WO2016208392A1 - 送電装置及び非接触給電システム - Google Patents

送電装置及び非接触給電システム Download PDF

Info

Publication number
WO2016208392A1
WO2016208392A1 PCT/JP2016/067026 JP2016067026W WO2016208392A1 WO 2016208392 A1 WO2016208392 A1 WO 2016208392A1 JP 2016067026 W JP2016067026 W JP 2016067026W WO 2016208392 A1 WO2016208392 A1 WO 2016208392A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
circuit
power
resonance
coil
Prior art date
Application number
PCT/JP2016/067026
Other languages
English (en)
French (fr)
Inventor
義弘 生藤
昭博 奥井
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to EP16814163.8A priority Critical patent/EP3316450B1/en
Priority to US15/736,425 priority patent/US10778046B2/en
Publication of WO2016208392A1 publication Critical patent/WO2016208392A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils

Definitions

  • the state where the resonance circuit TT [1] is connected to the NFC communication circuit 120 via the switching circuit 110 and the resonance circuit RR is connected to the NFC communication circuit 220 via the switching circuit 210 is referred to as a communication connection state.
  • NFC communication is possible in the communication connection state.
  • the NFC communication circuit 120 can supply an AC signal (AC current) having a reference frequency to the resonance circuit TT [1].
  • NFC communication between the devices 1 and 2 is performed in a half-duplex manner.
  • a resonance frequency changing circuit 240 ⁇ / b> A in FIG. 9 is an example of a resonance frequency changing circuit as the resonance state changing circuit 240.
  • the resonance frequency changing circuit 240A includes a series circuit of a capacitor 241 and a switch 242, and one end of the series circuit is commonly connected to one end of each of the capacitor RC and the coil RL , while the other end of the series circuit is the capacitor R. C and the other end of the coil RL are commonly connected.
  • the switch 242 is turned on or off under the control of the control circuit 250.
  • the power receiving side capacitance that determines the resonance frequency of the resonance circuit RR is the above-described combined capacitance.
  • the frequency is such that the resonance circuit RR does not function as a load of the power transmission side coil TL when the switch 242 is on (that is, sufficient magnetic resonance does not occur between the resonance circuit TT [i] and RR).
  • the resonance frequency (that is, the frequency f M ) of the resonance circuit RR when the switch 242 is on is several hundred kHz to 1 MHz.
  • the power supply apparatus 1 transmits an authentication signal 550 to the power supply target apparatus by NFC communication.
  • the authentication signal 550 includes, for example, a signal for notifying the power supply target device that power transmission will be performed from now on.
  • the electronic device 2 (IC 200) that has received the authentication signal 550 transmits a response signal 560 corresponding to the authentication signal 550 to the power supply device 1 by NFC communication.
  • the response signal 560 includes, for example, a signal notifying that the content indicated by the authentication signal 550 has been recognized or a signal giving permission to the content indicated by the authentication signal 550.
  • the power supply device 1 (IC 100) that has received the response signal 560 executes the power transmission operation by connecting the power transmission circuit 130 to the resonance circuit TT [1], thereby realizing the power transmission 570.
  • step S111 the control circuit 160 transmits the authentication signal 550 to the power supply target device by NFC communication using the communication circuit 120 and the resonance circuit TT [1], and then waits for reception of the response signal 560 in step S112. .
  • step S113 the control circuit 160 connects the power transmission circuit 130 to the resonance circuit TT [1] through the control of the switching circuit 110, and the process proceeds to step S114.
  • step S115 the control circuit 160 proceeds to step S115.
  • the control circuit 250 confirms the state of the battery 21, and if the battery 21 is not fully charged and no abnormality is recognized in the battery 21, a signal for receiving power or requesting power transmission is sent to the response signal 520. include. On the other hand, if battery 21 is fully charged or if abnormality is recognized in battery 21, a signal indicating that power cannot be received is included in response signal 520.
  • the time t B is predetermined or specified in the authentication signal 550 so that the period during which the power receiving operation is performed substantially coincides with the period during which the power transmission operation is performed in the power supply device 1. .
  • the control circuit 250 monitors the charging current to the battery 21 and determines that the power transmission operation is terminated when the charging current value becomes equal to or lower than the predetermined value, and stops the power reception operation and step S201. You may make it perform transfer to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

送電装置(1)から受電装置(2)に対し磁界共鳴方式で電力を送電可能な非接触給電システムにおいて、送電装置(1)は、互いに大きさが異なるコイル(T)を有して構成され且つ所定の基準周波数に共振周波数が設定された第1~第n共振回路(TT[1]~TT[n])を備える。送電に先立って第1~第n共振回路に順次テスト磁界を発生させて各共振回路のコイルに流れる電流の振幅を検出し、得られた第1~第n振幅検出値に基づいて異物の存否を判断して送電の実行制御を行う。

Description

送電装置及び非接触給電システム
 本発明は、送電装置及び非接触給電システムに関する。
 近接無線通信の一種として、13.56MHzを搬送波周波数として用いるNFC(Near field communication)による無線通信がある。一方、NFC通信に利用されるコイルを利用して、磁界共鳴方式で非接触給電を行う技術も提案されている。
 磁界共鳴を利用した非接触給電では、送電側コイルを含む送電側共振回路を給電機器に配置すると共に受電側コイルを含む受電側共振回路を受電機器としての電子機器に配置し、それらの共振回路の共振周波数を共通の基準周波数に設定しておく。そして、送電側コイルに交流電流を流すことで送電側コイルに基準周波数の交番磁界を発生させる。すると、この交番磁界が、基準周波数で共鳴する受電側共振回路に伝わって受電側コイルに交流電流が流れる。つまり、送電側コイルを含む送電側共振回路から受電側コイルを含む受電側共振回路へ電力が伝達されることになる。
特開2014-33504号公報
 通常は、給電機器に対応する電子機器のみが給電機器の給電台(給電マットや給電クレードル)上に配置されることで、所望の給電(電力伝送)が行われるのであるが、給電機器に対応しない異物が誤って給電台上に配置されることがある。ここにおける異物は、例えば、NFC通信に応答しない13.56MHzのアンテナコイルを持つ無線ICタグを有した物体(カード等)である。また例えば、異物は、NFC通信機能自体は有しているものの、その機能が無効とされている電子機器である。例えば、NFC通信機能を有するスマートホンではあるが、ソフトウェア設定で当該機能をオフにされているスマートホンは、異物となりうる。また、NFC通信機能が有効となっているスマートホンでも、受電機能を持たないスマートホンは異物に分類される。
 このような異物が給電台上に配置されている状態において、仮に、給電機器が送電動作を行うと、送電側コイルが発生した強磁界にて異物が破壊されることある。例えば、送電動作時における強磁界は、給電台上の異物のコイルの端子電圧を100V~200Vまで増大させることもあり、そのような高電圧に耐えられるように異物が形成されていなければ、異物が破壊される。
 異物の破損等を回避するためには異物の存否を検出して送電の実行制御を行うことが有益であるが、この際、異物が持つコイルの形状(大きさを含む)として様々な形状が存在することへの考慮が重要となる(その重要性については後に詳説される)。その考慮が成された、異物の破損等を効果的に防止可能な装置及びシステムの提案が切望される。
 そこで本発明は、異物の破損等の防止に寄与する送電装置及び非接触給電システムを提供することを目的とする。
 本発明に係る送電装置は、受電装置に対し磁界共鳴方式で電力を送電可能な送電装置において、互いに大きさが異なるコイルを有して構成され且つ所定の基準周波数に共振周波数が設定された第1~第n共振回路と(nは2以上の整数)、前記第1~第n共振回路の何れかに選択的に交流信号を供給する送電回路と、前記交流信号が供給された共振回路のコイルに流れる電流の振幅を検出する検出回路と、前記送電回路を制御する制御回路と、を備え、前記制御回路は、前記送電に先立ち前記交流信号を前記第1~第n共振回路に順次供給させて前記検出回路から前記第1~第n共振回路に対応する第1~第n振幅検出値を取得し、前記第1~第n振幅検出値に基づいて、前記送電の実行制御を行うことを特徴とする。
 具体的には例えば、前記送電装置において、前記制御回路は、前記第1~第n振幅検出値に基づいて、前記受電装置と異なり且つ前記基準周波数に共振周波数が設定された共振回路を含む異物の存否を判断し、前記異物が存在しないと判断した場合に前記送電の実行を許可する一方、前記異物が存在すると判断した場合に前記送電の実行を禁止すると良い。
 また例えば、前記送電装置において、前記制御回路は、前記第1~第n振幅検出値の夫々を所定の基準値と比較することにより前記送電の実行可否を判断と良い。
 或いは例えば、前記送電装置において、前記制御回路は、前記第1~第n振幅検出値の最小値を所定の基準値と比較することにより前記送電の実行可否を判断しても良い。
 或いは例えば、前記送電装置において、前記送電は、前記送電回路及び前記第1共振回路を用いて行われ、前記送電に先立ち前記交流信号を各共振回路に供給したときに各共振回路のコイルにて発生する磁界の磁界強度は、前記送電の際に前記第1共振回路のコイルにて発生する磁界の磁界強度よりも小さいと良い。
 また例えば、前記受電装置は、前記基準周波数に共振周波数が設定された受電側共振回路を有して該受電側共振回路により電力を受電可能であり、前記第1~第n振幅検出値の取得が行われる際には、前記送電装置からの通信による信号に従い、前記受電装置にて前記受電側共振回路の共振周波数が前記基準周波数から変更される又は前記受電側共振回路のコイルが短絡されると良い。
 本発明に係る非接触給電システムは、送電装置から受電装置に対し磁界共鳴方式で電力を送電可能な非接触給電システムにおいて、前記送電装置は、互いに大きさが異なるコイルを有して構成され且つ所定の基準周波数に共振周波数が設定された第1~第n共振回路と(nは2以上の整数)、前記第1~第n共振回路の何れかに選択的に交流信号を供給する送電回路と、前記交流信号が供給された共振回路のコイルに流れる電流の振幅を検出する検出回路と、前記送電回路を制御する制御回路と、を備え、前記受電装置は、受電側コイルを含む受電側共振回路と、前記送電装置からの電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数である前記基準周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路と、を備え、前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち前記交流信号を前記第1~第n共振回路に順次供給させて前記検出回路から前記第1~第n共振回路に対応する第1~第n振幅検出値を取得し、前記第1~第n振幅検出値に基づいて、前記送電の実行制御を行うことを特徴とする。
 具体的には例えば、前記非接触給電システムにおいて、前記制御回路は、前記第1~第n振幅検出値に基づいて、前記受電装置と異なり且つ前記基準周波数に共振周波数が設定された共振回路を含む異物の存否を判断し、前記異物が存在しないと判断した場合に前記送電の実行を許可する一方、前記異物が存在すると判断した場合に前記送電の実行を禁止すると良い。
 また例えば、前記非接触給電システムにおいて、前記制御回路は、前記第1~第n振幅検出値の夫々を所定の基準値と比較することにより前記送電の実行可否を判断と良い。
 或いは例えば、前記非接触給電システムにおいて、前記制御回路は、前記第1~第n振幅検出値の最小値を所定の基準値と比較することにより前記送電の実行可否を判断しても良い。
 或いは例えば、前記非接触給電システムにおいて、前記送電は、前記送電回路及び前記第1共振回路を用いて行われ、前記送電に先立ち前記交流信号を各共振回路に供給したときに各共振回路のコイルにて発生する磁界の磁界強度は、前記送電の際に前記第1共振回路のコイルにて発生する磁界の磁界強度よりも小さいと良い。
 本発明によれば、異物の破損等の防止に寄与する送電装置及び非接触給電システムを提供することが可能である。
(a)及び(b)の夫々は、本発明の第1実施形態に係る給電機器及び電子機器の概略外観図である。 本発明の第1実施形態に係る給電機器及び電子機器の概略内部構成図である。 本発明の第1実施形態に係る給電機器及び電子機器の概略内部構成図である。 本発明の第1実施形態に係り、給電機器内のICの内部ブロック図を含む、給電機器の一部構成図である。 本発明の第1実施形態に係り、電子機器内のICの内部ブロック図を含む、電子機器の一部構成図である。 NFC通信及び電力伝送が交互に行われるときの磁界強度の変化の様子を示す図である。 給電機器内における、送電回路と負荷検出回路と共振回路の関係を示す図である。 図7の負荷検出回路中におけるセンス抵抗の電圧降下の波形図である。 本発明の第1実施形態に係る共振状態変更回路の一例を示す回路図である。 本発明の第1実施形態に係る共振状態変更回路の他の例を示す回路図である。 (a)及び(b)は、本発明の第1実施形態に係る異物の概略外形図及び概略内部構成図である。 (a)~(f)は、非接触ICカードに搭載されるべきアンテナコイルの例を示す図である。 送電装置の各共振回路にスイッチが設けられる様子を示す図である。 異物検出に利用される第1~第n異物検出用接続状態の説明図である。 給電機器にて実行される初期設定処理の動作フローチャートである。 第1~第n異物検出用接続状態を実現するための詳細回路図の例である。 給電機器にて実行される異物検出処理の動作フローチャートである。 (a)~(d)は、給電台、電子機器及び異物の配置関係を例示する図である。 給電台、電子機器及び異物の一配置関係を示す図である。 本発明の第1実施形態に係る給電機器及び電子機器間の信号のやりとりを説明するための図である。 本発明の第1実施形態に係り、NFC通信と異物検出処理と電力伝送が順番に繰り返し実行される様子を示す図である。 本発明の第1実施形態に係る給電機器の動作フローチャートである。 図22の動作に連動する電子機器の動作フローチャートである。 本発明の第2実施形態に係り、X軸、Y軸及びZ軸と給電台との関係を示す図である。 (a)~(c)は、本発明の第2実施形態に係り、2つの送電側コイルの概略的な上面視図、斜視図及び断面図である。 複数の送電側コイルの役割分担の例を示す図である。 複数の送電側コイルの役割分担の他の例を示す図である。
 以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、状態量又は部材等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量、状態量又は部材等の名称を省略又は略記することがある。また、後述の任意のフローチャートにおいて、任意の複数のステップにおける複数の処理は、処理内容に矛盾が生じない範囲で、任意に実行順序を変更できる又は並列に実行できる。
<<第1実施形態>>
 本発明の第1実施形態を説明する。図1(a)及び(b)は、第1実施形態に係る給電機器1及び電子機器2の概略外観図である。但し、図1(a)は、給電機器1及び電子機器2が離間状態にあるときのそれらの外観図であり、図1(b)は、給電機器1及び電子機器2が基準配置状態にあるときのそれらの外観図である。離間状態及び基準配置状態の意義については後に詳説する。給電機器1及び電子機器2によって非接触給電システムが形成される。給電機器1は、商用交流電力を受けるための電源プラグ11と、樹脂材料にて形成された給電台12と、を備える。
 図2に、給電機器1と電子機器2の概略内部構成図を示す。給電機器1は、電源プラグ11を介して入力された商用交流電圧から所定の電圧値を有する直流電圧を生成して出力するAC/DC変換部13と、AC/DC変換部13の出力電圧を用いて駆動する集積回路である送電側IC100(以下、IC100とも言う)と、IC100に接続された送電側共振回路TT(以下、共振回路TTとも言う)と、を備える。AC/DC変換部13、送電側IC100及び共振回路TTを、給電台12内に配置しておくことができる。AC/DC変換部13の出力電圧を用いて駆動する回路が、IC100以外にも、給電機器1に設けられうる。
 電子機器2は、集積回路である受電側IC200(以下、IC200とも言う)と、IC200に接続された受電側共振回路RR(以下、共振回路RRとも言う)と、二次電池であるバッテリ21と、バッテリ21の出力電圧に基づき駆動する機能回路22と、を備える。詳細は後述するが、IC200はバッテリ21に対して充電電力を供給することができる。IC200は、バッテリ21の出力電圧にて駆動しても良いし、バッテリ21以外の電圧源からの電圧に基づき駆動しても良い。或いは、給電機器1から受信したNFC通信(詳細は後述)のための信号を整流することで得た直流電圧が、IC200の駆動電圧となっても良い。この場合、バッテリ21の残容量が無くなってもIC200は駆動可能となる。
 電子機器2は、任意の電子機器であって良く、例えば、携帯電話機(スマートホンに分類される携帯電話機を含む)、携帯情報端末、タブレット型パーソナルコンピュータ、デジタルカメラ、MP3プレイヤー、歩数計、又は、Bluetooth(登録商標)ヘッドセットである。機能回路22は、電子機器2が実現すべき任意の機能を実現する。従って例えば、電子機器2がスマートホンであれば、機能回路22は、相手側機器との間の通話を実現するための通話処理部、及び、ネットワーク網を介して他機器と情報を送受信するための通信処理部などを含む。或いは例えば、電子機器2がデジタルカメラであれば、機能回路22は、撮像素子を駆動する駆動回路、撮像素子の出力信号から画像データを生成する画像処理回路などを含む。機能回路22は、電子機器2の外部装置に設けられる回路であると考えても良い。
 図3に示す如く、共振回路TTは、送電側コイルであるコイルTと送電側コンデンサであるコンデンサTとを有し、共振回路RRは、受電側コイルであるコイルRと受電側コンデンサであるコンデンサRとを有する。以下では、説明の具体化のため、特に記述無き限り、送電側コイルT及び送電側コンデンサTが互いに並列接続されることで共振回路TTが並列共振回路として形成され、且つ、受電側コイルR及び受電側コンデンサRが互いに並列接続されることで共振回路RRが並列共振回路として形成されているものとする。但し、送電側コイルT及び送電側コンデンサTが互いに直列接続されることで共振回路TTが直列共振回路として形成されていても良いし、受電側コイルR及び受電側コンデンサRが互いに直列接続されることで共振回路RRが直列共振回路として形成されていても良い。
 図1(b)に示す如く、電子機器2を給電台12上の所定範囲内に載置したとき、磁界共鳴方式にて(即ち、磁界共鳴を利用して)、機器1及び2間における通信、送電及び受電が可能となる。磁界共鳴は、磁界共振などとも呼ばれる。
 機器1及び2間における通信は、NFC(Near field communication)による無線通信(以下、NFC通信と呼ぶ)であり、通信の搬送波の周波数は13.56MHz(メガヘルツ)である。以下では、13.56MHzを基準周波数と呼ぶ。機器1及び2間におけるNFC通信は、共振回路TT及びRRを利用した磁界共鳴方式で行われるため、共振回路TT及びRRの共振周波数は、共に、基準周波数に設定されている。但し、後述されるように、共振回路RRの共振周波数は、一時的に基準周波数から変更され得る。
 機器1及び2間における送電及び受電は、給電機器1から電子機器2に対するNFCによる送電と、電子機器2におけるNFCによる受電である。この送電と受電をまとめてNFC電力伝送又は単に電力伝送と称する。磁界共鳴方式によりコイルTからコイルRに対して電力を伝達することで、電力伝送が非接触で実現される。
 磁界共鳴を利用した電力伝送では、送電側コイルTに交流電流を流すことで送電側コイルTに基準周波数の交番磁界を発生させる。すると、この交番磁界が、基準周波数で共鳴(換言すれば共振)する共振回路RRに伝わって受電側コイルRに交流電流が流れる。つまり、送電側コイルTを含む共振回路TTから受電側コイルRを含む共振回路RRへ電力が伝達される。尚、以下では、記述が省略されることがあるが、NFC通信又は電力伝送においてコイルT又はコイルRにより発生する磁界は、特に記述無き限り、基準周波数で振動する交番磁界である。
 電子機器2が給電台12上の所定範囲内に載置され、上述のNFC通信及び電力伝送が実現できる状態を、基準配置状態と呼ぶ(図1(b)参照)。磁気共鳴を利用した場合、相手側距離との距離が比較的大きくても通信及び電力伝送が可能であるが、電子機器2が給電台12から相当距離離れれば、NFC通信及び電力伝送は実現できなくなる。電子機器2が給電台12から十分に離れていて、上述のNFC通信及び電力伝送を実現できない状態を、離間状態と呼ぶ(図1(a)参照)。尚、図1(a)に示す給電台12では、表面が平らになっているが、載置されるべき電子機器2の形状に合わせた窪み等が給電台12に形成されていても構わない。
 図4に、IC100の内部ブロック図を含む、給電機器1の一部の構成図を示す。IC100には、符号110、120、130、140、150及び160によって参照される各部位が設けられる。図2及び図3には示さなかったが、給電機器1にはn個の共振回路TTが設けてられており、該n個の共振回路TTがIC100に接続される。n個の共振回路TTを互いに区別する必要がある場合、n個の共振回路TTを記号TT[1]~TT[n]にて参照する。nは2以上の任意の整数である。共振回路TT[1]~TT[n]の共振周波数は全て基準周波数に設定されている。詳細は後述の説明から明らかとなるが、NFC通信及び電力伝送は共振回路TT[1]を用いて実現され、共振回路TT[2]~TT[n]は後述の異物検出処理にて補助的に利用される。以下の説明において、単にコイルTと述べた場合、それは、主として共振回路TT[1]におけるコイルTと解されるが、共振回路TT[1]~TT[n]の任意の何れかにおけるコイルTと解されても良い。コンデンサTについても同様である。
 図5に、IC200の内部ブロック図を含む、電子機器2の一部の構成図を示す。IC200には、符号210、220、230、240及び250によって参照される各部位が設けられる。また、IC200に対し、IC200の駆動電圧を出力するコンデンサ23を接続しておいても良い。コンデンサ23は、給電機器1から受信したNFC通信のための信号を整流することで得た直流電圧を出力可能である。
 切り替え回路110は、制御回路160の制御の下、共振回路TT[1]をNFC通信回路120及びNFC送電回路130のどちらかに接続させる、又は、共振回路TT[1]とNFC通信回路120及びNFC送電回路130とを非接続とする。共振回路TT[1]とNFC通信回路120及びNFC送電回路130とが非接続とされているとき、切り替え回路110は、制御回路160の制御の下、NFC送電回路130を共振回路TT[2]~TT[n]の何れかに接続することができる。切り替え回路110を介したNFC通信回路120と共振回路TT[2]~TT[n]との接続が可能とされていても良いが、ここでは、NFC通信回路120と共振回路TT[2]~TT[n]との接続が行われないものとする。共振回路TT[1]~TT[n]と回路120及び130との間に介在する複数のスイッチにて、切り替え回路110を構成することができる。本明細書にて述べる任意のスイッチは、電界効果トランジスタ等の半導体スイッチング素子を用いて形成されて良い。
 切り替え回路210は、制御回路250の制御の下、共振回路RRをNFC通信回路220及びNFC受電回路230のどちらかに接続させる。共振回路RRと回路220及び230との間に介在する複数のスイッチにて、切り替え回路210を構成することができる。
 共振回路TT[1]が切り替え回路110を介してNFC通信回路120に接続され、且つ、共振回路RRが切り替え回路210を介してNFC通信回路220に接続されている状態を、通信用接続状態と呼ぶ。通信用接続状態にてNFC通信が可能となる。通信用接続状態において、NFC通信回路120は、基準周波数の交流信号(交流電流)を共振回路TT[1]に供給することができる。機器1及び2間のNFC通信は半二重方式で実行される。
 通信用接続状態において給電機器1が送信側であるとき、NFC通信回路120が共振回路TT[1]に供給する交流信号に任意の情報信号を重畳させることで、当該情報信号が給電機器側アンテナコイルとしての共振回路TT[1]のコイルTから送信され且つ電子機器側アンテナコイルとしての共振回路RRのコイルRにて受信される。コイルRにて受信された情報信号はNFC通信回路220にて抽出される。通信用接続状態において電子機器2が送信側であるとき、NFC通信回路220は、任意の情報信号(応答信号)を共振回路RRのコイルRから共振回路TT[1]のコイルTに送信できる。この送信は、周知の如く、ISO規格(例えばISO14443規格)に基づき、共振回路TT[1]のコイルT(給電機器側アンテナコイル)から見た共振回路RRのコイルR(電子機器側アンテナコイル)のインピーダンスを変化させる負荷変調方式にて実現される。電子機器2から伝達された情報信号はNFC通信回路120にて抽出される。
 共振回路TT[1]が切り替え回路110を介してNFC送電回路130に接続され、且つ、共振回路RRが切り替え回路210を介してNFC受電回路230に接続されている状態を、給電用接続状態と呼ぶ。
 給電用接続状態において、NFC送電回路130は送電動作を行うことができ、NFC受電回路230は受電動作を行うことができる。送電動作と受電動作にて電力伝送が実現される。送電動作において、送電回路130は、共振回路TT[1]に基準周波数の送電用交流信号(送電用交流電流)を供給することで共振回路TT[1]の送電側コイルTに基準周波数の送電用磁界(送電用交番磁界)を発生させ、これによって、共振回路TT[1](送電側コイルT)から共振回路RRに対し磁界共鳴方式で電力を送電する。送電動作に基づき受電側コイルRにて受電された電力は受電回路230に送られ、受電動作において、受電回路230は、受電した電力から任意の直流電力を生成して出力する。受電回路230の出力電力にてバッテリ21を充電することができる。
 通信用接続状態にてNFC通信を行う場合も、コイルT又はRにて磁界が発生するが、NFC通信における磁界強度は、所定の範囲内に収まる。その範囲の下限値及び上限値は、NFCの規格で定められ、夫々、1.5A/m、7.5A/mである。これに対し、電力伝送(即ち送電動作)において共振回路TT[1]の送電側コイルTにて発生する磁界の強度(送電用磁界の磁界強度)は、上記の上限値より大きく、例えば45~60A/m程度である。機器1及び2を含む非接触給電システムにおいて、NFC通信及び電力伝送(NFC電力伝送)を交互に行うことができ、その時の磁界強度の様子を図6に示す。
 負荷検出回路140は、送電側コイルTの負荷の大きさ、即ち、送電回路130から送電側コイルTに交流信号(交流電流)が供給されるときにおける送電側コイルTにとっての負荷の大きさを検出する。図7に、給電用接続状態における送電回路130と負荷検出回路140と共振回路TT[1]との関係を示す。尚、図7では、切り替え回路110の図示が省略されている。
 送電回路130は、基準周波数の正弦波信号を生成する信号生成器131と、信号生成器131にて生成された正弦波信号を増幅し、増幅した正弦波信号をライン134の電位を基準としてライン134及び135間に出力する増幅器(パワーアンプ)132と、コンデンサ133とを備える。一方、負荷検出回路140は、センス抵抗141、増幅器142、包絡線検波器143及びA/D変換器144を備える。信号生成器131が生成する正弦波信号の信号強度は一定値に固定されているが、増幅器132の増幅率は制御回路160により可変設定される。
 コンデンサ133の一端はライン135に接続される。給電用接続状態において、コンデンサ133の他端は共振回路TT[1]のコンデンサT及びコイルTの各一端に共通接続され、且つ、共振回路TT[1]のコイルTの他端はセンス抵抗141を介してライン134及び共振回路TT[1]のコンデンサTの他端に共通接続される。
 送電動作は、増幅器132からコンデンサ133を介し共振回路TTに交流信号を供給することで実現される。給電用接続状態において、増幅器132からの交流信号が共振回路TT[1]に供給されると共振回路TT[1]の送電側コイルTに基準周波数の交流電流が流れ、結果、センス抵抗141に交流の電圧降下が発生する。図8の実線波形は、センス抵抗141における電圧降下の電圧波形である。共振回路TT[1]に関し、送電側コイルTの発生磁界強度が一定の下、電子機器2を給電台12に近づけると、送電側コイルTの発生磁界に基づく電流が受電側コイルRに流れる一方で、受電側コイルRに流れた電流に基づく逆起電力が送電側コイルTに発生し、その逆起電力は送電側コイルTに流れる電流を低減するように作用する。このため、図8に示す如く、基準配置状態におけるセンス抵抗141の電圧降下の振幅は、離間状態におけるそれよりも小さい。
 増幅器142は、センス抵抗141における電圧降下の信号を増幅する。包絡線検波器143は、増幅器142にて増幅された信号の包絡線を検波することで、図8の電圧vに比例するアナログの電圧信号を出力する。A/D変換器144は、包絡線検波器143の出力電圧信号をデジタル信号に変換することでデジタルの電圧値Vを出力する。上述の説明から理解されるように、電圧値Vは、センス抵抗141に流れる電流の振幅(従って、送電側コイルTに流れる電流の振幅)に比例する値を持つ。故に、負荷検出回路140は、送電側コイルTに流れる電流の振幅を検出していると言え、その振幅検出値が電圧値Vであると考えることができる。
 磁界を発生させる送電側コイルTにとって、受電側コイルRのような、送電側コイルTと磁気結合するコイルは、負荷であると考えることができ、その負荷の大きさに依存して、負荷検出回路140の検出値である電圧値Vが変化する。このため、負荷検出回路140は電圧値Vの出力によって負荷の大きさを検出している、と考えることもできる。ここにおける負荷の大きさとは、送電の際における送電側コイルTにとっての負荷の大きさとも言えるし、送電の際における給電装置1から見た電子機器2の負荷としての大きさとも言える。尚、センス抵抗141はIC100の内部に設けられても良いし、IC100の外部に設けられても良い。
 メモリ150(図4参照)は、不揮発性メモリから成り、任意の情報を不揮発的に記憶する。制御回路160は、IC100内の各部位の動作を統括的に制御する。制御回路160が行う制御には、例えば、切り替え回路110の切り替え動作の制御、通信回路120及び送電回路130による通信動作及び送電動作の内容制御及び実行有無制御、負荷検出回路140の動作制御、メモリ150の記憶制御及び読み出し制御が含まれる。制御回路160は、タイマ(不図示)を内蔵しており任意のタイミング間の時間長さを計測できる。
 電子機器2における共振状態変更回路240(図5参照)は、共振回路RRの共振周波数を基準周波数から他の所定周波数fに変更する共振周波数変更回路、又は、共振回路RRにおける受電側コイルRを短絡するコイル短絡回路である。
 図9の共振周波数変更回路240Aは、共振状態変更回路240としての共振周波数変更回路の例である。共振周波数変更回路240Aは、コンデンサ241とスイッチ242の直列回路から成り、該直列回路の一端はコンデンサR及びコイルRの各一端に共通接続される一方、該直列回路の他端はコンデンサR及びコイルRの各他端に共通接続される。スイッチ242は、制御回路250の制御の下、オン又はオフとなる。スイッチ242がオフのとき、コンデンサ241はコンデンサR及びコイルRから切り離されるため、共振回路RRは、寄生インダクタンス及び寄生容量を無視すれば、コイルR及びコンデンサRのみで形成されて、共振回路RRの共振周波数は基準周波数と一致する。即ち、スイッチ242がオフのとき、共振回路RRの共振周波数を決定する受電側容量は、コンデンサRそのものである。スイッチ242がオンのとき、コンデンサRにコンデンサ241が並列接続されることになるため、共振回路RRはコイルRとコンデンサR及び241の合成容量とで形成され、結果、共振回路RRの共振周波数は基準周波数よりも低い周波数fとなる。即ち、スイッチ242がオンのとき、共振回路RRの共振周波数を決定する受電側容量は、上記の合成容量である。ここでは、スイッチ242がオンのとき共振回路RRが送電側コイルTの負荷として機能しない程度に(即ち、共振回路TT[i]及びRR間で磁気共鳴が十分に発生しない程度に)、周波数fが基準周波数から離れているものとする(iは整数)。例えば、スイッチ242のオンのときにおける共振回路RRの共振周波数(即ち周波数f)は、数100kHz~1MHzとされる。
 共振回路RRの共振周波数を周波数fに変更できる限り、変更回路240としての共振周波数変更回路は共振周波数変更回路240Aに限定されず、周波数fは基準周波数より高くても良い。つまり、受電側共振回路RRが直列共振回路でありうることをも考慮すれば、以下のことが言える。受電側共振回路RRは受電側コイル(R)と受電側容量の並列回路又は直列回路を有し、受電側容量が所定の基準容量と一致しているとき、受電側共振回路RRの共振周波数fは基準周波数と一致する。共振周波数変更回路は、必要なタイミングにおいて、受電側容量を基準容量から増加又は減少させる。これにより、受電側共振回路RRにおいて、受電側コイル(R)と、基準容量より大きい又は小さい受電側容量とで、並列回路又は直列回路が形成され、結果、受電側共振回路RRの共振周波数fが基準周波数から変更される。
 図10のコイル短絡回路240Bは、共振状態変更回路240としてのコイル短絡回路の例である。コイル短絡回路240Bは、共振回路RRにおけるコンデンサRの一端及びコイルRの一端が共通接続されるノードと、共振回路RRにおけるコンデンサRの他端及びコイルRの他端が共通接続されるノードとの間に接続(挿入)されたスイッチ243から成る。スイッチ243は、制御回路250の制御の下、オン又はオフとなる。スイッチ243がオンとなると共振回路RRにおけるコイルRが短絡される(より詳細にはコイルRの両端が短絡される)。受電側コイルRが短絡された状態では受電側共振回路RRが存在しなくなる(受電側共振回路RRが存在しない状態と等価な状態となる)。従って、受電側コイルRの短絡中では、送電側コイルTにとっての負荷が十分に軽くなる(即ち、あたかも、給電台12上に電子機器2が存在しないかのような状態となる)。受電側コイルRを短絡できる限り、変更回路240としてのコイル短絡回路はコイル短絡回路240Bに限定されない。
 以下では、受電側共振回路RRの共振周波数fを基準周波数から所定周波数fに変更する動作を、共振周波数変更動作と呼び、コイル短絡回路を用いて受電側コイルRを短絡する動作を、コイル短絡動作と呼ぶ。また、記述の簡略化上、共振周波数変更動作又はコイル短絡動作をf変更/短絡動作と称することがある。
 制御回路250(図5参照)は、IC200内の各部位の動作を統括的に制御する。制御回路250が行う制御には、例えば、切り替え回路210の切り替え動作の制御、通信回路220及び受電回路230による通信動作及び受電動作の内容制御及び実行有無制御、変更回路240の動作制御が含まれる。制御回路250は、タイマ(不図示)を内蔵しており任意のタイミング間の時間長さを計測できる。例えば、制御回路250におけるタイマは、f変更/短絡動作による共振周波数fの所定周波数fへの変更又は受電側コイルRの短絡が維持される時間の計測(即ち後述の時間Tの計測;図23のステップS207参照)を行うことできる。
 ところで、給電機器1の制御回路160は、給電台12上における異物の存否を判断し、異物が無い場合にのみ送電動作を行うよう送電回路130を制御できる。ここで、異物の意義について説明する。図11(a)に異物3の概略外形図を示し、図11(b)に異物3の概略内部構成図を示す。異物3は、コイルJ及びコンデンサJの並列回路から成る共振回路JJと、共振回路JJに接続された異物内回路300と、を備える。共振回路JJの共振周波数は基準周波数に設定されている。異物3は、電子機器2とは異なり、給電機器1に対応しない機器である。例えば、異物3は、NFC通信に応答しない13.56MHzのアンテナコイル(コイルJ)を持つ無線ICタグを有した物体(非接触ICカード等)である。また例えば、異物3は、NFC通信機能自体は有しているものの、その機能が無効とされている電子機器である。例えば、NFC通信機能を有するスマートホンではあるが、ソフトウェア設定で当該機能をオフにされているスマートホンは、異物3となりうる。また、NFC通信機能が有効となっているスマートホンでも、受電機能を持たないスマートホンも異物3に分類される。
 このような異物3が給電台12上に配置されている状態において、仮に、給電機器1が送電動作を行うと、送電側コイルTが発生した強磁界(例えば、12A/m以上の磁界強度を持つ磁界)にて異物3が破壊されることがある。例えば、送電動作時における強磁界は、給電台12上の異物3のコイルJの端子電圧を100V~200Vまで増大させることもあり、そのような高電圧に耐えられるように異物3が形成されていなければ、異物3が破壊される。
 異物3の存在により送電側コイルTにとっての負荷が大きくなる結果、送電側コイルTの電流振幅が小さくなるという特性を利用して、該振幅に基づき異物3の存否判断を行うことができる。但し、異物3が持つアンテナコイル(コイルJ)の形状として様々な形状が存在し、その形状に依存して、異物3の存在による上記電流振幅の変化が様々となる。
 図12(a)~(f)を参照し、これについて説明を加える。AT1~AT6の夫々は、非接触ICカードに搭載されるべきアンテナコイルとして、ISO14443の規格にて定められたリファレンスアンテナコイルを表している。アンテナコイルAT1~AT6の何れかを図11(b)のコイルJとして有する非接触ICカードは異物3となりうる。アンテナコイルAT1~AT6の形状は互いに異なり、基本的に、AT1からAT6に向かうにつれてアンテナコイルの大きさが小さくなっている。本明細書において、コイルの形状とは、コイルの大きさを含む概念である。故に、第1のコイルと第2のコイルとの間で相似の関係があっても、それらの大きさが異なれば第1のコイルと第2のコイルとの間で形状が異なる。任意のコイルに関し、コイルの大きさとは、コイルの中心軸に直交する方向においてコイルの外周が占有する面積を表すと考えて良い。コイルがループアンテナを形成している場合には、そのループアンテナのループ面(即ち、当該コイルの巻線が配置されている面)における、当該コイルの巻線に囲まれた部分の面積が当該コイルの大きさに相当する。
 NFC通信及び電力伝送で用いられる共振回路TT[1]の送電側コイルTは、アンテナコイルAT1~AT6の何れであっても良いが、ここでは、アンテナコイルAT6と同じアンテナコイルが共振回路TT[1]の送電側コイルTとして用いられているものとする。これに対応して、アンテナコイルAT6と同じアンテナコイルが電子機器2における受電側コイルRとして用いられると良い。
 アンテナコイルAT6と同じアンテナコイルが共振回路TT[1]の送電側コイルTとして用いられる場合において、異物3のコイルJがアンテナコイルAT6であるときには、共振回路TT[1]の送電側コイルTと異物3のコイルJとの磁気結合度合いが比較的大きく、共振回路TT[1]の送電側コイルTの電流振幅を利用した異物3の存否検出感度が十分に高くなる(異物3が有る時と無いときとで図8の電圧vの変化が比較的大きくなる)。しかし、異物3のコイルJがアンテナコイルAT1であるときには、共振回路TT[1]の送電側コイルTと異物3のコイルJとの磁気結合度合いが比較的小さくなるため、共振回路TT[1]の送電側コイルTの電流振幅を利用した異物3の存否検出感度が低下し(異物3が有る時と無いときとで図8の電圧vの変化が比較的小さくなり)、異物3の存否検出の精度が落ちる。
 これを考慮し、本実施形態では、共振回路TT[1]に加えて共振回路TT[2]~TT[n]を給電機器1に設け、共振回路TT[1]~TT[n]を用いて異物検出処理を実行する。共振回路TT[1]~TT[n]における計n個の送電側コイルTは、互いに異なる形状(上述したように大きさを含む)を持つアンテナコイルであり、例えば、n=6とする場合、共振回路TT[2]~TT[6]における送電側コイルTは、夫々、アンテナコイルAT1~AT5と同じ形状を有していて良い。
 但し、共振回路TT[i]を用いた異物検出処理の実行時において共振回路TT[i]以外の共振回路の送電側コイルTが異物3のコイルTのように振る舞うことを防止する必要がある。そこで、ここまでの説明では意識しなかったが、実際には、図13に示すようなスイッチTSWが共振回路TT[1]~TT[n]の夫々に設けられている。制御回路160の制御の下、共振回路TT[1]~TT[n]のスイッチTSWが個別にオン又はオフとされる。共振回路TT[i]において、スイッチTSWがオンのとき、コイルTとコンデンサTが接続されてそれらによる共振回路が形成され、スイッチTSWがオフのとき、コイルTとコンデンサTが非接続とされてそれらによる共振回路が形成されなくなる(iは整数)。ここでは、並列共振回路を想定しているため、共振回路TT[i]において、スイッチTSWがオフのときにはコイルTを経由する電流ループが形成されなくなるよう、コイルTの一端とコンデンサTの一端とを接続する配線上に直列にスイッチTSWを挿入すると良い。
 そして、制御回路160は、図14に示すような第1~第n異物検出用接続状態の何れかが実現されるように、切り替え回路110及び共振回路TT[1]~TT[n]のスイッチTSWを制御できる。第i異物検出用接続状態においては、共振回路TT[1]~TT[n]の内、共振回路TT[i]のみにNFC送電回路130が接続され、且つ、共振回路TT[i]のスイッチTSWがオンとされ、且つ、共振回路TT[1]~TT[n]の内、共振回路TT[i]以外の共振回路のスイッチTSWがオフとされる。給電機器1において、送電動作を行うための給電用接続状態は第1異物検出用接続状態と同じである。また、給電機器1において、NFC通信を行うための通信用接続状態では、NFC通信回路120が切り替え回路110を介して共振回路TT[1]に接続され、且つ、共振回路TT[1]のスイッチTSWがオンとされ、且つ、共振回路TT[2]~TT[n]の各スイッチTSWがオフとされる。
[初期設定処理]
 異物の存否判断を可能とするべく、初期設定処理において予め異物検出用基準値がメモリ150に格納される。初期設定処理は、以下の初期設定環境の下でIC100により実行される。初期設定環境では、送電側コイルTに対する負荷が全く無く又は無視できる程度に小さく、送電側コイルTに磁気結合するコイルが存在しない。これを担保するべく、電子機器2及び異物3を含む、コイルを含有するような機器が、給電台12から十分に離れるようにしておく。図1(a)の離間状態は、初期設定環境を満たすと考えても良い。初期設定環境の確保を担保すべく、例えば、給電機器1の製造時又は出荷時などにおいて初期設定処理を行うようにしても良い。但し、初期設定環境が確保できるのであれば、任意のタイミングで初期設定処理を行うことができる。
 図15は、初期設定処理の動作フローチャートである。ステップS11~S16から成る初期設定処理では、i=1、i=2、・・・、i=nの夫々について、ステップS12~S14の処理を実行する。ステップS12では、制御回路160が切り替え回路110及び各スイッチTSWを制御することで第i異物検出用接続状態を実現し、共振回路TT[i]の送電側コイルTによる磁界強度Hを所定のテスト強度に設定する。続くステップS13では、その設定状態でA/D変換器144から取得される電圧値Vを電圧値VDO[i]として得る。その後のステップS14において、電圧値VDO[i]に基づく異物検出用基準値VREF[i]をメモリ150に記憶させる。第i異物検出用接続状態で取得される電圧値Vは、共振回路TT[i]の送電側コイルTに流れる電流の振幅に応じた値を持つ。
 負荷検出回路140は、図7に示した構成と同等の構成により、共振回路TT[1]~TT[n]の送電側コイルTに流れる電流の振幅を個別に検出することができる。
 単純には例えば、センス抵抗141、増幅器142、包絡線検波器143及びA/D変換器144から成る検出ブロックを、n組分、負荷検出回路140に設けておく。この際、共振回路TT[1]内にセンス抵抗141を配置した方法と同様の方法にて、共振回路TT[2]~TT[n]内の夫々にもセンス抵抗141が配置される。そして、第1~第n検出ブロックを夫々共振回路TT[1]~TT[n]に割り当て、第i検出ブロックを用いて共振回路TT[i]の送電側コイルTに流れる電流の振幅を電圧値Vとして検出することができる。この場合において、各検出ブロックを構成する電子部品の一部(例えば、A/D変換器144)は第1~第n検出ブロック間で共用されても良い。
 或いは例えば、負荷検出回路140にセンス抵抗141を1つだけ設けておいて、1つのセンス抵抗141に共振回路TT[1]~TT[n]の送電側コイルTに流れる電流が選択的に流れるよう、スイッチ等を用いて、該センス抵抗141と共振回路TT[1]~TT[n]とを接続しておく。そして、1つのセンス抵抗141を時分割で用いることで、共振回路TT[1]~TT[n]の送電側コイルTに流れる電流の振幅を電圧値Vとして順次検出するようにしてもよい。
 図16に、第1~第n異物検出用接続状態を実現するための、給電機器1内の回路例を示す。図16では、共振回路TT[i]における送電側コイルT及び送電側コンデンサTが夫々記号T[1]及びT[i]にて表され、共振回路TT[i]に対するスイッチTSWとしてスイッチTSW[i]L及びTSW[i]Cが設けられる。NFC通信回路120又はNFC送電回路130は切り替え回路110を介して、配線であるラインLN1及びLN2に接続される。ラインLN1は、スイッチTSW[1]C~TSW[n]Cを介して夫々コンデンサT[1]~T[n]の一端に接続され、コンデンサT[1]~T[n]の各他端はラインLN2に接続される。また、ラインLN1はコイルT[1]~T[n]の各一端に共通接続され、コイルT[1]~T[n]の他端は夫々スイッチTSW[1]L~TSW[n]Lを介してラインLN3に接続される。ラインLN3はセンス抵抗141を介してラインLN2に接続される。
 図16の回路例では、第i異物検出用接続状態において、送電回路130がラインLN1及びLN2に接続され、且つ、スイッチTSW[1]L~TSW[n]L及びTSW[1]C~TSW[n]Cの内、スイッチTSW[i]L及びTSW[i]Cのみがオンとされ、他のスイッチは全てオフとされる。給電用接続状態及び通信用接続状態では。スイッチTSW[1]L~TSW[n]L及びTSW[1]C~TSW[n]Cの内、スイッチTSW[1]L及びTSW[1]Cのみがオンとされ、他のスイッチは全てオフとされる。但し、給電用接続状態では送電回路130がラインLN1及びLN2に接続される一方で、通信用接続状態では通信回路120がラインLN1及びLN2に接続される。
 共振回路TT[i]に関し、磁界強度H(図15のステップS12参照)とは、共振回路TT[i]の送電側コイルTの発生磁界強度であって、より詳しくは、共振回路TT[i]の送電側コイルTが発生した基準周波数で振動する交番磁界の磁界強度を指す。共振回路TT[i]に関し、磁界強度Hをテスト強度に設定するとは、所定のテスト用交流信号(テスト用交流電流)が共振回路TT[i]に供給されるように送電回路130を制御することで、テスト強度を有し且つ基準周波数で振動する交番磁界を共振回路TT[i]の送電側コイルTに発生させることを指す。例えば、“VREF[i]=VDO[i]-ΔV”、又は、“VREF[i]=VDO[i]×k”とすると良い。ΔVは、所定の正の微小値である(但し、ΔV=0とすることも可能)。kは、1未満の正の所定値を有する係数である。図15のステップS12~S14の繰り返しにて得られる異物検出用基準値VREF[1]~VREF[n]は互いに異なる値を持ちうる。i及びjが互いに異なる整数であるとした場合、異物検出用基準値VREF[i]を決定するためのパラメータ(ΔV又はk)と、異物検出用基準値VREF[j]を決定するためのパラメータ(ΔV又はk)は互いに同じであっても良いが、互いに異なっていても良い。
 制御回路160は、増幅器132(図7参照)の増幅率を制御することで磁界強度Hを可変設定することができる。テスト強度は、電力伝送(即ち送電動作)における共振回路TT[1]の送電側コイルTの発生磁界強度(即ち送電用磁界の磁界強度;例えば、45~60A/m)より小さく、通信用磁界強度の下限値“1.5A/m”から上限値“7.5A/m”までの範囲内に収まる。
 尚、初期設定環境下において磁界強度Hを所定のテスト強度に設定したときに得られるであろう電圧値Vを、設計段階で見積もることができる。この見積によって導出された値に基づき、初期設定処理を行うことなく、異物検出用基準値VREF[i]を決定してメモリ150に記憶させるようにしても良い。また、テスト強度は複数あっても構わない。この場合、1つの共振回路TT[i]に関して上述のステップS12~S14の処理を複数回繰り返すことで、複数のテスト強度に対する複数の異物検出用基準値VREF[i]をメモリ150に記憶させておくことができる。
[異物検出処理(電力伝送前の異物検出処理)]
 図17を参照し、給電台12上の異物3の存否を検出するための異物検出処理を説明する。図17は、電力伝送前に給電機器1により実行される異物検出処理のフローチャートである。まず、ステップS21にて変数iに1が代入される。その後、ステップS22において、制御回路160は、切り替え回路110及び各スイッチTSWを制御することで第i異物検出用接続状態を実現し且つ共振回路TT[i]の送電側コイルTによる磁界強度Hを所定のテスト強度に設定し、続くステップS23において、負荷検出回路140を用い、該テスト磁界を発生させているときの電圧値Vを電圧値VDTEST[i]として取得する。電流振幅検出値とも言うべき電圧値VDTEST[i]は、第i異物検出用接続状態にてテスト強度を有し且つ基準周波数で振動するテスト磁界を共振回路TT[i]の送電側コイルTに発生させているときの、共振回路TT[i]の送電側コイルTに流れる電流の振幅に応じた値を持つ。尚、異物検出処理が実行される期間中には、NFC通信を介した給電機器1からの指示に従い電子機器2においてf変更/短絡動作(共振周波数変更動作又はコイル短絡動作)が実行されている。また、テスト磁界の磁界強度(即ちテスト強度)は、送電動作にて共振回路TT[1]の送電側コイルTが発生する送電用磁界の磁界強度よりも相当に小さく、通信用磁界強度の上限値(7.5A/m)以下とされるため、テスト磁界によって異物3が破損等するおそれは無い又は少ない。
 ステップS23に続くステップS24にて、制御回路160は、“i=n”の成否を判断し、“i=n”が成立する場合にはステップS26に進むが、そうでない場合にはステップS25にて変数iに1を加算してからステップS22に戻ってステップS22及びS23の処理を繰り返す。故に、ステップS26に至る時点では、電圧値VDTEST[1]~VDTEST[n]が得られている。
 ステップS26において、制御回路160は、電圧値VDTEST[1]~VDTEST[n]に基づき給電台12上における異物3の存否を判定して異物検出処理を終える。異物3が給電台12上に存在していると判定することを異物有判定と称する。異物3が給電台12上に存在していないと判定することを異物無判定と称する。制御回路160は、異物無判定を成した場合、送電回路130による送電動作の実行が可能であると判断して送電動作の実行(共振回路TT[1]を用いた送電)を許可し、異物有判定を成した場合、送電回路130による送電動作の実行が不可であると判断して送電動作の実行を禁止する。送電動作が実行可能と判断したとき、送電動作において、制御回路160は、所定の送電用磁界が共振回路TT[1]の送電側コイルTにて発生されるよう送電回路130を制御することができる。
 制御回路160にて採用され得る、電圧値VDTEST[1]~VDTEST[n]に基づく異物3の存否判定方法として、第1~第3異物存否判定方法を挙げる。
 第1異物存否判定方法では、“1≦i≦n”を満たす全ての整数iに関し判定不等式“VDTEST[i]≧VREF[i]”が成立する場合に限って異物無判定を行い、そうでない場合には異物有判定を行う。
 アンテナコイルAT1をコイルJとして持つ異物3が給電台12上に存在している場合、そのコイルJと、アンテナコイルAT6と同じ形状を有する共振回路TT[1]の送電側コイルTとの磁気結合度合いが弱く、結果、判定不等式“VDTEST[1]≧VREF[1]”が成立しないことがある。但し、この場合において例えば、アンテナコイルAT1と同じ形状を共振回路TT[2]の送電側コイルTに持たせておけば、VDTEST[2]が十分に小さくなって“VDTEST[2]≧VREF[2]”が不成立となり、異物有判定が成されることになる。
 第2異物存否判定方法では、“1≦i≦n”を満たす全ての整数iに関し判定不等式“VDTEST[i]≧VREF”が成立する場合に限って異物無判定を行い、そうでない場合には異物有判定を行う。ここにおけるVREFは、初期設定処理にて求められる異物検出用基準値VREF[1]~VREF[n]の何れかである。例えば、VREFは、固定的にVREF[1]であっても良いし(この場合、初期設定処理にてVREF[2]~VREF[n]を求める必要は無い)、VREF[1]~VREF[n]の統計量(例えば最大値、最小値、平均値又は中央値)であっても良い。
 第2異物存否判定方法によっても、第1異物存否判定方法を用いた場合と同様の作用が得られる。但し、異物検出用基準値の最適値は送電側コイルTの形状に依存し得るため、送電側コイルTごとに異物検出用基準値を設定及び利用する第1異物存否判定方法の方が、異物3の存否検出精度の向上にとって望ましい。
 第3異物存否判定方法では、電圧値VDTEST[1]~VDTEST[n]の内の最小値である電圧値VDTEST[MIN]を上記の異物検出用基準値VREFと比較し、判定不等式“VDTEST[MIN]≧VREF”が成立する場合には異物無判定を行い、そうでない場合には異物有判定を行う。共振回路TT[1]~TT[n]の送電側コイルTの内、異物3のコイルJに対して最も磁気結合度合いの強い送電側コイルTについての電圧値VDTEST[i]が最小値になると想定され、最小値のみを評価するだけで正確に異物3の存否判断が可能になると考えられる。第3異物存否判定方法は、第2異物存否判定方法と実質的に同じであると言える。
 このように送電動作に先立って実行される異物検出処理では、テスト用交流信号を送電回路130から共振回路TT[1]~TT[n]に順次供給させることで共振回路TT[1]~TT[n]の送電側コイルTにテスト磁界を順次発生させ、共振回路TT[1]~TT[n]の送電側コイルTにテスト磁界を発生させているときの負荷検出回路140の出力値Vを電圧値VDTEST[1]~VDTEST[n]として順次取得する。そして、第1又は第2異物存否判定方法を用いる場合、制御回路160は、電圧値VDTEST[1]~VDTEST[n](第1~第n電流振幅検出値)の夫々を所定の異物検出用基準値と比較することで異物3の存否を判定し、その判定を通じて送電動作の実行可否を判断する。一方、第3異物存否判定方法を用いる場合、制御回路160は、電圧値VDTEST[1]~VDTEST[n](第1~第n電流振幅検出値)の最小値を所定の異物検出用基準値と比較することで異物3の存否を判定し、その判定を通じて送電動作の実行可否を判断する。
 尚、初期設定処理にて複数のテスト強度の夫々に対して異物検出用基準値を求めてメモリ150に記憶させている場合、共振回路TT[1]~TT[n]の夫々について、ステップS22(図17参照)にて複数のテスト強度を有する複数のテスト磁界を順次発生させても良い。そして、テスト磁界ごとの判定不等式の成否に基づき異物無判定又は異物有判定を成すようにしても良い。
 図18(a)~図18(d)を参照して第1~第4ケースを考える。第1ケースでは、給電台12上に電子機器2のみが存在している。第2ケースでは、給電台12上に電子機器2及び異物3が存在している。第3ケースでは、給電台12上に異物3のみが存在している。第4ケースでは、給電台12上に電子機器2も異物3も存在していない。
 上述したように、異物検出処理が実行される期間中には電子機器2においてf変更/短絡動作が実行されているため、第1ケースでは、送電側コイルTにとっての負荷が十分に軽くなり(即ち、あたかも、給電台12上に電子機器2が存在しないかのような状態となり)、電圧値VDTEST[1]~VDTEST[n]の全てが十分に大きくなる。故に、異物無判定が成される。一方、第2ケースでは、共振回路RRの共振周波数が上記周波数fへと変更されるものの又は受電側コイルRが短絡されるものの、異物3は送電側コイルTの負荷として存在し続けるため(異物3の共振回路JJの共振周波数は基準周波数のままであるため)、電圧値VDTEST[1]~VDTEST[n]の一部又は全部が十分に小さくなり、結果、異物有判定が成される。
 第3及び第4ケースでは、NFC通信に応答する電子機器2が給電台12上に存在しないため、そもそも送電動作は不要であり、従って異物検出処理自体が実行されない。給電機器1は、NFC通信により、電力伝送に対応可能な電子機器2が給電台12上に存在しているか否かを判断できる。尚、異物3が給電台12上に存在する状態は、異物3が給電台12に直接接触している状態に限定されない。例えば、図19に示す如く、給電台12上に電子機器2が直接接触する形で存在し且つ電子機器2の上に異物3が存在しているような状態も、異物有判定が成される限り、異物3が給電台12上に存在する状態に属する。
[電力伝送までの信号のやりとり:図20]
 図20を参照して、電力伝送が行われるまでの機器1及び2間の信号のやりとりを説明する。以下では、特に記述無き限り、電子機器2が基準配置状態(図1(b))にて給電台12上に存在していることを想定する。
 まず、給電機器1が送信側且つ電子機器2が受信側となり、給電機器1(IC100)が、NFC通信によって、問い合わせ信号510を給電台2上の機器(以下、給電対象機器とも言う)に送信する。給電対象機器は、電子機器2を含み、異物3を含みうる。問い合わせ信号510は、例えば、給電対象機器の固有識別情報を問い合わせる信号、給電対象機器がNFC通信を実行可能な状態にあるかを問い合わせる信号、及び、給電対象機器が電力を受け取れるか又は電力の送電を求めているかを問い合わせる信号を含む。
 問い合わせ信号510を受信した電子機器2(IC200)は、問い合わせ信号510の問い合わせ内容に答える応答信号520を、NFC通信によって給電機器1に送信する。応答信号520を受信した給電機器1(IC100)は、応答信号520を解析し、給電対象機器がNFC通信を可能であって且つ電力を受け取れる又は電力の送電を求めている場合に、テスト用要求信号530をNFC通信によって給電対象機器に送信する。テスト用要求信号530を受信した給電対象機器としての電子機器2(IC200)は、テスト用要求信号530に対する応答信号540をNFC通信によって給電機器1に送信してから、速やかに、f変更/短絡動作(共振周波数変更動作又はコイル短絡動作)を実行する。テスト用要求信号530は、例えば、f変更/短絡動作の実行を要求、指示する信号であり、電子機器2の制御回路250は、テスト用要求信号530の受信を契機としてf変更/短絡動作を共振状態変更回路240に実行させる。テスト用要求信号530の受信前においてf変更/短絡動作は非実行とされている。f変更/短絡動作の実行の契機となるならばテスト用要求信号530はどのような信号でも良く、問い合わせ信号510に内包されるものであっても良い。
 応答信号540を受信した給電機器1(IC100)は、上述の異物検出処理を実行する。異物検出処理の実行期間中、電子機器2(IC200)は、f変更/短絡動作の実行を継続する。具体的には、電子機器2(IC200)は、内蔵タイマを用いて、異物検出処理の実行期間の長さに応じた時間だけf変更/短絡動作の実行を維持してからf変更/短絡動作を停止する。
 異物検出処理において、給電台12上に異物3が無いと判断すると、給電機器1(IC100)は、認証信号550をNFC通信により給電対象機器に送信する。認証信号550は、例えば、これから送電を行うことを給電対象機器に通知する信号を含む。認証信号550を受信した電子機器2(IC200)は、認証信号550に対応する応答信号560を、NFC通信によって給電機器1に送信する。応答信号560は、例えば、認証信号550が示す内容を認識したことを通知する信号又は認証信号550が示す内容に許可を与える信号を含む。応答信号560を受信した給電機器1(IC100)は、送電回路130を共振回路TT[1]に接続して送電動作を実行し、これにより電力伝送570が実現される。
 図18(a)の第1ケースでは、上記の流れで電力伝送570が実行されるが、図18(b)の第2ケースの場合においては、応答信号540の送受信まで処理が進行するものの、異物検出処理において給電台12上に異物があると判断されるため、電力伝送570が実行されない。
 1回分の電力伝送570は所定時間だけ行われるものであっても良く、問い合わせ信号510の送信から電力伝送570までの一連の処理を、繰り返し実行するようにしても良い。実際には、図21に示す如く、NFC通信と異物検出処理と電力伝送(NFC電力伝送)とを順番に且つ繰り返し実行することができる。つまり、非接触給電システムでは、NFC通信を行う動作と異物検出処理を行う動作と電力伝送(NFC電力伝送)を行う動作とを、時分割で順番に且つ繰り返し行うことができる。
[動作フローチャート]
 次に、給電機器1の動作の流れを説明する。図22は、給電機器1の動作フローチャートである。ステップS101から始まる処理は初期設定処理後に実行される。通信回路120及び送電回路130の動作は、制御回路160の制御の下で実行される。
 給電機器1が起動すると、まずステップS101において、制御回路160は、切り替え回路110の制御を通じて通信回路120を共振回路TT[1]に接続する。続くステップS102において、制御回路160は、通信回路120及び共振回路TT[1]を用いたNFC通信により問い合わせ信号510を給電対象機器に送信し、その後、ステップS103において、応答信号520の受信を待機する。通信回路120にて応答信号520が受信されると、制御回路160は、応答信号520を解析し、給電対象機器がNFC通信を可能であって且つ電力を受け取れる又は電力の送電を求めている場合に送電対象があると判断して(ステップS104のY)ステップS105に進み、そうでない場合(ステップS104のN)、ステップS102に戻る。
 ステップS105において、制御回路160は、通信回路120及び共振回路TT[1]を用いたNFC通信によりテスト用要求信号530を給電対象機器に送信し、その後、ステップS106において、応答信号540の受信を待機する。通信回路120にて応答信号540が受信されると、ステップS107において、制御回路160は、切り替え回路110の制御を通じて送電回路130を共振回路TT[i](例えば共振回路TT[1])に接続し、続くステップS108にて上述の異物検出処理を行う。
 異物検出処理の後、ステップS109にて、制御回路160は、切り替え回路110の制御を通じて通信回路120を共振回路TT[1]に接続し、ステップS110に進む。ステップS108の異物検出処理にて、異物有判定が成されている場合にはステップS110からステップS102に戻るが、異物無判定が成されている場合にはステップS110からステップS111に進む。
 ステップS111において、制御回路160は、通信回路120及び共振回路TT[1]を用いたNFC通信により認証信号550を給電対象機器に送信し、その後、ステップS112において、応答信号560の受信を待機する。通信回路120にて応答信号560が受信されると、ステップS113において、制御回路160は、切り替え回路110の制御を通じて送電回路130を共振回路TT[1]に接続し、ステップS114に進む。制御回路160は、ステップS114にて送電回路130及び共振回路TT[1]による送電動作を開始した後、ステップS115に進む。
 制御回路160は、送電動作の開始時点からの経過時間を計測し、ステップS115において、その経過時間を所定の時間tと比較する。その経過時間が時間tに達するまでステップS115の比較処理が繰り返され、その経過時間が時間tに達した時点で(ステップS115のY)、ステップS116に進む。ステップS116にて、制御回路160は、送電回路130による送電動作を停止させてステップS101に戻り、上述の処理を繰り返す。
 次に、電子機器2の動作の流れを説明する。図23は、電子機器2の動作フローチャートであり、ステップS201から始まる処理は、初期設定処理を経た給電機器1の動作に連動して実行される。通信回路220及び受電回路230の動作は、制御回路250の制御の下で実行される。
 電子機器2が起動すると、まずステップS201において、制御回路250は、切り替え回路210の制御を通じて通信回路220を共振回路RRに接続する。電子機器2の起動時においてf変更/短絡動作は非実行とされている。続くステップS202において、制御回路250は、通信回路220を用い、問い合わせ信号510の受信を待機する。通信回路220にて問い合わせ信号510が受信されると、ステップS203において、制御回路250は、問い合わせ信号510を解析して応答信号520を生成し、通信回路220を用いたNFC通信により応答信号520を給電機器1に送信する。このとき、制御回路250は、バッテリ21の状態を確認し、バッテリ21が満充電状態でなく且つバッテリ21に異常が認められなければ、電力を受け取れる又は電力の送電を求める信号を応答信号520に含める。一方、バッテリ21が満充電状態あれば又はバッテリ21に異常が認められれば、電力を受け取れない旨の信号を応答信号520に含める。
 その後のステップS204においてテスト用要求信号530が通信回路220にて受信されると、ステップS205に進む。ステップS205において、制御回路250は、通信回路220を用いたNFC通信により応答信号540を給電機器1に送信し、続くステップS206にて共振状態変更回路240を用いてf変更/短絡動作を実行する。即ち、共振周波数fを基準周波数から周波数fに変更する又は受電側コイルRを短絡する。制御回路250は、f変更/短絡動作の実行を開始してからの経過時間を計測し(ステップS207)、その経過時間が所定時間tに達するとf変更/短絡動作を停止する(ステップS208)。即ち、共振周波数fを基準周波数に戻す又は受電側コイルRの短絡を解消する。その後、ステップS209に進む。給電機器1にて異物検出処理が実行されている期間(即ちテスト磁界が発生されている期間)中、f変更/短絡動作の実行が維持され、その期間が終了すると速やかにf変更/短絡動作が停止されるように時間tが予め設定されている。テスト用要求信号530の中で時間tが指定されていても良い。
 ステップS209において、制御回路250は、通信回路220を用い、認証信号550の受信を待機する。通信回路220にて認証信号550が受信されると、ステップS210において、制御回路250は、認証信号550に対する応答信号560を通信回路220を用いたNFC通信により給電機器1へ送信する。尚、異物3が給電台12上に存在する場合には、認証信号550が給電機器1から送信されないので(図22のステップS110参照)、ステップS209にて認証信号550が一定時間受信されない場合にはステップS201に戻ると良い。
 応答信号560の送信後、ステップS211において、制御回路250は、切り替え回路210の制御を通じて受電回路230を共振回路RRに接続し、続くステップS212にて受電回路230を用いた受電動作を開始させる。制御回路250は、受電動作の開始時点からの経過時間を計測し、その経過時間と所定の時間tとを比較する(ステップS213)。そして、その経過時間が時間tに達すると(ステップS213のY)、ステップS214にて、制御回路250は、受電動作を停止させてステップS201に戻る。
 受電動作の行われる期間が給電機器1にて送電動作が行われている期間と実質的に一致するように、時間tは、予め定められている又は認証信号550の中で指定されている。受電動作の開始後、制御回路250は、バッテリ21への充電電流を監視し、充電電流値が所定値以下になった時点で送電動作が終了したと判断して、受電動作の停止及びステップS201への移行を行うようにしても良い。
 本実施形態によれば、誤って異物3が給電台12上に置かれた場合に、異物検出処理を通じて送電動作が不実行とされるため、送電動作の実行による異物3の破損等を回避することができる。そして、互いに異なる形状(上述したように大きさを含む)を有した複数の送電側コイルを用いて異物検出処理を行うようにしているため、様々な形状のコイルJ(アンテナコイル)を持ちうる異物3の存否を高精度に検出することが可能となる。
<<第2実施形態>>
 本発明の第2実施形態を説明する。第2実施形態は第1実施形態を基礎とする実施形態であり、第2実施形態において特に述べない事項に関しては、矛盾の無い限り、第1実施形態の記載が第2実施形態にも適用される。
 第2実施形態では、n=2である場合の、共振回路TT[1]及びTT[2]における送電側コイルTの具体例を挙げる。共振回路TT[1]の送電側コイルT、共振回路TT[2]の送電側コイルTを、夫々、記号T[1]、T[2]によって参照する。この具体例の説明に先立ち、図24に示すように、互いに直交するX軸、Y軸及びZ軸を定義する。X軸及びY軸は給電台12の載置面に平行であり、従ってZ軸は給電台12の載置面に直交している。給電台12の載置面は電子機器2が載置されるべき面であり、該載置面上に電子機器2及び異物3が載置されうる。
 図25(a)は、送電側コイルT[1]及びT[2]の概略的な上面視図であり、図25(b)は、送電側コイルT[1]及びT[2]の概略的な斜視図である。図25(c)は、Y軸及びZ軸に平行な断面による送電側コイルT[1]及びT[2]の概略的な断面図である。図25(a)及び(b)では、図示の簡略化及び煩雑化防止のため、各送電側コイルT[i]の巻線を二重四角枠にて表現している。コイルの図示を含む図面において、コイルを表す二重四角枠から側方に伸びる線分はコイルの引き出し線を表している。
 送電側コイルT[1]及びT[2]の夫々はループアンテナを形成しており、それらのループアンテナのループ面(即ち、送電側コイルT[1]及びT[2]の巻線が配置されている面)はX軸及びY軸に平行である。
 送電側コイルT[1]の大きさは送電側コイルT[2]の大きさよりも小さい。例えば、送電側コイルT[1]はアンテナコイルAT6と同じものであり、送電側コイルT[2]はアンテナコイルAT1と同じものである(図12(f)及び(a)参照)。この場合、例えば、送電側コイルT[1]は、NFC通信及び電力伝送(NFC電力伝送)に用いられると共に、アンテナコイルAT4、AT5又はAT6のような比較的小さなアンテナコイルをコイルJとして持つ異物3の存否検出に利用され、一方で、送電側コイルT[2]は、アンテナコイルAT1、AT2又はAT3のような比較的大きなアンテナコイルをコイルJとして持つ異物3の存否検出に利用される。
 例えば、送電側コイルT[1]のループアンテナとしての中心軸と送電側コイルT[2]のループアンテナとしての中心軸は互いに一致しており、Z軸方向から見た場合、送電側コイルT[2]の巻線の配置位置の内側に送電側コイルT[1]の巻線が配置される。但し、図25(c)に示す如く、送電側コイルT[2]の巻線が配置される平面と、送電側コイルT[1]の巻線が配置される平面とは互いに平行であるものの、Z軸方向において所定距離だけ離れている。図25(b)及び(c)に示されるものとは異なるが、送電側コイルT[2]の巻線と送電側コイルT[1]の巻線とを同一平面上に配置するようにしても構わない。
 電子機器2の受電側コイルRの形状もアンテナコイルAT6のそれと同じであることが想定され、電子機器2を給電台12の載置面上に置いたとき(即ち基準配置状態において)、受電側コイルRとしてのループアンテナのループ面(即ち、受電側コイルRの巻線が配置されている面)は、X軸及びY軸に平行となる。これにより、送電側コイルT[i]と受電側コイルRとの磁気結合度合いが高まる。また、非接触ICカードに代表される異物3を給電台12の載置面上に置いたとき、異物3のコイルJとしてのループアンテナのループ面(即ち、コイルJの巻線が配置されている面)も、X軸及びY軸に平行となる。
 上述の方法では、図26に示す如く、送電側コイルT[1]は、NFC通信、電力伝送(NFC電力伝送)及び異物検出処理に用いられ、送電側コイルT[2]は、NFC通信及び電力伝送(NFC電力伝送)には用いられずに異物検出処理にのみ用いられる。しかしながら、送電側コイルT[1]及びT[2]の役割分担はこれに限定されない。即ち例えば、異物検出処理は送電側コイルT[1]及びT[2]の双方を用いて行われるが、NFC通信は送電側コイルT[1]及びT[2]の任意の一方を用いて行われて良いし、電力伝送(NFC電力伝送)も送電側コイルT[1]及びT[2]の任意の一方を用いて行われて良い。例として、図27に、送電側コイルT[1]を用いて電力伝送(NFC電力伝送)を行う一方で送電側コイルT[2]を用いてNFC通信を行う場合の例を示す。異物検出処理は送電側コイルT[1]及びT[2]の双方を用いて行われる。
 送電側コイルの個数nが2以外の場合も含めて一般化すると、以下のことが言える。異物検出処理は送電側コイルT[1]~T[n]を用いて行われるが、NFC通信は送電側コイルT[1]~T[n]の内の任意の1つを用いて行われて良く、且つ、電力伝送(NFC電力伝送)も送電側コイルT[1]~T[n]の内の任意の1つを用いて行われて良い。NFC通信に用いられる送電側コイルと、電力伝送(NFC電力伝送)に用いられる送電側コイルは互いに同じであっても良いし、互いに異なっていても良い。
 <<本発明の考察>>
 上述の各実施形態にて具体化された本発明について考察する。
 本発明の一側面に係る送電装置Wは、受電装置(2)に対し磁界共鳴方式で電力を送電可能な送電装置(1)において、互いに大きさが異なるコイルを有して構成され且つ所定の基準周波数に共振周波数が設定された第1~第n共振回路(TT[1]~TT[n])と(nは2以上の整数)、前記第1~第n共振回路の何れかに選択的に交流信号を供給する送電回路(130)と、前記交流信号が供給された共振回路のコイルに流れる電流の振幅を検出する検出回路(140)と、前記送電回路を制御する制御回路(160)と、を備え、前記制御回路は、前記送電に先立ち前記交流信号を前記第1~第n共振回路に順次供給させて前記検出回路から前記第1~第n共振回路に対応する第1~第n振幅検出値(VDTEST[1]~VDTEST[n])を取得し、前記第1~第n振幅検出値に基づいて、前記送電の実行制御を行うことを特徴とする。
 受電装置は、送電装置のコイルから送電される電力を磁界共鳴を利用して受電できる。一方、受電装置と異なる機器であって、送電装置のコイルの発生磁界に応答するコイルを持った異物も存在し得る。このような異物が、送電装置のコイルの発生磁界に応答する場所に存在している状況において、電力送電用の磁界が送電装置のコイルにて発生されたとき、異物が破損等するおそれがある。これを回避するためには、異物の存否判定を介して送電の実行制御を行うことが肝要となる。
 ここで、送電装置のコイルの発生磁界に応答する場所に異物が存在しているとき、当該コイルに流れる電流の振幅が減少するという特性がある。この特性を利用すれば、電流の振幅変化に基づき異物の存否を検出することが可能である。しかしながら、異物が持つコイル(アンテナコイル)の形状(大きさを含む)として様々な形状が考えられ、その形状に依存して異物の存在による電流振幅の変化が様々となる。
 これを考慮し、送電装置に、互いに大きさが異なるコイルを有した第1~第n共振回路を設けておき、第1~第n共振回路に対応する第1~第n振幅検出値を利用する。これによれば、様々な形状のコイル(アンテナコイル)を持ちうる異物の存否を高精度に検出することが可能となり、その検出結果に基づいて適切な送電制御を行うことが可能となる。典型的には例えば、異物が存在すると判断される場合には送電の実行を禁止するといった制御が可能となり、異物の破損等を回避することができる。
 具体的には例えば、前記制御回路は、前記第1~第n振幅検出値に基づいて、前記受電装置と異なり且つ前記基準周波数に共振周波数が設定された共振回路を含む異物の存否を判断し、前記異物が存在しないと判断した場合に前記送電の実行を許可する一方、前記異物が存在すると判断した場合に前記送電の実行を禁止すると良い。
 また例えば、前記制御回路は、前記第1~第n振幅検出値の夫々を所定の基準値と比較することにより前記送電の実行可否を判断ことができる。
 或いは例えば、前記制御回路は、前記第1~第n振幅検出値の最小値を所定の基準値と比較することにより前記送電の実行可否を判断しても良い。
 また例えば、前記送電は、前記送電回路及び前記第1共振回路を用いて行われ、前記送電に先立ち前記交流信号を各共振回路に供給したときに各共振回路のコイルにて発生する磁界(テスト磁界)の強度は、前記送電の際に前記第1共振回路のコイルにて発生する磁界(送電用磁界)の強度よりも小さいと良い。
 これにより、送電に先立って発生される磁界により異物が破損等することが抑制される。
 また例えば、前記受電装置は、前記基準周波数に共振周波数が設定された受電側共振回路(RR)を有して該受電側共振回路により電力を受電可能であり、前記第1~第n振幅検出値の取得が行われる際には、前記送電装置からの通信による信号に従い、前記受電装置にて前記受電側共振回路の共振周波数が前記基準周波数から変更される又は前記受電側共振回路のコイルが短絡されると良い。
 これにより、送電装置の検出回路の振幅検出値に対する受電側共振回路の影響が抑制され、異物の存否を正確に判断して適切な送電制御を行うことが可能となる。
 送電装置から受電装置に対し磁界共鳴方式で電力を送電可能な非接触給電システムWにおいて、前記送電装置は、互いに大きさが異なるコイルを有して構成され且つ所定の基準周波数に共振周波数が設定された第1~第n共振回路と(nは2以上の整数)、前記第1~第n共振回路の何れかに選択的に交流信号を供給する送電回路と、前記交流信号が供給された共振回路のコイルに流れる電流の振幅を検出する検出回路と、前記送電回路を制御する制御回路と、を備え、前記受電装置は、受電側コイルを含む受電側共振回路と、前記送電装置からの電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数である前記基準周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路と、を備え、前記制御回路は、前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち前記交流信号を前記第1~第n共振回路に順次供給させて前記検出回路から前記第1~第n共振回路に対応する第1~第n振幅検出値を取得し、前記第1~第n振幅検出値に基づいて、前記送電の実行制御を行うことを特徴とする。
 非接触給電システムWによっても、上記送電装置Wと同様の作用及び効果を奏することができる。
 尚、上述の各実施形態における給電機器1そのものが本発明に係る送電装置として機能しても良いし、上述の各実施形態における給電機器1の一部が本発明に係る送電装置として機能しても良い。同様に、上述の各実施形態における電子機器2そのものが本発明に係る受電装置として機能しても良いし、上述の各実施形態における電子機器2の一部が本発明に係る受電装置として機能しても良い。
 <<変形等>>
 本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。上述の実施形態に適用可能な注釈事項として、以下に、注釈1~注釈3を記す。各注釈に記載した内容は、矛盾なき限り、任意に組み合わせることが可能である。
[注釈1]
 上述の実施形態では、各種の信号の周波数や共振周波数を、基準周波数としての13.56MHzに設定することを述べたが、13.56MHzは設定の目標値であって、実際の機器における、それらの周波数には誤差が含まれる。
[注釈2]
 本発明をNFCの規格に沿って具現化したものを実施形態中に示したため、基準周波数が13.56MHzであると述べたが、基準周波数は13.56MHz以外でも構わない。これに関連するが、本発明が適用される給電機器及び電子機器間の通信及び電力伝送は、NFC以外の規格に沿った通信及び電力伝送であっても良い。
[注釈3]
 本発明に係る受電装置又は送電装置である対象装置を、集積回路等のハードウェア、或いは、ハードウェアとソフトウェアの組み合わせによって構成することができる。対象装置にて実現される機能の全部又は一部である任意の特定の機能をプログラムとして記述して、該プログラムを対象装置に搭載可能なフラッシュメモリに保存しておいても良い。そして、該プログラムをプログラム実行装置(例えば、対象装置に搭載可能なマイクロコンピュータ)上で実行することによって、その特定の機能を実現するようにしてもよい。上記プログラムは任意の記録媒体に記憶及び固定されうる。上記プログラムを記憶及び固定する記録媒体は対象装置と異なる機器(サーバ機器等)に搭載又は接続されても良い。
  1 給電機器
  2 電子機器
130 NFC送電回路
140 負荷検出回路
160 制御回路
230 NFC受電回路
240 共振状態変更回路
250 制御回路
 TT、TT[1]~TT[n] 送電側共振回路
 T 送電側コイル
 T 送電側コンデンサ
 RR 受電側共振回路
 R 受電側コイル
 R 受電側コンデンサ

Claims (11)

  1.  受電装置に対し磁界共鳴方式で電力を送電可能な送電装置において、
     互いに大きさが異なるコイルを有して構成され且つ所定の基準周波数に共振周波数が設定された第1~第n共振回路と(nは2以上の整数)、前記第1~第n共振回路の何れかに選択的に交流信号を供給する送電回路と、前記交流信号が供給された共振回路のコイルに流れる電流の振幅を検出する検出回路と、前記送電回路を制御する制御回路と、を備え、
     前記制御回路は、
     前記送電に先立ち前記交流信号を前記第1~第n共振回路に順次供給させて前記検出回路から前記第1~第n共振回路に対応する第1~第n振幅検出値を取得し、
     前記第1~第n振幅検出値に基づいて、前記送電の実行制御を行う
    ことを特徴とする送電装置。
  2.  前記制御回路は、前記第1~第n振幅検出値に基づいて、前記受電装置と異なり且つ前記基準周波数に共振周波数が設定された共振回路を含む異物の存否を判断し、前記異物が存在しないと判断した場合に前記送電の実行を許可する一方、前記異物が存在すると判断した場合に前記送電の実行を禁止する
    ことを特徴とする請求項1に記載の送電装置。
  3.  前記制御回路は、前記第1~第n振幅検出値の夫々を所定の基準値と比較することにより前記送電の実行可否を判断する
    ことを特徴とする請求項1又は2に記載の送電装置。
  4.  前記制御回路は、前記第1~第n振幅検出値の最小値を所定の基準値と比較することにより前記送電の実行可否を判断する
    ことを特徴とする請求項1又は2に記載の送電装置。
  5.  前記送電は、前記送電回路及び前記第1共振回路を用いて行われ、
     前記送電に先立ち前記交流信号を各共振回路に供給したときに各共振回路のコイルにて発生する磁界の磁界強度は、前記送電の際に前記第1共振回路のコイルにて発生する磁界の磁界強度よりも小さい
    ことを特徴とする請求項1~4の何れかに記載の送電装置。
  6.  前記受電装置は、前記基準周波数に共振周波数が設定された受電側共振回路を有して該受電側共振回路により電力を受電可能であり、
     前記第1~第n振幅検出値の取得が行われる際には、前記送電装置からの通信による信号に従い、前記受電装置にて前記受電側共振回路の共振周波数が前記基準周波数から変更される又は前記受電側共振回路のコイルが短絡される
    ことを特徴とする請求項1~5の何れかに記載の送電装置。
  7.  送電装置から受電装置に対し磁界共鳴方式で電力を送電可能な非接触給電システムにおいて、
     前記送電装置は、互いに大きさが異なるコイルを有して構成され且つ所定の基準周波数に共振周波数が設定された第1~第n共振回路と(nは2以上の整数)、前記第1~第n共振回路の何れかに選択的に交流信号を供給する送電回路と、前記交流信号が供給された共振回路のコイルに流れる電流の振幅を検出する検出回路と、前記送電回路を制御する制御回路と、を備え、
     前記受電装置は、受電側コイルを含む受電側共振回路と、前記送電装置からの電力の受電に先立ち、前記受電側共振回路の共振周波数を前記受電の際の共振周波数である前記基準周波数から変更する又は前記受電側コイルを短絡する変更/短絡回路と、を備え、
     前記制御回路は、
     前記送電装置からの通信による信号に従い前記受電装置にて前記受電側共振回路の共振周波数の変更又は前記受電側コイルの短絡が行われている状態で、前記送電に先立ち前記交流信号を前記第1~第n共振回路に順次供給させて前記検出回路から前記第1~第n共振回路に対応する第1~第n振幅検出値を取得し、
     前記第1~第n振幅検出値に基づいて、前記送電の実行制御を行う
    ことを特徴とする非接触給電システム。
  8.  前記制御回路は、前記第1~第n振幅検出値に基づいて、前記受電装置と異なり且つ前記基準周波数に共振周波数が設定された共振回路を含む異物の存否を判断し、前記異物が存在しないと判断した場合に前記送電の実行を許可する一方、前記異物が存在すると判断した場合に前記送電の実行を禁止する
    ことを特徴とする請求項7に記載の非接触給電システム。
  9.  前記制御回路は、前記第1~第n振幅検出値の夫々を所定の基準値と比較することにより前記送電の実行可否を判断する
    ことを特徴とする請求項7又は8に記載の非接触給電システム。
  10.  前記制御回路は、前記第1~第n振幅検出値の最小値を所定の基準値と比較することにより前記送電の実行可否を判断する
    ことを特徴とする請求項7又は8に記載の非接触給電システム。
  11.  前記送電は、前記送電回路及び前記第1共振回路を用いて行われ、
     前記送電に先立ち前記交流信号を各共振回路に供給したときに各共振回路のコイルにて発生する磁界の磁界強度は、前記送電の際に前記第1共振回路のコイルにて発生する磁界の磁界強度よりも小さい
    ことを特徴とする請求項7~10の何れかに記載の非接触給電システム。
PCT/JP2016/067026 2015-06-25 2016-06-08 送電装置及び非接触給電システム WO2016208392A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16814163.8A EP3316450B1 (en) 2015-06-25 2016-06-08 Power transmitting device and non-contact power feeding system
US15/736,425 US10778046B2 (en) 2015-06-25 2016-06-08 Power transmitting device and non-contact power feeding system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015127769A JP6650219B2 (ja) 2015-06-25 2015-06-25 送電装置及び非接触給電システム
JP2015-127769 2015-06-25

Publications (1)

Publication Number Publication Date
WO2016208392A1 true WO2016208392A1 (ja) 2016-12-29

Family

ID=57585592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067026 WO2016208392A1 (ja) 2015-06-25 2016-06-08 送電装置及び非接触給電システム

Country Status (4)

Country Link
US (1) US10778046B2 (ja)
EP (1) EP3316450B1 (ja)
JP (1) JP6650219B2 (ja)
WO (1) WO2016208392A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391697A (zh) * 2015-10-23 2019-10-29 联发科技股份有限公司 执行异物检测的方法和装置
US11984736B2 (en) 2018-07-19 2024-05-14 Mediatek Singapore Pte. Ltd. Detecting foreign objects in wireless power transfer systems

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6845624B2 (ja) * 2015-07-08 2021-03-17 ローム株式会社 送電装置、受電装置及び非接触給電システム
US10985465B2 (en) * 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
JP2019004691A (ja) * 2017-06-13 2019-01-10 ローム株式会社 送電装置及び非接触給電システム
JP7144192B2 (ja) * 2018-05-29 2022-09-29 ローム株式会社 ワイヤレス送電装置、その制御回路
CN108695956B (zh) * 2018-05-29 2021-05-07 京东方科技集团股份有限公司 无线充电及通信电路和无线电子设备
GB201808844D0 (en) * 2018-05-30 2018-07-11 Imperial Innovations Ltd Wireless power transmission system and method
JP7233898B2 (ja) * 2018-11-28 2023-03-07 キヤノン株式会社 送電装置、送電装置の制御方法及びプログラム
US11585840B2 (en) * 2020-09-03 2023-02-21 Raytheon Company Tuning of narrowband near-field probes
US11289952B1 (en) * 2021-02-10 2022-03-29 Nucurrent, Inc. Slotted communications in virtual AC power signal transfer with variable slot width
CN116345727B (zh) * 2023-01-13 2023-11-21 荣耀终端有限公司 异物检测方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013318A (ja) * 2009-03-13 2013-01-17 Mitsubishi Electric Corp 非接触受給電装置
JP2013026623A (ja) * 2011-07-14 2013-02-04 Hanrim Postech Co Ltd 無線電力送信装置用コアアセンブリ及びそれを備える無線電力送信装置
JP2014514905A (ja) * 2011-03-31 2014-06-19 クアルコム,インコーポレイテッド ワイヤレス電力システムにおいてワイヤレス電力通信デバイスを検出し、保護するためのシステムおよび方法
JP2014526871A (ja) * 2011-09-09 2014-10-06 ワイトリシティ コーポレーション ワイヤレスエネルギー伝送システムにおける異物検出
JP2015202025A (ja) * 2014-03-31 2015-11-12 ローム株式会社 受電装置、送電装置及び非接触給電システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525710B2 (ja) * 2007-06-29 2010-08-18 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
US7812481B2 (en) * 2007-06-29 2010-10-12 Seiko Epson Corporation Power transmission control device, power transmission device, electronic instrument, and non-contact power transmission system
JP4600464B2 (ja) * 2007-11-22 2010-12-15 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
JP5417907B2 (ja) * 2009-03-09 2014-02-19 セイコーエプソン株式会社 送電制御装置、送電装置、受電制御装置、受電装置、電子機器および無接点電力伝送システム
JP2013027074A (ja) * 2011-07-15 2013-02-04 Panasonic Corp 非接触給電装置
JP5857251B2 (ja) * 2011-08-01 2016-02-10 パナソニックIpマネジメント株式会社 非接触給電装置の制御方法及び非接触給電装置
JP5836898B2 (ja) 2012-08-01 2015-12-24 ルネサスエレクトロニクス株式会社 通信装置およびその動作方法
KR102051682B1 (ko) * 2013-03-15 2019-12-03 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 전송 시스템에서 이물질 감지 장치 및 방법
US9829599B2 (en) * 2015-03-23 2017-11-28 Schneider Electric USA, Inc. Sensor and method for foreign object detection in induction electric charger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013318A (ja) * 2009-03-13 2013-01-17 Mitsubishi Electric Corp 非接触受給電装置
JP2014514905A (ja) * 2011-03-31 2014-06-19 クアルコム,インコーポレイテッド ワイヤレス電力システムにおいてワイヤレス電力通信デバイスを検出し、保護するためのシステムおよび方法
JP2013026623A (ja) * 2011-07-14 2013-02-04 Hanrim Postech Co Ltd 無線電力送信装置用コアアセンブリ及びそれを備える無線電力送信装置
JP2014526871A (ja) * 2011-09-09 2014-10-06 ワイトリシティ コーポレーション ワイヤレスエネルギー伝送システムにおける異物検出
JP2015202025A (ja) * 2014-03-31 2015-11-12 ローム株式会社 受電装置、送電装置及び非接触給電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3316450A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391697A (zh) * 2015-10-23 2019-10-29 联发科技股份有限公司 执行异物检测的方法和装置
CN110391697B (zh) * 2015-10-23 2024-04-26 联发科技股份有限公司 执行异物检测的方法和装置
US11984736B2 (en) 2018-07-19 2024-05-14 Mediatek Singapore Pte. Ltd. Detecting foreign objects in wireless power transfer systems

Also Published As

Publication number Publication date
EP3316450B1 (en) 2021-08-11
EP3316450A1 (en) 2018-05-02
EP3316450A4 (en) 2019-01-23
JP6650219B2 (ja) 2020-02-19
US10778046B2 (en) 2020-09-15
JP2017011954A (ja) 2017-01-12
US20180183277A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2016208392A1 (ja) 送電装置及び非接触給電システム
WO2017064955A1 (ja) 送電装置及び非接触給電システム
US10998767B2 (en) Power transmission device and non-contact power feeding system for transmitting electric power to power reception device by magnetic resonance
JP6452844B2 (ja) 受電装置及び非接触給電システム
US9819213B2 (en) Power reception apparatus, power transmission apparatus, non-contact power supply system, power reception method, and power transmission method
US10923962B2 (en) Power transmission device non-contact power feeding system with detection circuit to detect current amplitude in transmission-side coil
JP6405253B2 (ja) 非接触給電システム
JP6991374B2 (ja) 非接触給電システム及び送電装置
KR102066369B1 (ko) 후속 수신기의 무선 전력 충전을 위한 장치 및 방법
CN102055250A (zh) 谐振式非接触充电装置
US9673867B2 (en) Power transmission device and power feeding system
JP2019004691A (ja) 送電装置及び非接触給電システム
US11641134B2 (en) Wireless charging device and a method for detecting a receiver device
WO2017006946A1 (ja) 送電装置、受電装置及び非接触給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15736425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016814163

Country of ref document: EP