WO2016208553A1 - 半導体デバイス電極の製造方法 - Google Patents

半導体デバイス電極の製造方法 Download PDF

Info

Publication number
WO2016208553A1
WO2016208553A1 PCT/JP2016/068327 JP2016068327W WO2016208553A1 WO 2016208553 A1 WO2016208553 A1 WO 2016208553A1 JP 2016068327 W JP2016068327 W JP 2016068327W WO 2016208553 A1 WO2016208553 A1 WO 2016208553A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
thin film
silicide
semiconductor device
electrode
Prior art date
Application number
PCT/JP2016/068327
Other languages
English (en)
French (fr)
Inventor
大見 俊一郎
政広 泰
Original Assignee
国立大学法人東京工業大学
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 田中貴金属工業株式会社 filed Critical 国立大学法人東京工業大学
Priority to US15/574,942 priority Critical patent/US20180174850A1/en
Priority to KR1020177035199A priority patent/KR20180002837A/ko
Publication of WO2016208553A1 publication Critical patent/WO2016208553A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76889Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by forming silicides of refractory metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/62Electrodes ohmically coupled to a semiconductor

Definitions

  • the present invention relates to a method for manufacturing a silicide electrode in a semiconductor device such as a MOSFET.
  • a gate electrode and a source / drain region are formed on a silicon substrate, and then a silicide electrode is formed in the source / drain region in order to form a metal / semiconductor junction.
  • the silicide electrode is formed by depositing a metal thin film on the substrate by sputtering or the like and then heat-treating it to diffuse silicon into the metal thin film and silicidize.
  • titanium silicide (TiSi 2 ) and cobalt silicide (CoSi 2 ) are generally known in the past.
  • NiSi nickel silicide
  • platinum silicide (PtSi) that does not cause a phase transition in the heat treatment during silicidation is also expected.
  • a metal thin film of silicide such as Ni and heat-treat it.
  • this heat processing temperature is based also on a metal, it is about 300 degreeC or more and about 600 degreeC. Therefore, there is a concern about the formation of an insulating film due to oxidation of the metal as silicidation progresses in the heat treatment process.
  • the surface form of the silicide electrode may be deteriorated due to oxidation of the metal, which may increase the electrical resistance.
  • the second metal compound film may be referred to as a Cap layer (cap layer)).
  • TiN titanium nitride
  • TiC titanium carbide
  • the present invention has been made based on the above background, and relates to a method of forming a silicide electrode on a silicon substrate.
  • the present invention relates to the formation of an insulating film by oxidation of a first metal thin film formed during silicidation. Provided is one that can more effectively suppress changes in surface morphology.
  • the present inventors examined the constituent material of the Cap layer for protecting the first metal in order to solve the above problems. As a result, the present inventors have conceived the present invention that hafnium (Hf) is particularly effective as the second metal.
  • the present invention provides a step of forming a first thin film made of a first metal on a substrate containing Si, and a second thin film made of a compound of a second metal on the first thin film.
  • a semiconductor device electrode comprising: a step of forming; and a step of forming a first metal silicide electrode by heat treatment, wherein the second metal is applied with hafnium (Hf).
  • Hf hafnium
  • the first metal thin film for manufacturing the silicide electrode is formed on the Si portion of the substrate.
  • a Si substrate is usually used as a device substrate, and a source / drain is formed. Therefore, a diffusion layer is formed by doping a corresponding region with a dopant.
  • the first thin film is formed on this source / drain region.
  • the diffusion layer is formed by a conventional general method.
  • the gate electrode is also formed in accordance with the prior art.
  • the first metal constituting the silicide electrode is preferably Ti, Co, Ni, Pt or an alloy thereof.
  • consideration is given to the versatility of Ti silicide and Co silicide, Ni silicide characteristics for extremely reducing the junction depth, and the good heat resistance of Pt silicide.
  • the silicide of an alloy of Pt and Hf (PtHf) also has a work function near midgap with respect to Si (n-Si or p-Si) constituting the substrate, and is useful from the viewpoint that the barrier height can be reduced. This is a silicide electrode.
  • the film thickness of the first thin film is determined by the junction depth required for the device and is not related to the suppression of oxidation of the first metal, which is the subject matter of the present invention. Therefore, the thickness of the first thin film is not limited by the present application.
  • the method for forming the first metal thin film is not particularly limited, and any of a physical method such as a sputtering method and a vacuum evaporation method and a chemical method such as a chemical vapor deposition method (CVD method) can be applied.
  • the sputtering method is preferable.
  • the thin film is formed by magnetron sputtering, ion beam sputtering, electron cyclotron resonance (ECR) sputtering, mirrortron sputtering, radio frequency (RF) sputtering, direct current (DC) sputtering, or the like.
  • Hf is applied as the second metal.
  • Hf has a characteristic that it is relatively easy to develop and maintain an amorphous phase during compound formation, and structural changes due to crystallization hardly occur even when heated. . Therefore, when compared with TiN or the like conventionally used as a Cap layer, the Hf compound has high heat resistance and excellent barrier performance against the first thin film.
  • HfN As specific examples of Hf compounds, HfN, HfW, HfB, and the like can be applied. Among these Hf compounds, HfN is more preferable because it can form a film having high amorphous phase and high heat resistance. In addition, HfN has good etching properties and has an advantage that the removal process after silicidation can be simplified.
  • the thickness of the Hf compound thin film is preferably 10 nm or more and 20 nm or less. This is because the film has high oxidation resistance and is difficult to crystallize.
  • the method for forming the Hf compound thin film is not particularly limited as in the case of the first thin film, but the sputtering method is preferred. Reactive sputtering is applied to form a nitride film.
  • the first metal is silicided by heat treatment (annealing).
  • This heat treatment is preferably performed at 400 ° C. or higher and 600 ° C. or lower. This is because the heat treatment temperature can reduce the resistivity.
  • the heat treatment atmosphere is preferably a non-oxidizing atmosphere (vacuum atmosphere, inert gas atmosphere, reducing atmosphere).
  • the heat treatment is preferably performed using a rapid heat treatment apparatus.
  • the Hf compound thin film which is the second thin film, serves to barrier the first metal during silicidation by annealing, and thus completes its role upon completion of annealing.
  • the removal of the Hf compound thin film is preferably by wet etching.
  • Preferred etching solutions include dilute hydrofluoric acid and buffered hydrofluoric acid.
  • the etching solution is selected according to the type of the first metal, and examples thereof include dilute hydrofluoric acid, aqua regia, and sulfuric acid.
  • the first metal silicide electrode is formed on the substrate.
  • the subsequent steps follow conventional processes.
  • the present invention optimizes the constituent material of the second metal compound (Cap layer) that suppresses the oxidation of the first metal thin film to be silicided when manufacturing the silicide electrode of the semiconductor device.
  • the Hf compound applied in the present invention has a barrier performance superior to that of the prior art, and can cope with the manufacture of a miniaturized / thinned silicide film.
  • First Embodiment As a preliminary test, Pt is formed as a first metal to form Pt silicide on an Si substrate, and a case where a HfN thin film is formed thereon and not formed is used. The surface morphology of the silicide electrode after annealing was examined.
  • FIG. 1 shows a comparative test process according to this embodiment.
  • a Si substrate p-Si (100)
  • a Pt thin film was formed to a thickness of 10 nm by sputtering.
  • the HfN thin film was formed on the Pt thin film.
  • the HfN thin film was formed by reactive sputtering using a Hf target and setting the film formation atmosphere to Kr / N 2 (film thickness 20 nm).
  • the comparative example was subjected to silicidation without forming this HfN thin film.
  • silicidation was performed by heat treatment.
  • the silicidation conditions were a processing temperature of 450 ° C., a processing atmosphere in nitrogen gas, and a processing time of 30 minutes.
  • FIG. 2 is a photograph showing the observation results.
  • the silicide film of the comparative example in which the Cap layer made of HfN was not applied had irregularities formed on the surface, and was judged to be morphologically defective.
  • such a morphological defect was not found in the silicide film of this embodiment. It was confirmed that the barrier effect by the HfN thin film worked effectively during the annealing for silicidation.
  • the RMS of the Pt silicide alloy film of this embodiment to which the Cap layer was applied was 2 .26 nm.
  • the RMS of the Pt silicide film of the comparative example in which the Cap layer was not applied was 3.12 nm.
  • FIG. 3 schematically illustrates a process for forming a CBKR structure while applying an HfN thin film.
  • a change in interface resistance was also examined when annealing with a forming gas (N 2 /4.9% H 2 ) was performed after forming the CBKR structure.
  • Table 1 shows the measurement results of the interface resistance between the silicide electrode and the Al electrode by the BKR method.
  • the contact resistance can be reduced by applying the HfN thin film as the Cap layer in manufacturing the silicide electrode.
  • the FGA is originally an operation for improving the electrical contact between Al and the silicide electrode to improve the interface resistance. It was confirmed that the application of the Cap layer made of the HfN thin film can maintain the action of the FGA, and the contact resistance can be greatly reduced by both.
  • the present invention when manufacturing a silicide electrode, a higher quality than the conventional one can be manufactured.
  • the present invention is suitable as a process for manufacturing a silicide electrode in various semiconductor devices such as MOSFETs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本発明は、Siを含む基板上に第1の金属からなる第1の薄膜を形成する工程と、前記第1の薄膜の上に、第2の金属の化合物からなる第2の薄膜を形成する工程と、熱処理することで第1の金属のシリサイドからなる電極を形成する工程と、を含む半導体デバイス電極の製造方法において、前記第2の金属はハフニウム(Hf)を適用することを特徴とする半導体デバイス電極の製造方法である。この第2の金属の化合物としては、HfN、HfW、HfB等が好適である。本発明によれば、シリコン基板上にシリサイド電極を形成する際、シリサイド化する予定の金属薄膜の酸化を有効に抑制することができる。

Description

半導体デバイス電極の製造方法
 本発明は、MOSFET等の半導体デバイスにおいて、シリサイド電極を製造するための方法に関する。
 MOSFET等の半導体デバイスにおいては、シリコン基板上にゲート電極とソース/ドレイン領域が形成され、その後、金属/半導体接合を形成するために前記ソース/ドレイン領域にシリサイド電極を形成する。シリサイド電極の製造は、基板にスパッタリング法等で金属薄膜を蒸着した後、熱処理をしてシリコンを金属薄膜に拡散させてシリサイド化することで形成される。シリサイド電極の構成に関しては、古くはチタンシリサイド(TiSi)やコバルトシリサイド(CoSi)が一般に知られている。また、デバイスの微細化・薄型化に対応するため、ソース/ドレイン領域における接合深さの極浅化が可能なSi消費量の少ないシリサイドとしてニッケルシリサイド(NiSi)が用いられている。更に、シリサイド化の際の熱処理における相転移の恐れのない白金シリサイド(PtSi)も期待されている。
 上記の通り、シリサイド電極の製造にあたっては、Ni等のシリサイド化する金属の薄膜を形成し、これを熱処理することが必要となる。この熱処理温度は金属にもよるが、300℃以上600℃程度である。そのため、熱処理過程でシリサイド化の進行と共に、当該金属の酸化による絶縁膜形成が懸念される。また、当該金属の酸化によりシリサイド電極の表面形態が悪化し、電気抵抗を上昇させるおそれもある。
 シリサイド電極製造時の絶縁膜形成やシリサイド膜の形態悪化を抑制するため、従来から、熱処理前にシリサイド化する金属(第1の金属)の薄膜の上に他の金属(第2の金属)の化合物膜を形成し、第1の金属の酸化を抑制する手法が提案されている(以下、この第2の金属の化合物膜をCap層(キャップ層)と称するときがある。)。Cap層となる金属化合物としては、これまで、窒化チタン(TiN)、炭化チタン(TiC)等の有用性が報告されている。
特開平7-38104号公報 特開平9-153616号公報
 近年の半導体デバイスの設計においては、微細化・薄型化に対応する要求がより高くなっており、シリサイド電極もこの傾向に追随する必要がある。そのため、第1の金属の膜厚の低減やコンタクトエリアの狭小化が図られているが、その様な中でシリサイド電極の低抵抗化および平坦化のためにはキャップ層のバリア能力の向上が必要となる。
 本発明は、上記のような背景のもとなされたものであり、シリコン基板上にシリサイド電極を形成する方法に関し、シリサイド化の際に形成した第1の金属薄膜の酸化による絶縁膜の形成・表面形態の変化をより有効に抑制することができるものを提供する。
 本発明者等は、上記課題を解決すべく、第1金属を保護するためのCap層の構成材料について検討を行った。そしてその結果、第2の金属としてハフニウム(Hf)が特に有効であるとして本発明に想到した。
 即ち、本発明は、Siを含む基板上に第1の金属からなる第1の薄膜を形成する工程と、前記第1の薄膜の上に、第2の金属の化合物からなる第2の薄膜を形成する工程と、熱処理することで第1の金属のシリサイドからなる電極を形成する工程と、を含む半導体デバイス電極の製造方法において、前記第2の金属はハフニウム(Hf)を適用することを特徴とする半導体デバイス電極の製造方法である。以下、本発明に係る半導体デバイス電極の製造方法について説明する。
 シリサイド電極を製造するための第1の金属の薄膜は、基板のSi部分の上に形成される。シリサイド電極の適用が想定されるMOSFETでは、通常、デバイスの基板としてSi基板を使用し、ソース/ドレインを形成するため、対応する領域にドーパントをドープして拡散層を形成する。第1の薄膜は、このソース/ドレイン領域の上に形成される。拡散層の形成方法は従来からの一般的な手法でなされる。また、ソース/ドレイン領域の形成と共に、ゲート電極の形成も従来技術に従ってなされる。
 シリサイド電極を構成する第1の金属は、Ti、Co、Ni、Ptのいずれか又はこれらの合金が好ましい。上記の通り、TiシリサイドやCoシリサイドの汎用性、接合深さの極浅化を図るためのNiシリサイド特性、更に、Ptシリサイドの良好な耐熱性を考慮するものである。また、PtとHfとの合金(PtHf)のシリサイドも基板を構成するSi(n-Si又はp-Si)に対してmidgap付近の仕事関数を有し、障壁高さを小さくできるといった観点から有用なシリサイド電極である。
 第1の薄膜の膜厚に関しては、デバイスに対して要求される接合深さ等により決定されるものであり、本発明の主題事項である第1の金属の酸化抑制とは無関係である。よって、第1の薄膜の膜厚は、本願で制限されることはない。
 第1の金属の薄膜形成の方法は特に限定されるものではなく、スパッタリング法や真空蒸着法等の物理的方法や、化学気相蒸着法(CVD法)等の化学的方法のいずれも適用できるが、好ましくはスパッタリング法である。薄膜形成におけるスパッタリング形式については特に制限は無く、マグネトロンスパッタ、イオンビームスパッタ、電子サイクロトロン共鳴(ECR)スパッタ、ミラートロンスパッタ、高周波(RF)スパッタ、直流(DC)スパッタ等で薄膜形成を行う。
 そして、第1の薄膜を形成した後、その上に第2の金属の化合物の薄膜を形成する。本発明では、この第2の金属としてHfを適用する。本発明者等によれば、Hfは、化合物形成の際に、非晶質相の発現とその維持が比較的容易であり、加熱を受けても結晶化による構造変化が生じ難いという特性がある。そのため、従来からCap層として使用されてきたTiN等と比較したとき、Hf化合物は耐熱性が高く、第1の薄膜に対するバリア性能が優れている。
 そして、Hfの化合物の具体例としては、HfN、HfW、HfB等を適用することができる。これらHf化合物の中でも、非晶質相の発現性が高く耐熱性の良好な膜が形成できるHfNがより好ましい。また、HfNは、エッチング性も良好であり、シリサイド化後の除去工程を簡潔にすることができるというメリットもある。
 このHf化合物薄膜の厚さとしては、10nm以上20nm以下とするのが好ましい。酸化耐性が高く、かつ結晶化しにくい膜厚だからである。
 Hf化合物薄膜の形成方法についても、第1の薄膜と同様に特に制約はないが、スパッタリング法が好ましい。窒化物膜を形成することから、反応性スパッタリングが適用される。
 第2の薄膜であるHf化合物薄膜を形成した後、熱処理(アニール)により第1の金属をシリサイド化する。この熱処理は、400℃以上600℃以下で行うのが好ましい。抵抗率を低減できる熱処理温度だからである。熱処理雰囲気は、非酸化性雰囲気(真空雰囲気、不活性ガス雰囲気、還元雰囲気)とするのが好ましい。また、熱処理は高速熱処理装置を用いて行うことが好ましい。
 アニール後は、第2の薄膜を除去する工程を含むことが好ましい。第2の薄膜であるHf化合物薄膜は、アニールによるシリサイド化の際に第1の金属をバリアするためのものであるので、アニール完了によりその役目を完了するからである。Hf化合物薄膜の除去は、ウエットエッチングによるのが好ましい。好ましいエッチング液としては、希フッ酸、緩衝フッ酸等が挙げられる。
 また、Hf化合物薄膜の除去と共に、アニール後のシリサイド化していない未反応の第1の金属も除去することが好ましい。この未反応の第1金属の除去もエッチングによるが、エッチング液は第1の金属の種類に応じて選択され、希フッ酸、王水、硫酸等が挙げられる。
 以上の工程により、基板上に第1の金属のシリサイド電極が形成される。半導体デバイスを製造するに当たり、その後の工程は従来プロセスに従う。
 本発明は、半導体デバイスのシリサイド電極の製造の際、シリサイド化する第1の金属薄膜の酸化を抑制する第2の金属の化合物(Cap層)の構成材料を最適化するものである。本発明で適用するHf化合物は、従来技術よりも優れたバリア性能を有し、微細化・薄膜化されたシリサイド膜製造にも対応可能である。
第1実施形態における評価試験のための試料の製造工程を説明する図。 第1実施形態で製造したシリサイド(PtSi)電極の表面形態の写真。 第2実施形態で製造したCBKR構造の製造工程を説明する図。
 以下、本発明の実施形態について説明する。
第1実施形態:本実施形態では、予備的試験としてSi基板の上にPtシリサイドを形成するために第1の金属としてPtを成膜し、その上にHfN薄膜を形成した場合としない場合におけるアニーリング後のシリサイド電極の表面形態を検討した。
 図1に本実施形態に係る比較試験の工程を示す。本実施形態では、Si基板(p-Si(100))を用意し、洗浄後、スパッタリング法にてPt薄膜を10nm成膜した。
 そして、本実施形態では、Pt薄膜の上にHfN薄膜を形成した。HfN薄膜は、Hfターゲットを用い、成膜雰囲気をKr/N2とする反応性スパッタリングにて成膜した(膜厚20nm)。比較例については、このHfN薄膜を形成することなくシリサイド化に供した。
 次に、熱処理によりシリサイド化を行った。シリサイド化の条件は、処理温度として450℃とし、処理雰囲気は窒素ガス中とし、処理時間を30分間とした。
 Ptシリサイド形成後、エッチングによりHfN膜及び未反応のPtを除去してデバイスとした。まず、希フッ酸(1%)でHfNを除去した後、希釈王水(HCl:HNO:HO=3:2:1、温度40℃)により未反応Ptを除去した。その後、750℃で処理雰囲気窒素ガス中とした熱処理を30秒間行った。
 以上のようにしてシリサイド膜を形成したSi基板について、シリサイド膜の表面形態をSEMにて観察した。図2は、この観察結果を示す写真である。図2から分かるように、HfNからなるCap層を適用しなかった比較例のシリサイド膜は、表面に凹凸が形成されており形態的不良と判定された。これに対し、本実施形態のシリサイド膜にはかかる形態的不良は見られなかった。シリサイド化のためのアニールの際、HfN薄膜によるバリア効果が有効に作用したことが確認できた。
 これらのシリサイド合金膜について、AFM(原子間力顕微鏡)により自乗平均表面粗さ(RMS)を測定したところ(走査幅3μm)、Cap層を適用した本実施形態のPtシリサイド合金膜のRMSは2.26nmであった。これに対してCap層を適用しない比較例のPtシリサイド膜のRMSは3.12nmであった。
第2実施形態:ここでは、HfN薄膜の有用性に関し、実際の半導体デバイス素子の製造工程への効果を再現・評価するため、クロスブリッジケルビン抵抗法(cross-bridge Kelvin resistance:以下、CBKRと称する)による4端子ケルビンテスト構造におけるコンタクト抵抗(界面接触抵抗)を評価した。図3は、HfN薄膜を適用しつつCBKR構造を形成するための工程を概略説明するものである。尚、この評価試験では、CBKR構造を形成後、フォーミングガス(N/4.9%H)によるアニール(Forming Gas Anneal:FGA)を行った場合の界面抵抗の変化も検討した。表1は、BKR法によるシリサイド電極とAl電極との界面抵抗の測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、シリサイド電極製造の際のCap層としてHfN薄膜を適用すること、でコンタクト抵抗が低減できることが確認できる。また、FGAとの関連についてであるが、本来、FGAは、Alとシリサイド電極との電気的接触を改善し界面抵抗を良好にする操作である。HfN薄膜からなるCap層の適用は、FGAの作用を維持することができ、両者によりコンタクト抵抗は大きく低減できることが確認できた。
 本発明によれば、シリサイド電極を製造するに際し、従来以上に高品質のものを製造することができる。本発明は、MOSFET等の各種半導体デバイスにおけるシリサイド電極の製造プロセスとして好適である。

Claims (4)

  1.  Siを含む基板上に第1の金属からなる第1の薄膜を形成する工程と、
     前記第1の薄膜の上に、第2の金属の化合物からなる第2の薄膜を形成する工程と、
     熱処理することで第1の金属のシリサイドからなる電極を形成する工程と、を含む半導体デバイス電極の製造方法において、
     前記第2の金属はハフニウム(Hf)を適用することを特徴とする半導体デバイス電極の製造方法。
  2.  第2の金属の化合物は、HfN、HfW、又はHfBである請求項1記載の半導体デバイス電極の製造方法。
  3.  第1の金属は、Ti、Co、Ni、Ptのいずれか又はこれらの合金である請求項1又は請求項2記載の半導体デバイス電極の製造方法。
  4.  熱処理後、第2の薄膜を除去する工程を含む請求項1~請求項3のいずれかに記載の半導体デバイス電極の製造方法。
     
PCT/JP2016/068327 2015-06-26 2016-06-21 半導体デバイス電極の製造方法 WO2016208553A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/574,942 US20180174850A1 (en) 2015-06-26 2016-06-21 Production method for semiconductor device electrode
KR1020177035199A KR20180002837A (ko) 2015-06-26 2016-06-21 반도체 디바이스 전극의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-128775 2015-06-26
JP2015128775A JP6086550B2 (ja) 2015-06-26 2015-06-26 半導体デバイス電極の製造方法

Publications (1)

Publication Number Publication Date
WO2016208553A1 true WO2016208553A1 (ja) 2016-12-29

Family

ID=57585756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068327 WO2016208553A1 (ja) 2015-06-26 2016-06-21 半導体デバイス電極の製造方法

Country Status (5)

Country Link
US (1) US20180174850A1 (ja)
JP (1) JP6086550B2 (ja)
KR (1) KR20180002837A (ja)
TW (1) TWI609415B (ja)
WO (1) WO2016208553A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738104A (ja) * 1993-07-22 1995-02-07 Toshiba Corp 半導体装置の製造方法
JP2005109034A (ja) * 2003-09-29 2005-04-21 Toshiba Corp 半導体装置及びその製造方法
JP2009277961A (ja) * 2008-05-16 2009-11-26 Renesas Technology Corp Cmisトランジスタの製造方法
JP2010109143A (ja) * 2008-10-30 2010-05-13 Tohoku Univ コンタクト形成方法、半導体装置の製造方法、および半導体装置
JP2011146622A (ja) * 2010-01-18 2011-07-28 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005000084A1 (de) * 2005-07-04 2007-01-18 Hilti Ag Verstellvorrichtung zur Drehrichtungsumkehr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738104A (ja) * 1993-07-22 1995-02-07 Toshiba Corp 半導体装置の製造方法
JP2005109034A (ja) * 2003-09-29 2005-04-21 Toshiba Corp 半導体装置及びその製造方法
JP2009277961A (ja) * 2008-05-16 2009-11-26 Renesas Technology Corp Cmisトランジスタの製造方法
JP2010109143A (ja) * 2008-10-30 2010-05-13 Tohoku Univ コンタクト形成方法、半導体装置の製造方法、および半導体装置
JP2011146622A (ja) * 2010-01-18 2011-07-28 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法

Also Published As

Publication number Publication date
JP6086550B2 (ja) 2017-03-01
TW201705234A (zh) 2017-02-01
JP2017017050A (ja) 2017-01-19
US20180174850A1 (en) 2018-06-21
TWI609415B (zh) 2017-12-21
KR20180002837A (ko) 2018-01-08

Similar Documents

Publication Publication Date Title
EP2149908B1 (en) Replacement metal gate transistors with reduced gate oxide leakage
EP2031644B1 (en) Method for improving germanide growth
JP2004140315A (ja) サリサイド工程を用いる半導体素子の製造方法
US20150028431A1 (en) Mol insitu pt rework sequence
US7344978B2 (en) Fabrication method of semiconductor device
JP6086550B2 (ja) 半導体デバイス電極の製造方法
US20120264311A1 (en) Surface treatment method for germanium based device
US10497607B2 (en) Manufacturing method of interconnect structure
JP6455847B2 (ja) 半導体デバイス電極用のシリサイド合金膜及びシリサイド合金膜の製造方法
CN110911280A (zh) 一种金属硅化物的形成方法
US8946081B2 (en) Method for cleaning semiconductor substrate
JP3639009B2 (ja) Tiシリサイド層を有する半導体装置の製造方法
US8835298B2 (en) NiSi rework procedure to remove platinum residuals
CN100466199C (zh) 清除残余金属的方法
KR950006974B1 (ko) 반도체장치의 제조방법
US20090085167A1 (en) Methods for Forming Metal-Germanide Layers and Devices Obtained Thereby
KR20000040109A (ko) 반도체 소자의 제조방법
KR101024634B1 (ko) 반도체 소자의 제조 방법
JP3767583B2 (ja) 半導体装置の製造方法
TW466693B (en) Manufacture method of metal salicide
KR101726995B1 (ko) 콘택 형성 방법
JP2006147897A (ja) 半導体装置の製造方法
JPH0536982A (ja) Mosfetの構造と製造方法
Han et al. Thermal stability of nickel-cobalt multilayer silicide
KR20050099326A (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15574942

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177035199

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814323

Country of ref document: EP

Kind code of ref document: A1