CN113111461B - 一种隔离开关合闸力矩的仿真计算方法 - Google Patents

一种隔离开关合闸力矩的仿真计算方法 Download PDF

Info

Publication number
CN113111461B
CN113111461B CN202110426640.9A CN202110426640A CN113111461B CN 113111461 B CN113111461 B CN 113111461B CN 202110426640 A CN202110426640 A CN 202110426640A CN 113111461 B CN113111461 B CN 113111461B
Authority
CN
China
Prior art keywords
isolating switch
pole
pair
file
selecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110426640.9A
Other languages
English (en)
Other versions
CN113111461A (zh
Inventor
王玘
张开普
林圣�
王俊
张乐萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonghao Changsha Rail Traffic Control Technology Co ltd
Southwest Jiaotong University
Original Assignee
Tonghao Changsha Rail Traffic Control Technology Co ltd
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonghao Changsha Rail Traffic Control Technology Co ltd, Southwest Jiaotong University filed Critical Tonghao Changsha Rail Traffic Control Technology Co ltd
Priority to CN202110426640.9A priority Critical patent/CN113111461B/zh
Publication of CN113111461A publication Critical patent/CN113111461A/zh
Application granted granted Critical
Publication of CN113111461B publication Critical patent/CN113111461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Railway Tracks (AREA)

Abstract

本发明公开了一种隔离开关合闸力矩的仿真计算方法,首先根据隔离开关设计图纸在SolidWorks中搭建隔离开关三维模型;其次,将模型导入多体动力学仿真软件Adams中并设置各零件的材料属性;在Adams中设置各零件间的约束关系;然后,设置隔离开关多体动力学模型中零件间的作用力;最后,进行隔离开关合闸过程动力学仿真计算,提取合闸力矩曲线。本发明可以精确计算合闸力矩曲线并定量分析影响力矩的因素,进而为隔离开关性能提高和日常维护提供参考。

Description

一种隔离开关合闸力矩的仿真计算方法
技术领域
本发明属于隔离开关动力学建模仿真领域,具体涉及一种隔离开关合闸力矩的仿真计算方法。
背景技术
隔离开关是电力系统和牵引供电系统中用量最多的开关设备,主要用于隔离电源、倒闸操作、连通和切断小电流电路,安装在断路器两侧与断路器配合使用。近年来,中国输变电事业发展迅速,对隔离开关性能和可靠性要求也在不断地提高,其中降低隔离开关合闸力矩和提高通流容量是隔离开关性能提高的重点和难点。隔离开关合闸力矩过大会导致隔离开关的传动机构零部件疲劳加速、寿命降低,进而引起零件的变形、损坏,降低隔离开关的可靠性,尤其是通流容量较大的隔离开关,其性能和可靠性要求更高。因此,需要对其合闸力矩进行相应的分析和计算,分析影响其合闸力矩大小的因素,通过采取相关措施减低合闸力矩,提高隔离开关性能。
现有资料对隔离开关合闸力矩的计算主要基于数学模型,数学模型的分析过程繁琐复杂,且只能进行定性分析影响合闸力矩的因素,并且局限于静态力学分析,不利于研究合闸的动态过程。因此,有必要建立隔离开关动力学模型分析其合闸动态过程的力矩变化及其影响因素,进而为减小隔离开关合闸力矩、提高隔离开关性能以及日常维护提供指导和参考。
发明内容
为了可以较为准确地计算隔离开关合闸过程的力矩变化情况,定量地分析影响隔离开关合闸力矩的因素,进而为隔离开关性能提高及日常维护提供指导和参考。本发明提供一种隔离开关合闸力矩的仿真计算方法。
本发明的一种隔离开关合闸力矩的仿真计算方法,其特征在于,步骤包括
步骤A:在SolidWorks软件中搭建隔离开关的三维模型:
A1:根据隔离开关设计图纸确定各零件的尺寸,利用SolidWorks软件搭建隔离开关中各零件的三维模型,存储为后缀为.SLDPRT的文件。
A2:根据隔离开关设计图纸获取各个零件的相对位置,根据各个零件的相对位置将其装配在一起。搭建完成后,得到隔离开关三维模型装配体文件。
A3:将装配体文件保存为后缀是.x_t的Parasolid文件并导出得到隔离开关三维模型Parasolid文件。
步骤B:将隔离开关三维模型Parasolid文件导入Adams中并设置各零件的材料类型。
步骤C:在Adams中设置隔离开关各零件间的约束关系。
步骤D:设置隔离开关多体动力学模型中零件间的作用力。
步骤E:隔离开关合闸力矩的动力学仿真计算。通过Simulation Control模块设置仿真终止时间为tc,仿真步数为2000步,进行隔离开关合闸过程动力学仿真计算。在驱动m1的测量模块选择力矩幅值测量,得到合闸力矩曲线。
进一步的,步骤A1中,根据隔离开关触头的长度、宽度、高度、厚度、弧度,通过SolidWorks搭建得到触头文件。
根据隔离开关内触指的长度、宽度、高度、弧度,通过SolidWorks搭建得到内触指文件。同样的,通过SolidWorks搭建得到外触指文件。根据内、外触指的长度、宽度、高度,通过SolidWorks搭建分别得到弹簧挡板1文件和弹簧挡板2文件。
根据隔离开关主动极导电臂的长度、宽度、高度、厚度,通过SolidWorks搭建得到主动极导电臂文件。同样的,通过SolidWorks搭建得到从动极导电臂文件。
根据隔离开关主动极绝缘支柱的高度、伞裙个数、半径、弧度,通过SolidWorks搭建得到主动极绝缘支柱文件。同样的,通过SolidWorks搭建得到从动极绝缘支柱文件。
根据隔离开关主动极轴承座的半径、高度、槽口数、槽口半径,通过SolidWorks搭建得到主动极轴承座文件。同样的,通过SolidWorks搭建得到从动极轴承座文件。
根据隔离开关操作杆的长度、半径,通过SolidWorks搭建得到操动杆文件。
根据隔离开关操动拐臂ab的长度、半径、厚度,通过SolidWorks搭建得到操动拐臂ab文件。
根据隔离开关操动连杆bc的长度、半径、厚度,通过SolidWorks搭建得到操动连杆bc文件。
根据隔离开关主动极拐臂cd和de的长度、半径、厚度,通过SolidWorks搭建得到主动极拐臂cd文件和主动极拐臂de文件。
根据隔离开关极间连杆ef的长度、半径、厚度,通过SolidWorks搭建得到极间连杆文件。
根据隔离开关从动极拐臂fg的长度、半径、厚度,通过SolidWorks搭建得到从动极拐臂fg文件。
所述步骤A2中,通过SolidWorks建立后缀为.SLDASM的空白装配体文件,将所有建立好的零件文件导入,设置界面为俯视图。
首先将主动极轴承座放置到界面原点,根据隔离开关主动极中心d与从动极中心g的距离在X正方向放置从动极轴承座。
根据操动拐臂ab的a点与原点d的坐标轴相对位置沿X轴正方向放置操动拐臂ab。
将操作杆一端以a点为基准,沿Y轴负方向放置。
以操动拐臂ab的b点为基准沿X轴负方向放置操动连杆bc。
根据主动极拐臂cd与主动极中心d与从动极中心g连线的角度θcdg放置主动极拐臂。
根据主动极拐臂de与主动极中心d与从动极中心g连线的夹角θedg放置主动极拐臂de。
根据从动极拐臂fg与主动极中心d与从动极中心g连线的夹角θfgd放置从动极拐臂fg。
将极间连杆ef两端分别放置在主动极拐臂de的e点和从动极拐臂fg的f点。
将主动极绝缘支柱以d点为中心沿Y轴正方向放置。将从动极绝缘支柱以f点为中心沿Y轴正方向放置。
将主动极导电臂以d点为基准沿Z轴负方向放置,沿Y轴平移至主动极绝缘支柱顶部。
将从动极导电臂以f点为基准沿Z轴负方向放置,沿Y轴平移至从动极绝缘支柱顶部。
根据内、外触指间距将内、外触指放置到主动极导电臂啮合端。在内、外触指两边沿导电臂边线分别放置弹簧挡板1和弹簧挡板2。
将触头放置于从动极导电臂啮合端中心。
步骤B中,将隔离开关三维模型Parasolid文件导入Adams中。设置触头、触指的材料为铜。设置主动极导电臂和从动极导电臂的材料为铝。设置操作杆、操动拐臂ab、操动连杆bc、极间连杆ef、主动极拐臂cd、主动极拐臂de、从动极拐臂fg、弹簧挡板1、弹簧挡板2、主动极轴承、从动极轴承的材料为钢。设置主动极绝缘支柱和从动极绝缘支柱的材料为陶瓷。
步骤C中,在运动副模块中选择旋转副,分别选中操作杆和ground,将旋转副r1设置在操作杆的旋转中心a。
在运动副模块中选择旋转副,分别选中操动拐臂ab和操动连杆bc,将旋转副r2设置在操动拐臂ab与操动连杆bc的连接点b。
在运动副模块中选择旋转副,分别选中操动连杆bc和主动极拐臂cd,将旋转副r3设置在操动连杆bc与主动极拐臂cd的连接点c。
在运动副模块中选择旋转副,分别选中主动极拐臂cd和主动极轴承座,将旋转副r4设置在主动极轴承座中心d。
在运动副模块中选择旋转副,分别选中主动极轴承座和主动极拐臂de,将旋转副r5设置在主动极轴承座中心d。
在运动副模块中选择旋转副,分别选中主动极拐臂de和极间连杆ef,将旋转副r6设置在极间连杆ef和主动极拐臂de的连接点e。
在运动副模块中选择旋转副,分别选中极间连杆ef和从动极拐臂fg,将旋转副r7设置在极间连杆ef和从动极拐臂fg的连接点f。
在运动副模块中选择旋转副,分别选中从动极拐臂fg和从动极轴承座,将旋转副r8设置在从动极轴承座的中心g。
在运动副模块中选择固定副,分别选中操作杆和操动拐臂ab,将固定副h1设置在操动拐臂ab的a点。
在运动副模块中选择固定副,分别选中主动极轴承座和主动极绝缘支柱,将固定副h2设置在主动极轴承座的中心d。
在运动副模块中选择固定副,分别选中从动极轴承座和从动极绝缘支柱,将固定副h3设置在从动极轴承座的中心f。
在运动副模块中选择固定副,分别选中主动极导电臂和触头,将固定副h4设置在触头中心。
在运动副模块中选择移动副,分别选中内触指与弹簧挡板1,将移动副n1设置在内触指中心,方向由内触指指向弹簧挡板1。
在运动副模块中选择移动副,分别选中外触指与弹簧挡板2,将移动副n2设置在外触指中心,方向由外触指指向弹簧挡板2。
步骤D具体为:
D1:在力模块中选择拉压弹簧,选中内触指中心与弹簧挡板1中心,在内触指与弹簧挡板1之间设置弹簧1,以同样的操作在外触指和弹簧挡板2之间设置弹簧2,按照实际设备内、外触指弹簧的劲度系数k、阻尼ds、正常状态下压缩量l,设置弹簧1、2的劲度系数k、阻尼ds、预应力Fp=-k×l。
D2:在力模块中选择接触力,在接触力设置框中I实体设置为触头,J实体设置为内触指,建立触头与内触指间的接触力c1。设置接触力的阻尼系数dc设为10。穿透深度m设置为0.02mm。通过式
Figure BDA0003029771720000041
求取刚度系数K。
式中,
Figure BDA0003029771720000042
R1,R2分别为触头与触指在接触点的弧度半径。
Figure BDA0003029771720000043
H1,H2分别为触头和触指材料的杨氏模量,μ1,μ2分别为触头和触指材料的泊松比。以相同的方式设置触头与外触指间的接触力c2。
D3:将触头与内外触指滑动摩擦的静摩擦系数设置为0.1,动摩擦系数为0.2。连杆关节部位滑动摩擦的静摩擦系数为0.1,动摩擦系数为0.05。主、从动极轴承座滚动摩擦的静摩擦系数为0.004,动摩擦系数为0.003。
D4:在旋转副r1设置界面,对r1施加驱动m1,将驱动m1的时间函数function设为
Figure BDA0003029771720000051
其中tc为隔离开关合闸时间和θ为合闸前后操动拐臂ab的旋转角度。
本发明与现有技术相比的有益技术效果为:
1、本发明提供的隔离开关合闸力矩的仿真计算方法依据现实的物理模型,引入隔离开关零件几何形状、材料属性、接触、摩擦、碰撞等多个参数,可以定量分析影响隔离开关合闸力矩的多个因素;
2、本发明采用多体动力学建模方法,所建立的动力学仿真模型相较于其他数学模型可以更精确地计算隔离开关合闸力矩曲线,反映合闸力矩的动态变化。
附图说明
图1为本发明隔离开关合闸力矩的动力学仿真计算方法流程图;
图2隔离开关装配俯视图;
图3隔离开关三维模型图;
图4为动力学仿真计算得到的合闸力矩曲线。
具体实施方式
下面结合附图和具体实施方法对本发明做进一步详细说明。
本发明的一种隔离开关合闸力矩的仿真计算方法流程图如图1所示,包括以下步骤
步骤A:在SolidWorks软件中搭建隔离开关的三维模型:
A1:根据隔离开关设计图纸确定各零件的尺寸,利用SolidWorks软件搭建隔离开关中各零件的三维模型,存储为后缀为.SLDPRT的文件。
根据隔离开关触头的长度、宽度、高度、厚度、弧度,通过SolidWorks搭建得到触头文件。
根据隔离开关内触指的长度、宽度、高度、弧度,通过SolidWorks搭建得到内触指文件。同样的,通过SolidWorks搭建得到外触指文件。根据内、外触指的长度、宽度、高度,通过SolidWorks搭建分别得到弹簧挡板1文件和弹簧挡板2文件。
根据隔离开关主动极导电臂的长度、宽度、高度、厚度,通过SolidWorks搭建得到主动极导电臂文件。同样的,通过SolidWorks搭建得到从动极导电臂文件。
根据隔离开关主动极绝缘支柱的高度、伞裙个数、半径、弧度,通过SolidWorks搭建得到主动极绝缘支柱文件。同样的,通过SolidWorks搭建得到从动极绝缘支柱文件。
根据隔离开关主动极轴承座的半径、高度、槽口数、槽口半径,通过SolidWorks搭建得到主动极轴承座文件。同样的,通过SolidWorks搭建得到从动极轴承座文件。
根据隔离开关操作杆的长度、半径,通过SolidWorks搭建得到操动杆文件。
根据隔离开关操动拐臂ab的长度、半径、厚度,通过SolidWorks搭建得到操动拐臂ab文件。
根据隔离开关操动连杆bc的长度、半径、厚度,通过SolidWorks搭建得到操动连杆bc文件。
根据隔离开关主动极拐臂cd和de的长度、半径、厚度,通过SolidWorks搭建得到主动极拐臂cd文件和主动极拐臂de文件。
根据隔离开关极间连杆ef的长度、半径、厚度,通过SolidWorks搭建得到极间连杆文件。
根据隔离开关从动极拐臂fg的长度、半径、厚度,通过SolidWorks搭建得到从动极拐臂fg文件。
A2:根据隔离开关设计图纸获取各个零件的相对位置,根据各个零件的相对位置将其装配在一起。搭建完成后,得到隔离开关三维模型装配体文件。
通过SolidWorks建立后缀为.SLDASM的空白装配体文件,将所有建立好的零件文件导入,设置界面为俯视图。
根据图2所示,首先将主动极轴承座放置到界面原点,根据隔离开关主动极中心d与从动极中心g的距离在X正方向放置从动极轴承座。
根据操动拐臂AB的A点与原点D的坐标轴相对位置沿X轴正方向放置操动拐臂AB。
将操作杆一端以A点为基准,沿Y轴负方向放置。
根据操动拐臂ab的a点与原点d的坐标轴相对位置沿X轴正方向放置操动拐臂ab。
将操作杆一端以a点为基准,沿Y轴负方向放置。
以操动拐臂ab的b点为基准沿X轴负方向放置操动连杆bc。
根据主动极拐臂cd与主动极中心d与从动极中心g连线的角度θcdg放置主动极拐臂。
根据主动极拐臂de与主动极中心d与从动极中心g连线的夹角θedg放置主动极拐臂de。
根据从动极拐臂fg与主动极中心d与从动极中心g连线的夹角θfgd放置从动极拐臂fg。
将极间连杆ef两端分别放置在主动极拐臂de的e点和从动极拐臂fg的f点。
将主动极绝缘支柱以d点为中心沿Y轴正方向放置。将从动极绝缘支柱以f点为中心沿Y轴正方向放置。
将主动极导电臂以d点为基准沿Z轴负方向放置,沿Y轴平移至主动极绝缘支柱顶部。
将从动极导电臂以f点为基准沿Z轴负方向放置,沿Y轴平移至从动极绝缘支柱顶部。
根据内、外触指间距将内、外触指放置到主动极导电臂啮合端。在内、外触指两边沿导电臂边线分别放置弹簧挡板1和弹簧挡板2。
将触头放置于从动极导电臂啮合端中心。
搭建完成后,得到隔离开关三维模型,如图3。
A3:将装配体文件保存为后缀是.x_t的Parasolid文件并导出得到隔离开关三维模型Parasolid文件(如图3所示)。
步骤B:将隔离开关三维模型Parasolid文件导入Adams中并设置各零件的材料类型。
将隔离开关三维模型Parasolid文件导入Adams中。设置触头、触指的材料为铜。设置主动极导电臂和从动极导电臂的材料为铝。设置操作杆、操动拐臂ab、操动连杆bc、极间连杆ef、主动极拐臂cd、主动极拐臂de、从动极拐臂fg、弹簧挡板1、弹簧挡板2、主动极轴承、从动极轴承的材料为钢。设置主动极绝缘支柱和从动极绝缘支柱的材料为陶瓷。
步骤C:在Adams中设置隔离开关各零件间的约束关系。
在运动副模块中选择旋转副,分别选中操作杆和ground,将旋转副r1设置在操作杆的旋转中心a。
在运动副模块中选择旋转副,分别选中操动拐臂ab和操动连杆bc,将旋转副r2设置在操动拐臂ab与操动连杆bc的连接点b。
在运动副模块中选择旋转副,分别选中操动连杆bc和主动极拐臂cd,将旋转副r3设置在操动连杆bc与主动极拐臂cd的连接点c。
在运动副模块中选择旋转副,分别选中主动极拐臂cd和主动极轴承座,将旋转副r4设置在主动极轴承座中心d。
在运动副模块中选择旋转副,分别选中主动极轴承座和主动极拐臂de,将旋转副r5设置在主动极轴承座中心d。
在运动副模块中选择旋转副,分别选中主动极拐臂de和极间连杆ef,将旋转副r6设置在极间连杆ef和主动极拐臂de的连接点e。
在运动副模块中选择旋转副,分别选中极间连杆ef和从动极拐臂fg,将旋转副r7设置在极间连杆ef和从动极拐臂fg的连接点f。
在运动副模块中选择旋转副,分别选中从动极拐臂fg和从动极轴承座,将旋转副r8设置在从动极轴承座的中心g。
在运动副模块中选择固定副,分别选中操作杆和操动拐臂ab,将固定副h1设置在操动拐臂ab的a点。
在运动副模块中选择固定副,分别选中主动极轴承座和主动极绝缘支柱,将固定副h2设置在主动极轴承座的中心d。
在运动副模块中选择固定副,分别选中从动极轴承座和从动极绝缘支柱,将固定副h3设置在从动极轴承座的中心f。
在运动副模块中选择固定副,分别选中主动极导电臂和触头,将固定副h4设置在触头中心。
在运动副模块中选择移动副,分别选中内触指与弹簧挡板1,将移动副n1设置在内触指中心,方向由内触指指向弹簧挡板1。
在运动副模块中选择移动副,分别选中外触指与弹簧挡板2,将移动副n2设置在外触指中心,方向由外触指指向弹簧挡板2。
步骤D:设置隔离开关多体动力学模型中零件间的作用力:
D1:在力模块中选择拉压弹簧,选中内触指中心与弹簧挡板1中心,在内触指与弹簧挡板1之间设置弹簧1,以同样的操作在外触指和弹簧挡板2之间设置弹簧2,按照实际设备内、外触指弹簧的劲度系数k、阻尼ds、正常状态下压缩量l,设置弹簧1、2的劲度系数k、阻尼ds、预应力Fp=-k×l。
D2:在力模块中选择接触力,在接触力设置框中I实体设置为触头,J实体设置为内触指,建立触头与内触指间的接触力c1。设置接触力的阻尼系数dc设为10。穿透深度m设置为0.02mm。通过式
Figure BDA0003029771720000081
求取刚度系数K。
式中,
Figure BDA0003029771720000082
R1,R2分别为触头与触指在接触点的弧度半径。
Figure BDA0003029771720000083
H1,H2分别为触头和触指材料的杨氏模量,μ1,μ2分别为触头和触指材料的泊松比。以相同的方式设置触头与外触指间的接触力c2。
D3:将触头与内外触指滑动摩擦的静摩擦系数设置为0.1,动摩擦系数为0.2。连杆关节部位滑动摩擦的静摩擦系数为0.1,动摩擦系数为0.05。主、从动极轴承座滚动摩擦的静摩擦系数为0.004,动摩擦系数为0.003。
D4:在旋转副r1设置界面,对r1施加驱动m1,将驱动m1的时间函数function设为
Figure BDA0003029771720000084
其中tc为隔离开关合闸时间和θ为合闸前后操动拐臂ab的旋转角度。
步骤E:隔离开关合闸力矩的动力学仿真计算。通过Simulation Control模块设置仿真终止时间为tc,仿真步数为2000步,进行隔离开关合闸过程动力学仿真计算。在驱动m1的测量模块选择力矩幅值测量,得到合闸力矩曲线,仿真计算结果如图4所示。

Claims (1)

1.一种隔离开关合闸力矩的仿真计算方法,其特征在于,步骤包括:
步骤A:在SolidWorks软件中搭建隔离开关的三维模型:
A1:根据隔离开关设计图纸确定各零件的尺寸,利用SolidWorks软件搭建隔离开关中各零件的三维模型,存储为后缀为.SLDPRT的文件;
根据隔离开关触头的长度、宽度、高度、厚度、弧度,通过SolidWorks搭建得到触头文件;
根据隔离开关内触指的长度、宽度、高度、弧度,通过SolidWorks搭建得到内触指文件;同样的,通过SolidWorks搭建得到外触指文件;根据内、外触指的长度、宽度、高度,通过SolidWorks搭建分别得到弹簧挡板1文件和弹簧挡板2文件;
根据隔离开关主动极导电臂的长度、宽度、高度、厚度,通过SolidWorks搭建得到主动极导电臂文件;同样的,通过SolidWorks搭建得到从动极导电臂文件;
根据隔离开关主动极绝缘支柱的高度、伞裙个数、半径、弧度,通过SolidWorks搭建得到主动极绝缘支柱文件;同样的,通过SolidWorks搭建得到从动极绝缘支柱文件;
根据隔离开关主动极轴承座的半径、高度、槽口数、槽口半径,通过SolidWorks搭建得到主动极轴承座文件;同样的,通过SolidWorks搭建得到从动极轴承座文件;
根据隔离开关操作杆的长度、半径,通过SolidWorks搭建得到操动杆文件;
根据隔离开关操动拐臂ab的长度、半径、厚度,通过SolidWorks搭建得到操动拐臂ab文件;
根据隔离开关操动连杆bc的长度、半径、厚度,通过SolidWorks搭建得到操动连杆bc文件;
根据隔离开关主动极拐臂cd和de的长度、半径、厚度,通过SolidWorks搭建得到主动极拐臂cd文件和主动极拐臂de文件;
根据隔离开关极间连杆ef的长度、半径、厚度,通过SolidWorks搭建得到极间连杆文件;
根据隔离开关从动极拐臂fg的长度、半径、厚度,通过SolidWorks搭建得到从动极拐臂fg文件;
A2:根据隔离开关设计图纸获取各个零件的相对位置,根据各个零件的相对位置将其装配在一起;搭建完成后,得到隔离开关三维模型装配体文件;
通过SolidWorks建立后缀为.SLDASM的空白装配体文件,将所有建立好的零件文件导入,设置界面为俯视图;
首先将主动极轴承座放置到界面原点,根据隔离开关主动极中心d与从动极中心g的距离在X正方向放置从动极轴承座;
根据操动拐臂ab的a点与原点d的坐标轴相对位置沿X轴正方向放置操动拐臂ab;
将操作杆一端以a点为基准,沿Y轴负方向放置;
以操动拐臂ab的b点为基准沿X轴负方向放置操动连杆bc;
根据主动极拐臂cd与主动极中心d与从动极中心g连线的角度θcdg放置主动极拐臂;
根据主动极拐臂de与主动极中心d与从动极中心g连线的夹角θedg放置主动极拐臂de;
根据从动极拐臂fg与主动极中心d与从动极中心g连线的夹角θfgd放置从动极拐臂fg;
将极间连杆ef两端分别放置在主动极拐臂de的e点和从动极拐臂fg的f点;
将主动极绝缘支柱以d点为中心沿Y轴正方向放置;将从动极绝缘支柱以f点为中心沿Y轴正方向放置;
将主动极导电臂以d点为基准沿Z轴负方向放置,沿Y轴平移至主动极绝缘支柱顶部;
将从动极导电臂以f点为基准沿Z轴负方向放置,沿Y轴平移至从动极绝缘支柱顶部;
根据内、外触指间距将内、外触指放置到主动极导电臂啮合端;在内、外触指两边沿导电臂边线分别放置弹簧挡板1和弹簧挡板2;
将触头放置于从动极导电臂啮合端中心;
A3:将装配体文件保存为后缀是.x_t的Parasolid文件并导出得到隔离开关三维模型Parasolid文件;
步骤B:将隔离开关三维模型Parasolid文件导入Adams中并设置各零件的材料类型;
将隔离开关三维模型Parasolid文件导入Adams中;设置触头、触指的材料为铜;设置主动极导电臂和从动极导电臂的材料为铝;设置操作杆、操动拐臂ab、操动连杆bc、极间连杆ef、主动极拐臂cd、主动极拐臂de、从动极拐臂fg、弹簧挡板1、弹簧挡板2、主动极轴承、从动极轴承的材料为钢;设置主动极绝缘支柱和从动极绝缘支柱的材料为陶瓷;
步骤C:在Adams中设置隔离开关各零件间的约束关系:
在运动副模块中选择旋转副,分别选中操作杆和ground,将旋转副r1设置在操作杆的旋转中心a;
在运动副模块中选择旋转副,分别选中操动拐臂ab和操动连杆bc,将旋转副r2设置在操动拐臂ab与操动连杆bc的连接点b;
在运动副模块中选择旋转副,分别选中操动连杆bc和主动极拐臂cd,将旋转副r3设置在操动连杆bc与主动极拐臂cd的连接点c;
在运动副模块中选择旋转副,分别选中主动极拐臂cd和主动极轴承座,将旋转副r4设置在主动极轴承座中心d;
在运动副模块中选择旋转副,分别选中主动极轴承座和主动极拐臂de,将旋转副r5设置在主动极轴承座中心d;
在运动副模块中选择旋转副,分别选中主动极拐臂de和极间连杆ef,将旋转副r6设置在极间连杆ef和主动极拐臂de的连接点e;
在运动副模块中选择旋转副,分别选中极间连杆ef和从动极拐臂fg,将旋转副r7设置在极间连杆ef和从动极拐臂fg的连接点f;
在运动副模块中选择旋转副,分别选中从动极拐臂fg和从动极轴承座,将旋转副r8设置在从动极轴承座的中心g;
在运动副模块中选择固定副,分别选中操作杆和操动拐臂ab,将固定副h1设置在操动拐臂ab的a点;
在运动副模块中选择固定副,分别选中主动极轴承座和主动极绝缘支柱,将固定副h2设置在主动极轴承座的中心d;
在运动副模块中选择固定副,分别选中从动极轴承座和从动极绝缘支柱,将固定副h3设置在从动极轴承座的中心f;
在运动副模块中选择固定副,分别选中主动极导电臂和触头,将固定副h4设置在触头中心;
在运动副模块中选择移动副,分别选中内触指与弹簧挡板1,将移动副n1设置在内触指中心,方向由内触指指向弹簧挡板1;
在运动副模块中选择移动副,分别选中外触指与弹簧挡板2,将移动副n2设置在外触指中心,方向由外触指指向弹簧挡板2;
步骤D:设置隔离开关多体动力学模型中零件间的作用力:
D1:在力模块中选择拉压弹簧,选中内触指中心与弹簧挡板1中心,在内触指与弹簧挡板1之间设置弹簧1,以同样的操作在外触指和弹簧挡板2之间设置弹簧2,按照实际设备内、外触指弹簧的劲度系数k、阻尼ds、正常状态下压缩量l,设置弹簧1、2的劲度系数k、阻尼ds、预应力Fp=-k×l;
D2:在力模块中选择接触力,在接触力设置框中I实体设置为触头,J实体设置为内触指,建立触头与内触指间的接触力c1;设置接触力的阻尼系数dc设为10;穿透深度m设置为0.02mm;通过式
Figure FDA0003542059810000031
求取刚度系数K;
式中,
Figure FDA0003542059810000032
R1,R2分别为触头与触指在接触点的弧度半径;
Figure FDA0003542059810000033
E1,E2分别为触头和触指材料的杨氏模量,μ1,μ2分别为触头和触指材料的泊松比;以相同的方式设置触头与外触指间的接触力c2;
D3:将触头与内外触指滑动摩擦的静摩擦系数设置为0.1,动摩擦系数为0.2;连杆关节部位滑动摩擦的静摩擦系数为0.1,动摩擦系数为0.05;主、从动极轴承座滚动摩擦的静摩擦系数为0.004,动摩擦系数为0.003;
D4:在旋转副r1设置界面,对r1施加驱动m1,将驱动m1的时间函数function设为
Figure FDA0003542059810000041
其中tc为隔离开关合闸时间和θ为合闸前后操动拐臂ab的旋转角度;
步骤E:隔离开关合闸力矩的动力学仿真计算;通过Simulation Control模块设置仿真终止时间为tc,仿真步数为2000步,进行隔离开关合闸过程动力学仿真计算;在驱动m1的测量模块选择力矩幅值测量,得到合闸力矩曲线。
CN202110426640.9A 2021-04-20 2021-04-20 一种隔离开关合闸力矩的仿真计算方法 Active CN113111461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110426640.9A CN113111461B (zh) 2021-04-20 2021-04-20 一种隔离开关合闸力矩的仿真计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110426640.9A CN113111461B (zh) 2021-04-20 2021-04-20 一种隔离开关合闸力矩的仿真计算方法

Publications (2)

Publication Number Publication Date
CN113111461A CN113111461A (zh) 2021-07-13
CN113111461B true CN113111461B (zh) 2022-04-29

Family

ID=76718895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110426640.9A Active CN113111461B (zh) 2021-04-20 2021-04-20 一种隔离开关合闸力矩的仿真计算方法

Country Status (1)

Country Link
CN (1) CN113111461B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521434A (zh) * 2011-11-29 2012-06-27 南京康尼机电股份有限公司 一种轨道交通车辆门系统锁闭装置动力学仿真分析方法
CN102880732A (zh) * 2011-12-28 2013-01-16 南京康尼机电股份有限公司 一种轨道交通车辆门系统动力学联合仿真分析方法
WO2017000396A1 (zh) * 2015-06-30 2017-01-05 中国空间技术研究院 基于多体分析试验的桁架天线反射器展开动力学建模方法
CN106441672A (zh) * 2016-10-08 2017-02-22 国网浙江省电力公司电力科学研究院 基于测力连杆的户外高压隔离开关现场检测调整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521434A (zh) * 2011-11-29 2012-06-27 南京康尼机电股份有限公司 一种轨道交通车辆门系统锁闭装置动力学仿真分析方法
CN102880732A (zh) * 2011-12-28 2013-01-16 南京康尼机电股份有限公司 一种轨道交通车辆门系统动力学联合仿真分析方法
WO2017000396A1 (zh) * 2015-06-30 2017-01-05 中国空间技术研究院 基于多体分析试验的桁架天线反射器展开动力学建模方法
CN106441672A (zh) * 2016-10-08 2017-02-22 国网浙江省电力公司电力科学研究院 基于测力连杆的户外高压隔离开关现场检测调整方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Failure Modeling and Maintenance Decision for GIS Equipment Subject toDegradation and Shocks;Qi Wang;Zhengyou He;Sheng Lin;Zhaoyang Li;《IEEE Transactions on Power Delivery》;20170118;第32卷(第2期);第1079-1088页 *
GW4型隔离开关分合闸操作力矩的分析与计算;常林晶等;《高压电器》;20131116(第11期);第127-132页 *
GW4型隔离开关运动学分析与装配方法研究;赵洲峰等;《高压电器》;20180416(第04期);第34-42页 *
基于网络分析法的高铁牵引供电系统维修方式决策;王玘,林圣,杨健维,冯玎,何正友;《铁道学报》;20160131;第38卷(第1期);第18-26页 *
高压开关传动系统的运动学与动力学仿真;朱琦琦;《高压电器》;20131216(第12期);第104-109页 *

Also Published As

Publication number Publication date
CN113111461A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN102521434B (zh) 一种轨道交通车辆门系统锁闭装置动力学仿真分析方法
CN110287562B (zh) 一种高速受电弓结构参数优化方法
CN110941238B (zh) 一种基于机器学习的平面运动直线度误差补偿系统及方法
CN101733750B (zh) 基于动态响应谱的关节含间隙机器人轨迹规划方法
CN113111461B (zh) 一种隔离开关合闸力矩的仿真计算方法
CN105701296A (zh) 一种跑道形螺栓连接结构的有限元建模方法
CN114544175A (zh) 一种轮毂轴承试验机的加载力施加方法及装置
CN105184031A (zh) 一种装配机器人臂部结构的轻量化设计方法
CN111539135B (zh) 一种用于钣金连接区域疲劳开裂预测的有限元建模方法
CN106734254A (zh) 阴阳面翻钢机及翻钢方法
CN103761350A (zh) 一种高速铁路轴承动力学分析方法
CN110096829B (zh) 一种悬臂式直角坐标机器人的刚柔耦合动力学仿真方法
CN104760297A (zh) 一种带辅助铺粉装置的尼龙烧结成形机
CN109858120B (zh) 一种动车组转向架悬挂系统动力学参数优化方法和装置
CN106826921A (zh) 多自由度舵机组合装置及其装配方法和应用
CN110355740A (zh) 具有1r1t和3t两种运动模式的并联机构
CN109543249B (zh) 一种两级平面四杆机构及参数设计方法
CN112329177A (zh) 一种盾构机主轴承动力学模型的建模与仿真方法
CN209364656U (zh) 一种采用球铰联接的双自由度液压机械臂关节
CN209364655U (zh) 一种具有独立驱动能力的双自由度液压机械臂关节
CN113408067A (zh) 一种断路器操动机构行程曲线获取方法
CN108427855B (zh) 一种抱轮式汽车搬运器性能参数设计方法
CN113310709A (zh) 一种商用车动力总成悬置多向加载试验装置
CN103730691B (zh) 动力电池用导电探针的对位装置
CN113821957B (zh) 一种用于风电机组主机架计算的制动卡钳建模方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant