WO2017000396A1 - 基于多体分析试验的桁架天线反射器展开动力学建模方法 - Google Patents
基于多体分析试验的桁架天线反射器展开动力学建模方法 Download PDFInfo
- Publication number
- WO2017000396A1 WO2017000396A1 PCT/CN2015/090222 CN2015090222W WO2017000396A1 WO 2017000396 A1 WO2017000396 A1 WO 2017000396A1 CN 2015090222 W CN2015090222 W CN 2015090222W WO 2017000396 A1 WO2017000396 A1 WO 2017000396A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- satellite
- time history
- coordinate system
- reflector
- test
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/1235—Collapsible supports; Means for erecting a rigid antenna
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/16—Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
- H01Q15/161—Collapsible reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
- H01Q1/288—Satellite antennas
Definitions
- the invention relates to a truss antenna reflector deployment dynamics and control method based on multi-body analysis test, in particular to a multi-body analysis test-based truss antenna reflector deployment dynamics modeling method, belonging to spacecraft dynamics and Control technology field.
- the spaceborne flexible multi-body truss mesh antenna is mainly composed of large and small extension arms, reflectors and focal plane feed arrays.
- the large-scale truss mesh antenna deployment includes large and small extension arm deployment and reflector deployment, and the antenna is large.
- the reflector is deployed, the reflector is deployed under the action of the coil spring, and the two drive motors mounted on the antenna simultaneously start to recover the cable (also called the drive rope), when the coil spring drives the torque
- the resistance torque also called the drive rope
- the resistance torque is equal, the acceleration is no longer accelerated.
- the reflector expands and decelerates, and stops quickly.
- the motor drags the truss diagonal slanting rod and the cable continues to drive the reflector to expand until the antenna reflector Fully unfolded, so the coil spring and the two drive motors and cables are the drive mechanism of the antenna reflector, since the components of the reflector include a reflective net, a cable net, a coil spring, a cable, a T-shaped hinge with a cable pulley, Synchronous hinge with escapement mechanism for controlling the release speed of the coil spring, inclined rod locking hinge composed of sliding hinge and in-position locking mechanism, vertical rod, cross bar, etc., more than 150 truss members, more hinges 90 , Cable, network cable are thousands of very complex, multi spaceborne flexible truss member to expand the mesh antenna reflector multibody dynamics simulation software complex, computationally intensive, long calculation time.
- the technical development of the spaceborne flexible multi-body truss mesh antenna promotes the combination of flexible multi-body dynamics with computational methods and software engineering, and forms a new branch of computational multi-body system dynamics.
- the technical solution of the present invention solves the problem of providing a truss antenna reflector deployment dynamics modeling method based on multi-body analysis test for the deficiencies of the prior art.
- the present invention uses more than a few hundred reflector components to The hinge constructs dozens of equivalent mass units for the core, and follows the principle of conservation of angular momentum of the whole star (whole satellite) under the action of no external moment, insisting on the principle that the position time history is equivalent, the mass characteristics are equivalent, and the force condition is equivalent.
- the simplified dynamic model and database for control system design test simulation are analyzed, and the interdisciplinary trans-satellite subsystem problem is solved.
- the simplified dynamic model obtained by the present invention can be used not only for Control system design test simulation, with self-correction ability, can also be used for fault analysis and fault countermeasures of reflector deployment process, both innovative and practical application value.
- a multi-body analysis test based truss antenna reflector deployment dynamics modeling method including the following steps:
- step (3) Comparing the multi-body dynamics simulation analysis results of the force, moment and stress of the key measuring points with the test results of the unfolding test in the step (1). If the relative error of the comparison result exceeds the set threshold range A, Then, the multi-body dynamics simulation software established in step (2) is optimized: whether the structural design parameters of the reflector components in the multi-body dynamics simulation software are complete and correct;
- the satellite attitude change result and the reflector are provided without the wheel control and the no-light interference torque.
- the trajectory of the centroid of the component, the rationality of the physical process of the satellite attitude change is analyzed. If it is unreasonable, the multi-body dynamics simulation software established in step (2) is optimized: the components of the reflector in the multi-body dynamics simulation software are reviewed. Whether the structural design parameters are complete and correct; the rationality analysis includes whether the whole star angular momentum conforms to the conservation of the whole star angular momentum, and whether the motion trajectory of each component's centroid is in conformity with the normal expansion or the unfolding fault of the antenna reflector set by the multi-body dynamics simulation Working condition
- the database includes the time history of each equivalent mass unit in the satellite mechanical coordinate system, the position and time history of the entire star mass center in the satellite mechanical coordinate system, the speed time history of each equivalent mass unit relative to the satellite mechanical coordinate system, and the equivalent
- the acceleration time history of the mass unit relative to the satellite mechanical coordinate system, the reaction time vector history of each equivalent mass unit acting on the satellite, the reaction torque vector time history of each equivalent mass unit relative to the satellite body coordinate system, and the relative mass units The time history of moment of inertia of the satellite body coordinate system, the angular momentum vector time history of each equivalent mass unit relative to the satellite body coordinate system, the time history of the moment of inertia of the whole star relative to the satellite body coordinate system, and the relative satellite mass coordinate system of each equivalent mass unit Synthetic reaction torque vector time history;
- the time history of the synthetic reaction torque vector of each equivalent mass unit relative to the satellite body coordinate system and the time history of the moment of inertia of the satellite relative to the satellite body coordinate system are respectively replaced by the multi-body dynamics simulation software.
- the disturbance moment and the inertia matrix of the whole star relative to its centroid; the attitude dynamics equation can use the attitude dynamics equation in the control system design test analysis simulation software;
- step (5) If the satellite control system design test analysis simulation software uses the simplified model and database in step (5) to perform the three-axis attitude angle and the three-axis attitude angular velocity obtained by simulation analysis without wheeling and without adding light and light interference torque Comparing the three-axis attitude angle obtained by the multi-body dynamics simulation software with the three-axis attitude angular velocity, and the relative error is within the set threshold range B, then step (5) is provided to the control system design test simulation analysis software.
- the antenna reflector deployment process simplifies the model and database to meet the actual application needs of the project;
- step (5) If the satellite control system design test analysis simulation software uses the simplified model and database obtained in step (5) to carry out the three-axis attitude angle and the three-axis attitude obtained by simulation analysis without wheel control and without optical interference torque The angular velocity is compared with the three-axis attitude angle obtained by the multi-body dynamics simulation software and the three-axis attitude angular velocity. If the relative error exceeds the set threshold range B, further iterative review is provided to the control system to design and test the simulation software. The corresponding database of the model is correct.
- the feature model of each component in step (2) includes at least a reflector coil spring passive drive mechanism model, a cable pulley active drive mechanism model, and a typical hinge friction model.
- the threshold range A set in steps (3) and (4) is ⁇ 30%.
- the threshold range B set in steps (6) and (7) is ⁇ 20%.
- step (5) the multi-body dynamics simulation software is used to calculate the position time history, velocity time history, acceleration time history and force vector time history of the equivalent mass unit centroid using the Runge-Kutta method.
- the Runge-Kutta sampling period of the simulation software uses the inverse solution method of the motion feature equivalent to verify whether the selection is reasonable.
- the Runge-Kutta sampling period uses the inverse solution method of motion feature equivalent to verify whether the selection is reasonable.
- the specific implementation method is as follows: the position time history and velocity time history of the centroid of the equivalent mass unit The process knows the initial position and the end position of the sampling period and the initial velocity. The equivalent acceleration of the position at this time interval can be approximated according to the linear motion equation. If the acceleration and multi-body dynamics simulation software for this sampling period is obtained inversely The Runge-Kutta method will obtain an acceleration error of less than 20% (to ensure the equivalent position of the antenna reflector), and the sampling period can be considered reasonable.
- step (7) The specific steps in the review in step (7) are as follows:
- Test step (5) The symbol correctness and order of magnitude correctness of the ten time history data in the database;
- the present invention constructs dozens of equivalent mass units in the multi-body dynamics simulation analysis, and constructs dozens of equivalent mass units with the hinge as the core, and follows the principle of conservation of the whole star angular momentum under the action of no external moment, insisting
- the principle of equivalent mass and equivalent force, the simulation analysis results of multi-body dynamics simulation software, and the simplified dynamic model and database for control system design test simulation are obtained through analysis, which solves this interdisciplinary cross-satellite.
- Sub-system problem the simplified dynamic model extracted at the same time can be used not only for control system design test simulation, but also for self-correction ability. It can also be used for fault analysis and fault countermeasures of reflector deployment process, which is both innovative and practical.
- the present invention selects the number of equivalent mass units when equivalent hundreds of actual components are equivalent Equal to the number of joint points of the vertical rod and the cross rod and the diagonal rod, the time history of the force vector of any equivalent mass unit changes, which will make the joint point of the corresponding vertical rod and the cross rod and the diagonal rod in the expansion process of the reflector
- the trajectory of the movement changes, and the resulting simplified dynamic model is an optimal simplified model with fault analysis and fault countermeasures, which greatly improves the reliability and working efficiency of the antenna reflector.
- Figure 1 is a flow chart of the method of the present invention
- FIG. 2 is a schematic diagram of an on-orbit working state of a spaceborne truss antenna according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of a truss antenna reflector in a collapsed and unfolded state according to an embodiment of the present invention
- FIG. 4 is a schematic view showing a truss structure, 30 vertical rod numbers, and a coordinate system according to an embodiment of the present invention
- FIG. 5 is a schematic view showing a position of a measuring point of a truss antenna reflector in an unfolding test process according to an embodiment of the present invention
- FIG. 6 is a front view and a top view of a movement trajectory of a truss crossbar centroid in a reflector reference coordinate system during deployment of the truss antenna reflector according to an embodiment of the present invention.
- the spaceborne flexible multi-body truss antenna is mainly composed of large and small extension arms, reflectors and focal plane feed arrays.
- the spaceborne truss antenna deployment includes large and small extension arms and reflectors. After the antenna is extended, the small extension arms are deployed.
- the reflector is deployed, the reflector is deployed under the action of the coil spring, and the two drive motors mounted on the antenna simultaneously start to recover the cable (also called the drive rope), when the coil spring drive torque and the resistance torque are equal. Acceleration, when the resistance torque is greater than the coil spring driving torque, the reflector expands and decelerates, and stops quickly.
- the motor drags the truss diagonal slanting rod and the cable continues to drive the reflector to expand until the antenna reflector is fully deployed, so the coil spring and
- the two drive motors and cables are the drive mechanism of the antenna reflector, since the components of the reflector include a reflective net, a cable net, a coil spring, a cable (drive rope), a T-hinge with a cable pulley, and control Synchronous hinge of the escapement of the coil spring release speed, diagonal joint locking hinge consisting of the sliding hinge and the in-position locking mechanism, vertical rod, crossbar (up and down crossbar), a common flexible multi-body large truss net There are more than 150 truss members and more than 90 hinges.
- the number of cables and cables is thousands, which is very complicated. Therefore, the multi-body dynamics simulation analysis software for large-scale truss mesh antenna reflectors is complex. Calculated amount Large, it takes three days to calculate the reflector expansion process with the latest workstation simulation.
- the invention is based on the simulation analysis result and test test result of the multi-body dynamics software of the complex model of the space-borne flexible multi-body truss mesh antenna reflector, and establishes the inertia time variation and force required by the control system design test simulation analysis software. Time-varying simplified kinetic model and corresponding database method,
- the present invention is based on a multi-body analysis test for a truss antenna reflector deployment dynamics modeling method, which is characterized by the following steps:
- a flexible multi-body truss mesh antenna reflector deployment test is carried out, and strain gauges are attached to the key measurement points to measure the unfolding test process.
- the force, moment and stress data of the key measuring points are used to verify whether the structural design parameters, the stress margin of the key points meet the design requirements and the correctness of the analysis results of the multi-body dynamics simulation software;
- multi-body dynamics simulation software is established according to the feature model of each component of the truss mesh antenna reflector.
- the simulation analysis of the force, moment and stress data of each node bearing the key points and structural designers' attention is carried out.
- the characteristic models of each component include the reflector coil spring passive drive mechanism model and the cable pulley active drive mechanism. Model, typical hinge friction model.
- step ( 2) Compare the multi-body dynamics simulation analysis results of the force, moment and stress of the key measuring points with the test results of the unfolding test in step (1). If the relative error of the comparison result exceeds ⁇ 30%, then the step ( 2)
- the multi-body dynamics simulation software is optimized to: whether the structural design parameters of the components of the multi-body dynamics simulation software are complete and correct;
- the multi-body dynamics simulation established in step (2) The software is optimized to take into account the flexibility parameters of the components such as the vertical bars and the crossbars.
- the hinge point motion trajectory is not an ideal space curve, but a spatial curve that is not completely synchronized.
- the input of multi-body dynamics simulation analysis is usually the design parameter, so the relative error of the force, torque and stress ratio of each measuring point is allowed to be ⁇ 30%, which is the error range of the force parameter that is usually allowed in engineering practice;
- step (2) If the relative error of the comparison result is within the set threshold range A, combined with the multi-body dynamics simulation software, the satellite attitude change result and the reflector are provided without the wheel control and the no-light interference torque. The trajectory of the centroid of the component, the rationality of the physical process of the satellite attitude change is analyzed. If it is unreasonable, the multi-body dynamics simulation software established in step (2) is optimized: the components of the reflector in the multi-body dynamics simulation software are reviewed.
- the rationality analysis includes whether the whole star angular momentum conforms to the conservation of the whole star angular momentum, and whether the motion trajectory of each component's centroid is in conformity with the normal expansion or the unfolding fault of the antenna reflector set by the multi-body dynamics simulation Working conditions (computer simulation analysis is usually called the simulation setting scene);
- the antenna reflector is deployed in accordance with the physical process of the attitude change of the satellite body in accordance with the conservation of angular momentum and the motion trajectory of the centroid of each component conforms to the normal deployment or the unfolding fault condition of the simulation setup, a large number (more than a few hundred)
- the reflector component constructs several equivalent mass units with the hinge as the core and the adjacent crossbar, vertical rod and diagonal rod without destroying the truss structure (by the multi-body dynamics simulation analysis, any point of the truss structure can be obtained.
- the reflector must be equivalent to several equivalent mass units, and the truss structure of Fig. 4 It can be seen that the synchronous hinge with the control coil spring at the upper end of the vertical rod is the core, and an equivalent mass unit is constructed with the adjacent upper cross rod and the vertical rod, and the T-shaped hinge with the cable pulley at the lower end of the vertical rod is The core, another adjacent mass unit is constructed with the adjacent lower crossbar and the diagonal rod through which the drive rope passes.
- the truss reflector in the example has 30 vertical rods, and 60 equivalent masses can be constructed.
- An example of the specific method for verifying the rationality of the Longe-Kutta sampling period selection of multi-body dynamics simulation software is as follows: the time history of the equivalent mass unit position and the time history of the velocity are known by the inverse solution method of the motion feature equivalent. The initial position and the end position of a sampling period and the initial velocity can be approximated by the linear motion equation to obtain the equivalent acceleration of the time interval. As long as the sampling period of the multi-body dynamics simulation software is small enough, the sampling period obtained in the reverse direction is obtained. Acceleration error of the constant acceleration and multi-body dynamics simulation software Longe-Kutta method will be less than 20%, which ensures the equivalent position of the antenna reflector deployment and meets the actual engineering requirements.
- the database includes the position time of each equivalent mass unit in the satellite mechanical coordinate system. History, position time history of the whole star centroid in the satellite mechanical coordinate system, velocity time history of each equivalent mass unit relative to the satellite mechanical coordinate system, acceleration time history of each equivalent mass unit relative to the satellite mechanical coordinate system, and each equivalent mass unit.
- the vector time history of the reaction force acting on the satellite the time history of the reaction moment vector of each equivalent mass unit relative to the satellite body coordinate system, the time history of the moment of inertia of each equivalent mass unit relative to the satellite body coordinate system, and the relative satellite of each equivalent mass unit
- the angular momentum vector time history of the ontology coordinate system, the time history of the moment of inertia of the whole star relative to the satellite body coordinate system, and the synthetic reaction torque vector time history of the equivalent mass unit relative to the satellite body coordinate system (60 equivalent masses are used in this embodiment) Synthesis of unit-
- the original attitude dynamics equation in the simulation software is designed and tested, and the synthetic reaction reaction torque vector time history of the equivalent mass unit relative to the satellite body coordinate system and the relative satellite relative body coordinates are analyzed by the multi-body dynamics simulation software.
- the connecting rod of the reflector has a hinge with the connecting point of the cross bar and the diagonal bar. It is the maximum stress concentration and the mark of the shape change during the expansion of the reflector. Therefore, the number of equivalent mass units is equal to the vertical bar and the horizontal. The number of joints of the rod and the slant rod, and the time history of the force vector of any equivalent mass unit will change, and the movement trajectory of the joint point of the corresponding vertical rod and the cross rod and the slant rod will be changed during the expansion process of the reflector. Therefore, such a simplified dynamic model is an optimal simplified model with fault analysis and fault countermeasure capabilities;
- Each equivalent mass unit has its corresponding force vector time-varying centroid motion equation.
- the motion trajectory of each equivalent mass unit in the satellite mechanical coordinate system visually reflects the reflector expansion process, and at the same time
- the resultant moment of the reaction mass vector of the mass unit makes the control system calculate the attitude of the satellite very simplified.
- the time history of multiple redundant physical quantity changes provides convenience for analysis review;
- the escapement mechanism that controls the release speed of the coil spring can make the reflector deployment process as smooth as possible.
- step (5) If the satellite control system design test analysis simulation software uses the simplified model and database in step (5) to control the satellite attitude without moving the wheel (referred to as no wheel control), without the sun wing and the sun received by the star body
- the three-axis attitude angle and the three-axis attitude angular velocity obtained by simulation analysis under the condition of pressure interference torque (referred to as no light-pressure interference torque) are compared with the three-axis attitude angle obtained by the multi-body dynamics simulation software and the three-axis attitude angular velocity.
- the relative error is within ⁇ 20%, then step (5) is provided to the control system design test simulation analysis software.
- the antenna reflector expansion process simplified model and database can meet the actual application requirements of the project, ⁇ 20% is the usually allowed attitude of the engineering practice. Parameter error range;
- step (5) If the satellite control system design test analysis simulation software uses the simplified model and database obtained in step (5) to carry out the three-axis attitude angle and the three-axis attitude obtained by simulation analysis without wheel control and without optical interference torque The angular velocity is compared with the three-axis attitude angle obtained by the multi-body dynamics simulation software and the three-axis attitude angular velocity. The relative error exceeds the range of ⁇ 20%, and further iterative review is provided to the simplified dynamic model of the control system design test analysis software. Whether the corresponding database is correct;
- step (7) The specific steps in the review in step (7) are as follows:
- Test step (5) The symbol correctness and order of magnitude correctness of the ten time history data in the database;
- FIG. 2 it is a schematic diagram of the on-orbit working state of the spaceborne truss antenna of the present embodiment.
- the spaceborne flexible multi-body truss antenna is mainly composed of a large extension arm 102, a small extension arm 103, a reflector 104 and a focal plane feed array; the antenna reflector comprises a peripheral truss, a reflection net, a cable net, a coil spring, and a cable (drive) Rope 105), T-shaped hinge 106 with cable pulley, synchronous hinge 109 with escapement mechanism for controlling the release speed of the coil spring, diagonal rod locking hinge composed of sliding hinge and in-position locking mechanism, vertical rod 107 (the vertical rod 107 further includes an even rod 17a and an odd rod 17b), and a cross rod 108 (the cross rod further includes an upper crossbar 18a and a lower crossbar 18b).
- the antenna and the size extension arm are in a collapsed state.
- the hoop compression mechanism is released, and the boom is deployed to the designated position and locked under the motor drive.
- the pressing mechanism on the boom axis is released, and the boom is rotated in position about its own axis and locked by the motor. After that, the arm pivots and the boom hinge axis rotates into position and locks.
- the firecracker bundled on the periphery of the reflector is detonated, the antenna strap is cut off, the antenna reflector is first deployed under the action of the coil spring, and the two drive motors mounted on the antenna simultaneously start to recover the cable (also The drive rope) is no longer accelerated when the coil spring drive torque is equal to the resistance torque.
- the resistance torque is greater than the coil spring drive torque, the reflector expands and decelerates, and stops quickly. After that, the motor drags the truss diagonal diagonal rod. Continue to drive the reflector to unfold until the antenna reflector is fully deployed.
- FIG. 3a a schematic diagram of the truss antenna reflector in the collapsed and unfolded state of the present embodiment is shown in FIG. 3a as a schematic diagram of the collapsed state of the reflector, and FIG. 3b is a schematic diagram of the state in which the reflector is deployed in position.
- Figure 3 See, the slanted rod of the collapsed state reflector connected to the arm is in the longest state, and the slant rod is in the shortest state when it is in position and locked in place.
- FIG. 4 is a schematic diagram of a peripheral truss structure, 30 vertical rod numbers and coordinate systems of the antenna reflector in the present embodiment
- FIG. 4 includes a vertical rod 107
- FIG. 4a shows a schematic diagram of the vertical rod arrangement
- FIG. 4b shows a peripheral truss structure of the antenna reflector.
- Fig. 4c shows a top view of 30 vertical rods, a total of 15 even rods 17a and 15 odd rods 17b (even rods 17a and odd rods are alternately arranged in sequence), 110 represents the motor end
- Fig. 4d shows a partial schematic view of the vertical rod. It can be seen from Fig. 4 that the floating coordinate system of the component in the multi-body dynamics simulation analysis is similar to the mechanical coordinate system of the component.
- the origin of the coordinate system is located at the theoretical center of the reference mounting hole of the component mounting surface, and the three-axis directions of X, Y and Z can be selected according to requirements. , but meets the definition of the right-handed Cartesian coordinate system.
- the positioning dimensions, centroid positions, and other feature sizes of the components should be defined within this coordinate system.
- FIG. 5 is a schematic view showing the positions of key measuring points of No. 1 to No. 50 in the unfolding test process of the truss antenna reflector in the embodiment (the figure indicates the position of the measuring point of the measuring point, and only the position of the stress point of the measuring point is marked in the figure) Comparing the results of multi-body dynamics simulation analysis with the test results of the measuring points, the relative error is not over +30%, indicating that the severity of the simulation is within the allowable range.
- the truss antenna reflector of the embodiment has 30 vertical rods, 60 cross rods, 30 retractable diagonal rods (with sliding hinges and in-position locking hinges, and the motor-driven cable passes through),
- the joints have a high-quality synchronous hinge that directly bears the driving force of the coil spring or a T-type hinge (with a cable pulley) that directly receives the cable driving force of the motor traction. Therefore, in this embodiment, the 60 hinges are selected as the core. Construct 60 equivalent mass units;
- the simplified dynamics model is based on the dynamic model in the multi-body dynamics simulation software.
- the control system design test analysis software usually uses the flexible body dynamics model. See the aerospace press edited by Mr. Tu Shancheng. The dynamic equation (13-97) in Section 13.3 (Attitude Control of Flexible Attachment Satellites) of the 1st edition of the Satellite Attitude Dynamics and Control.
- Control system design test analysis simulation software usually considers more high-order modes of solar wing flexibility.
- the inertia product of the whole star relative to the inertia of the satellite body coordinate system is large, consider the inertia product. The impact has become the requirements of the control system design test analysis simulation software itself.
- the control system design test analysis software in the original attitude dynamic equation The momentum wheel angular momentum h and the angular momentum change rate are both set to zero.
- the joints are of high quality.
- the T-hinge (with cable pulley) that directly bears the coil spring drive torque or the cable drive force that directly bears the traction of the motor, so the 60 hinges are selected as the core to construct 60 equivalent mass units, with 60
- the position time history of the equivalent mass unit under the action of the coil spring driving force and the cable pulling force of the motor traction describes the reflector deployment process, and the reaction torque of the 60 equivalent mass units to the satellite changes the attitude of the satellite.
- the multi-body dynamics simulation analysis considers the coupling of translation and rotation, the influence of the orbital angular velocity of the synchronous orbit and the propellant consumption on the orbital orbit.
- the influence of mass characteristics, but the momentum of the reflector is controlled during the expansion of the reflector.
- the propellant consumption of the attitude control is not considered, and the effects of solar pressure, gravity and geomagnetic field are not considered.
- Control system simulation analysis can add factors that are not considered in multi-body dynamics simulation analysis according to requirements;
- the satellite is in synchronous orbit, and the initial values of the triaxial attitude and angular velocity are both 0;
- the mass of the whole star (including a pair of solar wings, antennas, arm and reflector equivalent mass units) and its centroid in the initial position of the satellite mechanical coordinate system;
- the normal direction of the solar wing remains in the same direction as the Z-axis, and the flexibility characteristics of the solar wing are selected under this condition, regardless of the influence of propellant liquid sloshing;
- reaction time vector history of the 560 equivalent mass units acting on the satellite the action point of which is the position of the equivalent mass unit in the satellite mechanical coordinate system
- reaction time vector history of 660 equivalent mass units relative to the satellite body coordinate system
- the reflector is driven by the motor cable, and only one data is required for each sampling period in each time history.
- the multi-body dynamics simulation analysis can give the motion trajectory and force of any node.
- Figure 6 shows the centroid of the upper truss (ie, the crossbar) at the reflector of the large truss antenna reflector in the embodiment. Schematic diagram of the front and top views of the motion trajectory in the coordinate system.
- multi-body dynamics simulation results show that 60 equivalent mass units are driven by the escapement mechanism and the coil spring drive, which is actually periodic acceleration deceleration, for example, the cycle is 10ms, each cycle The acceleration is accelerated in the previous period, and the acceleration is decelerated to 0 in the latter period.
- 60 equivalent mass units are affected by the motor when the coil spring drive torque is insufficient to drive the reflector to continue unfolding (pulling cable in the traction slant) drive, in this case mainly the cable pulley of the T-hinge is stressed, a force couple is formed between adjacent vertical bars, so that the reflector truss is further deployed, when the slanting bar moves to the locked position
- the limiting block compression damping and the elastic material reduce the relative speed of the inner and outer slanting rods to zero, and at the same time compress the locking block to enter the outer slanting rod groove, so that the reflector slanting rod locking.
- the truss structure of the reflector is nearly synchronously developed.
- the motor the cable in the traction slanting rod
- the slanting rods of the truss structures of the reflector are locked one by one.
- the expansion process of the reflector driven by the motor is divided into the shortening period and the locking period of the slanting rod.
- the driving force of the 60 equivalent mass units has a positive increasing process and a reverse deceleration process. long.
- the slanting rod shortens the period, and the equivalent mass unit accelerates at an equal acceleration during each sampling period.
- the slanting rod lock period, the sampling period is not more than 10ms, and the equivalent mass is decelerated in the reverse equal acceleration in each sampling period until the lock is completed, and the speed is zero.
- each equivalent mass unit Since the force vector direction of each equivalent mass unit changes with the expansion of the reflector, it is described by accelerating the constant force vector and the deceleration constant force vector in the same direction. Actually, it is a simplified model, and each equivalent mass unit is relatively
- the position vector time history, velocity vector time history, acceleration vector time history, and reaction force vector time history of the satellite mechanical coordinate system can be directly extracted according to the multi-body dynamics simulation analysis results, according to the sampling theorem.
- the simulation is carried out with a sufficiently small sampling period, that is, the error of the time history of the direct extraction is small enough, and the local solution is inversely solved by the motion feature equivalent method, just to verify the rationality of the sampling period selection of the multi-body dynamics simulation software.
- the motion of the equivalent mass unit has an equivalent angular momentum variation process during this sampling period;
- the satellite mechanical coordinate system is defined as follows:
- OX axis the positive direction is consistent with the direction of the outer normal of the satellite east plate theory
- OY axis the positive direction is consistent with the direction of the outer normal of the satellite south plate theory
- OZ axis perpendicular to the joint separation surface of the satellite and the launch vehicle, with the positive direction pointing from the origin to the floor;
- the definition of the body coordinate system (also called the orbit coordinate system) as the reference coordinate system of the satellite attitude reference is as follows:
- a) coordinate system origin O the origin is located in the satellite centroid, and its three axes OX b , OY b , OZ b are parallel to the mechanical coordinate system OX, OY, OZ;
- the OX b- axis is a rolling axis, and the satellite is oriented toward the ground and points to the direction of the satellite;
- the OY b axis is the pitch axis, and the satellite is oriented toward the ground and points to the negative normal direction of the satellite orbital plane;
- the OZ b axis is the yaw axis, and the satellite points to the center when it is oriented to the ground;
- the forward direction of the satellite is the east direction
- the negative normal direction of the orbital plane is the south direction.
- the body coordinate system of the satellite attitude reference coordinate system is also called the southeast coordinate system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Details Of Aerials (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
基于多体分析试验的桁架天线反射器展开动力学建模方法,进行反射器展开试验,得到关键测点的力、力矩和应力数据;构建多体动力学仿真软件;根据关键测点的力、力矩和应力的多体动力学仿真分析结果与展开试验结果的比对,优化多体动力学仿真软件;根据比对结果,分析卫星姿态变化物理过程的合理性;构建等效质量单元,并计算得到卫星控制系统设计测试分析仿真软件需要的惯量时变、受力时变的简化动力学模型及相应的数据库;卫星控制系统设计测试分析仿真软件仿真分析得到的三轴姿态角与三轴姿态角速度,与多体动力学仿真软件得到的三轴姿态角与三轴姿态角速度进行比对,根据比对结果进行简化模型、数据库的复核和是否满足工程性判断。
Description
本申请要求于2015年06月30日提交中国专利局的申请号为2015103743655、发明名称为“基于多体分析试验的桁架天线反射器展开动力学建模方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及一种基于多体分析试验的桁架天线反射器展开动力学与控制方法,尤其是涉及一种基于多体分析试验的桁架天线反射器展开动力学建模方法,属于航天器动力学与控制技术领域。
星载柔性多体桁架式网状天线主要由大、小伸展臂、反射器和焦面馈源阵组成,星载大型桁架网状天线展开包括大、小伸展臂展开和反射器展开,天线大、小伸展臂展开结束后,才启动反射器展开,反射器在卷簧作用下展开,同时安装在天线上的两个驱动电机同时开始回收拉索(也称驱动绳),当卷簧驱动力矩与阻力矩相等时不再加速,当阻力矩大于卷簧驱动力矩时,反射器展开减速,很快停止,此后电机拖动桁架对角斜杆中拉索继续驱动反射器展开,直至天线反射器完全展开,因此卷簧与两个驱动电机及拉索就是天线反射器的驱动机构,由于反射器的构件包括反射网、索网、卷簧、拉索、带有拉索滑轮的T型铰、带有控制卷簧释放速度的擒纵机构的同步铰、由滑移铰和到位锁紧机构组成的斜杆锁紧铰、竖杆、横杆等,桁架杆件多于150个,铰链多于90个,拉索、网索均数以千计,非常复杂,因此星载柔性多体桁架式网状天线反射器展开多体动力学仿真软件复杂,计算量大,计算时间长。星载柔性多体桁架式网状天线的技术发展促进了柔性多体动力学与计算方法、软件工程相结合,形成了计算多体系统动力学新学科分支。
在星载桁架式网状天线设计时,为确保柔性多体桁架式网状天线展开过程
的安全性,特别是大天线反射器展开过程中所有的桁架杆件、铰链、拉索、网索均有足够的应力裕度,进行了柔性多体桁架式网状天线结构设计研制所需的多体动力学仿真分析和大天线大、小伸展臂、反射器展开试验,但不能提供控制系统大天线展开模式反射器展开阶段控制器设计测试分析时所需的、星载桁架式网状天线反射器展开过程简化动力学模型,反射器展开过程的成败直接影响卫星的成败,控制系统设计测试仿真软件实时性要求高,不允许照搬反射器展开计算多体系统动力学的复杂模型,在控制系统设计测试仿真软件中,反射器展开过程中的数以千计的部件如何模化,反射器的驱动力与驱动力矩如何模化,目前尚未见有相关研究成果的论文和专利。
发明内容
本发明的技术解决问题是:针对现有技术的不足,提供了一种基于多体分析试验的桁架天线反射器展开动力学建模方法,本发明通过将多于几百的反射器部件,以铰链为核心构建几十个等效质量单元,遵循无外力矩作用情况下整星(整个卫星)角动量守恒原理,坚持位置时间历程等效、质量特性等效、受力情况等效的原则,利用多体动力学仿真软件的仿真分析结果,分析得到控制系统设计测试仿真用的简化动力学模型及数据库,解决了跨学科跨卫星分系统问题,同时本发明得到的简化动力学模型不仅可用于控制系统设计测试仿真,具有自校正能力,也可用于反射器展开过程故障分析与故障对策,既有创新性,又有工程实际应用价值。
本发明的技术解决方案是:
基于多体分析试验的桁架天线反射器展开动力学建模方法,包括步骤如下:
(1)对柔性多体桁架天线反射器进行展开试验,测量展开试验过程中反射器关键测点的力、力矩和应力数据;
(2)利用桁架天线反射器各部件的特征模型构建多体动力学仿真软件并进行关键测点的力、力矩和应力数据仿真分析;
其特征在于还包括步骤如下:
(3)将关键测点的力、力矩和应力的多体动力学仿真分析结果与步骤(1)中展开试验的测试结果进行比对,若比对结果相对误差超过所设定阈值范围A,则对步骤(2)建立的多体动力学仿真软件进行优化:复核多体动力学仿真软件中的反射器各部件的结构设计参数是否完整正确;
(4)若比对结果相对误差在所设定阈值范围A之内,则结合多体动力学仿真软件提供的不加轮控、不加光压干扰力矩情况下卫星姿态变化结果和反射器各部件质心的运动轨迹,分析卫星姿态变化物理过程的合理性,若不合理则对步骤(2)建立的多体动力学仿真软件进行优化:复核多体动力学仿真软件中的反射器各部件的结构设计参数是否完整正确;所述合理性分析包括整星角动量是否符合整星角动量守恒,各部件质心的运动轨迹是否符合多体动力学仿真设置的天线反射器正常展开或有展开故障的工况;
(5)将大量的反射器部件在不破坏桁架结构前提下,以反射器铰链为核心与相邻的横杆、竖杆、斜杆构建若干个等效质量单元,然后利用多体动力学仿真软件计算得到等效质量单元质心的位置时间历程、速度时间历程、加速度时间历程与所受作用力矢量时间历程,再经坐标变换进一步得到卫星控制系统设计测试分析仿真软件需要的惯量时变、受力时变的简化动力学模型及相应的数据库;
所述数据库包括各等效质量单元在卫星机械坐标系的位置时间历程、整星质心在卫星机械坐标系的位置时间历程、各等效质量单元相对卫星机械坐标系的速度时间历程、各等效质量单元相对卫星机械坐标系的加速度时间历程、各等效质量单元作用于卫星的反作用力矢量时间历程、各等效质量单元相对卫星本体坐标系的反作用力矩矢量时间历程、各等效质量单元相对卫星本体坐标系的转动惯量时间历程、各等效质量单元相对卫星本体坐标系的角动量矢量时间历程、整星相对卫星本体坐标系的转动惯量时间历程、各等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程;
所述的简化动力学模型为:
将多体动力学仿真软件分析得到的各等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程以及整星相对卫星本体坐标系的转动惯量时间历程,分别替换原有的动力学方程中的干扰力矩以及整星相对于其质心的惯量矩阵;姿态动力学方程式可以采用控制系统设计测试分析仿真软件中的姿态动力学方程式;
(6)若卫星控制系统设计测试分析仿真软件采用步骤(5)中的简化模型和数据库进行不加轮控、不加光压干扰力矩情况下仿真分析得到的三轴姿态角与三轴姿态角速度,与多体动力学仿真软件得到的三轴姿态角与三轴姿态角速度进行比对,相对误差在所设定阈值范围B之内,则步骤(5)提供给控制系统设计测试仿真分析软件的天线反射器展开过程简化模型和数据库可满足工程实际应用需求;
(7)若卫星控制系统设计测试分析仿真软件采用步骤(5)中得到的简化模型和数据库进行不加轮控、不加光压干扰力矩情况下仿真分析得到的三轴姿态角与三轴姿态角速度,与多体动力学仿真软件得到的三轴姿态角与三轴姿态角速度进行比对,相对误差超过所设定阈值范围B,则进一步迭代复核提供给控制系统设计测试分析仿真软件的简化动力学模型相应的数据库是否正确。
步骤(2)中各部件的特征模型至少包括反射器卷簧被动驱动机构模型、拉索滑轮主动驱动机构模型、典型铰链摩擦模型。
步骤(3)和(4)中所设定阈值范围A为±30%。
步骤(6)和(7)中所设定阈值范围B为±20%。
步骤(5)中利用多体动力学仿真软件采用龙格-库塔法计算得到等效质量单元质心的位置时间历程、速度时间历程、加速度时间历程与所受作用力矢量时间历程,多体动力学仿真软件的龙格-库塔法采样周期采用运动特征等效的逆向求解方法验证选取是否合理。
龙格-库塔法采样周期采用运动特征等效的逆向求解方法验证选取是否合理的具体实施方式如下:通过等效质量单元质心的位置时间历程与速度时间历
程已知一个采样周期的初始位置和终止位置与初始速度,可根据直线运动方程近似求得此时段位置等效的等加速度,若逆向求得的此采样周期等加速度与多体动力学仿真软件龙格-库塔法得到加速度的误差将小于20%(就保证了天线反射器展开位置等效的目的),采样周期即可被认定为选取合理。
步骤(7)中复核的具体步骤如下:
(7a)检验步骤(5)数据库中的十个时间历程数据的符号正确性和数量级正确性;
(7b)根据多体动力学仿真软件初始工况设置中的整星质量及各等效质量单元相对卫星本体坐标系的转动惯量时间历程,验证步骤(5)得到的整星相对卫星本体坐标系的转动惯量时间历程的正确性;所述的整星包括一对太阳翼、天线大小臂及反射器各等效质量单元;
(7c)各等效质量单元在卫星机械坐标系的位置时间历程、整星质心在卫星机械坐标系的位置时间历程、各等效质量单元相对卫星机械坐标系的速度时间历程、各等效质量单元相对卫星机械坐标系的加速度时间历程、各等效质量单元作用于卫星的反作用力矢量时间历程、各等效质量单元作用于卫星的反作用力矩矢量时间历程、各等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程相互冗余,进行相互逆向验证合理性。
本发明相对于现有技术的有益效果:
(1)本发明将多体动力学仿真分析中的成百上千的实际部件,以铰链为核心构建几十个等效质量单元,遵循无外力矩作用情况下整星角动量守恒原理,坚持质量特性等效、受力情况等效的原则,由多体动力学仿真软件的仿真分析结果,通过分析得到控制系统设计测试仿真用的简化动力学模型及数据库,解决了这一跨学科跨卫星分系统问题,同时提取的简化动力学模型不仅可用于控制系统设计测试仿真,具有自校正能力,也可用于反射器展开过程故障分析与故障对策,既有创新性,又有工程实际应用价值。
(2)本发明在将成百上千的实际部件进行等效时,选择等效质量单元个数
等于竖杆与横杆及斜杆的连结点个数,任何一个等效质量单元的力矢量的时间历程发生变化,都将使反射器展开过程中对应竖杆与横杆及斜杆的连结点的运动轨迹发生变化,由此得到的简化动力学模型是具备故障分析与故障对策的最优简化模型,大大提高了天线反射器的可靠性和工作效率。
图1为本发明方法的流程图;
图2为本发明实施例的星载桁架式天线在轨工作状态示意图;
图3为本发明实施例的收拢和展开状态桁架式天线反射器示意图;
图4为本发明实施例的桁架结构、30个竖杆编号和坐标系示意图;
图5为本发明实施例的桁架式天线反射器展开试验过程测点位置示意图;
图6为本发明实施例的桁架式天线反射器展开过程中可展桁架横杆质心在反射器参考坐标系内运动轨迹正视图与俯视图。
下面结合附图对本发明的工作原理和工作过程作解释和说明。
星载柔性多体桁架天线主要由大、小伸展臂、反射器和焦面馈源阵组成,星载桁架天线展开包括大、小伸展臂和反射器展开,天线大、小伸展臂展开结束后,才启动反射器展开,反射器在卷簧作用下展开,同时安装在天线上的两个驱动电机同时开始回收拉索(也称驱动绳),当卷簧驱动力矩与阻力力矩相等时不再加速,当阻力力矩大于卷簧驱动力矩时,反射器展开减速,很快停止,此后电机拖动桁架对角斜杆中拉索继续驱动反射器展开,直至天线反射器完全展开,因此卷簧与两个驱动电机及拉索就是天线反射器的驱动机构,由于反射器的构件包括反射网、索网、卷簧、拉索(驱动绳)、带有拉索滑轮的T型铰、带有控制卷簧释放速度的擒纵机构的同步铰、由滑移铰和到位锁紧机构组成的斜杆锁紧铰、竖杆、横杆(上下横杆),一个通常的柔性多体大型桁架网状天线桁架杆件多于150个,铰链多于90个,拉索、网索均数以千计,非常复杂,因此星载大型桁架网状天线反射器展开多体动力学仿真分析软件复杂,计算量
大,用最新的工作站仿真分析反射器展开过程计算时间需三天。本发明是基于星载柔性多体桁架式网状天线反射器展开复杂模型的多体动力学软件的仿真分析结果及试验测试结果、建立控制系统设计测试仿真分析软件需要的惯量时变、受力时变的简化动力学模型及相应的数据库的方法,
如图1所示,本发明基于多体分析试验的桁架天线反射器展开动力学建模方法,其特征在于步骤如下:
(1)为确保柔性多体桁架式网状天线反射器展开过程的安全性,进行柔性多体桁架式网状天线反射器展开试验,在关键测点上贴应变片,测得展开试验过程中关键测点的力、力矩、应力数据,用于检验结构设计参数、关键点的应力裕度是否满足设计要求和多体动力学仿真软件分析结果的正确性;
(2)为确保桁架式网状天线反射器展开过程中各部件任意点所受应力和运动轨迹满足安全性要求,根据桁架式网状天线反射器各部件的特征模型建立多体动力学仿真软件并进行关键测点及结构设计师关注的各部件承受力的各节点的力、力矩、应力数据的仿真分析;各部件的特征模型包括反射器卷簧被动驱动机构模型、拉索滑轮主动驱动机构模型、典型铰链摩擦模型。
(3)将关键测点的力、力矩、应力的多体动力学仿真分析结果与步骤(1)中展开试验的测试结果进行比对,比对结果相对误差超过±30%,则对步骤(2)建立的多体动力学仿真软件进行优化:复核多体动力学仿真软件的各部件的结构设计参数是否完整正确;
例如在进行测试结果比对时,如果不考虑竖杆、横杆等部件的柔性参数,则仿真结果将比试验结果大,远超过50%,则对步骤(2)建立的多体动力学仿真软件进行优化,即考虑竖杆、横杆等部件的柔性参数。
由于反射器展开驱动部件(例卷簧、电机、拉索)的驱动力、摩擦系数及桁架结构杆件、铰链、擒纵机构等各部件的实际特性不可能完全一致,在展开试验中实际各铰点运动轨迹不是理想空间曲线,而是不完全同步的空间曲线,
多体动力学仿真分析的输入通常是设计参数,因此各测点的力、力矩、应力比对结果相对误差允许±30%,是工程实际通常允许的受力参数误差范围;
(4)若比对结果相对误差在所设定阈值范围A之内,则结合多体动力学仿真软件提供的不加轮控、不加光压干扰力矩情况下卫星姿态变化结果和反射器各部件质心的运动轨迹,分析卫星姿态变化物理过程的合理性,若不合理则对步骤(2)建立的多体动力学仿真软件进行优化:复核多体动力学仿真软件中的反射器各部件的结构设计参数是否完整正确;所述合理性分析包括整星角动量是否符合整星角动量守恒,各部件质心的运动轨迹是否符合多体动力学仿真设置的天线反射器正常展开或有展开故障的工况(计算机仿真分析时通常称工况为仿真设置场景);
(5)若天线反射器展开与卫星本体姿态变化物理过程符合角动量守恒且各部件质心的运动轨迹符合仿真设置的正常展开或有展开故障的工况,将大量(多于几百个)的反射器部件在不破坏桁架结构前提下,以铰链为核心与相邻的横杆、竖杆、斜杆构建若干个等效质量单元(通过多体动力学仿真分析可得到桁架结构的任何一点在卫星机械坐标系中的运动轨迹和部件浮动坐标系中的受力情况,但为了提取简化动力学模型及相应的数据库,必需将反射器等效成若干个等效质量单元,由图4桁架结构可见,可以竖杆上端的带有控制卷簧的同步铰链为核心,与相邻的上横杆、竖杆构建一个等效质量单元,以竖杆下端的带有拉索滑轮的T型铰为核心,与相邻的下横杆、驱动绳从中穿过的斜杆构建另一个等效质量单元,实例中的桁架反射器有30个竖杆,可构建60个等效质量单元),然后利用多体动力学仿真软件采用龙格-库塔法计算得到等效质量单元质心的位置时间历程、速度时间历程、加速度时间历程与所受作用力矢量时间历程,再经坐标变换进一步得到卫星控制系统设计测试分析仿真软件需要的惯量时变、受力时变的简化动力学模型及相应的数据库,多体动力学仿真软件的龙格-库塔法采样周期选取的合理性,可采用运动特征等效的逆向求解方法验证;
采用运动特征等效的逆向求解方法,验证多体动力学仿真软件的龙格-库塔法采样周期选取的合理性的具体方式示例如下:通过等效质量单元位置时间历程与速度时间历程已知一个采样周期的初始位置和终止位置与初始速度,可根据直线运动方程近似求得此时段位置等效的等加速度,只要多体动力学仿真软件的采样周期足够小,逆向求得的此采样周期等加速度与多体动力学仿真软件龙格-库塔法得到加速度的误差将小于20%,就保证了天线反射器展开位置等效的目的,符合工程实际要求。
通过多体动力学仿真分析得到桁架结构的任何一点在卫星机械坐标系中的运动轨迹和部件浮动坐标系中的受力情况,所述数据库包括各等效质量单元在卫星机械坐标系的位置时间历程、整星质心在卫星机械坐标系的位置时间历程、各等效质量单元相对卫星机械坐标系的速度时间历程、各等效质量单元相对卫星机械坐标系的加速度时间历程、各等效质量单元作用于卫星的反作用力矢量时间历程、各等效质量单元相对卫星本体坐标系的反作用力矩矢量时间历程、各等效质量单元相对卫星本体坐标系的转动惯量时间历程、各等效质量单元相对卫星本体坐标系的角动量矢量时间历程、整星相对卫星本体坐标系的转动惯量时间历程、等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程(本实施例中采用60个等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程);
所述的简化动力学模型为:
采用控制系统设计测试分析仿真软件中原有的姿态动力学方程式,并将多体动力学仿真软件分析得到的等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程以及整星相对卫星本体坐标系的转动惯量时间历程,分别替换原有的动力学方程中的干扰力矩以及整星相对于其质心的惯量矩阵;
控制系统设计测试分析仿真软件中原有的姿态动力学方程式如下:
其中,IT表示挠性附件未变形的整星相对于其质心的惯量矩阵(利用整星相对卫星本体坐标系的转动惯量时间历程替换IT);TSAT表示作用于卫星上、相对于挠性附件未变形前整星质心的力矩,3维矢量(利用各等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程替换TSAT);mT表示整星质量;VT表示挠性附件未变形的整星质心速度,3维矢量;h表示动量轮角动量,3维矢量;qi表示第i个挠性附件的模态坐标,m维矢量;表示第i个挠性附件的平移耦合系数;表示第i个挠性附件的转动耦合系数;F表示作用于卫星上的外力;表示第i个挠性附件模态阻尼比;表示第i个挠性附件的模态频率;m表示挠性附件模态坐标的总数;可用有限元法求得,模态阻尼比一般为0.005-0.01;ω表示姿态角速度;V表示整星的平移速度;
反射器的杆与横杆及斜杆的连结点均有铰链,正是质量集中受力最大处,也是反射器展开过程中外形变化标志点,因此选择等效质量单元个数等于竖杆与横杆及斜杆的连结点个数,任何一个等效质量单元的力矢量的时间历程发生变化,都将使反射器展开过程中对应竖杆与横杆及斜杆的连结点的运动轨迹发生变化,因此这样的简化动力学模型是具备故障分析与故障对策能力的最优简化模型;
各等效质量单元都有其对应的力矢量时变的质心运动方程,各等效质量单元在卫星机械坐标系中的运动轨迹就形象地反映了反射器展开过程,同时各等
效质量单元反作用力矩矢量的合力矩使控制系统计算卫星姿态运动非常简化。多个冗余物理量变化的时间历程为分析复核提供了方便;
如有擒纵机构,则控制卷簧释放速度的擒纵机构可使反射器展开过程尽可能平稳,没有擒纵机构简化了反射器结构设计,有利于提高可靠性,但卷簧驱动下的展开过程加快了,因此简化动力学模型需按不同配置给出不同的等效质量单元受力模型,保证等效质量单元在浮动坐标系中的力矢量转换为卫星本体坐标系中的力矢量产生的误差在允许范围内;
(6)若卫星控制系统设计测试分析仿真软件采用步骤(5)中的简化模型和数据库进行不加动量轮控制卫星姿态(简称不加轮控)、不加太阳翼及星本体受到的太阳光压干扰力矩(简称不加光压干扰力矩)情况下仿真分析得到的三轴姿态角与三轴姿态角速度,与多体动力学仿真软件得到的三轴姿态角与三轴姿态角速度进行比对,相对误差在±20%之内,则步骤(5)提供给控制系统设计测试仿真分析软件的天线反射器展开过程简化模型和数据库可满足工程实际应用需求,±20%是工程实际通常允许的姿态参数误差范围;
(7)若卫星控制系统设计测试分析仿真软件采用步骤(5)中得到的简化模型和数据库进行不加轮控、不加光压干扰力矩情况下仿真分析得到的三轴姿态角与三轴姿态角速度,与多体动力学仿真软件得到的三轴姿态角与三轴姿态角速度进行比对,相对误差超过±20%范围,则进一步迭代复核提供给控制系统设计测试分析仿真软件的简化动力学模型相应的数据库是否正确;
步骤(7)中复核的具体步骤如下:
(7a)检验步骤(5)数据库中的十个时间历程数据的符号正确性和数量级正确性;
(7b)根据多体动力学仿真软件初始工况设置中的整星质量及各等效质量单元相对卫星本体坐标系的转动惯量时间历程,验证步骤(5)得到的整星相对卫星本体坐标系的转动惯量时间历程的正确性;所述的整星包括一对太阳翼、天线大小臂及反射器各等效质量单元;
(7c)各等效质量单元在卫星机械坐标系的位置时间历程、整星质心在卫星机械坐标系的位置时间历程、各等效质量单元相对卫星机械坐标系的速度时间历程、各等效质量单元相对卫星机械坐标系的加速度时间历程、各等效质量单元作用于卫星的反作用力矢量时间历程、各等效质量单元作用于卫星的反作用力矩矢量时间历程、等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程相互冗余,可相互逆向验证(比如,知道加速度时间历程和时间,就可以求出位置时间历程等,知道位置时间历程同样可以求出加速度时间历程,即所谓逆向验证)。
下面以本实施例对本发明的工作原理做进一步解释和说明:
如图2所示,为本实施例的星载桁架式天线在轨工作状态示意图。星载柔性多体桁架天线主要由大伸展臂102、小伸展臂103、反射器104和焦面馈源阵组成;天线反射器包括周边桁架、反射网、索网、卷簧、拉索(驱动绳105)、带有拉索滑轮的T型铰106、带有控制卷簧释放速度的擒纵机构的同步铰109、由滑移铰和到位锁紧机构组成的斜杆锁紧铰、竖杆107(竖杆107又包括偶数杆17a和奇数杆17b)、横杆108(横杆又包括上横杆18a和下横杆18b)。卫星星体101定点捕获后在同步轨道,天线与大小伸展臂均处于收拢状态,接到地面天线展开遥控指令后,抱箍压紧机构释放,大臂在电动机驱动下展开到指定位置并锁定,接下来大臂轴线上的压紧机构释放,大臂在电动机驱动下绕自身轴线旋转到位并锁定。之后,小臂绕与大臂铰接旋转轴转动到位并锁定。接下来,捆束在反射器外围的火工切割器启爆,切断天线包带,天线反射器先在卷簧作用下展开,同时安装在天线上的两个驱动电机同时开始回收拉索(也称驱动绳),当卷簧驱动力矩与阻力矩相等时不再加速,当阻力矩大于卷簧驱动力矩时,反射器展开减速,很快停止,此后电机拖动桁架对角斜杆中拉索继续驱动反射器展开,直至天线反射器完全展开。
如图3所示,为本实施例的收拢和展开状态桁架式天线反射器示意图,图3a为反射器收拢状态示意图,图3b为反射器展开到位状态示意图。由图3可
见,与小臂相连的收拢状态反射器的斜杆处于最长状态,展开到位后斜杆处于最短状态,并到位锁定。
图4为本实施例中天线反射器的周边桁架结构、30个竖杆编号和坐标系示意图,图4包括竖杆107,图4a表示竖杆排列示意图、图4b表示天线反射器的周边桁架结构、图4c表示30个竖杆俯视图,共15个偶数杆17a和15个奇数杆17b(偶数杆17a和奇数杆依次交替排列)、,110表示电机端、图4d表示竖杆局部示意图。由图4可见,多体动力学仿真分析中的部件浮动坐标系与部件机械坐标系类似,坐标系原点位于部件安装面基准安装孔的理论圆心,X、Y、Z三轴方向可根据需要选取,但符合右手直角坐标系的定义。部件的定位尺寸、质心位置及其它特征尺寸应在该坐标系内定义。
图5为本实施例中的桁架式天线反射器展开试验过程中1~50号关键测点位置示意图(图中数字表示测点贴应力片位置,图中只标出部测点应力片位置),将多体动力学仿真分析结果与测点测试结果对比,相对误差未超+30%,说明仿真所加严酷度在允许范围内。
本实施例的桁架式天线反射器具有30个竖杆、60个横杆,30个可伸缩斜杆(带有滑移铰链和到位锁紧铰链,且电机驱动的拉索从中穿过),其连结点均有质量大且直接承受卷簧驱动力的同步铰链或直接承受电机牵引的拉索驱动力的T型铰链(带有拉索滑轮),因而本实施例中选择此60个铰链为核心构建60个等效质量单元;
下面具体解释如何得到卫星控制系统设计测试分析仿真软件需要的惯量时变、受力时变的简化动力学模型及相应的数据库;其主要内容如下:
(1)反射器展开过程的简化动力学模型
简化动力学模型是相对多体动力学仿真分析软件中的动力学模型而言的,控制系统设计测试分析仿真软件通常采用的挠性体动力学模型,参见屠善澄先生主编的宇航出版社2001年12月第1版的《卫星姿态动力学与控制》第13.3节(挠性附件卫星的姿态控制)中的动力学方程式(13-97)。
控制系统设计测试分析仿真软件通常考虑了太阳翼挠性更多更高阶振型,此外如果卫星配置不对称大型附件,整星相对卫星本体坐标系的转动惯量中的惯量积很大时,考虑惯量积的影响已成为控制系统设计测试分析仿真软件自身的要求。
当卫星控制系统的动量轮控制方式采用零动量或整星零动量工作方式且在反射器展开过程中不进行动量轮姿态控制时,控制系统设计测试分析仿真软件中原有的姿态动力学方程式中的动量轮角动量h和角动量变化率均设置为0。
如果反射器有30个竖杆、60个横杆,30个可伸缩斜杆(带有滑移铰链和到位锁紧铰链,且电机驱动的拉索从中穿过),其连结点均有质量大且直接承受卷簧驱动力矩的同步铰链或直接承受电机牵引的拉索驱动力的T型铰链(带有拉索滑轮),因而选择此60个铰链为核心构建60个等效质量单元,以60个等效质量单元在卷簧驱动力和电机牵引的拉索驱动力作用下的位置时间历程描述反射器展开过程,60个等效质量单元对卫星的反作用力矩使卫星姿态发生变化。
为了清晰地分析桁架式网状天线反射器展开的影响,多体动力学仿真分析时考虑了平动与转动的耦合、同步轨道的轨道角速度的影响及转移轨道变轨时推进剂消耗对整星质量特性的影响,但反射器展开过程中是动量轮控制姿态,姿态控制的推进剂消耗不考虑,太阳光压、重力及地磁场的影响也不考虑。
因此,最优的惯量时变、受力时变的简化动力学模型如下:
采用控制系统设计测试分析仿真软件中原有的姿态动力学方程式,并将多体动力学仿真分析得到的各等效质量单元相对卫星本体坐标系的合成反作用力矩矢量的时间历程以及整星相对卫星本体坐标系的转动惯量时间历程,分别替换原有的动力学方程中的干扰力矩以及整星相对于其质心的惯量矩阵。
控制系统仿真分析时可根据需求增添多体动力学仿真分析时未考虑的因素;
(2)动力学仿真分析的初始工况设置
星载桁架式天线反射器正常展开过程,初始状态星载天线的大小臂均已展开锁定,反射器处于收拢状态;
卫星在同步轨道,三轴姿态和角速度初始值均为0;
整星(包含一对太阳翼、天线大、小臂及反射器各等效质量单元)的质量及其质心在卫星机械坐标系的初始位置;
各等效质量单元的质量及其在卫星机械坐标系的初始位置;
整星在卫星本体坐标系的惯量矩阵初始值;
反射器展开期间,太阳翼法线方向保持与Z轴方向一致,太阳翼的选择此工况下的挠性特性参数,不考虑推进剂液体晃动影响;
(3)简化动力学模型相应的数据库
简化动力学模型需要反射器展开过程中十项时间历程,即步骤(5)中得到卫星控制系统设计测试分析仿真软件需要的惯量时变、受力时变的数据库:
①60个等效质量单元在卫星机械坐标系的位置时间历程;
②整星质心在卫星机械坐标系的位置时间历程;
③60个等效质量单元相对卫星机械坐标系的速度时间历程;
④60个等效质量单元相对卫星机械坐标系的加速度时间历程;
⑤60个等效质量单元作用于卫星的反作用力矢量时间历程,其作用点即等效质量单元在卫星机械坐标系的位置;
由上述五项时间历程可进一步推导出五项时间历程:
⑥60个等效质量单元相对卫星本体坐标系的反作用力矩矢量时间历程;
⑦60个等效质量单元相对卫星本体坐标系的转动惯量时间历程;
⑧60个等效质量单元相对卫星本体坐标系的角动量矢量时间历程;
⑨整星相对卫星本体坐标系的转动惯量时间历程;
⑩60个等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程;
有擒纵机构时,卷簧驱动力矩作用下的每一时间历程每一采样周期需给出
两个数据;
没有擒纵机构时,卷簧驱动力矩作用下的每一时间历程每一采样周期只需给出一个数据;
电机拉索驱动下的反射器展开过程,每一时间历程每一采样周期只需给出一个数据。
增加上述五项时间历程既便于控制系统设计测试仿真分析选择最便捷的输入数据,计算各等效质量单元反作用力矩矢量的合力矩使控制系统计算卫星姿态运动非常简化了,节省计算时间,又便于对简化动力学模型数据的自校正和控制系统仿真结果合理性校验,例如根据60个等效质量单元在机械坐标系的三维位置时间历程可画出60个等效质量单元的运动轨迹空间曲线。
多体动力学仿真分析可给出任何一个节点的运动轨迹和受力情况,图6为实施例的大型桁架天线反射器展开过程中可展桁架上部杆件(即横杆)质心在反射器参考坐标系内运动轨迹正视图与俯视图的示意图。
(4)桁架天线反射器的卷簧驱动力矩与电机牵引的拉索驱动力的模化
桁架天线反射器有擒纵机构时,多体动力学仿真分析结果,60个等效质量单元在擒纵机构控制和卷簧驱动下,实际是周期性的加速减速,例如周期是10ms,每周期前一时段等加速度加速,后一时段等加速度减速至0。
桁架天线反射器没有擒纵机构时,多体动力学仿真分析结果中,60个等效质量单元在卷簧驱动力矩下,同步铰链带动桁架杆件运动,竖杆与横杆之间夹角向90°变化,斜杆缩短,在一个采样周期中就没有加速减速两个时段了。
卷簧驱动力矩大于阻力矩时,60个等效质量单元才会加速,反之将减速,直至反射器展开停止,多体动力学仿真分析结果给出驱动力矩与阻力矩之差。
没有擒纵机构时,卷簧驱动力矩作用下的反射器展开过程时间很短,只有几十秒,前一时段每个采样周期中按等加速度加速,后一时段每个采样周期中按等加速度减速,选择能满足采样定理的足够小的采样周期,不大于10ms;
当卷簧驱动力矩不足以驱动反射器继续展开时,60个等效质量单元受电机
(牵引斜杆中拉索)驱动,此情况下主要是T型铰链的拉索滑轮受力,在相邻竖杆之间形成了力偶,使反射器桁架进一步展开,当斜杆运动到锁定位置时,内斜杆将与限位块发生撞击,限位块压缩阻尼和弹性材料将内外斜杆相对速度减小为零,同时压缩锁定块使之进入外斜杆凹槽,使反射器斜杆锁定。
反射器各桁架结构在卷簧驱动力矩作用下,是接近同步展开的,电机(牵引斜杆中拉索)驱动作用下,反射器各桁架结构的斜杆是逐个锁定的。
电机驱动下的反射器展开过程分斜杆缩短时段与锁定时段,60个等效质量单元受到的驱动力有一个正向增大过程和反向减速过程,电机驱动下的反射器展开过程时间较长。
斜杆缩短时段,每个采样周期内等效质量单元按等加速度加速。
斜杆锁定时段,采样周期不大于10ms,每个采样周期内等效质点按反向等加速度减速,直至锁定,速度为0。
由于随着反射器展开,各等效质量单元受到的力矢量方向是变的,用同方向加速常值力矢量与减速常值力矢量来描述,实际已是简化模型,各等效质量单元相对卫星机械坐标系的位置矢量时间历程、速度矢量时间历程、加速度矢量时间历程、反作用力矢量时间历程均可根据多体动力学仿真分析结果直接提取,根据采样定理。以足够小的采样周期进行仿真,就是为了直接提取的时间历程的误差足够小,局部采用运动特征等效方法逆向求解,只是为了验证多体动力学仿真软件的采样周期选取的合理性。
如果速度矢量与卫星本体质心不相交时,等效质量单元的运动在此采样周期内有一个等效角动量变化过程;
(5)坐标系定义
卫星机械坐标系定义如下:
a)坐标系原点O:位于卫星下端框与运载火箭机械分离面内,与卫星接口上三个销钉所组成的理论圆的圆心重合;
b)OX轴:正方向与卫星东板理论外法线方向一致;
c)OY轴:正方向与卫星南板理论外法线方向一致;
d)OZ轴:垂直于卫星与运载火箭的连接分离面,其正方向从原点指向对地板;
e)OXYZ坐标系符合右手法则。
卫星在轨飞行时,在理论姿态条件下,作为卫星姿态基准参考坐标系的本体坐标系(也称轨道坐标系)的定义如下:
a)坐标系原点O:原点位于卫星质心,其三轴OXb、OYb、OZb与机械坐标系的OX、OY、OZ平行;
b)OXb轴为滚动轴,卫星对地定向时指向卫星前进方向;
c)OYb轴为俯仰轴,卫星对地定向时指向卫星轨道平面负法线方向;
d)OZb轴为偏航轴,卫星对地定向时指向地心;
e)OXbYbZb坐标系符合右手法则。
卫星在同步轨道飞行时,卫星前进方向为正东方向,轨道平面负法线方向为正南方向,作为卫星姿态基准参考坐标系的本体坐标系也称东南坐标系。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。
Claims (7)
- 基于多体分析试验的桁架天线反射器展开动力学建模方法,包括步骤如下:(1)对柔性多体桁架天线反射器进行展开试验,测量展开试验过程中反射器关键测点的力、力矩和应力数据;(2)利用桁架天线反射器各部件的特征模型构建多体动力学仿真软件并进行关键测点的力、力矩和应力数据仿真分析;其特征在于还包括步骤如下:(3)将关键测点的力、力矩和应力的多体动力学仿真分析结果与步骤(1)中展开试验的测试结果进行比对,若比对结果相对误差超过所设定阈值范围A,则对步骤(2)建立的多体动力学仿真软件进行优化:复核多体动力学仿真软件中的反射器各部件的结构设计参数是否完整正确;(4)若比对结果相对误差在所设定阈值范围A之内,则结合多体动力学仿真软件提供的不加轮控、不加光压干扰力矩情况下卫星姿态变化结果和反射器各部件质心的运动轨迹,分析卫星姿态变化物理过程的合理性,若不合理则对步骤(2)建立的多体动力学仿真软件进行优化:复核多体动力学仿真软件中的反射器各部件的结构设计参数是否完整正确;所述合理性分析包括整星角动量是否符合整星角动量守恒,各部件质心的运动轨迹是否符合多体动力学仿真设置的天线反射器正常展开或有展开故障的工况;(5)将大量的反射器部件在不破坏桁架结构前提下,以反射器铰链为核心与相邻的横杆、竖杆、斜杆构建若干个等效质量单元,然后利用多体动力学仿真软件计算得到等效质量单元质心的位置时间历程、速度时间历程、加速度时间历程与所受作用力矢量时间历程,再经坐标变换进一步得到卫星控制系统设计测试分析仿真软件需要的惯量时变、受力时变的简化动力学模型及相应的数据库;所述数据库包括各等效质量单元在卫星机械坐标系的位置时间历程、整星质心在卫星机械坐标系的位置时间历程、各等效质量单元相对卫星机械坐标系的速度时间历程、各等效质量单元相对卫星机械坐标系的加速度时间历程、各等效质量单元作用于卫星的反作用力矢量时间历程、各等效质量单元相对卫星本体坐标系的反作用力矩矢量时间历程、各等效质量单元相对卫星本体坐标系的转动惯量时间历程、各等效质量单元相对卫星本体坐标系的角动量矢量时间历程、整星相对卫星本体坐标系的转动惯量时间历程、各等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程;所述的简化动力学模型为:将多体动力学仿真软件分析得到的各等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程以及整星相对卫星本体坐标系的转动惯量时间历程,分别替换原有的动力学方程中的干扰力矩以及整星相对于其质心的惯量矩阵;(6)若卫星控制系统设计测试分析仿真软件采用步骤(5)中的简化模型和数据库进行不加轮控、不加光压干扰力矩情况下仿真分析得到的三轴姿态角与三轴姿态角速度,与多体动力学仿真软件得到的三轴姿态角与三轴姿态角速度进行比对,相对误差在所设定阈值范围B之内,则步骤(5)提供给控制系统设计测试仿真分析软件的天线反射器展开过程简化模型和数据库可满足工程实际应用需求;(7)若卫星控制系统设计测试分析仿真软件采用步骤(5)中得到的简化模型和数据库进行不加轮控、不加光压干扰力矩情况下仿真分析得到的三轴姿态角与三轴姿态角速度,与多体动力学仿真软件得到的三轴姿态角与三轴姿态角速度进行比对,相对误差超过所设定阈值范围B,则进一步迭代复核提供给控制系统设计测试分析仿真软件的简化动力学模型相应的数据库是否正确。
- 根据权利要求1所述的基于多体分析试验的桁架天线反射器展开动力学建模方法,其特征在于:所述步骤(2)中各部件的特征模型至少包括反射器卷簧被动驱动机构模型、拉索滑轮主动驱动机构模型、典型铰链摩擦模型。
- 根据权利要求1所述的基于多体分析试验的桁架天线反射器展开动力学建模方法,其特征在于:所述步骤(3)和(4)中所设定阈值范围A为±30%。
- 根据权利要求1所述的基于多体分析试验的桁架天线反射器展开动力学建模方法,其特征在于:所述步骤(6)和(7)中所设定阈值范围B为±20%。
- 根据权利要求1所述的基于多体分析试验的桁架天线反射器展开动力学建模方法,其特征在于:所述步骤(5)中利用多体动力学仿真软件采用龙格-库塔法计算得到等效质量单元质心的位置时间历程、速度时间历程、加速度时间历程与所受作用力矢量时间历程,多体动力学仿真软件的龙格-库塔法采样周期采用运动特征等效的逆向求解方法验证选取是否合理。
- 根据权利要求5所述的基于多体分析试验的桁架天线反射器展开动力学建模方法,其特征在于:所述龙格-库塔法采样周期采用运动特征等效的逆向求解方法验证选取是否合理的具体实施方式如下:通过等效质量单元质心的位置时间历程与速度时间历程已知一个采样周期的初始位置和终止位置与初始速度,可根据直线运动方程近似求得此时段位置等效的等加速度,若逆向求得的此采样周期等加速度与多体动力学仿真软件龙格-库塔法得到加速度的误差将小于20%,采样周期即可被认定为选取合理。
- 根据权利要求1所述的基于多体分析试验的桁架天线反射器展开动力学建模方法,其特征在于:所述步骤(7)中复核的具体步骤如下:(7a)检验步骤(5)数据库中的十个时间历程数据的符号正确性和数量级正确性;(7b)根据多体动力学仿真软件初始工况设置中的整星质量及各等效质量单元相对卫星本体坐标系的转动惯量时间历程,验证步骤(5)得到的整星相对 卫星本体坐标系的转动惯量时间历程的正确性;所述的整星包括一对太阳翼、天线大小臂及反射器各等效质量单元;(7c)各等效质量单元在卫星机械坐标系的位置时间历程、整星质心在卫星机械坐标系的位置时间历程、各等效质量单元相对卫星机械坐标系的速度时间历程、各等效质量单元相对卫星机械坐标系的加速度时间历程、各等效质量单元作用于卫星的反作用力矢量时间历程、各等效质量单元作用于卫星的反作用力矩矢量时间历程、各等效质量单元相对卫星本体坐标系的合成反作用力矩矢量时间历程相互冗余,进行相互逆向验证合理性。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017568364A JP6542919B2 (ja) | 2015-06-30 | 2015-09-22 | 多体分析検査に基づくトラス・アンテナ反射鏡展開動力学モデリング方法 |
EP15896926.1A EP3318993B1 (en) | 2015-06-30 | 2015-09-22 | Truss antenna reflector deployment dynamics modelling method based on multi-body analysis test |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510374365.5 | 2015-06-30 | ||
CN201510374365.5A CN105160051B (zh) | 2015-06-30 | 2015-06-30 | 基于多体分析试验的桁架天线反射器展开动力学建模方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017000396A1 true WO2017000396A1 (zh) | 2017-01-05 |
Family
ID=54800907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/090222 WO2017000396A1 (zh) | 2015-06-30 | 2015-09-22 | 基于多体分析试验的桁架天线反射器展开动力学建模方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3318993B1 (zh) |
JP (1) | JP6542919B2 (zh) |
CN (1) | CN105160051B (zh) |
WO (1) | WO2017000396A1 (zh) |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109376482A (zh) * | 2018-11-30 | 2019-02-22 | 北京宇航系统工程研究所 | 一种基于数字样机的弹箭运动包络精细化预测方法 |
CN109376386A (zh) * | 2018-09-19 | 2019-02-22 | 广州广电计量检测股份有限公司 | 天线模型的构建方法和装置、车载天线模型的构建方法 |
CN109446742A (zh) * | 2018-12-24 | 2019-03-08 | 西安石油大学 | 半潜式钻井平台管子处理装备抓管机多体动力学仿真方法 |
CN109543227A (zh) * | 2018-10-22 | 2019-03-29 | 西安电子科技大学 | 大型反射面天线的风致指向误差实时测量方法、雷达天线 |
CN109583107A (zh) * | 2018-12-06 | 2019-04-05 | 国电联合动力技术有限公司 | 柔性塔筒的低风速智能优化方法、装置及存储介质 |
CN109726515A (zh) * | 2019-01-29 | 2019-05-07 | 西北工业大学 | 一种细胞卫星吸附式抓捕非合作目标方法 |
CN109884593A (zh) * | 2019-01-19 | 2019-06-14 | 西安电子科技大学 | 一种测控集成的大型天线自适应抗风扰系统及设计方法 |
CN110162818A (zh) * | 2018-11-26 | 2019-08-23 | 北京机电工程研究所 | 伞弹系统弹道计算方法 |
CN110532581A (zh) * | 2019-05-14 | 2019-12-03 | 武汉弗雷德斯科技发展有限公司 | 一种四轴机械臂的动力学建模方法 |
CN110765547A (zh) * | 2019-09-25 | 2020-02-07 | 上海航天控制技术研究所 | 一种简化的飞网捕获空间碎片动力学建模方法 |
CN111027135A (zh) * | 2019-11-20 | 2020-04-17 | 上海航天控制技术研究所 | 扑翼空气动力情况仿真方法 |
CN111177859A (zh) * | 2019-12-09 | 2020-05-19 | 上海航天控制技术研究所 | 一种桁架天线的动力学等效连续体建模方法 |
CN111222270A (zh) * | 2019-12-25 | 2020-06-02 | 华东理工大学 | 一种基于轮轨耦合的过山车轨道振动响应测试方法及应用 |
CN111814378A (zh) * | 2020-07-14 | 2020-10-23 | 北京卫星环境工程研究所 | 综合温度循环和三轴六自由度的环境效应仿真方法和装置 |
CN111859559A (zh) * | 2020-06-30 | 2020-10-30 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | 一种软钢臂单点系泊系统的动力特性分析方法 |
CN111881598A (zh) * | 2020-06-23 | 2020-11-03 | 北京空间飞行器总体设计部 | 一种基于加速度谱的卫星及部组件界面力谱获取方法 |
CN112329131A (zh) * | 2020-10-10 | 2021-02-05 | 中国运载火箭技术研究院 | 一种标准测试模型生成方法、生成装置及存储介质 |
CN112380742A (zh) * | 2020-10-31 | 2021-02-19 | 华南理工大学 | 一种任意形状均质物体绕任意旋转轴的转动惯量计算方法 |
CN112632815A (zh) * | 2020-12-06 | 2021-04-09 | 北京工业大学 | 一种石墨烯可展开天线热结构动力学建模方法 |
CN112649046A (zh) * | 2020-12-22 | 2021-04-13 | 中建八局第三建设有限公司 | 一种全过程模拟仿真系杆拱桥整体顶推监控方法 |
CN112699506A (zh) * | 2020-12-29 | 2021-04-23 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | 一种光电二维反射镜的动力学仿真验证方法 |
CN112861389A (zh) * | 2019-11-27 | 2021-05-28 | 中车株洲电力机车研究所有限公司 | 风电齿轮箱振动监测位置优化方法、系统、介质及设备 |
CN112948990A (zh) * | 2021-01-27 | 2021-06-11 | 北京电子工程总体研究所 | 一种柔性绳索连接的气囊和吊舱动力学校模方法 |
CN113010970A (zh) * | 2019-12-20 | 2021-06-22 | 上海烟草机械有限责任公司 | 一种基于creo三维软件的凸轮设计方法 |
CN113111461A (zh) * | 2021-04-20 | 2021-07-13 | 通号(长沙)轨道交通控制技术有限公司 | 一种隔离开关合闸力矩的仿真计算方法 |
CN113254056A (zh) * | 2021-04-16 | 2021-08-13 | 荣耀终端有限公司 | 一种更新预警及故障修复的方法及设备 |
CN113707242A (zh) * | 2021-08-25 | 2021-11-26 | 常州工学院 | 一种固体推进剂率相关内聚力本构模型的构建方法 |
CN113879573A (zh) * | 2021-09-18 | 2022-01-04 | 长光卫星技术有限公司 | 一种基频与转动惯量可调的太阳翼地面模拟系统 |
CN113901690A (zh) * | 2021-10-13 | 2022-01-07 | 上海航天测控通信研究所 | 星载反射面天线在轨热变形性能评估方法 |
CN113935151A (zh) * | 2021-09-13 | 2022-01-14 | 北京控制工程研究所 | 一种火星edl过程变结构多体耦合动力学建模及解算方法 |
CN113946914A (zh) * | 2020-07-16 | 2022-01-18 | 中国科学院沈阳自动化研究所 | 一种回转式小行星采样装置的扭矩动力学仿真方法 |
CN113962119A (zh) * | 2021-09-01 | 2022-01-21 | 北京理工大学 | 形状不规则双小行星系统相互作用高精度高效率建模方法 |
CN114036780A (zh) * | 2021-12-06 | 2022-02-11 | 航天科工火箭技术有限公司 | 一种受天基测控约束的火箭姿态角设计方法 |
CN114109884A (zh) * | 2021-11-16 | 2022-03-01 | 西安热工研究院有限公司 | 一种空冷风机现场考核试验方法 |
CN114186452A (zh) * | 2021-11-23 | 2022-03-15 | 大连理工大学 | 一种非光滑多体系统动力学灵敏度分析方法 |
CN114357621A (zh) * | 2022-01-04 | 2022-04-15 | 北京机电工程研究所 | 飞行器活动部件展开过程支反力载荷计算方法及系统 |
CN114634150A (zh) * | 2022-03-08 | 2022-06-17 | 北京邮电大学 | 一种基于激光位置传感器的鹤管自动对位系统 |
CN114818048A (zh) * | 2022-03-16 | 2022-07-29 | 中铁二十局集团第一工程有限公司 | 桅杆布设方法、装置、设备及存储介质 |
CN114841033A (zh) * | 2022-04-08 | 2022-08-02 | 国家高速列车青岛技术创新中心 | 一种辐条车轮设计方法 |
CN114970007A (zh) * | 2022-04-21 | 2022-08-30 | 哈尔滨工业大学 | 一种支持cad模型导入与网格划分的刚柔耦合多体动力学通用化仿真方法 |
CN114987802A (zh) * | 2020-12-08 | 2022-09-02 | 中国科学院微小卫星创新研究院 | 基于运动部件信息的角动量前馈补偿控制方法 |
CN115246491A (zh) * | 2022-07-22 | 2022-10-28 | 北京理工大学 | 小天体柔性附着协同制导方法 |
CN115809584A (zh) * | 2023-02-01 | 2023-03-17 | 北京控制工程研究所 | 变构型变参数的复杂连接多体动力学建模方法 |
CN108984840B (zh) * | 2018-06-15 | 2023-04-14 | 北京控制工程研究所 | 环型天线展开过程竖杆等效卫星姿态运动建模方法及系统 |
CN116280294A (zh) * | 2023-03-24 | 2023-06-23 | 北京航辰机载智能系统科技有限公司 | 地面测试环境中惯性力模拟方法及系统 |
CN116738765A (zh) * | 2023-08-10 | 2023-09-12 | 北京国星创图科技有限公司 | 一种基于卫星仿真和关键路径的卫星任务规划分析方法 |
CN116956676A (zh) * | 2023-07-24 | 2023-10-27 | 哈尔滨工业大学 | 一种纳米晶微小型密封电磁继电器动态特性仿真分析方法 |
CN117852306A (zh) * | 2024-03-04 | 2024-04-09 | 西北工业大学 | 基于相对动量矩定理的变体高速飞行器动力学建模方法 |
CN117968670A (zh) * | 2024-04-02 | 2024-05-03 | 北京航空航天大学 | 一种微小卫星大角度姿态机动中的高精度指向方法 |
CN118182875A (zh) * | 2024-05-16 | 2024-06-14 | 哈尔滨工业大学 | 用于平板式卫星的帆板的同步展开设计方法及系统 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105843074B (zh) * | 2016-03-28 | 2018-08-14 | 北京空间飞行器总体设计部 | 一种获取天线在轨振动影响的动力学建模方法 |
CN105956348B (zh) * | 2016-06-29 | 2019-04-09 | 上海航天控制技术研究所 | 一种航天器动力学建模方法 |
CN106250609B (zh) * | 2016-07-28 | 2019-02-19 | 西安空间无线电技术研究所 | 一种大口径环形反射器分布式非线性驱动展开方法 |
CN106934097B (zh) * | 2017-02-09 | 2020-03-17 | 西安电子科技大学 | 面向电性能的空间网状天线关键动力学模态选取方法 |
CN107065910B (zh) * | 2017-04-24 | 2020-01-14 | 西北工业大学 | 空间绳系抓捕系统保持阶段系绳面内面外角稳定控制方法 |
CN107545126B (zh) * | 2017-09-28 | 2019-11-26 | 大连理工大学 | 一种基于多体系统滑移绳索单元的聚合式张拉整体结构动力响应分析方法 |
CN108446457B (zh) * | 2018-02-28 | 2022-03-04 | 北京空间飞行器总体设计部 | 一种卫星星架系统动力学响应分析方法和系统 |
CN109253871B (zh) * | 2018-08-31 | 2020-02-07 | 长安大学 | 挖掘机下车架等效力时间历程获取及疲劳试验谱整理方法 |
CN109740186B (zh) * | 2018-12-10 | 2020-08-14 | 北京空间飞行器总体设计部 | 一种针对航天器大型附件在轨未展开的故障处置方法 |
CN111651849A (zh) * | 2019-02-18 | 2020-09-11 | 广州汽车集团股份有限公司 | 一种汽车实时动力学模块化建模方法、装置及存储介质 |
CN110568773B (zh) * | 2019-09-29 | 2023-02-03 | 上海航天控制技术研究所 | 一种控制力矩陀螺群故障模拟仿真测试的方法及系统 |
CN111879290A (zh) * | 2020-07-16 | 2020-11-03 | 上海宇航系统工程研究所 | 大型天线机械指向精度测量方法 |
CN112009723B (zh) * | 2020-07-23 | 2021-12-07 | 中国空间技术研究院 | 一种利用卫星自旋在轨展开二维平面可展机构的方法 |
CN112084592A (zh) * | 2020-09-04 | 2020-12-15 | 上海交通大学 | 折叠式桁架动力学分析系统、方法、装置和存储介质 |
CN112016163B (zh) * | 2020-09-07 | 2022-10-18 | 上海航天控制技术研究所 | 一种基于数据驱动的卫星帆板展开仿真模拟方法 |
CN112613167B (zh) * | 2020-12-16 | 2024-05-07 | 北京电子工程总体研究所 | 一种基于绳索操控的两体动力学建模方法 |
CN113013633B (zh) * | 2021-02-07 | 2022-02-18 | 上海航天测控通信研究所 | 一种带指向机构大口径反射面天线共形设计方法 |
CN113675615B (zh) * | 2021-08-25 | 2023-11-24 | 沈阳建筑大学 | 宇航折展天线反射器及设置有该种反射器的卫星系统 |
CN114683285B (zh) * | 2022-03-31 | 2024-03-26 | 中国空间技术研究院 | 一种快捷空间机器人仿真建模方法及系统 |
CN115618477B (zh) * | 2022-11-30 | 2023-03-10 | 成都流体动力创新中心 | 多体运动仿真专业模板库的构建方法及装置 |
CN116605423B (zh) * | 2023-05-11 | 2024-03-22 | 北京星河动力装备科技有限公司 | 用于火箭垂直回收的着陆腿结构 |
CN117552895B (zh) * | 2023-06-25 | 2024-03-22 | 北京理工大学 | 一种固体火箭发动机贮存结构完整性的缩比试验方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050209835A1 (en) * | 2004-03-18 | 2005-09-22 | Ih Che-Hang C | Dynamic modeling technique for the deployment of large satellite antennas |
JP2010086092A (ja) * | 2008-09-30 | 2010-04-15 | Mitsubishi Space Software Kk | 衛星設計支援装置、衛星設計支援プログラム及び衛星設計支援方法 |
CN104133932A (zh) * | 2014-05-27 | 2014-11-05 | 中国空间技术研究院 | 一种基于多学科优化的卫星总体方案确定系统及实现方法 |
-
2015
- 2015-06-30 CN CN201510374365.5A patent/CN105160051B/zh active Active
- 2015-09-22 EP EP15896926.1A patent/EP3318993B1/en active Active
- 2015-09-22 JP JP2017568364A patent/JP6542919B2/ja active Active
- 2015-09-22 WO PCT/CN2015/090222 patent/WO2017000396A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050209835A1 (en) * | 2004-03-18 | 2005-09-22 | Ih Che-Hang C | Dynamic modeling technique for the deployment of large satellite antennas |
JP2010086092A (ja) * | 2008-09-30 | 2010-04-15 | Mitsubishi Space Software Kk | 衛星設計支援装置、衛星設計支援プログラム及び衛星設計支援方法 |
CN104133932A (zh) * | 2014-05-27 | 2014-11-05 | 中国空间技术研究院 | 一种基于多学科优化的卫星总体方案确定系统及实现方法 |
Non-Patent Citations (2)
Title |
---|
DONG, FUXIANG ET AL.: "Deployment Dynamics Modeling and Simulation of Satellite Large Antenna Reflector Truss", SPACECRAFT ENGINEERING, vol. 21, no. 4, 15 August 2012 (2012-08-15), pages 26 - 28, XP009504632, ISSN: 1673-8748 * |
See also references of EP3318993A4 * |
Cited By (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108984840B (zh) * | 2018-06-15 | 2023-04-14 | 北京控制工程研究所 | 环型天线展开过程竖杆等效卫星姿态运动建模方法及系统 |
CN109376386A (zh) * | 2018-09-19 | 2019-02-22 | 广州广电计量检测股份有限公司 | 天线模型的构建方法和装置、车载天线模型的构建方法 |
CN109543227A (zh) * | 2018-10-22 | 2019-03-29 | 西安电子科技大学 | 大型反射面天线的风致指向误差实时测量方法、雷达天线 |
CN110162818A (zh) * | 2018-11-26 | 2019-08-23 | 北京机电工程研究所 | 伞弹系统弹道计算方法 |
CN109376482A (zh) * | 2018-11-30 | 2019-02-22 | 北京宇航系统工程研究所 | 一种基于数字样机的弹箭运动包络精细化预测方法 |
CN109376482B (zh) * | 2018-11-30 | 2023-02-03 | 北京宇航系统工程研究所 | 一种基于数字样机的弹箭运动包络精细化预测方法 |
CN109583107B (zh) * | 2018-12-06 | 2023-08-18 | 国电联合动力技术有限公司 | 柔性塔筒的低风速智能优化方法、装置及存储介质 |
CN109583107A (zh) * | 2018-12-06 | 2019-04-05 | 国电联合动力技术有限公司 | 柔性塔筒的低风速智能优化方法、装置及存储介质 |
CN109446742B (zh) * | 2018-12-24 | 2022-10-11 | 西安石油大学 | 半潜式钻井平台管子处理装备抓管机多体动力学仿真方法 |
CN109446742A (zh) * | 2018-12-24 | 2019-03-08 | 西安石油大学 | 半潜式钻井平台管子处理装备抓管机多体动力学仿真方法 |
CN109884593A (zh) * | 2019-01-19 | 2019-06-14 | 西安电子科技大学 | 一种测控集成的大型天线自适应抗风扰系统及设计方法 |
CN109884593B (zh) * | 2019-01-19 | 2023-05-23 | 西安电子科技大学 | 一种测控集成的大型天线自适应抗风扰系统及设计方法 |
CN109726515A (zh) * | 2019-01-29 | 2019-05-07 | 西北工业大学 | 一种细胞卫星吸附式抓捕非合作目标方法 |
CN109726515B (zh) * | 2019-01-29 | 2022-06-24 | 西北工业大学 | 一种细胞卫星吸附式抓捕非合作目标方法 |
CN110532581A (zh) * | 2019-05-14 | 2019-12-03 | 武汉弗雷德斯科技发展有限公司 | 一种四轴机械臂的动力学建模方法 |
CN110765547A (zh) * | 2019-09-25 | 2020-02-07 | 上海航天控制技术研究所 | 一种简化的飞网捕获空间碎片动力学建模方法 |
CN110765547B (zh) * | 2019-09-25 | 2023-09-12 | 上海航天控制技术研究所 | 一种简化的飞网捕获空间碎片动力学建模方法 |
CN111027135A (zh) * | 2019-11-20 | 2020-04-17 | 上海航天控制技术研究所 | 扑翼空气动力情况仿真方法 |
CN111027135B (zh) * | 2019-11-20 | 2023-05-12 | 上海航天控制技术研究所 | 扑翼空气动力情况仿真方法 |
CN112861389A (zh) * | 2019-11-27 | 2021-05-28 | 中车株洲电力机车研究所有限公司 | 风电齿轮箱振动监测位置优化方法、系统、介质及设备 |
CN112861389B (zh) * | 2019-11-27 | 2024-04-16 | 中车株洲电力机车研究所有限公司 | 风电齿轮箱振动监测位置优化方法、系统、介质及设备 |
CN111177859B (zh) * | 2019-12-09 | 2023-09-12 | 上海航天控制技术研究所 | 一种桁架天线的动力学等效连续体建模方法 |
CN111177859A (zh) * | 2019-12-09 | 2020-05-19 | 上海航天控制技术研究所 | 一种桁架天线的动力学等效连续体建模方法 |
CN113010970B (zh) * | 2019-12-20 | 2023-07-14 | 上海烟草机械有限责任公司 | 一种基于creo三维软件的凸轮设计方法 |
CN113010970A (zh) * | 2019-12-20 | 2021-06-22 | 上海烟草机械有限责任公司 | 一种基于creo三维软件的凸轮设计方法 |
CN111222270B (zh) * | 2019-12-25 | 2023-04-14 | 华东理工大学 | 一种基于轮轨耦合的过山车轨道振动响应测试方法及应用 |
CN111222270A (zh) * | 2019-12-25 | 2020-06-02 | 华东理工大学 | 一种基于轮轨耦合的过山车轨道振动响应测试方法及应用 |
CN111881598A (zh) * | 2020-06-23 | 2020-11-03 | 北京空间飞行器总体设计部 | 一种基于加速度谱的卫星及部组件界面力谱获取方法 |
CN111881598B (zh) * | 2020-06-23 | 2024-05-03 | 北京空间飞行器总体设计部 | 一种基于加速度谱的卫星及部组件界面力谱获取方法 |
CN111859559A (zh) * | 2020-06-30 | 2020-10-30 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | 一种软钢臂单点系泊系统的动力特性分析方法 |
CN111814378B (zh) * | 2020-07-14 | 2024-02-13 | 北京卫星环境工程研究所 | 综合温度循环和三轴六自由度的环境效应仿真方法和装置 |
CN111814378A (zh) * | 2020-07-14 | 2020-10-23 | 北京卫星环境工程研究所 | 综合温度循环和三轴六自由度的环境效应仿真方法和装置 |
CN113946914A (zh) * | 2020-07-16 | 2022-01-18 | 中国科学院沈阳自动化研究所 | 一种回转式小行星采样装置的扭矩动力学仿真方法 |
CN113946914B (zh) * | 2020-07-16 | 2024-04-12 | 中国科学院沈阳自动化研究所 | 一种回转式小行星采样装置的扭矩动力学仿真方法 |
CN112329131A (zh) * | 2020-10-10 | 2021-02-05 | 中国运载火箭技术研究院 | 一种标准测试模型生成方法、生成装置及存储介质 |
CN112329131B (zh) * | 2020-10-10 | 2024-04-05 | 中国运载火箭技术研究院 | 一种标准测试模型生成方法、生成装置及存储介质 |
CN112380742A (zh) * | 2020-10-31 | 2021-02-19 | 华南理工大学 | 一种任意形状均质物体绕任意旋转轴的转动惯量计算方法 |
CN112632815A (zh) * | 2020-12-06 | 2021-04-09 | 北京工业大学 | 一种石墨烯可展开天线热结构动力学建模方法 |
CN114987802A (zh) * | 2020-12-08 | 2022-09-02 | 中国科学院微小卫星创新研究院 | 基于运动部件信息的角动量前馈补偿控制方法 |
CN112649046A (zh) * | 2020-12-22 | 2021-04-13 | 中建八局第三建设有限公司 | 一种全过程模拟仿真系杆拱桥整体顶推监控方法 |
CN112699506A (zh) * | 2020-12-29 | 2021-04-23 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | 一种光电二维反射镜的动力学仿真验证方法 |
CN112699506B (zh) * | 2020-12-29 | 2022-08-12 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | 一种光电二维反射镜的动力学仿真验证方法 |
CN112948990A (zh) * | 2021-01-27 | 2021-06-11 | 北京电子工程总体研究所 | 一种柔性绳索连接的气囊和吊舱动力学校模方法 |
CN112948990B (zh) * | 2021-01-27 | 2023-11-28 | 北京电子工程总体研究所 | 一种柔性绳索连接的气囊和吊舱动力学校模方法 |
CN113254056A (zh) * | 2021-04-16 | 2021-08-13 | 荣耀终端有限公司 | 一种更新预警及故障修复的方法及设备 |
CN113254056B (zh) * | 2021-04-16 | 2022-04-19 | 荣耀终端有限公司 | 一种更新预警及故障修复的方法及设备 |
CN113111461A (zh) * | 2021-04-20 | 2021-07-13 | 通号(长沙)轨道交通控制技术有限公司 | 一种隔离开关合闸力矩的仿真计算方法 |
CN113111461B (zh) * | 2021-04-20 | 2022-04-29 | 通号(长沙)轨道交通控制技术有限公司 | 一种隔离开关合闸力矩的仿真计算方法 |
CN113707242A (zh) * | 2021-08-25 | 2021-11-26 | 常州工学院 | 一种固体推进剂率相关内聚力本构模型的构建方法 |
CN113707242B (zh) * | 2021-08-25 | 2024-01-23 | 常州工学院 | 一种固体推进剂率相关内聚力本构模型的构建方法 |
CN113962119A (zh) * | 2021-09-01 | 2022-01-21 | 北京理工大学 | 形状不规则双小行星系统相互作用高精度高效率建模方法 |
CN113935151A (zh) * | 2021-09-13 | 2022-01-14 | 北京控制工程研究所 | 一种火星edl过程变结构多体耦合动力学建模及解算方法 |
CN113879573A (zh) * | 2021-09-18 | 2022-01-04 | 长光卫星技术有限公司 | 一种基频与转动惯量可调的太阳翼地面模拟系统 |
CN113901690B (zh) * | 2021-10-13 | 2024-04-12 | 上海航天测控通信研究所 | 星载反射面天线在轨热变形性能评估方法 |
CN113901690A (zh) * | 2021-10-13 | 2022-01-07 | 上海航天测控通信研究所 | 星载反射面天线在轨热变形性能评估方法 |
CN114109884A (zh) * | 2021-11-16 | 2022-03-01 | 西安热工研究院有限公司 | 一种空冷风机现场考核试验方法 |
CN114186452A (zh) * | 2021-11-23 | 2022-03-15 | 大连理工大学 | 一种非光滑多体系统动力学灵敏度分析方法 |
CN114036780A (zh) * | 2021-12-06 | 2022-02-11 | 航天科工火箭技术有限公司 | 一种受天基测控约束的火箭姿态角设计方法 |
CN114357621B (zh) * | 2022-01-04 | 2024-06-11 | 北京机电工程研究所 | 飞行器活动部件展开过程支反力载荷计算方法及系统 |
CN114357621A (zh) * | 2022-01-04 | 2022-04-15 | 北京机电工程研究所 | 飞行器活动部件展开过程支反力载荷计算方法及系统 |
CN114634150A (zh) * | 2022-03-08 | 2022-06-17 | 北京邮电大学 | 一种基于激光位置传感器的鹤管自动对位系统 |
CN114818048A (zh) * | 2022-03-16 | 2022-07-29 | 中铁二十局集团第一工程有限公司 | 桅杆布设方法、装置、设备及存储介质 |
CN114841033A (zh) * | 2022-04-08 | 2022-08-02 | 国家高速列车青岛技术创新中心 | 一种辐条车轮设计方法 |
CN114841033B (zh) * | 2022-04-08 | 2024-04-19 | 国家高速列车青岛技术创新中心 | 一种辐条车轮设计方法 |
CN114970007A (zh) * | 2022-04-21 | 2022-08-30 | 哈尔滨工业大学 | 一种支持cad模型导入与网格划分的刚柔耦合多体动力学通用化仿真方法 |
CN115246491A (zh) * | 2022-07-22 | 2022-10-28 | 北京理工大学 | 小天体柔性附着协同制导方法 |
CN115246491B (zh) * | 2022-07-22 | 2024-05-28 | 北京理工大学 | 小天体柔性附着协同制导方法 |
CN115809584B (zh) * | 2023-02-01 | 2023-04-11 | 北京控制工程研究所 | 变构型变参数的复杂连接多体动力学建模方法 |
CN115809584A (zh) * | 2023-02-01 | 2023-03-17 | 北京控制工程研究所 | 变构型变参数的复杂连接多体动力学建模方法 |
CN116280294B (zh) * | 2023-03-24 | 2024-03-12 | 北京航辰机载智能系统科技有限公司 | 地面测试环境中惯性力模拟方法及系统 |
CN116280294A (zh) * | 2023-03-24 | 2023-06-23 | 北京航辰机载智能系统科技有限公司 | 地面测试环境中惯性力模拟方法及系统 |
CN116956676B (zh) * | 2023-07-24 | 2024-03-29 | 哈尔滨工业大学 | 一种纳米晶微小型密封电磁继电器动态特性仿真分析方法 |
CN116956676A (zh) * | 2023-07-24 | 2023-10-27 | 哈尔滨工业大学 | 一种纳米晶微小型密封电磁继电器动态特性仿真分析方法 |
CN116738765B (zh) * | 2023-08-10 | 2023-11-21 | 北京国星创图科技有限公司 | 一种基于卫星仿真和关键路径的卫星任务规划分析方法 |
CN116738765A (zh) * | 2023-08-10 | 2023-09-12 | 北京国星创图科技有限公司 | 一种基于卫星仿真和关键路径的卫星任务规划分析方法 |
CN117852306A (zh) * | 2024-03-04 | 2024-04-09 | 西北工业大学 | 基于相对动量矩定理的变体高速飞行器动力学建模方法 |
CN117852306B (zh) * | 2024-03-04 | 2024-05-24 | 西北工业大学 | 基于相对动量矩定理的变体高速飞行器动力学建模方法 |
CN117968670A (zh) * | 2024-04-02 | 2024-05-03 | 北京航空航天大学 | 一种微小卫星大角度姿态机动中的高精度指向方法 |
CN117968670B (zh) * | 2024-04-02 | 2024-05-28 | 北京航空航天大学 | 一种微小卫星大角度姿态机动中的高精度指向方法 |
CN118182875A (zh) * | 2024-05-16 | 2024-06-14 | 哈尔滨工业大学 | 用于平板式卫星的帆板的同步展开设计方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3318993A1 (en) | 2018-05-09 |
EP3318993B1 (en) | 2022-08-24 |
CN105160051B (zh) | 2018-01-05 |
JP6542919B2 (ja) | 2019-07-10 |
JP2018527650A (ja) | 2018-09-20 |
EP3318993A4 (en) | 2019-03-27 |
CN105160051A (zh) | 2015-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017000396A1 (zh) | 基于多体分析试验的桁架天线反射器展开动力学建模方法 | |
Murman et al. | Simulations of 6-DOF motion with a Cartesian method | |
CN107220421A (zh) | 一种空间复杂柔性结构多体系统动力学建模与计算方法 | |
CN104808512B (zh) | 一种航天器多级驱动刚柔耦合响应的获取方法 | |
CN103955611B (zh) | 一种空间绳系机器人的通用动力学模型的建立方法 | |
Shan et al. | Contact dynamics on net capturing of tumbling space debris | |
CN106249616A (zh) | 一种在轨服务机械臂动力学建模方法和系统 | |
CN114756955A (zh) | 一种折叠翼飞行器分离模拟方法 | |
Li et al. | Instantaneous optimal control of inflatable folded structures | |
Kutsenko et al. | Geometrical modeling of the shape of a multilink rod structure in weightlessness under the influence of pulses on the end points of its links | |
Wang et al. | Sma-actuated morphing wing with varying spanwise curvature and sweptangle | |
Tian et al. | Dynamics of space deployable structures | |
OOSHIMA et al. | Method for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies | |
Belkhiri et al. | A hybrid dynamic model of an insect-like mav with soft wings | |
Wu et al. | Research on dynamics behaviours of small UAV parachute recovery system | |
Sattar et al. | Design, kinematics and dynamic analysis of a novel double–scissors link deployable mechanism for space antenna truss | |
Otsuka et al. | Multibody modeling using absolute nodal coordinate plate element for deployable aerospace structures | |
Liu et al. | Dynamic Analysis of the Inflatable Net System for Space Capture | |
Kutsenko et al. | Geometrical modeling of the unfolding of spatial rod structures, similar to the four-link pendulum, in weightlessness | |
CN112326120B (zh) | 一种基于参数辨识的航天器质量特性预测方法 | |
Jin et al. | Ground simulation experiment verification of space robot with ADAMS and Simulink co-simulation | |
Selitrennik et al. | Generalized approach to aeroelastic cfd time simulation of morphing flight vehicles | |
CN106844939B (zh) | 一种基于能量角度的可展开天线展开驱动力分析方法 | |
Zhao et al. | Kinematic analysis of deployable toroidal spatial truss structures for large mesh antenna | |
Vance et al. | A universal technique for grappling non-cooperative objects using planar, multi-jointed arms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15896926 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017568364 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015896926 Country of ref document: EP |