WO2016208598A1 - 成膜方法及び成膜装置 - Google Patents

成膜方法及び成膜装置 Download PDF

Info

Publication number
WO2016208598A1
WO2016208598A1 PCT/JP2016/068433 JP2016068433W WO2016208598A1 WO 2016208598 A1 WO2016208598 A1 WO 2016208598A1 JP 2016068433 W JP2016068433 W JP 2016068433W WO 2016208598 A1 WO2016208598 A1 WO 2016208598A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
gas
nozzle
mixing
film forming
Prior art date
Application number
PCT/JP2016/068433
Other languages
English (en)
French (fr)
Inventor
智資 平野
公一 川崎
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to EP16814368.3A priority Critical patent/EP3315212B1/en
Priority to US15/575,499 priority patent/US20180154382A1/en
Priority to KR1020207003786A priority patent/KR20200016414A/ko
Priority to CN201680035603.2A priority patent/CN107708877B/zh
Priority to KR1020177033490A priority patent/KR20170141737A/ko
Publication of WO2016208598A1 publication Critical patent/WO2016208598A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • B05B7/1626Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • B05D1/06Applying particulate materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the present invention relates to a film forming method by a cold spray method and a film forming apparatus.
  • a cold spray method is known as a method for forming a metal film (see, for example, Patent Document 1).
  • the powder of the metal coating material is injected from a nozzle together with a heated gas (air or inert gas) below the melting point or softening point of the powder, and is allowed to collide with the substrate in the solid state.
  • Film forming method for depositing on the surface of the substrate since the processing is performed at a lower temperature than the thermal spraying method, it is possible to obtain a metal film having no phase transformation and suppressing oxidation. In addition, the influence of thermal stress can be reduced.
  • both the base material and the coating material are metal
  • the powder of the material collides with the base material (or the previously formed film)
  • plastic deformation occurs between the powder and the base material, and the anchor effect
  • the oxide films of each other are destroyed and metal bonds are formed between the new surfaces, so that a film with high adhesion strength can be formed.
  • a gas powder mixing chamber for mixing a material powder and a high-pressure gas is generally provided on the upstream side of the nozzle.
  • this gas powder mixing chamber the powder and the high pressure gas supplied from different systems are mixed, and the powder is injected from the tip of the nozzle by the gas pressure of the high pressure gas.
  • the powder injection speed cannot be increased by increasing the gas temperature.
  • the temperature of the gas is raised too high, the base material on which the powder collides becomes too hot and softens, and the portion where the powder collides may be worn out.
  • the temperature of the gas is increased by increasing the gas temperature just because the melting point of the powder is high, the powder heated to a high temperature will collide with the substrate, resulting in wear of the substrate. I will invite you.
  • such a phenomenon may occur when the melting point of the substrate is lower than the melting point of the powder. For this reason, it is impossible to raise the gas temperature above the temperature at which the substrate softens to increase the injection speed.
  • the present invention has been made in view of the above, and in the cold spray method, a film forming method and a film forming apparatus capable of suppressing excessive heating of the powder while increasing the spraying speed of the powder of the material.
  • the purpose is to provide.
  • a film forming method is a film forming method for forming a film by spraying and depositing a powder of a material on a surface of a base material in a solid state. And the position of the smallest diameter of the through passage formed inside the nozzle and expanding from the proximal end to the distal end and then expanding, and the powder of the material introduced into the nozzle is a gas. And a mixing distance adjusting step for adjusting a distance between the mixing position and the mixing position according to a kind of the powder of the material, and the powder of the material and the gas are mixed at the mixing position and introduced into the nozzle.
  • An injection step of accelerating toward the minimum position and injecting the powder of the material and the gas from the tip of the nozzle; and the base material of the powder of the material and the gas injected from the tip Spraying process Characterized in that it comprises a.
  • the mixing distance adjusting step is characterized in that the distance is shortened as the melting point of the powder of the material is lower.
  • a film forming apparatus is a film forming apparatus for forming a film by spraying and depositing a powder of a material on a surface of a base material in a solid state, and mixing the powder of the material with a gas. And a through-passage that communicates with the mixing chamber at the base end portion and expands after being reduced in diameter from the base end portion toward the tip end portion of the material mixed in the mixing chamber.
  • a nozzle that injects powder and the gas from the tip, a powder supply pipe that supplies the powder of the material to the mixing chamber, and a gas supply pipe that supplies the gas to the mixing chamber. The distance between the position having the smallest diameter and the mixing position where the powder of the material and the gas are mixed with each other is adjustable.
  • the powder supply pipe is provided so that a tip from which the powder of the material is ejected protrudes from the rear end side of the mixing chamber toward the nozzle side, and the tip of the powder supply pipe It is characterized in that the projecting amount of can be changed.
  • the powder supply pipe is provided so that a tip from which the powder of the material is ejected protrudes from the rear end side of the mixing chamber toward the nozzle side, and the mixing chamber can be configured.
  • a plurality of cylindrical members having different heights, and the mixing chamber is configured by connecting any one of the plurality of cylindrical members to the base end portion of the nozzle.
  • the mixing chamber is a cylindrical member connected to the base end portion of the nozzle, and includes a cylindrical member provided with a plurality of powder supply ports along the longitudinal direction of the side surface. The distance is changed by connecting the powder supply pipe to any of the plurality of powder supply ports.
  • the distance between the mixing position where the material powder is mixed with the gas and the tip of the nozzle that injects the powder together with the gas is adjusted according to the type of the material powder.
  • the powder can be ejected from the nozzle before it is heated excessively in contact with the gas. Therefore, it is possible to suppress excessive heating while increasing the spraying speed of the powder of the material, and it is possible to suppress the oxidation of the powder and form a high-quality metal film with high adhesion strength. .
  • softening and melting of the powder due to excessive heating of the powder can be suppressed, it is also possible to suppress the powder from adhering to the inner wall of the nozzle and blocking the nozzle.
  • the softening of the base material resulting from excessive heating of the powder can be suppressed, it is also possible to suppress the wear of the base material when the powder is sprayed.
  • FIG. 1 is a schematic diagram showing a configuration of a film forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view showing the inside of the spray gun shown in FIG.
  • FIG. 3 is a cross-sectional view showing a case where the mixing distance is changed with respect to the spray gun shown in FIG.
  • FIG. 4 is a flowchart showing the film forming method according to the embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the temperature and speed of the material powder and the mixing distance.
  • FIG. 6 is a cross-sectional view for explaining the lower limit value of the mixing distance.
  • FIG. 7 is a graph showing the gas flow velocity (theoretical value) on the central axis of the nozzle.
  • FIG. 1 is a schematic diagram showing a configuration of a film forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view showing the inside of the spray gun shown in FIG.
  • FIG. 3 is a cross
  • FIG. 8 is a cross-sectional view showing a part of a film forming apparatus according to Modification 1 of the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a part of a film forming apparatus according to Modification 2 of the embodiment of the present invention.
  • FIG. 10 is a schematic diagram for explaining a simple tensile test method used in the measurement of peel strength.
  • FIG. 11 is a graph showing measured values of peel strength in Examples.
  • FIG. 1 is a schematic diagram showing a configuration of a film forming apparatus according to an embodiment of the present invention.
  • a film forming apparatus 1 is a film forming apparatus using a cold spray method, and a gas heater 2 for heating a high-pressure gas (compressed gas) and a film forming material powder.
  • Powder supply device 3 for storing and supplying to spray gun 4, spray gun 4 for mixing heated high-pressure gas with powder and introducing it into nozzle 5, supply of high-pressure gas to gas heater 2 and powder supply device 3 Valves 6 and 7 for adjusting the amounts of the gas and a gas supply pipe 8 for supplying gas from the gas heater 2 to the spray gun 4 are provided.
  • the spray gun 4 includes a nozzle 5 that injects powder together with high-pressure gas, and a powder supply pipe 12 that supplies the powder to the spray gun 4.
  • the high-pressure gas inexpensive air or an inert gas such as helium or nitrogen is used.
  • the high-pressure gas supplied to the gas heater 2 is heated to a temperature in a range lower than the melting point of the material powder, and then introduced into the spray gun 4 through the gas supply pipe 8.
  • the heating temperature of the high pressure gas is preferably 150 to 900 ° C.
  • the high-pressure gas supplied to the powder supply device 3 supplies the powder in the powder supply device 3 to the spray gun 4 through the powder supply pipe 12 so as to have a predetermined discharge amount.
  • the high-pressure gas supplied from the gas heater 2 to the spray gun 4 is mixed with the powder and high-pressure gas supplied from the powder supply device 3 in the spray gun 4 and passes through the nozzle 5 to become a supersonic flow. Be injected.
  • the high-pressure gas is air or nitrogen at 150 to 900 ° C.
  • the flow rate in the throat portion 5b is about 310 to 600 m / s.
  • the high pressure gas is helium at 150 to 900 ° C.
  • the flow rate in the throat portion 5b is about 870 to 1630 m / s.
  • the gas flow velocity in the vicinity of the outlet of the nozzle 5 changes according to the shape of the divergent portion 5c.
  • the pressure of the high-pressure gas is preferably about 0.3 to 5 MPa. This is because by adjusting the pressure of the high-pressure gas to this level, the adhesion strength of the film 101 to the substrate 100 can be improved. More preferably, the treatment is performed at a pressure of about 3 to 5 MPa.
  • the base material 100 is arranged facing the spray gun 4, and a powder of a material (metal or alloy) is charged into the powder supply apparatus 3, and then to the gas heater 2 and the powder supply apparatus 3.
  • the high-pressure gas supply starts.
  • the powder supplied to the spray gun 4 is injected into the supersonic flow of the high-pressure gas, accelerated, and injected from the nozzle 5.
  • the powder 101 collides and deposits on the base material 100 at a high speed in a solid phase state, whereby the coating 101 is formed.
  • the spray gun 4 includes a gas powder mixing chamber 10 connected to the base end of the nozzle 5, a gas chamber 11 filled with a high-pressure gas introduced into the gas powder mixing chamber 10, and a gas powder
  • a powder supply pipe 12 for supplying powder to the mixing chamber 10 a powder supply pipe support 13 provided at the boundary between the gas powder mixing chamber 10 and the gas chamber 11, a temperature sensor 14 provided in the gas chamber 11, and A pressure sensor 15 is provided.
  • the powder supply pipe support 13 is provided with at least one gas passage port 13 a that communicates the gas powder mixing chamber 10 and the gas chamber 11.
  • the nozzle 5 is provided with a through passage 5d communicating with the gas powder mixing chamber 10 at the base end portion, a tapered portion 5a in which the diameter of the through passage 5d decreases from the base end portion toward the distal end portion, and a through passage 5d.
  • This is a so-called Laval nozzle composed of a throat portion 5b having a minimum diameter and a divergent portion 5c in which the diameter of the through passage 5d increases from the throat portion 5b toward the tip portion.
  • the gas powder mixing chamber 10 is a mixing chamber which is formed by a cylindrical member having both ends opened and in which the high pressure gas supplied from the gas chamber 11 and the powder supplied from the powder supply pipe 12 are mixed. Specifically, at the tip of the powder supply pipe 12, the powder ejected from the tip of the powder supply pipe 12 is mixed with the high-pressure gas introduced from the gas chamber 11 through the gas passage port 13a.
  • the position of the front end surface 12a which is the powder outlet from the powder supply pipe 12 is referred to as a mixing position.
  • the powder mixed with the high-pressure gas is introduced into the nozzle 5 by the pressure of the high-pressure gas, and is accelerated by passing through the tapered portion 5a.
  • the heated high-pressure gas is introduced into the gas chamber 11 from the gas heater 2 through the gas supply pipe 8.
  • the pressure in the gas chamber 11 is normally maintained at about 0.3 to 5 MPa. Due to the pressure difference between the gas chamber 11 and the gas powder mixing chamber 10, the high pressure gas is introduced into the gas powder mixing chamber 10.
  • the powder supply pipe 12 penetrates the gas chamber 11 and is arranged so that the tip protrudes toward the nozzle 5 along the longitudinal direction of the gas powder mixing chamber 10 and the nozzle 5.
  • the protruding length of the powder supply pipe 12 can be changed.
  • FIG. 2 shows a case where the protruding length of the powder supply pipe 12 is suppressed and the tip surface 12a of the powder supply pipe 12 is arranged so as to remain near the base end portion of the gas powder mixing chamber 10, and FIG. The case where the powder supply pipe 12 is protruded into the tip 5a of the nozzle 5 is shown.
  • the distance between the position of the tip surface 12a, that is, the mixing position, and the position of the throat portion 5b can be adjusted.
  • the distance between the mixing position and the throat position is referred to as a mixing distance.
  • the mixing distance is X1
  • the mixing distance is X2 (X2 ⁇ X1).
  • a powder supply pipe support portion 13 is provided inside the gas powder mixing chamber 10 in order to stabilize the position of the tip of the powder supply pipe 12. Also good.
  • a member that supports the tip of the powder supply pipe 12 may be provided in the gas powder mixing chamber 10 separately from the powder supply pipe support portion 13.
  • FIG. 4 is a flowchart showing the film forming method according to the embodiment of the present invention.
  • step S1 the mixing distance is adjusted according to the type of material powder.
  • the mixing distance is adjusted by changing the protruding length of the powder supply pipe 12 from the gas chamber 11.
  • the mixing distance is determined according to the characteristics of the material itself such as the melting point, the diameter of the material powder, the temperature and pressure of the high-pressure gas, and the like.
  • the lower the melting point of the material the easier it is to soften by heating, so the mixing distance may be shortened.
  • the easier the material is oxidized the shorter the mixing distance.
  • the smaller the powder diameter of the material the larger the ratio of the surface area to the volume and the easier the heating, so the mixing distance is preferably shortened.
  • the higher the temperature of the high-pressure gas the shorter the mixing distance.
  • step S2 the valves 6 and 7 are opened, supply of the high-pressure gas to the gas chamber 11 via the gas heater 2 is started, and supply of the high-pressure gas to the powder supply device 3 is started.
  • the material powder is mixed with high-pressure gas, introduced into the nozzle 5, and accelerated and sprayed.
  • the supply of the powder of the material from the powder supply device 3 to the gas powder mixing chamber 10 is started.
  • the powder of the material is mixed with the high pressure gas at the mixing position of the gas powder mixing chamber 10.
  • the material powder is introduced into the nozzle 5 together with the flow of high-pressure gas, and is accelerated from the tapered portion 5a toward the throat portion 5b.
  • the high-pressure gas reaches the speed of sound in the throat portion 5b and becomes supersonic in the divergent portion 5c, and is injected from the tip of the nozzle 5 while accelerating the powder of the material.
  • the powder of the material sprayed from the tip of the nozzle 5 is sprayed onto the substrate 100 to be deposited.
  • the film 101 having a desired thickness can be obtained.
  • the mixing distance in the spray gun 4 shown in FIGS. 2 and 3 will be described in detail.
  • the mixing distance X from when the material powder is mixed with the high-pressure gas to when it passes through the throat portion 5b is changed. ing. The reason is as follows.
  • the coating 101 is formed by colliding and depositing the powder of the material on the base material 100 in the solid state. At the time of this collision, plastic deformation occurs between the powder and the base material 100 to obtain an anchor effect, and the oxide films of each other are broken to form metal bonds between the new surfaces. Therefore, it is preferable that the material powder is accelerated and sprayed onto the substrate 100 at a high speed.
  • the pressure of the high-pressure gas injected together with the material powder is usually increased and heated.
  • it is necessary to prevent oxidation of the material powder in order to form a dense film with high adhesion strength, it is necessary to prevent oxidation of the material powder. Further, it is necessary to prevent the powder from adhering to the inner wall of the nozzle or the powder from melting due to excessive heating. For this purpose, it is not preferable that the powder of the material is heated excessively.
  • the structure is such that the time during which the material powder contacts the heated high-pressure gas can be adjusted. That is, the time for which the powder of the material is in contact with the high-pressure gas is adjusted by changing the mixing distance according to conditions such as the type of the powder of the material and the temperature of the high-pressure gas. Accordingly, excessive heating of the material powder can be suppressed, so that the high-pressure gas can be further heated to accelerate the material powder at high speed.
  • FIG. 5 is a graph showing the relationship between the mixing distance and the temperature (solid line) and speed (dashed line) of the powder sprayed from the tip of the nozzle 5.
  • This graph shows the temperature and speed of the powder obtained by simulation when the material powder is aluminum (melting point: about 660 ° C., thermal conductivity: 237 W / m ⁇ K) and the mixing distance is changed in the range of 24 mm to 157 m. It is.
  • the mixing distance 157 mm is the maximum value in the spray gun 4 shown in FIG.
  • FIG. 6 is a cross-sectional view for explaining the lower limit value of the mixing distance, and shows the vicinity of the tip of the nozzle 5 shown in FIGS. 2 and 3.
  • the outer diameter of the powder supply pipe 12 is D 1
  • the inner diameter of the nozzle 5 (the diameter of the through passage 5d) at the position of the tip surface 12a of the powder supply pipe 12 is D 2
  • the nozzle 5 in the throat portion 5b is D 1
  • the direction from the reference position toward the tip of the nozzle 5 is set as the x direction.
  • FIG. 7 is a graph showing the gas flow velocity (theoretical value) on the central axis of the nozzle 5.
  • the vertical axis indicates the flow velocity (Mach number) of the high-pressure gas.
  • the high pressure gas enters the tapered portion 5a of the nozzle 5 at a flow velocity of zero, and then is gradually accelerated to reach the sound velocity (Mach 1) in the throat portion 5b where the cross-sectional area is the narrowest. Thereafter, the high-pressure gas is further accelerated in the divergent portion 5 c and is injected from the tip of the nozzle 5 at a supersonic speed.
  • the flow rate of the high pressure gas when the front end surface 12a of the powder supply pipe 12 approaches the throat portion 5b is shown. In this case, the gas flow velocity exceeds the sound speed in the tapered portion 5a before the throat portion 5b, and a shock wave is generated.
  • the tapered portion 5a is designed to be suitable for subsonic flow
  • the supersonic gas passes through the tapered portion 5a and is affected by the oblique shock wave generated on the wall surface of the tapered portion 5a. End up. Since the shock wave is not an isentropic flow, a loss occurs in the energy of the gas flow due to the influence from the wall surface. As a result, the gas is decelerated as shown by the broken line in FIG.
  • FIG. 8 is a cross-sectional view showing a part of a film forming apparatus according to Modification 1 of the embodiment of the present invention.
  • the film forming apparatus according to the first modification includes a spray gun 4A shown in FIG. 8 instead of the spray gun 4 shown in FIG.
  • the configuration of each part of the film forming apparatus other than the spray gun 4A is the same as in the above embodiment.
  • a spray gun 4A shown in FIG. 8 includes a gas powder mixing chamber 20 instead of the gas powder mixing chamber 10 included in the spray gun 4 shown in FIG.
  • the configuration of each part of the spray gun 4A other than the gas powder mixing chamber 20 is the same as in the above embodiment.
  • the film forming apparatus includes a plurality of cylindrical members having different heights that can constitute the gas powder mixing chamber 20.
  • the gas powder mixing chamber 20 is configured by connecting any one of these cylindrical members to the gas chamber 11 and the base end of the nozzle 5.
  • the gap between the mixing position which is the position of the distal end surface 12a of the powder supply pipe 12, and the position of the throat portion 5b.
  • the mixing distance X can be changed.
  • FIG. 9 is a cross-sectional view showing a part of a film forming apparatus according to Modification 2 of the embodiment of the present invention.
  • the film forming apparatus according to the second modification includes a spray gun 4B shown in FIG. 9 instead of the spray gun 4 shown in FIG.
  • the configuration of each part of the film forming apparatus other than the spray gun 4B is the same as in the above embodiment.
  • the gas powder mixing chamber 30 is made of a cylindrical member, and a plurality of through holes 33A, 33B, 33C are formed on the side surface along the longitudinal direction.
  • the powder supply pipe 32 is connected to any one of these through holes 33A, 33B, and 33C in a changeable manner.
  • FIG. 9 shows a case where the powder supply pipe 32 is connected to the through hole 33 ⁇ / b> A closest to the nozzle 5.
  • a sealing plug 34 is fitted into the through holes 33B and 33C to which the powder supply pipe 32 is not connected in order to prevent leakage of high-pressure gas and powder.
  • the tip of the powder supply pipe 32 is curved so that the injection direction is parallel to the longitudinal direction of the nozzle 5 in the vicinity of the central axis of the gas powder mixing chamber 30.
  • Only high-pressure gas is supplied to the gas chamber 31 through the gas supply pipe 8.
  • the high-pressure gas is introduced into the gas powder mixing chamber 30 through at least one gas passage port 35 a provided in the partition member 35 that partitions the gas chamber 31 and the gas powder mixing chamber 30.
  • the powder of the material is formed in the vicinity of the through-hole 33A to which the powder supply pipe 32 is connected. Is mixed with high pressure gas. That is, the distance between the central axis of the through hole 33A and the surface including the throat portion 5b is the mixing distance X.
  • the mixing distance X can be changed by changing the through holes 33A, 33B, and 33C connecting the powder supply pipes 32.
  • the material powder As the material powder, a substantially spherical aluminum powder having an average particle diameter of about 30 ⁇ m was used. Further, as a high-pressure gas, nitrogen gas was heated to 450 ° C., pressurized to 5 MPa, and introduced into the gas chamber 11. About the mixing distance X, the position of the powder supply pipe
  • FIG. 10 is a schematic diagram for explaining a simple tensile test method performed at the time of peel strength measurement.
  • an aluminum pin 43 is fixed using an adhesive 44 to the aluminum film 42 side of a test piece 40 in which an aluminum film 42 is formed on a copper base material 41. Then, the aluminum pin 43 is inserted into the through hole 46 and placed on the fixing base 45 provided with the through hole 46, the aluminum pin 43 is pulled downward, and the tensile force when the copper base material 41 and the aluminum film 42 are peeled off. The force was evaluated as peel strength.
  • FIG. 11 is a graph showing measured values of peel strength.
  • the temperature of the powder rises to around 450 ° C.
  • the mixing distance is 54 mm
  • the temperature of the powder remains around 150 ° C.
  • the mixing distance is 24 mm
  • the temperature of the powder stays around 60 ° C.
  • FIG. 11 it can be seen that the peel strength was remarkably increased by shortening the mixing distance.
  • the present embodiment by changing the mixing distance, it is possible to prevent excessive heating of the material powder while maintaining the powder and gas velocities ejected from the nozzle at a high speed. Can do. Thereby, since softening and oxidation of the powder of the material can be suppressed, it is possible to increase the peel strength of the film deposited on the substrate and to produce a dense and high-quality film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

コールドスプレー法において、材料の粉末の過度な加熱を抑制しつつ、材料の粉末を高速に噴射することができる成膜方法等を提供する。材料の粉末を基材の表面に固相状態のまま吹き付けて堆積させることにより皮膜を形成する成膜方法であって、ノズルの内部に形成され、基端部から先端部に向かって縮径してから拡径する貫通路の径が最小の位置と、ノズルに導入される材料の粉末がガスと混合される混合位置との間の距離を、材料の粉末の種類に応じて調節する混合距離調節工程と、材料の粉末及びガスを混合位置において混合してノズルに導入し、上記最小の位置に向けて加速させ、材料の粉末及びガスをノズルの先端部から噴射する噴射工程と、先端部から噴射された材料の粉末及びガスを基材に吹き付ける吹き付け工程とを含む。

Description

成膜方法及び成膜装置
 本発明は、コールドスプレー法による成膜方法及び成膜装置に関する。
 近年、金属皮膜の形成方法として、コールドスプレー法が知られている(例えば特許文献1参照)。コールドスプレー法とは、金属皮膜の材料の粉末を、該粉末の融点又は軟化点以下の加熱されたガス(空気又は不活性ガス)とともにノズルから噴射し、固相状態のまま基材に衝突させて基材の表面に堆積させる成膜方法である。コールドスプレー法においては、溶射法と比較して低い温度で加工が行われるので、相変態がなく酸化も抑制された金属皮膜を得ることができる。また、熱応力の影響を緩和することもできる。さらに、基材及び皮膜の材料がともに金属である場合、材料の粉末が基材(又は先に形成された皮膜)に衝突した際に粉末と基材との間で塑性変形が生じてアンカー効果が得られると共に、互いの酸化皮膜が破壊されて新生面同士による金属結合が生じるので、密着強度の高い皮膜を形成することができる。
 このようなコールドスプレー法による成膜装置においては、一般に、材料の粉末と高圧ガスとを混合するガス粉末混合室がノズルの上流側に設けられている。このガス粉末混合室において、それぞれ別系統から供給された粉末及び高圧ガスが混合され、高圧ガスのガス圧により粉末がノズルの先端から噴射される。
特開2008-302311号公報
 金属皮膜の密着強度を高めるには、粉末の噴射速度を高速化すれば良いことが知られている。一般に、粉末の噴射速度を高速化するためには、粉末と共に噴射するガスの温度及び圧力を高くすることが行われている。しかし、ガスの温度を高くし過ぎると、粉末が過度に加熱されて酸化し易くなるため、酸化した粉末が堆積することにより金属皮膜の品質が低下してしまうという問題が生じる。
 また、比較的低融点の金属を材料とする場合には、ガスの温度を高くし過ぎると粉末が過度に柔らかくなり、或いは粉末が溶融してしまい、粉末がノズル内を通過する間にノズルの内壁に付着してノズルが閉塞し易くなってしまう。そのため、この場合には、ガス温度を上げることにより粉末の噴射速度を高くすることができない。
 さらには、ガスの温度を高くし過ぎると、粉末を衝突させる基材の方も高温になって軟化し、粉末が衝突した部分が損耗してしまうおそれがある。例えば、粉末の融点が高いからといってガスの温度を高くして粉末の噴射速度を高速化しようとすると、高温に加熱された粉末が基材に衝突することになり、基材の損耗を招いてしまう。特に、粉末の融点に対して基材の融点が低い場合には、このような現象が生じる可能性がある。そのため、基材が軟化する温度以上にガス温度を上げて噴射速度を高めることもできない。
 これらの理由から、密着強度が高い、高品質な金属皮膜を形成するためには、粉末の噴射速度を高速化しつつも、粉末の過度な加熱を抑制することが望ましい。
 本発明は、上記に鑑みてなされたものであって、コールドスプレー法において、材料の粉末の噴射速度を高速化しつつも、粉末の過度な加熱を抑制することができる成膜方法及び成膜装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る成膜方法は、材料の粉末を基材の表面に固相状態のまま吹き付けて堆積させることにより皮膜を形成する成膜方法であって、ノズルの内部に形成され、基端部から先端部に向かって縮径してから拡径する貫通路の径が最小の位置と、前記ノズルに導入される前記材料の粉末がガスと混合される混合位置との間の距離を、前記材料の粉末の種類に応じて調節する混合距離調節工程と、前記材料の粉末及び前記ガスを前記混合位置において混合して前記ノズルに導入し、前記最小の位置に向けて加速させ、前記材料の粉末及び前記ガスを前記ノズルの前記先端部から噴射する噴射工程と、前記先端部から噴射された前記材料の粉末及び前記ガスを前記基材に吹き付ける吹き付け工程と、を含むことを特徴とする。
 上記成膜方法において、前記混合距離調節工程は、前記材料の粉末の融点が低いほど前記距離を短くする、ことを特徴とする。
 本発明に係る成膜装置は、材料の粉末を基材の表面に固相状態のまま吹き付けて堆積させることにより皮膜を形成する成膜装置であって、前記材料の粉末をガスと混合する混合室と、基端部において前記混合室と連通し、該基端部から先端部に向かって縮径してから拡径する貫通路が内部に設けられ、前記混合室において混合された前記材料の粉末及び前記ガスを前記先端部から噴射するノズルと、前記混合室に前記材料の粉末を供給する粉末供給管と、前記混合室に前記ガスを供給するガス供給管と、を備え、前記貫通路の径が最小の位置と、前記材料の粉末及び前記ガスが互いに混合される混合位置との間の距離が調節可能である、ことを特徴とする。
 上記成膜装置において、前記粉末供給管は、前記材料の粉末が噴出される先端を前記混合室の後端側から前記ノズル側に向けて突出させるように設けられ、前記粉末供給管の前記先端の突出量が変更可能である、ことを特徴とする。
 上記成膜装置において、前記粉末供給管は、前記材料の粉末が噴出される先端を前記混合室の後端側から前記ノズル側に向けて突出させるように設けられ、前記混合室を構成可能な、高さが異なる複数の筒状部材を備え、前記複数の筒状部材のうちのいずれか1つを前記ノズルの前記基端部と連結することにより、前記混合室が構成される、ことを特徴とする。
 上記成膜装置において、前記混合室は、前記ノズルの前記基端部と連結された筒状部材であって、側面の長手方向に沿って複数の粉末供給口が設けられた筒状部材によって構成され、前記複数の粉末供給口のいずれかに前記粉末供給管を接続することにより、前記距離が変更される、ことを特徴とする。
 本発明によれば、材料の粉末をガスと混合する混合位置と、該粉末をガスと共に噴射するノズルの先端部との間の距離を、材料の粉末の種類に応じて調節するので、材料の粉末がガスと接して過度に加熱される前に、粉末をノズルから噴射することができる。従って、材料の粉末の噴射速度を高速化しつつも過度な加熱を抑制することができ、該粉末の酸化を抑制して、密着強度の高い、高品質な金属皮膜を形成することが可能となる。また、粉末に対する過度な加熱による粉末の軟化や溶融を抑えることができるので、粉末がノズルの内壁に付着してノズルが閉塞するのを抑制することも可能となる。さらに、粉末の過度な加熱に起因する基材の軟化を抑えることもできるので、粉末が吹き付けられた際の基材の損耗を抑制することも可能となる。
図1は、本発明の実施の形態に係る成膜装置の構成を示す模式図である。 図2は、図1に示すスプレーガンの内部を拡大して示す断面図である。 図3は、図2に示すスプレーガンに対して混合距離を変更した場合を示す断面図である。 図4は、本発明の実施の形態に係る成膜方法を示すフローチャートである。 図5は、材料の粉末の温度及び速度と混合距離との関係を示すグラフである。 図6は、混合距離の下限値について説明するための断面図である。 図7は、ノズルの中心軸上におけるガスの流速(理論値)を示すグラフである。 図8は、本発明の実施の形態の変形例1に係る成膜装置の一部を示す断面図である。 図9は、本発明の実施の形態の変形例2に係る成膜装置の一部を示す断面図である。 図10は、剥離強度測定の際に使用した簡易引張試験法を説明するための模式図である。 図11は、実施例における剥離強度の実測値を示すグラフである。
 以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。即ち、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。
(実施の形態)
 図1は、本発明の実施の形態に係る成膜装置の構成を示す模式図である。図1に示すように、本実施の形態に係る成膜装置1は、コールドスプレー法による成膜装置であり、高圧ガス(圧縮ガス)を加熱するガス加熱器2と、成膜材料の粉末を収容してスプレーガン4に供給する粉末供給装置3と、加熱された高圧ガスを粉末と混合してノズル5に導入するスプレーガン4と、ガス加熱器2及び粉末供給装置3に対する高圧ガスの供給量をそれぞれ調節するバルブ6及び7と、ガス加熱器2からスプレーガン4にガスを供給するガス供給管8とを備える。スプレーガン4は、高圧ガスと共に粉末を噴射するノズル5と、当該スプレーガン4に粉末を供給する粉末供給管12を含んでいる。
 高圧ガスとしては、安価な空気や、ヘリウム、窒素等の不活性ガスが使用される。ガス加熱器2に供給された高圧ガスは、材料の粉末の融点よりも低い範囲の温度に加熱された後、ガス供給管8を介してスプレーガン4に導入される。高圧ガスの加熱温度は、好ましくは150~900℃である。
 一方、粉末供給装置3に供給された高圧ガスは、粉末供給装置3内の粉末を、粉末供給管12を介してスプレーガン4に所定の吐出量となるように供給する。
 ガス加熱器2からスプレーガン4に供給された高圧ガスは、スプレーガン4において、粉末供給装置3から供給された粉末及び高圧ガスと混合され、ノズル5を通過することにより超音速流となって噴射される。具体的には、高圧ガスが150~900℃の空気又は窒素の場合、スロート部5bにおける流速は約310~600m/sとなる。また、高圧ガスが150~900℃のヘリウムの場合、スロート部5bにおける流速は約870~1630m/sとなる。一方、ノズル5の出口付近におけるガスの流速は、末広部5cの形状に応じて変化する。詳細には、末広部5cの出口側の断面積と、スロート部5bの断面積との比率(出口側の断面積/スロート部の断面積)が大きいほど、出口付近における流速は速くなる。
 この際の高圧ガスの圧力は、0.3~5MPa程度とすることが好ましい。高圧ガスの圧力をこの程度に調整することにより、基材100に対する皮膜101の密着強度の向上を図ることができるからである。より好ましくは、3~5MPa程度の圧力で処理すると良い。
 このような成膜装置1において、基材100をスプレーガン4に向けて配置すると共に、材料(金属又は合金)の粉末を粉末供給装置3に投入し、ガス加熱器2及び粉末供給装置3への高圧ガスの供給を開始する。それにより、スプレーガン4に供給された粉末が、この高圧ガスの超音速流の中に投入されて加速され、ノズル5から噴射される。この粉末が、固相状態のまま基材100に高速で衝突して堆積することにより、皮膜101が形成される。
 図2及び図3は、図1に示すスプレーガン4の内部を拡大して示す断面図である。図2に示すように、スプレーガン4は、ノズル5の基端部と連結されたガス粉末混合室10と、ガス粉末混合室10に導入する高圧ガスが充填されるガス室11と、ガス粉末混合室10に粉末を供給する粉末供給管12と、ガス粉末混合室10とガス室11との境界に設けられた粉末供給管支持部13と、ガス室11内に設けられた温度センサ14及び圧力センサ15を備える。粉末供給管支持部13には、ガス粉末混合室10とガス室11とを連通する少なくとも1つのガス通過口13aが設けられている。
 ノズル5は、基端部においてガス粉末混合室10と連通する貫通路5dが内部に設けられ、基端部から先端部に向かって貫通路5dが縮径する先細部5aと、貫通路5dの径が最小の部分であるスロート部5bと、スロート部5bから先端部に向かって貫通路5dが拡径する末広部5cとからなる、所謂ラバルノズルである。
 ガス粉末混合室10は、両端が開口した筒状部材によって形成され、ガス室11から供給される高圧ガスと粉末供給管12から供給される粉末とが混合される混合室である。詳細には、粉末供給管12の先端部において、この粉末供給管12の先端から噴出した粉末が、ガス室11からガス通過口13aを通って導入された高圧ガスと混合される。以下、粉末供給管12からの粉末の出射口である先端面12aの位置を、混合位置という。高圧ガスと混合された粉末は、この高圧ガスの圧力によりノズル5に導入され、先細部5aを通過することにより加速させられる。
 ガス室11には、ガス加熱器2からガス供給管8を介して、加熱された高圧ガスが導入される。ガス室11内の圧力は通常、0.3~5MPa程度に維持されている。このガス室11内とガス粉末混合室10内との圧力差により、高圧ガスがガス粉末混合室10に導入される。
 粉末供給管12は、ガス室11を貫通し、ガス粉末混合室10及びノズル5の長手方向に沿って、先端をノズル5側に突出させるように配置されている。粉末供給管12の突出長は変更可能である。例えば、図2は、粉末供給管12の突出長を抑制し、粉末供給管12の先端面12aがガス粉末混合室10の基端部付近に留まるように配置した場合を示し、図3は、粉末供給管12をノズル5の先細部5a内まで突出させた場合を示している。このように、粉末供給管12の突出長を変更することにより、先端面12aの位置即ち混合位置と、スロート部5bの位置との間の距離を調節することができる。以下、混合位置とスロート位置との間の距離を、混合距離という。図2においては混合距離をX1とし、図3においては混合距離をX2(X2<X1)としている。
 なお、粉末供給管12の突出長を伸ばした場合(図3参照)、粉末供給管12の先端部の位置を安定させるため、粉末供給管支持部13をガス粉末混合室10の内部に設けても良い。或いは、粉末供給管支持部13とは別に、粉末供給管12の先端部を支持する部材をガス粉末混合室10内に設けても良い。
 次に、本発明の実施の形態に係る成膜方法について説明する。図4は、本発明の実施の形態に係る成膜方法を示すフローチャートである。なお、成膜を開始する前に、皮膜101を形成する基材100をノズル5の噴射方向の所定位置に配置しておくと共に、粉末供給装置3に皮膜101の材料の粉末を投入しておく。
 まず、工程S1において、材料の粉末の種類に応じて、混合距離を調節する。本実施の形態においては、ガス室11からの粉末供給管12の突出長を変更することにより混合距離を調節する。
 混合距離は、融点などの材料そのものの特性、材料の粉末の径、高圧ガスの温度及び圧力等に応じて決定する。具体例として、材料の融点が低いほど加熱により軟化し易いので、混合距離を短くすると良い。また、材料が酸化し易いほど、混合距離を短くすると良い。また、材料の粉末の径が小さいほど、体積に対する表面積の比率が大きくなり、加熱され易くなるので、混合距離を短くすると良い。さらに、高圧ガスの温度を高くするほど、混合距離を短くすると良い。
 続く工程S2において、バルブ6及び7を開き、ガス加熱器2を介してガス室11への高圧ガスの供給を開始すると共に、粉末供給装置3への高圧ガスの供給を開始する。
 続く工程S3において、材料の粉末を高圧ガスと混合してノズル5に導入し、加速して噴射する。詳細には、粉末供給装置3からガス粉末混合室10への材料の粉末の供給を開始する。それにより、ガス粉末混合室10の混合位置において材料の粉末が高圧ガスと混合される。材料の粉末は、高圧ガスの流れと共にノズル5に導入され、先細部5aからスロート部5bに向かって加速される。そして、高圧ガスは、スロート部5bにおいて音速に達し、末広部5cにおいてさらに超音速になり、材料の粉末を加速しながらノズル5の先端から噴射される。
 続く工程S4において、ノズル5の先端から噴射された材料の粉末を基材100に吹き付けて堆積させる。この工程S4を、基材100上の所望の領域に所望の時間継続することで、所望の厚さの皮膜101を得ることができる。
 次に、図2及び図3に示すスプレーガン4における混合距離について詳しく説明する。本実施の形態においては、粉末供給管12のガス室11からの突出量を調節させることにより、材料の粉末が高圧ガスと混合されてからスロート部5bを通過するまでの混合距離Xを変化させている。その理由は次のとおりである。
 コールドスプレー法においては、材料の粉末を固相状態のまま基材100に衝突させて堆積させることにより皮膜101を形成する。この衝突の際に、粉末と基材100との間で塑性変形が生じてアンカー効果が得られると共に、互いの酸化皮膜が破壊されて新生面同士による金属結合が生じる。そのため、材料の粉末は、高速に加速して基材100に吹き付けることが好ましい。
 材料の粉末を高速に加速するためには、通常、材料の粉末と一緒に噴射される高圧ガスの圧力を高めると共に加熱する。一方で、密着強度が高く緻密な皮膜を形成するためには、材料の粉末の酸化を防ぐ必要がある。また、過度な加熱によって、粉末がノズル内壁に付着したり、粉末が溶融したりするのを防ぐ必要もある。そのためには、材料の粉末が過度に加熱されることは好ましくない。
 そこで、本実施の形態においては、スプレーガン4において混合距離を可変とすることにより、材料の粉末が加熱された高圧ガスと接触する時間を調整可能な構造としている。つまり、材料の粉末の種類や高圧ガスの温度等の条件に応じて混合距離を変化させることにより、材料の粉末が高圧ガスと接する時間を調整している。それにより、材料の粉末の過度な加熱を抑制することができるので、高圧ガスをより高温化して、材料の粉末を高速に加速することが可能となる。
 図5は、ノズル5の先端から噴射される粉末の温度(実線)及び速度(破線)と混合距離との関係を示すグラフである。このグラフは、材料の粉末をアルミニウム(融点約660℃、熱伝導率237W/m・K)とし、混合距離を24mm~157m範囲で変化させた場合の粉末の温度及び速度をシミュレーションにより取得したものである。なお、混合距離157mmは、図2に示すスプレーガン4における最大値である。
 図5に示すように、混合距離24mm~157mmの範囲では、混合距離を変化させても粉末の速度はほとんど変化しない。これに対し、アルミニウムの場合、混合距離が約120mm以下の範囲では、混合距離を短くするほど粉末の温度上昇が抑制されることがわかる。
 次に、混合距離の下限値について説明する。図6は、混合距離の下限値について説明するための断面図であり、図2及び図3に示すノズル5の先端部近傍を示す。図6に示すように、粉末供給管12の外径をD1、粉末供給管12の先端面12aの位置におけるノズル5の内径(貫通路5dの径)をD2、スロート部5bにおけるノズル5の内径をD3とする。また、ノズル5の長手方向において、粉末供給管12の先端面12aを基準位置(x=0)とし、基準位置からノズル5の先端に向かう方向をx方向とする。
 この場合、基準位置(x=0)において高圧ガスが通過可能な断面の面積Ax=0は、次式(1)によって与えられる。
Figure JPOXMLDOC01-appb-M000001
 また、スロート部5bの断面積Ax=Xは、次式(2)によって与えられる。
Figure JPOXMLDOC01-appb-M000002
 図7は、ノズル5の中心軸上におけるガスの流速(理論値)を示すグラフである。図7において、横軸は、中心軸上における基準位置(x=0)からの距離を示し、縦軸は、高圧ガスの流速(マッハ数)を示す。
 図7の実線は、高圧ガスが通過可能な断面の面積Ax=0が、スロート部5bの断面積Ax=Xよりも大きい場合(Ax=0>Ax=X)における高圧ガスの流速を示す。この場合、高圧ガスは、流速ゼロでノズル5の先細部5aに進入した後、徐々に加速され、断面積が最も狭小となるスロート部5bにおいて音速(マッハ1)に至る。その後、高圧ガスは末広部5cにおいてさらに加速され、超音速となってノズル5の先端から噴射される。
 一方、図7の破線は、高圧ガスが通過可能な断面の面積Ax=0が、スロート部5bの断面積Ax=Xよりも小さい場合(Ax=0<Ax=X)、即ち、粉末供給管12の先端面12aがスロート部5bに接近した場合における高圧ガスの流速を示す。この場合、スロート部5bの手前の先細部5aにおいてガスの流速が音速を超え、衝撃波が発生してしまう。
 しかしながら、先細部5aは、亜音速の流れに適した設計がなされているため、超音速のガスが先細部5aを通過することにより、先細部5aの壁面において生じた斜め衝撃波の影響を受けてしまう。衝撃波は等エントロピー流れではないため、この壁面からの影響により、ガスの流れが持つエネルギーに損失が生じてしまう。その結果、図7の破線に示すように、ガスが減速されてしまう。
 従って、ガスの流れを減速させないためには、高圧ガスが通過可能な断面の面積Ax=0が、スロート部5bの断面積Ax=Xよりも大きいという条件(Ax=0>Ax=X)が必要になる。この条件を満足するように、混合距離Xを定めれば良い。
(変形例1)
 図8は、本発明の実施の形態の変形例1に係る成膜装置の一部を示す断面図である。本変形例1に係る成膜装置は、図2に示すスプレーガン4の代わりに、図8に示すスプレーガン4Aを備える。スプレーガン4A以外の成膜装置の各部の構成は、上記実施の形態と同様である。
 図8に示すスプレーガン4Aは、図2に示すスプレーガン4が備えるガス粉末混合室10の代わりに、ガス粉末混合室20を備える。ガス粉末混合室20以外のスプレーガン4Aの各部の構成は、上記実施の形態と同様である。
 本変形例1に係る成膜装置は、ガス粉末混合室20を構成可能な、高さが異なる複数の筒状部材を備えている。これらの筒状部材のうちのいずれか1つをガス室11及びノズル5の基端部に連結することにより、ガス粉末混合室20が構成される。ガス粉末混合室20として用いる筒状部材を、高さが異なる別の筒状部材に交換することで、粉末供給管12の先端面12aの位置である混合位置とスロート部5bの位置との間の混合距離Xを変化させることができる。
(変形例2)
 図9は、本発明の実施の形態の変形例2に係る成膜装置の一部を示す断面図である。本変形例2に係る成膜装置は、図2に示すスプレーガン4の代わりに、図9に示すスプレーガン4Bを備える。スプレーガン4B以外の成膜装置の各部の構成は、上記実施の形態と同様である。
 図9に示すスプレーガン4Bは、図2に示すガス粉末混合室10、ガス室11、及び粉末供給管12の代わりに、ガス粉末混合室30、ガス室31、及び粉末供給管32を備える。ガス粉末混合室30、ガス室31、及び粉末供給管32以外のスプレーガン4Bの各部の構成は、上記実施の形態と同様である。
 ガス粉末混合室30は、筒状部材からなり、側面には長手方向に沿って複数の貫通孔33A、33B、33Cが形成されている。粉末供給管32は、これらの貫通孔33A、33B、33Cのいずれかに、変更可能に接続される。図9は、粉末供給管32が、最もノズル5に近い貫通孔33Aに接続された場合を示している。粉末供給管32が接続されていない貫通孔33B、33Cには、高圧ガス及び粉末の漏出を防ぐため、密閉栓34が嵌め込まれる。粉末供給管32の先端部は、ガス粉末混合室30の中心軸近傍において噴射方向がノズル5の長手方向と平行になるように湾曲している。
 ガス室31には、ガス供給管8を介して高圧ガスのみが供給される。この高圧ガスは、ガス室31とガス粉末混合室30とを仕切る仕切り部材35に設けられた少なくとも1つのガス通過口35aを介して、ガス粉末混合室30に導入される。
 このようなスプレーガン4Bに対し、ガス室31に高圧ガスを供給すると共に、粉末供給管32に材料の粉末を供給すると、粉末供給管32が接続された貫通孔33Aの近傍において、材料の粉末が高圧ガスと混合される。つまり、この貫通孔33Aの中心軸とスロート部5bを含む面との間の距離が、混合距離Xとなる。このようなスプレーガン4Bにおいては、粉末供給管32を接続する貫通孔33A、33B、33Cを変更することで、混合距離Xを変化させることができる。
 上記実施の形態に係る成膜装置1において、銅の基材にアルミニウム皮膜を形成する実験を行った。
(実験条件)
 材料の粉末として、平均粒径が約30μmの略球形のアルミニウム粉末を用いた。また、高圧ガスとして、窒素ガスを450℃に加熱し、5MPaに加圧してガス室11に導入した。混合距離Xについては、粉末供給管12の位置をx方向に沿って調節して、24mm、54mm、157mmの3種類に設定した。
(評価)
 50mm×50mm×1.5mmの銅基材に500μmのアルミニウム皮膜を形成したテストピースを作製し、このテストピースからアルミニウム皮膜を剥離する際の剥離強度を測定した。
 図10は、剥離強度測定の際に行った簡易引張試験法を説明するための模式図である。図10に示すように、銅基材41上にアルミニウム皮膜42を形成したテストピース40のアルミニウム皮膜42側に、接着剤44を用いてアルミピン43を固定する。そして、貫通孔46が設けられた固定台45上に、アルミピン43を貫通孔46に挿通させて載置し、アルミピン43を下方に引っ張り、銅基材41とアルミニウム皮膜42が剥離したときの引張力を剥離強度として評価した。
(結果)
 図11は、剥離強度の実測値を示すグラフである。なお、先に示した図5を対比すると、混合距離157mmの場合、粉末の温度は450℃近傍まで上昇している。それに対し、混合距離54mmの場合、粉末の温度は150℃近傍に留まり、混合距離24mmの場合、粉末の温度は60℃近傍に留まっている。図11に示すように、混合距離を短くすることで、剥離強度が格段に増加したことがわかる。
 以上説明したように、本実施の形態によれば、混合距離を変化させることで、ノズルから噴射させる材料の粉末及びガスの速度は高速に維持しつつ、材料の粉末の過度な加熱を防ぐことができる。それにより、材料の粉末の軟化や酸化を抑制することができるので、基材に堆積した皮膜の剥離強度を増加させ、緻密で高品質な皮膜を作製することが可能となる。
 1 成膜装置
 2 ガス加熱器
 3 粉末供給装置
 4、4A、4B スプレーガン
 5 ノズル
 5a 先細部
 5b スロート部
 5c 末広部
 5d 貫通路
 6、7 バルブ
 8 ガス供給管
 10、20、30 ガス粉末混合室
 11、31 ガス室
 12、32 粉末供給管
 12a 先端面
 13 粉末供給管支持部
 13a ガス通過口
 14 温度センサ
 15 圧力センサ
 34 密閉栓
 35 仕切り部材
 40 テストピース
 41 銅基材
 42 アルミニウム皮膜
 43 アルミピン
 44 接着剤
 45 固定台
 46 貫通孔
 100 基材
 101 皮膜

Claims (6)

  1.  材料の粉末を基材の表面に固相状態のまま吹き付けて堆積させることにより皮膜を形成する成膜方法であって、
     ノズルの内部に形成され、基端部から先端部に向かって縮径してから拡径する貫通路の径が最小の位置と、前記ノズルに導入される前記材料の粉末がガスと混合される混合位置との間の距離を、前記材料の粉末の種類に応じて調節する混合距離調節工程と、
     前記材料の粉末及び前記ガスを前記混合位置において混合して前記ノズルに導入し、前記最小の位置に向けて加速させ、前記材料の粉末及び前記ガスを前記ノズルの前記先端部から噴射する噴射工程と、
     前記先端部から噴射された前記材料の粉末及び前記ガスを前記基材に吹き付ける吹き付け工程と、
    を含むことを特徴とする成膜方法。
  2.  前記混合距離調節工程は、前記材料の粉末の融点が低いほど前記距離を短くする、ことを特徴とする請求項1に記載の成膜方法。
  3.  材料の粉末を基材の表面に固相状態のまま吹き付けて堆積させることにより皮膜を形成する成膜装置であって、
     前記材料の粉末をガスと混合する混合室と、
     基端部において前記混合室と連通し、該基端部から先端部に向かって縮径してから拡径する貫通路が内部に設けられ、前記混合室において混合された前記材料の粉末及び前記ガスを前記先端部から噴射するノズルと、
     前記混合室に前記材料の粉末を供給する粉末供給管と、
     前記混合室に前記ガスを供給するガス供給管と、
    を備え、
     前記貫通路の内径が最小の位置と、前記材料の粉末及び前記ガスが互いに混合される混合位置との間の距離が調節可能である、
    ことを特徴とする成膜装置。
  4.  前記粉末供給管は、前記材料の粉末が噴出される先端を前記混合室の後端側から前記ノズル側に向けて突出させるように設けられ、
     前記粉末供給管の前記先端の突出量が変更可能である、
    ことを特徴とする請求項3に記載の成膜装置。
  5.  前記粉末供給管は、前記材料の粉末が噴出される先端を前記混合室の後端側から前記ノズル側に向けて突出させるように設けられ、
     前記混合室を構成可能な、高さが異なる複数の筒状部材を備え、
     前記複数の筒状部材のうちのいずれか1つを前記ノズルの前記基端部と連結することにより、前記混合室が構成される、ことを特徴とする請求項3に記載の成膜装置。
  6.  前記混合室は、前記ノズルの前記基端部と連結された筒状部材であって、側面の長手方向に沿って複数の粉末供給口が設けられた筒状部材によって構成され、
     前記複数の粉末供給口のいずれかに前記粉末供給管を接続することにより、前記距離が変更される、ことを特徴とする請求項3に記載の成膜装置。
PCT/JP2016/068433 2015-06-24 2016-06-21 成膜方法及び成膜装置 WO2016208598A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16814368.3A EP3315212B1 (en) 2015-06-24 2016-06-21 Film forming method and film forming device
US15/575,499 US20180154382A1 (en) 2015-06-24 2016-06-21 Film forming method and film forming apparatus
KR1020207003786A KR20200016414A (ko) 2015-06-24 2016-06-21 성막 방법 및 성막 장치
CN201680035603.2A CN107708877B (zh) 2015-06-24 2016-06-21 成膜方法以及成膜装置
KR1020177033490A KR20170141737A (ko) 2015-06-24 2016-06-21 성막 방법 및 성막 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-126742 2015-06-24
JP2015126742A JP6716204B2 (ja) 2015-06-24 2015-06-24 成膜方法及び成膜装置

Publications (1)

Publication Number Publication Date
WO2016208598A1 true WO2016208598A1 (ja) 2016-12-29

Family

ID=57585088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068433 WO2016208598A1 (ja) 2015-06-24 2016-06-21 成膜方法及び成膜装置

Country Status (6)

Country Link
US (1) US20180154382A1 (ja)
EP (1) EP3315212B1 (ja)
JP (1) JP6716204B2 (ja)
KR (2) KR20170141737A (ja)
CN (1) CN107708877B (ja)
WO (1) WO2016208598A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6889862B2 (ja) * 2017-07-05 2021-06-18 プラズマ技研工業株式会社 コールドスプレーガン及びそれを備えたコールドスプレー装置
WO2019240782A1 (en) * 2018-06-13 2019-12-19 South Dakota Board Of Regents Repair of active leaks in industrial systems using cold spray
CN110665667A (zh) * 2019-11-14 2020-01-10 南京鹏昆环保科技有限公司 一种气粉混合的复合型喷嘴
CN112663041A (zh) * 2020-12-02 2021-04-16 湖北超卓航空科技股份有限公司 一种冷喷涂作业平台

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247639A (ja) * 2005-03-09 2006-09-21 Snt Corp Ltd コールドスプレー用ノズルならびにこれを利用したコールドスプレー装置及び方法
JP2009206443A (ja) * 2008-02-29 2009-09-10 Sinto Brator Co Ltd 電子回路基板の製造方法およびその電子回路基板
JP2011068942A (ja) * 2009-09-25 2011-04-07 Taiyo Nippon Sanso Corp 皮膜の形成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100776194B1 (ko) * 2005-03-09 2007-11-28 주식회사 솔믹스 콜드 스프레이용 노즐 및 이를 이용한 콜드 스프레이 장치
DE102007001477B3 (de) * 2007-01-09 2008-01-31 Siemens Ag Verfahren und Vorrichtung zum Kaltgasspritzen von Partikeln unterschiedlicher Festigkeit und/oder Duktilität
JP2008302311A (ja) 2007-06-08 2008-12-18 Ihi Corp コールドスプレー方法
DE102008019682A1 (de) * 2008-04-11 2009-10-15 Siemens Aktiengesellschaft Kaltgasspritzanlage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247639A (ja) * 2005-03-09 2006-09-21 Snt Corp Ltd コールドスプレー用ノズルならびにこれを利用したコールドスプレー装置及び方法
JP2009206443A (ja) * 2008-02-29 2009-09-10 Sinto Brator Co Ltd 電子回路基板の製造方法およびその電子回路基板
JP2011068942A (ja) * 2009-09-25 2011-04-07 Taiyo Nippon Sanso Corp 皮膜の形成方法

Also Published As

Publication number Publication date
EP3315212A1 (en) 2018-05-02
US20180154382A1 (en) 2018-06-07
CN107708877A (zh) 2018-02-16
JP2017006873A (ja) 2017-01-12
EP3315212B1 (en) 2020-09-02
KR20200016414A (ko) 2020-02-14
EP3315212A4 (en) 2019-03-06
JP6716204B2 (ja) 2020-07-01
CN107708877B (zh) 2021-08-10
KR20170141737A (ko) 2017-12-26

Similar Documents

Publication Publication Date Title
WO2016208598A1 (ja) 成膜方法及び成膜装置
JP4989859B2 (ja) コールドスプレー用ノズルならびにこれを利用したコールドスプレー装置及び方法
US7143967B2 (en) Method and system for cold gas spraying
KR100776194B1 (ko) 콜드 스프레이용 노즐 및 이를 이용한 콜드 스프레이 장치
US12091754B2 (en) Internally cooled aerodynamically centralizing nozzle (ICCN)
EP1888803B1 (en) Apparatus for gas-dynamic applying coatings and method of coating
US20170173611A1 (en) Cold spray nozzle assembly and a method of depositing a powder material onto a surface of a component using the assembly
US8651394B2 (en) Laval nozzle for thermal spraying and kinetic spraying
US20180185896A1 (en) Clad pipe and clad pipe manufacturing method
KR101361729B1 (ko) 물질의 적층을 위한 방법과 장치
WO2015133338A1 (ja) 成膜装置
JP2013049025A (ja) コールドスプレー用ノズル、及びコールドスプレー装置
JP5228149B2 (ja) 成膜用ノズルおよび成膜方法ならびに成膜部材
WO2021177437A1 (ja) スプレーノズル、ノズル先端部、及び溶射装置
KR100776537B1 (ko) 콜드 스프레이용 노즐 및 이를 이용한 콜드 스프레이 장치
WO2016068331A1 (ja) ノズル、成膜装置及び皮膜の形成方法
RU2650471C1 (ru) Способ напыления газотермических покрытий на внутренние поверхности и устройство для его реализации
KR20160080599A (ko) 상온 분말 분사 노즐
JP6588029B2 (ja) ノズル、成膜装置及び皮膜の形成方法
Klinkov et al. Cold spray deposition on inner side of pipe with aid of radial supersonic nozzle
KR101785049B1 (ko) 내식성 코팅물 및 그 제조방법
JP2013230457A (ja) ノズルおよび液体吐出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177033490

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575499

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016814368

Country of ref document: EP