集中コントローラ40と通信可能である。なお、通信手段626が、集中コントローラ40またはリモコン41と直接通信する構成としてもよい。
 図3は、冷媒漏洩検知装置62による冷媒漏洩検知処理の流れを示すフローチャートである。本処理では、まず、検知回路621によって、冷媒センサ52の検知信号が取得され、出力値に変換されて制御手段622に出力される(S1)。次に、制御手段622にて、出力値と冷媒漏れの判断基準となる設定値とが比較される(S2)。設定値は、業界の規格などにおいて規定された値であり、記憶手段625に記憶される。但し、設定値については、現地での設置状況に応じて可変調整できてもよい。また、一般使用者が調整できない機構とする事で、冷媒漏洩検知の安易な緩和を防止する。そして、出力値が設定値未満の場合(S2:NO)、冷媒漏れは発生していないと判断され、ステップS1に戻る。
 一方、出力値が設定値以上の場合(S2:YES)、冷媒漏れが発生したと判断され、制御手段622から駆動回路623へ漏洩信号が送信される。そして、漏洩信号を受信した駆動回路623によって、信号出力手段627が駆動され、警報器72が作動される(S3)。これにより、警報器72から警報音が発せられる。また、駆動回路623によって、信号出力手段628および629が駆動され、安全装置が作動される(S4)。具体的には、信号出力手段628に接続される遮断弁81が閉じられ、信号出力手段629に接続される換気装置91が駆動される。ここで、冷媒漏洩検知装置61には、遮断弁が接続されていないため、遮断弁を作動させるかわりに、室外機1に対して圧縮機11を停止することを指示する信号を送信する。これにより、分流コントローラ2への冷媒の流れを停止することができる。
 そして、制御手段622によって、冷媒漏れが発生したことを通知する信号が、通信手段626を介して室内機31に送信される(S5)。当該通知信号は、室内機31から室外機1を介して集中コントローラ40に送信される。また、制御手段622によって、冷媒漏れが発生した日時とその時の冷媒センサ52の出力値が記憶手段625に記憶される(S6)。
 これにより、冷媒センサ52によって冷媒漏れが検知された場合には、警報器72から警報音を発して使用者に冷媒漏れを報知するとともに、遮断弁81および換気装置91を作動して室内機31への冷媒の流れを止め、居室102に漏れた冷媒を室外へ排出することができる。
 また、冷媒漏洩検知装置62によって冷媒漏れが検知されたことを通知する信号が室内機31を介して集中コントローラ40に送信されることで、集中コントローラ40にて、冷媒漏れの発生を把握することができる。ここで、本実施の形態の空気調和システム10では、室外機1、分流コントローラ2および室内機31~33に加え、冷媒センサ51~54、冷媒漏洩検知装置61~64、警報器71~73、遮断弁81~83および換気装置90~92にもそれぞれ固有のアドレスが設定される。そして、集中コントローラ40では、各室内機31~33の運転状態とともに、冷媒センサ51~54、冷媒漏洩検知装置61~64、警報器71~73、遮断弁81~83および換気装置90~92の状態を把握することができ、これらをレイアウト図に表示することができる。
 図4は、集中コントローラ40に表示されるレイアウト図の一例である。集中コントローラ40は、液晶ディスプレイなどで構成される表示手段410を備える。そして、表示手段410には、建物100のレイアウトと、各部屋に配置される冷媒漏洩検知装置61~64、冷媒センサ51~54、警報器71~73、遮断弁81~83および換気装置90~92を示すアイコンが表示される。そして、集中コントローラ40は、冷媒漏れが検知されたことを通知する信号を受信すると、冷媒漏れが検知された冷媒センサ、ならびにこの冷媒漏れによって作動している警報器、遮断弁および換気装置が識別できるように、色を変えて表示する、または点滅させる。これにより、表示手段410には、冷媒漏れが発生したエリアが識別可能に表示される。その結果、冷媒漏洩時のエリアを特定することができ、冷媒漏洩時の避難誘導や迅速な修理作業などに役立てることができる。なお、表示手段410には、各部屋に配置される冷媒漏洩検知装置61~64、冷媒センサ51~54、警報器71~73、遮断弁81~83および換気装置90~92の少なくとも何れか一つが表示されればよい。
 上記のように本実施の形態によれば、建物100内に複数の冷媒センサ51~54および冷媒漏洩検知装置61~64が配置される場合でも、冷媒漏れの発生箇所または発生規模などを迅速に把握することができる。これにより、適切な避難誘導などを行うことができ、安全性を向上させることができる。
 なお、上記実施の形態1では、1つの冷媒漏洩検知装置に対して1つの冷媒センサが接続される構成となっているが、これに限定されるものではなく、1つの冷媒漏洩検知装置に複数の冷媒センサが接続されてもよい。図5は、実施の形態1の変形例における居室102に配置される機器を示す図である。図5の例では、居室102の床近傍に配置される冷媒センサ52に加えて、室内機31内に組み込まれる冷媒センサ55が設けられる。冷媒漏洩検知装置62は、冷媒センサ52および冷媒センサ55の検知信号をそれぞれ受信し、設定値とそれぞれ比較して、何れか一方でも設定値以上となった場合に冷媒漏れが発生したと判定する。
 また、図5の例のように、天井と床とにそれぞれ冷媒センサを配置した場合、個々の冷媒センサが作動する時間差を演算することで、冷媒の漏洩スピードおよび漏洩量を推定することができる。例えば、冷媒センサ52および55が作動する時間差が小さい場合は、冷媒漏れのスピードが速く、大量に漏洩している可能性がある。そのため、この場合には即時避難が必要と判断し、警報器72から即時避難を行うよう警報を発する。一方、冷媒センサ52および55が作動する時間差が大きい場合、もしくは冷媒センサ52または55の何れか一方の検知信号のみが設定値以上の場合は、冷媒漏れのスピードが遅く、少量の漏れが発生している可能性がある。そのため、この場合には、即時避難の必要はないと判断し、警報器72から警報音を発するかわりに、メンテナンスを行う旨の表示や音声による指示などを行ってもよい。さらに、冷媒の漏洩スピードおよび漏洩量に応じて、警報器72の音や音量を変更してもよい。
 実施の形態2.
 次に、本発明の実施の形態2について説明する。実施の形態2の空気調和システム10Aは、室外機1に替えて、熱源機1Aを備える点において、実施の形態1と相違する。図6は、本実施の形態における空気調和システム10Aの概略構成図である。図6に示すように、熱源機1Aは、建物100内の機械室104に配置される。熱源機1Aは、建物100内に冷熱または温熱を供給するものであり、圧縮機11と、水熱交換器14と、四方弁(図示せず)と、膨張弁(図示せず)と、制御装置13と、を備える。また、室外には、水熱交換器14に水を供給するクーリングタワー15および水ポンプ16が配置される。
 また、機械室104には、熱源機1Aからの冷媒漏れを検知するために、冷媒センサ56、冷媒漏洩検知装置65、警報器74および換気装置93が設けられる。冷媒センサ56、冷媒漏洩検知装置65、警報器74および換気装置93の構成は、実施の形態1における冷媒センサ51~54、冷媒漏洩検知装置61~64、警報器71~73および換気装置90~92と同様である。また、冷媒漏洩検知装置65では、実施の形態1の図3と同様の冷媒漏洩検知処理が行われる。ただし、冷媒漏洩検知装置65では、図3のステップS4において、換気装置93を作動するとともに、圧縮機11の運転を停止する。
 また、冷媒センサ56、冷媒漏洩検知装置65、警報器74および換気装置93にもそれぞれアドレスが設定され、冷媒センサ56、冷媒漏洩検知装置65、警報器74および換気装置93の状態は、集中コントローラ40のレイアウト図に表示される。
 上記のように、本実施の形態によれば、建物100内に熱源機1Aを備える場合において、熱源機1Aでの冷媒漏れの発生を集中コントローラ40にて迅速に把握することができる。
 実施の形態3.
 次に、本発明の実施の形態3について説明する。実施の形態3では、冷媒漏洩検知装置の制御手段が、通常時の冷媒漏れを検知する通常モードと、冷媒漏洩検知システムが正常に動作しているか否かを確認するための点検モードとを実行する点において、実施の形態1と相違する。以下の説明では、実施の形態3における冷媒漏洩検知装置62Aと、冷媒漏洩検知装置62Aに接続される冷媒センサ52、警報器72、遮断弁81および換気装置91とを点検する場合を例に説明する。
 図7は、本実施の形態における冷媒漏洩検知装置62Aの内部構成および冷媒漏洩検知装置62Aに接続される機器を示す図である。図7に示すように、冷媒漏洩検知装置62Aは、実施の形態1と同様の検知回路621と、制御手段622と、駆動回路623と、電源回路624と、記憶手段625と、通信手段626と、信号出力手段627~629とに加え、表示手段631と、操作手段632とを備える。表示手段631は、例えばLEDなどで構成される。操作手段632は、例えば、スライドスイッチなどで構成される。
 また、本実施の形態では、冷媒センサ52の検知信号に加えて、流量センサ810および風速センサ910の検知信号が検知回路621に入力される。流量センサ810は、遮断弁81の下流側に取り付けられるものであり、遮断弁81の下流側における冷媒の流量を検知する。風速センサ910は、換気装置91に取り付けられるものであり、換気装置91の風速を検知する。
 制御手段622は、通常時の冷媒漏れを検知する通常モードと、冷媒漏洩検知システムが正常に動作しているか否かを確認するための点検モードとを実行する。通常モードでは、実施の形態1の冷媒漏洩検知処置(図3)が実施される。制御手段622は、点検モード時における機能部として、図7に表示されるモード切替部21、点検指示部22、判定部23、表示制御部24および計時部25を有する。上記各部は、ソフトウェアで実現される機能部であり、制御手段622によって、プログラムを実行することなどで実現される。
 モード切替部21は、操作手段632の操作に応じて、通常モードと点検モードとの切り替えを行う。なお、モード切替部21は、通信手段626を介して受信した集中コントローラ40またはリモコン41からの操作信号に基づいて、通常モードと点検モードとの切り替えを行ってもよい。また、モード切替部21は、点検モードに切り替えられた場合に、室内機31のファン310の停止を指示する信号を通信手段626を介して室内機31に送信する。
 点検指示部22は、点検モードに切り替えられた場合に、駆動回路623に点検を指示する点検信号を送信する。判定部23は、検知回路621からの出力値に基づいて、各部が正常に動作しているか否かを判定する。判定部23における点検結果は、点検日時とともに記憶手段625に記憶される。表示制御部24は、表示手段631を制御し、点検を促す表示および点検モード状態を示す表示を行う。計時部25は、点検モードに切り替えられてからの時間を計測する。
 冷媒漏洩検知装置62Aと、冷媒漏洩検知装置62Aに接続される冷媒センサ52、警報器72、遮断弁81および換気装置91の点検は、定期的に行われる。例えば、警報器72の警報発報検査は1月に1回以上、その他の機器の検査は1年に1回以上行われる。そこで、本実施の形態では、点検期限が近付いた場合に、表示制御部24は、表示手段631に点検を促す表示を行う。なお、点検を促す表示を行うタイミングは可変とし、例えば法定点検期限の2週間前とすることで、点検者を依頼することを忘れないようにできる。また、表示制御部24は、通信手段626を介して、リモコン41または集中コントローラ40に、点検を促す表示を行うよう指示してもよいし、インターネット回線を通じてメールで伝えても良い。メール送付先を保守点検業者とすれば、自動的に発注することもできる。
 図8は、点検モードにおける処理の流れを示すフローチャートである。本処理は、モード切替部21によって点検モードに切り替えられた場合に開始される。本処理では、まず、表示制御部24からの指示により、集中コントローラ40またはリモコン41において、点検モードであることを示す表示が行われる(S21)。具体的には、リモコン41または集中コントローラ40に「点検中」と表示してもよいし、点検モードを示すLEDを点灯してもよい。これにより、点検モード中であることを外部に通知することができる。なお、集中コントローラ40またはリモコン41が接続されていない場合は、室内機31などの機器の表示部に表示してもよいし、冷媒漏洩検知装置62Aの表示手段631に表示してもよい。さらに、表示以外にも、音声などによって点検モードであることを報知してもよい。
 次に、モード切替部21からの指示により、室内機31のファン310が停止される(S22)。室内機31のファン310が動作していると、冷媒が拡散し濃度が低くなるため、冷媒が検知されにくくなる。そのため、点検モードではファン310を停止させることで、冷媒を検知しやすくする。
 そして、冷媒漏洩検知装置62A、冷媒センサ52、警報器72、遮断弁81および換気装置91の点検が行われる(S23)。これらの点検は、機器毎に個別に行ってもよいし、全ての機器を連動させて行ってもよい。例えば、冷媒漏洩検知装置62Aに多数の冷媒センサが接続される場合には、警報器72、遮断弁81および換気装置91を分離して個別に点検することで、これらの点検回数を減らすことができる。また、冷媒センサの点検の度に遮断弁81を作動させなくてよいため、室内機31の運転を継続させることもできる。なお、以下では、冷媒漏洩検知装置62A、冷媒センサ52、警報器72、遮断弁81および換気装置91の点検を個別に行う場合について説明する。
(冷媒センサ52の点検)
 冷媒センサ52の点検では、冷媒センサ52に冷媒を吹き付け、判定部23において、冷媒センサ52の出力値が基準値以上であると判定された場合に、冷媒センサ52および冷媒漏洩検知装置62Aが正常に動作すると判定される。また、このとき、冷媒センサ52の出力値を、表示手段631、リモコン41または集中コントローラ40などに表示して、値が適正値であるか否かを判断してもよい。なお、冷媒センサ52に吹き付けられる冷媒は、空気調和システム10の冷媒回路で使用される冷媒と同じまたは同等の冷媒である。ただし、点検モードにおいては、濃度の低い冷媒を使用して冷媒センサ52の動作を確認してもよい。
 ここで、図1に示す冷媒センサ53のように、点検対象の冷媒センサが室内機32内に組み込まれて配置される場合、冷媒センサ53に冷媒を吹き付けるためには、工具などを使用して室内機32の外装パネルを取り外す必要があり、大変手間である。そこで、室内機32の筐体(例えば外装パネル)に冷媒センサ53にガスを吹き付けるための開口を設けてもよい。図9は、室内機32内に冷媒センサ53および冷媒漏洩検知装置63が収容された状態を側面から見た模式図である。図9に示す例では、室内機32の筐体321が、冷媒漏洩検知装置63および冷媒センサ53の筐体となる。室内機32は、天井に筐体321が埋め込まれて配置される。そして、筐体321の冷媒センサ53と対向する位置には、開口322が形成される。開口322は、冷媒ガスを吹き付けるためのノズルを差し込むサイズの小さい孔でよい。また開口322は、通常時には閉じた状態であり、点検時に工具なして開けられる構成とする。これにより、冷媒センサ53が室内機32に組み込まれる場合でも、室内機32の外装パネルを取り外すことなく点検を行うことができ、作業効率が向上する。
(警報器72の点検)
 警報器72の点検では、点検指示部22から駆動回路623へ点検信号を送信し、警報器72の発報に基づいて、警報器72および冷媒漏洩検知装置62Aが正常に動作するか否かを確認する。詳しくは、点検信号を受信した駆動回路623は、信号出力手段627を駆動して警報器72を作動する。警報器72が警報音を発した場合、警報器72が正常に動作していると判定する。なお、警報器72にマイクを取り付け、冷媒漏洩検知装置62Aに接続して、判定部23によってマイクの出力値に基づいて警報器72の動作確認を行ってもよい。さらに、警報器72に作動スイッチを設け、作動スイッチの操作によって発報するか否かを確認してもよい。この場合は、冷媒漏洩検知装置62Aからも独立して点検が可能となる。
 また、駆動回路623は、点検モードにおいては、通常モードに比べて、小さい音量で警報器72を作動させてもよい。これにより、検査時に必要以上の音量での発報を防ぐことができる。
(遮断弁81の点検)
 遮断弁81の点検では、点検指示部22から駆動回路623へ点検信号を送信し、流量センサ810の出力値に基づいて、遮断弁81および冷媒漏洩検知装置62Aが正常に動作するか否かを確認する。詳しくは、点検信号を受信した駆動回路623は、信号出力手段628を駆動して遮断弁81を作動する。そして、遮断弁81が正常に閉じられた場合、流量センサ810によって検知される流量が減少する。判定部23は、遮断弁81の開閉による流量センサ810の出力値に基づいて、遮断弁81が正常に動作するかを判定する。
 なお、別の実施の形態として、流量センサ810に替えて圧力センサを遮断弁81の下流側に取り付け、圧力の変化に基づいて遮断弁81の動作確認を行ってもよい。また、遮断弁81の前後に、流量センサまたは圧力センサを取り付け、遮断弁81の前後における流量または圧力の差に基づいて遮断弁81の動作確認を行ってもよい。
(換気装置91の点検)
 換気装置91の点検では、点検指示部22から駆動回路623へ点検信号を送信し、風速センサ910の出力値に基づいて、換気装置91および冷媒漏洩検知装置62Aが正常に動作するか否かを確認する。詳しくは、点検信号を受信した駆動回路623は、信号出力手段629を駆動して換気装置91を作動する。そして、換気装置91が正常に作動した場合、風速センサ910によって検知される風速が増加する。判定部23は、風速センサ910の出力値に基づいて、換気装置91が正常に動作するかを判定する。
 なお、別の実施の形態として、点検指示部22から駆動回路623へ点検信号を送信し、目視にて、換気装置91が回転するか否かを確認してもよい。また、風速センサ910に替えて、流量センサを換気装置91に取り付け、流量の変化から換気装置91の動作確認を行ってもよい。
 なお、各機器の点検方法は上記に限定されるものではなく様々な変更が可能である。また、冷媒センサ52、警報器72、遮断弁81および換気装置91の全ての点検を行う必要はなく、冷媒センサ52、警報器72、遮断弁81および換気装置91の中から点検対象を選択して点検を行ってもよい。また、全ての機器を連動させて点検を行う場合は、冷媒センサ52に冷媒を吹き付け、出力値が既定濃度に達した場合に、警報器72、遮断弁81および換気装置91がそれぞれ作動することを確認すればよい。
 判定部23における点検結果および各センサの出力値は、表示手段631、リモコン41または集中コントローラ40に表示されてもよい。
 次に、点検モードを終了するか否かが判断される(S24)。ここでは、操作手段632、もしくは集中コントローラ40またはリモコン41の操作に基づいて、点検モードから通常モードに切り替えられたか否かが判断される。そして、点検モードを終了する場合は(S24:YES)、点検日または点検日時と点検結果とが記憶手段625に記憶される(S26)。ここで記憶される点検結果は、冷媒センサ52、警報器72、遮断弁81および換気装置91の動作確認の合否、または冷媒センサ52、流量センサ810、風速センサ910およびマイクの出力値などである。また、点検に使用した冷媒ガスの濃度を冷媒センサ52の実測値と対応付けて記憶することで、センシングの精度についても記録することができる。
 さらに、点検日時および点検結果を記憶手段625へ記憶するだけでなく、SDカード(登録商標)などの外部メモリに記憶してもよい。または、点検結果と点検日時を、通信手段626を介してリモコン41、集中コントローラ40またはその他の外部機器に送信してもよい。さらに、点検日時と点検結果とを帳票出力してもよい。帳票出力の方法としては、冷媒漏洩検知装置62Aに帳票出力手段を設けてもよいし、通信手段626を介して帳票出力機能を有する外部機器に点検日時と点検結果とを送信し、外部機器から点検日時と点検結果とを帳票出力するよう指示してもよい。
 一方、点検モードを終了しない場合は(S24:NO)、点検時間が経過したか否かが判断される(S25)。そして、点検時間が経過していない場合は(S25:NO)、ステップS24へ戻る。ここで、点検時間は、点検を行うために要する時間であり、予め設定され記憶手段625に記憶される。そして、点検時間が経過した場合(S25:YES)、ステップS26に進み、点検日時と点検結果とを記憶手段625に記憶する(S26)。このように所定の時間が経過した場合には、自動的に点検モードを終了することで、通常モードへの切り替え忘れを防止することができる。なお、点検時間が経過した時点で、通常モードへ戻ることを表示または音声で報知してもよい。さらに、点検時間の延長の入力を促し、点検時間の延長の入力があった場合は、点検時間を延長して、点検を継続してもよい。
 そして、室内機31のファン310を起動させ(S27)、リモコン41、集中コントローラ40または表示手段631の点検モードであることを示す表示をOFFにして(S28)、点検モードを終了する。なお、点検モードであることを示す表示をOFFにするとともに、通常モードに戻ったことを表示または音にて報知してもよい。これにより、点検者が通常モードに戻ったことを認識することができる。
 また、ステップS23の点検の途中で点検モードを終了してもよい。この場合は、どこまで点検したかを記憶手段625に記憶し、次回、点検モードが選択された場合に、続きから点検を行うようにしてもよい。
 上記のように、本実施の形態によれば、点検モードにおける点検日時および点検結果をデータで保存・表示、または帳票出力することができ、点検が確実に実施されたことおよびその内容を確認することができる。
 なお、上記実施の形態2では、一つの冷媒センサ52に対して点検を行う構成としたが、これに限定されるものではない。例えば、空気調和システム10内の冷媒センサ51~54を取り外して、まとめて容器に入れ、点検用の冷媒を吹き付けて反応を確認してもよい。このような構成とすることで、多数の冷媒センサがある場合に効率よく点検作業を行うことができる。
 また、冷媒センサ52の出力値に基づいて、冷媒センサ52を校正してもよい。具体的には、冷媒センサ52に吹き付けた冷媒の濃度と、冷媒センサ52の実測値とをリモコン41、集中コントローラ40または表示手段631に表示する。そして、表示を見ながら、リモコン41、集中コントローラ40または操作手段632を操作して冷媒センサ52の検出レベルを増減させることで、冷媒センサ52を校正することができる。または、別途校正された濃度計を持参して、値の比較調整を行って冷媒センサ52を校正してもよい。さらに、冷媒漏洩検知装置62Aに同じ場所に配置された冷媒センサを2個接続し、これらの出力値を比較して構成してもよい。
 また、室内機31の冷媒を少量漏洩させる機構を備え、点検モードにおいて、室内機31から漏れた冷媒を用いて冷媒センサ52の点検を行ってもよい。この場合には、冷媒センサ52に冷媒を吹き付けることなく、自動で点検を実施することができる。
 また、上記実施の形態2では、点検モードのステップS22において、室内機31のファン310を停止させる構成としたが、室内機31の運転を停止させてもよい。具体的には、ステップS22において、遮断弁81を閉じて、室内機31への冷媒の流れを止めてもよい。また、室内機31だけでなく、他の室内機32または33の停止、もしくは、同じ冷媒系統の室外機1、分流コントローラ2および室内機31~33を停止してもよい。また、複数の室外機熱源機による複数冷媒系統が存在する場合には、全冷媒系統を全停止してもよい。何れのユニットまたは系統までを停止するかは、点検者によって選択可能としてもよい。
 実施の形態4.
 次に本発明の実施の形態4について説明する。実施の形態4では、冷媒センサおよび検知回路を二重化する点において、実施の形態1と相違する。図10は、本実施の形態における冷媒漏洩検知装置62Bの内部構成および冷媒漏洩検知装置62Bに接続される機器を示す図である。図10に示すように、本実施の形態の冷媒漏洩検知装置62Bは、2つの検知回路621a、621bをそなえ、2つの検知回路621aおよび621bには、それぞれ冷媒センサ52aおよび52bが接続される。2つの検知回路621aおよび621bは、同じ仕様の回路とする。
 冷媒センサ52aおよび52bは、同じ場所(例えば居室102の床または床近傍の壁)に配置される。また、冷媒センサ52aは、高価な高精度センサとし、冷媒センサ52bは、安価な低精度センサとする。制御手段622は、検知回路621aおよび621bの出力値をそれぞれ設定値と比較し、何れか一方でも設定値以上となった場合に冷媒漏れが発生したと判定する。このように、冷媒センサおよび検知回路を二重化することで、何れかの冷媒センサまたは検知回路が異常状態となった場合にも、冷媒漏れを検知することができる。
 図11は、冷媒センサ52aおよび52bの出力値の推移を示すグラフである。図11の縦軸はセンサ出力値、横軸は時間を示す。また、冷媒センサ52aの出力値を実線、冷媒センサ52bの出力値を破線で示す。ここで、冷媒センサ52aまたは検知回路621aに異常が発生した場合、出力値が固定または微小変動しかしない状態となる。そして、冷媒センサ52bの出力値が変動しているのに、冷媒センサ52aの出力値が固定または微小変動である場合、冷媒センサ52aまたは検知回路621aに異常が発生したと判断することができる。
 以上のように、本実施の形態によれば、冷媒センサおよび検知回路を二重化することで何れかの冷媒センサまたは検知回路が異常状態となった場合にも、冷媒漏れを検知することができ、信頼性が向上する。また、2つの冷媒センサの出力値を比較することで、何れの冷媒センサまたは検知回路が異常状態となったかを判断することができる。
 実施の形態5.
 次に本発明の実施の形態5について説明する。実施の形態5では、1つの冷媒センサに対し検知回路を二重化する点において、実施の形態4と相違する。図12は、本実施の形態における冷媒漏洩検知装置62Cの内部構成および冷媒漏洩検知装置62Cに接続される機器を示す図である。図12に示すように、本実施の形態の冷媒漏洩検知装置62Cは、1つの冷媒センサ52に対応する2つの検知回路621aおよび621bを備える。
 制御手段622は、検知回路621aおよび621bの出力値をそれぞれ設定値と比較し、何れか一方でも設定値以上となった場合に冷媒漏れが発生したと判定する。このように、検知回路を二重化することで、何れかの冷媒センサまたは検知回路が異常状態となった場合にも、冷媒漏れを検知することができる。また、実施の形態4と同様に、各検知回路621aおよび621bからの出力値の変動に基づいて、何れの検知回路に異常が発生したかを判断することができる。
 以上のように、本実施の形態によれば、検知回路を二重化することで何れかの検知回路が異常状態となった場合にも、冷媒漏れを検知することができ、信頼性が向上する。また、異常が発生する可能性が比較的低い冷媒センサを1つとすることで、部品点数の削減およびコストの削減を図ることができる。
 実施の形態6.
 次に本発明の実施の形態6について説明する。実施の形態6では、通常動作中に、検知回路の異常の有無を判定する点において、実施の形態1と相違する。図13は、本実施の形態における冷媒漏洩検知装置62Dの内部構成および冷媒漏洩検知装置62Dに接続される機器を示す図である。図13に示すように、本実施の形態の冷媒漏洩検知装置62Dは、入力切替回路630をさらに備える。入力切替回路630には、冷媒センサ52の検知信号および電源回路624からの基準電圧(例えば2.5V)が入力される。入力切替回路630は、制御手段622の制御の下、冷媒センサ52の検知信号および基準電圧を定期的に切り替えて検知回路621に出力する。
 制御手段622は、検知回路621の出力値をモニタし、基準電圧が入力された場合の出力値が基準電圧と異なる場合に、検知回路621が故障していると判定する。制御手段622は、検知回路621が故障していると判定した場合、駆動回路623に故障信号を送信する。故障信号を受信した駆動回路623は、信号出力手段628を駆動して遮断弁81を閉じ、信号出力手段627を駆動して警報器72を作動させ、故障を報知するための警報を発する。
 上記のように、本実施の形態によれば、検知回路の異常を迅速に発見することができ、信頼性を向上させることができる。
 実施の形態7.
 次に本発明の実施の形態7について説明する。実施の形態7では、冷媒センサ52からの検知信号と基準電圧を2並列入力とし、入力切替回路および検知回路を二重化とする点において、実施の形態6と相違する。図14は、本実施の形態における冷媒漏洩検知装置62Eの内部構成および冷媒漏洩検知装置62Eに接続される機器を示す図である。図14に示すように、本実施の形態の冷媒漏洩検知装置62Eは、2つの検知回路621aおよび621b、ならびに2つの入力切替回路630a、630bを備える。入力切替回路630aおよび630bには、それぞれ、冷媒センサ52の検知信号および電源回路624からの基準電圧(例えば2.5V)が入力される。入力切替回路630aおよび630bは、制御手段622の制御の下、冷媒センサ52の検知信号および基準電圧を定期的に切り替えて検知回路621aおよび621bにそれぞれ出力する。なお、図14においては、制御手段622と入力切替回路630aおよび630bとの間の通信線は省略している。
 制御手段622は、検知回路621aおよび621bの出力値をモニタし、基準電圧が入力された場合の出力値が基準電圧と異なる場合に、検知回路621aまたは621bが故障していると判定する。制御手段622は、検知回路621aまたは621bが故障していると判定した場合、駆動回路623に故障信号を送信する。故障信号を受信した駆動回路623は、信号出力手段628を駆動して遮断弁81を閉じ、信号出力手段627を駆動して警報器72を作動させ、故障を報知するための警報を発する。
 上記のように、本実施の形態によれば、検知回路の異常を迅速に発見することができる。また、検知回路を二重化することで、何れかに故障が発生した場合にも冷媒漏れを検知することができ、信頼性をさらに向上させることができる。
 以上が本発明の実施の形態の説明であるが、本発明は、上記実施の形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形または組み合わせが可能である。例えば、実施の形態1および2においては、直接冷媒ガスを検知する冷媒センサ52の出力値に基づいて冷媒漏れの有無を判定したが、冷媒センサ52の替りに、圧力センサまたは温度センサなどの出力値に基づいて冷媒漏れの有無を判定してもよい。具体的には、制御手段622において、圧力センサまたは温度センサによって検知される冷媒温度または冷媒圧力などに基づいて、既知の方法で冷媒漏れの有無を判定してもよい。
 また、実施の形態3~7における冷媒漏洩検知装置は、空気調和システム10などの冷熱システムにおいて用いられるだけでなく、例えばルームエアコンや冷蔵庫などの冷熱機器単体に用いられてもよい。また、実施の形態4、5および6では、冷媒センサまたは検知回路を二重化する構成としたが、三重化以上としてもよい。
 また、複数の部屋に配置される複数の冷媒検知装置を接続し、検知システムによって管理する構成としてもよい。複数の冷媒検知装置を接続する場合、従来は、漏洩時および故障時は接点を「閉」とし、正常時および停電時は接点を「開」とすることを前提としている。しかしながら、この場合には、各接点を並列接続で使用する必要があり、施工性が悪くなってしまう。また、施工時に接続漏れがあっても、信号=「開」=「正常」の論理となってしまう。そこで、漏洩時の接点論理を「開」とし、複数接点を直列接続する構成としてもよい。図15は、複数の冷媒漏洩検知装置60の接点を直列接続した場合の模式図である。図15の例では、漏洩時に接点出力が開となり、検知システム500内の信号出力手段Xが励磁されなくなることで、接点Yが通電する。これにより、警報器510がONとなる。
 1 室外機、1A 熱源機、2 分流コントローラ、10、10A 空気調和システム、11 圧縮機、12、310 ファン、13 制御装置、14 水熱交換器、15 クーリングタワー、16 水ポンプ、21 モード切替部、22 点検指示部、23 判定部、24 表示制御部、25 計時部、31、32、33 室内機、40 集中コントローラ、41、42、43 リモコン、51、52、52a、52b、53、54、55、56 冷媒センサ、60、61、62、62A、62B、62C、62D、62E、63、64、65 冷媒漏洩検知装置、71、72、73、74 警報器、81、82、83 遮断弁、90、91、92、93 換気装置、100 建物、101 監視室、102、103 居室、104 機械室、321 筐体、322 開口、410、631 表示手段、500 検知システム、510 警報器、621、621a、621b 検知回路、622 制御手段、623 駆動回路、624 電源回路、625 記憶手段、626 通信手段、627、628、629、X 信号出力手段、630、630a、630b 入力切替回路、632 操作手段、810 流量センサ、910 風速センサ、AC 交流電源、Y 接点。

Claims (5)

  1.  冷媒センサの出力を検知する複数の検知回路と、
     前記複数の検知回路からの出力に基づいて、冷媒漏れの有無を判定し、前記複数の検知回路の異常の有無を判定する制御手段と、
    を備える冷媒漏洩検知装置。
  2.  前記複数の検知回路は、それぞれ別の冷媒センサの出力を検知するものであり、
     前記制御手段は、前記複数の検知回路からの出力に基づいて前記複数の検知回路または前記冷媒センサの異常の有無を判定する請求項1に記載の冷媒漏洩検知装置。
  3.  前記複数の検知回路にそれぞれ出力する前記冷媒センサは、精度が異なるものである請求項2に記載の冷媒漏洩検知装置。
  4.  冷媒センサの出力と、基準電圧とを交互に検知する検知回路と、
     前記検知回路からの出力に基づいて、前記検知回路の異常の有無を判定し、前記検知回路に異常が発生していると判定した場合に、安全装置を作動する制御手段と、
    を備える冷媒漏洩検知装置。
  5.  前記検知回路を複数備え、
     前記制御手段は、前記複数の検知回路からの出力に基づいて、前記複数の検知回路の異常の有無を判定し、前記複数の検知回路の何れかに異常が発生していると判定した場合に、前記安全装置を作動する請求項4に記載の冷媒漏洩検知装置。
PCT/JP2015/068902 2015-06-30 2015-06-30 冷媒漏洩検知装置 WO2017002216A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1717743.7A GB2554582A (en) 2015-06-30 2015-06-30 Refrigerant leak detection device
PCT/JP2015/068902 WO2017002216A1 (ja) 2015-06-30 2015-06-30 冷媒漏洩検知装置
JP2017525733A JPWO2017002216A1 (ja) 2015-06-30 2015-06-30 冷媒漏洩検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068902 WO2017002216A1 (ja) 2015-06-30 2015-06-30 冷媒漏洩検知装置

Publications (1)

Publication Number Publication Date
WO2017002216A1 true WO2017002216A1 (ja) 2017-01-05

Family

ID=57608221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068902 WO2017002216A1 (ja) 2015-06-30 2015-06-30 冷媒漏洩検知装置

Country Status (3)

Country Link
JP (1) JPWO2017002216A1 (ja)
GB (1) GB2554582A (ja)
WO (1) WO2017002216A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131085A1 (ja) * 2017-01-11 2018-07-19 三菱電機株式会社 冷却倉庫
JP2018155461A (ja) * 2017-03-21 2018-10-04 東芝キヤリア株式会社 空調管理装置
JP2019060556A (ja) * 2017-09-27 2019-04-18 東芝キヤリア株式会社 熱源装置
JP6678283B1 (ja) * 2018-11-30 2020-04-08 日立ジョンソンコントロールズ空調株式会社 漏洩検知装置及び漏洩検知システム
WO2020110424A1 (ja) * 2018-11-30 2020-06-04 日立ジョンソンコントロールズ空調株式会社 漏洩検知装置及び漏洩検知システム
WO2021157161A1 (ja) * 2020-02-05 2021-08-12 ダイキン工業株式会社 空気調和システム
US11187424B2 (en) * 2017-06-15 2021-11-30 Mitsubishi Electric Corporation Air-conditioning apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178480A (ja) * 1994-12-20 1996-07-12 Matsushita Electric Ind Co Ltd 除湿機
JP2002098346A (ja) * 2000-09-26 2002-04-05 Daikin Ind Ltd 空気調和機の室内機
JP2012013348A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 空気調和機
WO2013038704A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 空気調和機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629824B2 (ja) * 1988-11-30 1994-04-20 タツタ電線株式会社 漏液検知装置
JP2002230663A (ja) * 2001-02-02 2002-08-16 Yazaki Corp ガス警報器及び点検結果通知システム
JP2002318619A (ja) * 2001-04-19 2002-10-31 Matsushita Electric Ind Co Ltd 移動車の障害検出方法と装置
JP2004355110A (ja) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 自動試験機能を備えたガス漏れ警報器、火災感知器及び複合警報器
JP5481153B2 (ja) * 2009-10-14 2014-04-23 矢崎エナジーシステム株式会社 警報器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178480A (ja) * 1994-12-20 1996-07-12 Matsushita Electric Ind Co Ltd 除湿機
JP2002098346A (ja) * 2000-09-26 2002-04-05 Daikin Ind Ltd 空気調和機の室内機
JP2012013348A (ja) * 2010-07-02 2012-01-19 Panasonic Corp 空気調和機
WO2013038704A1 (ja) * 2011-09-16 2013-03-21 パナソニック株式会社 空気調和機

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131085A1 (ja) * 2017-01-11 2018-07-19 三菱電機株式会社 冷却倉庫
JPWO2018131085A1 (ja) * 2017-01-11 2019-08-08 三菱電機株式会社 冷却倉庫
JP2018155461A (ja) * 2017-03-21 2018-10-04 東芝キヤリア株式会社 空調管理装置
US11187424B2 (en) * 2017-06-15 2021-11-30 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2019060556A (ja) * 2017-09-27 2019-04-18 東芝キヤリア株式会社 熱源装置
CN112955699A (zh) * 2018-11-30 2021-06-11 日立江森自控空调有限公司 泄漏检测装置及泄漏检测系统
WO2020110424A1 (ja) * 2018-11-30 2020-06-04 日立ジョンソンコントロールズ空調株式会社 漏洩検知装置及び漏洩検知システム
US20210247086A1 (en) * 2018-11-30 2021-08-12 Hitachi-Johnson Controls Air Conditioning, Inc. Leak detecting device and leak detecting system
JP6678283B1 (ja) * 2018-11-30 2020-04-08 日立ジョンソンコントロールズ空調株式会社 漏洩検知装置及び漏洩検知システム
WO2021157161A1 (ja) * 2020-02-05 2021-08-12 ダイキン工業株式会社 空気調和システム
JP2021124248A (ja) * 2020-02-05 2021-08-30 ダイキン工業株式会社 空気調和システム
JP7057519B2 (ja) 2020-02-05 2022-04-20 ダイキン工業株式会社 空気調和システム
US20220364750A1 (en) 2020-02-05 2022-11-17 Daikin Industries, Ltd. Air-conditioning system
US11692725B2 (en) 2020-02-05 2023-07-04 Daikin Industries, Ltd. Air-conditioning system with refrigerant leak detection and countermeasures

Also Published As

Publication number Publication date
GB2554582A (en) 2018-04-04
GB201717743D0 (en) 2017-12-13
JPWO2017002216A1 (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6333481B2 (ja) 冷媒漏洩検知装置
WO2017002215A1 (ja) 冷媒漏洩検知システム
WO2017002216A1 (ja) 冷媒漏洩検知装置
US11118821B2 (en) Refrigeration cycle apparatus
CA1104358A (en) Loss of refrigerant and/or high discharge temperature protection for heat pumps
JP5946606B2 (ja) 冷媒漏れ検出器
WO2017199808A1 (ja) 冷凍サイクル装置
WO2004068614A2 (en) Integrated hvacr control and protection system
JP6929747B2 (ja) 空気調和機
JP2002005548A (ja) 可燃性冷媒使用の家電機器
KR101753809B1 (ko) 건축물의 전기장치를 이용한 소방 개폐 밸브 감지 스위치
JP2019052785A (ja) 空気調和装置
AU2017418267A1 (en) Air-conditioning apparatus
JP5342528B2 (ja) アクティブフィルタを備えた空気調和装置
JP6257877B2 (ja) 空調システム
KR101655797B1 (ko) 공기조화기 및 그 제어방법
KR101871724B1 (ko) 공기조화장치의 제어방법
KR101701454B1 (ko) 건축물의 전기장치를 이용한 소방 개폐밸브 감지 스위치
KR20110030961A (ko) 공기조화기 및 그 동작방법
JPH06180138A (ja) 空気調和システム
KR101203576B1 (ko) 공기조화기용 테스터 및 그 방법
JP2005049001A (ja) 空気調和機
JP2005282903A (ja) 空気調和機
JP4721952B2 (ja) 空気調和装置
JP2016180549A (ja) 空調用熱源機の試運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525733

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201717743

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150630

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897143

Country of ref document: EP

Kind code of ref document: A1

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: GB