WO2016204110A1 - 圧電振動子の製造方法 - Google Patents

圧電振動子の製造方法 Download PDF

Info

Publication number
WO2016204110A1
WO2016204110A1 PCT/JP2016/067504 JP2016067504W WO2016204110A1 WO 2016204110 A1 WO2016204110 A1 WO 2016204110A1 JP 2016067504 W JP2016067504 W JP 2016067504W WO 2016204110 A1 WO2016204110 A1 WO 2016204110A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
substrate
vibration element
piezoelectric vibration
manufacturing
Prior art date
Application number
PCT/JP2016/067504
Other languages
English (en)
French (fr)
Inventor
星太 高橋
開田 弘明
賢誉 牧野
博之 新家
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017525214A priority Critical patent/JP6361829B2/ja
Priority to CN201680034000.0A priority patent/CN107710602B/zh
Publication of WO2016204110A1 publication Critical patent/WO2016204110A1/ja
Priority to US15/818,854 priority patent/US10742188B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0509Holders; Supports for bulk acoustic wave devices consisting of adhesive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0519Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for cantilever
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0428Modification of the thickness of an element of an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/02Forming enclosures or casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a method for manufacturing a piezoelectric vibrator.
  • a piezoelectric vibration element for example, a crystal piece
  • a piezoelectric vibrator is manufactured by adjusting the frequency of a piezoelectric vibration element so as to have a desired frequency characteristic and then sealingly sealing the piezoelectric vibration element in an internal space with a concave metal cover.
  • the physical property change of the conductive adhesive is caused by the humidity of the hermetically sealed internal space.
  • the frequency characteristics sometimes fluctuated. Such fluctuations in frequency characteristics occur after performing a frequency adjustment step to obtain a desired frequency characteristic, and the amount of fluctuation in frequency characteristics varies from product to product and is difficult to predict. In some cases, it is difficult to manufacture a piezoelectric vibrator having desired frequency characteristics.
  • the present invention has been made in view of such circumstances, and an object thereof is to easily manufacture a piezoelectric vibrator having a desired frequency characteristic.
  • a method of manufacturing a piezoelectric vibrator includes: (a) mounting a piezoelectric vibration element on a base member via a conductive adhesive; (b) surrounding the piezoelectric vibration element mounted on the base member. Maintaining the environment in a higher temperature and higher humidity environment for a predetermined time, (c) adjusting the frequency of the piezoelectric vibrating element by ion beam etching, and (d) sealing the piezoelectric vibrating element so as to be hermetically sealed. Joining the member to the base member via a joining material.
  • the piezoelectric vibration element mounted on the substrate is maintained in a high temperature and high humidity environment, and then the frequency of the piezoelectric vibration element is adjusted.
  • the frequency adjustment of the piezoelectric vibration element it is possible to make the frequency adjustment of the piezoelectric vibration element to obtain a desired frequency characteristic in consideration of the variation in the frequency characteristic for each of the products that are manifested by making the fluctuation of the frequency characteristic obvious. Therefore, a piezoelectric vibrator having a desired frequency characteristic can be easily manufactured.
  • (b) is a method in which the piezoelectric vibration element is operated at a temperature of 40 ° C. to 121 ° C. and a humidity of 70% RH to 95% RH for 30 minutes to 168 hours. It may include maintaining on time.
  • the base member includes a connection electrode formed on an upper surface on which the piezoelectric vibration element is mounted, and an extraction electrode extracted from the connection electrode toward the outer edge of the upper surface of the base member.
  • (A) may include electrically connecting the piezoelectric vibration element to the connection electrode via a conductive adhesive.
  • the piezoelectric vibration element may include a piezoelectric substrate and an excitation electrode formed on the piezoelectric substrate, and (c) may include trimming the excitation electrode by etching with an ion beam. .
  • the piezoelectric substrate may be a quartz substrate.
  • the lid member may be a cap having a recess facing the base member.
  • the bonding material may be a resin adhesive.
  • a piezoelectric vibrator having desired frequency characteristics can be easily manufactured.
  • FIG. 1 is an exploded perspective view of a piezoelectric vibrator according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a flowchart showing a method for manufacturing a piezoelectric vibrator according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an experimental example for explaining a method of manufacturing a piezoelectric vibrator according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an experimental example for explaining a method of manufacturing a piezoelectric vibrator according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of the piezoelectric vibrator
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. In FIG. 2, illustration of various electrodes of the piezoelectric vibration element is omitted.
  • the piezoelectric vibrator 1 includes a piezoelectric vibration element 100, a cap 200 that is an example of a lid member, and a substrate 300 that is an example of a base member.
  • the cap 200 and the substrate 300 are a case or a package for housing the piezoelectric vibration element 100.
  • the piezoelectric vibration element 100 includes a piezoelectric substrate 110 and first and second excitation electrodes 120 and 130 formed on the piezoelectric substrate 110.
  • the first excitation electrode 120 is formed on the first surface 112 of the piezoelectric substrate 110
  • the second excitation electrode 130 is formed on the second surface 114 opposite to the first surface 112 of the piezoelectric substrate 110.
  • the piezoelectric substrate 110 is formed from a given piezoelectric material, and the material is not particularly limited.
  • the piezoelectric vibration element 100 is a crystal vibration element having a piezoelectric substrate 110 that is an AT-cut crystal substrate.
  • the AT-cut quartz substrate has an X-axis, a Y-axis, and a Z-axis which are crystal axes of the artificial quartz, and the Y-axis and the Z-axis are 35 degrees 15 minutes ⁇ 1 in the direction from the Y-axis to the Z-axis around the X-axis.
  • the piezoelectric substrate 110 that is an AT-cut quartz substrate has a longitudinal direction parallel to the Z′-axis direction, a short direction parallel to the X-axis direction, and a thickness direction parallel to the Y′-axis direction. And has a substantially rectangular shape on the XZ ′ plane.
  • a quartz resonator element using an AT-cut quartz substrate has extremely high frequency stability over a wide temperature range, is excellent in aging characteristics, and can be manufactured at low cost.
  • the AT-cut crystal resonator element often uses a thickness shear vibration mode as a main vibration.
  • the piezoelectric substrate according to the present embodiment is not limited to the above-described configuration.
  • an AT-cut quartz substrate having a longitudinal direction parallel to the X-axis direction and a short direction parallel to the Z′-axis direction is used. It may be applied, may be a quartz substrate of a different cut other than AT cut, or other piezoelectric material such as ceramic other than quartz may be applied.
  • the first excitation electrode 120 is formed on the first surface 112 (XZ ′ surface on the Y′-axis positive direction side) of the piezoelectric substrate 110, and the second excitation electrode 130 is different from the first surface 112 of the piezoelectric substrate 110. It is formed on the opposite second surface 114 (that is, the XZ ′ surface on the Y′-axis negative direction side).
  • the first and second excitation electrodes 120 and 130 are a pair of electrodes, and are arranged so as to substantially overlap each other on the XZ ′ plane.
  • the piezoelectric substrate 110 has a connection electrode 124 electrically connected to the first excitation electrode 120 via the extraction electrode 122, and a connection electrode 134 electrically connected to the second excitation electrode 130 via the extraction electrode 132. And are formed. Specifically, the extraction electrode 122 is extracted from the first excitation electrode 120 toward the short side on the Z′-axis negative direction side on the first surface 112 and further passes through the side surface of the piezoelectric substrate 110 on the Z′-axis negative direction side. The connection electrode 124 formed on the second surface 114 is connected.
  • the extraction electrode 132 is extracted from the second excitation electrode 130 toward the short side of the Z′-axis negative direction on the second surface 114, and is connected to the connection electrode 134 formed on the second surface 114.
  • the connection electrodes 124 and 134 are disposed along the short side on the Z′-axis negative direction side, and these connection electrodes 124 and 134 are electrically connected to the substrate 300 via conductive adhesives 340 and 342 described later. And mechanically held.
  • the arrangement and pattern shape of the connection electrodes 124 and 134 and the extraction electrodes 122 and 132 are not limited, and can be appropriately changed in consideration of electrical connection with other members.
  • Each of the electrodes including the first and second excitation electrodes 120 and 130 may be formed, for example, by forming a base with a chromium (Cr) layer and forming a gold (Au) layer on the surface of the chromium layer. It is not limited.
  • the cap 200 has a recess 204 that opens to face the first surface 302 of the substrate 300.
  • the recess 204 is provided with an edge 202 formed so as to rise from the bottom surface of the recess 204 over the entire circumference of the opening.
  • the edge 202 is an end face 205 facing the first surface 302 of the substrate 300.
  • the end surface 205 may be a tip surface of the edge 202 that protrudes substantially vertically from the bottom surface of the recess 204.
  • the material of the cap 200 may be a metal, for example. According to this, the shield function can be added by electrically connecting the cap 200 to the ground potential.
  • the cap 200 may be an insulating material or a composite structure of metal and insulating material.
  • the cap 200 may have a flange portion that protrudes from the opening edge toward the opening edge from the opening center of the recess.
  • the flange portion may have an end surface facing the first surface of the substrate. According to the cap having the flange portion, since the size of the end face, that is, the area of the joining region between the cap and the substrate can be increased, the joining strength between the two can be improved.
  • the piezoelectric vibration element 100 is mounted on the first surface 302 of the substrate 300.
  • the substrate 300 has a longitudinal direction parallel to the Z′-axis direction, a short direction parallel to the X-axis direction, and a thickness direction parallel to the Y′-axis direction. It has a substantially rectangular shape on the ′ surface.
  • the substrate 300 is made of, for example, an insulating ceramic. More specifically, it is formed by laminating and firing a plurality of insulating ceramic sheets.
  • the substrate 300 is made of a glass material (for example, silicate glass or a material mainly composed of materials other than silicate and having a glass transition phenomenon due to a temperature rise), a crystal material (for example, an AT-cut crystal) or You may form with a glass epoxy material.
  • the substrate 300 is preferably made of a heat resistant material.
  • the substrate 300 may be a single layer or a plurality of layers. In the case of a plurality of layers, the substrate 300 may include an insulating layer formed on the outermost layer of the first surface 302.
  • the substrate 300 may have a flat plate shape, or may have a concave shape opened in a direction facing the cap 200. As shown in FIG.
  • both the cap 200 and the substrate 300 are bonded via a bonding material 350, so that the piezoelectric vibration element 100 is surrounded by an inner space (cavity) surrounded by the concave portion 204 of the cap 200 and the substrate 300. ) 206 is hermetically sealed.
  • the bonding material 350 is provided in an annular shape over the entire circumference of the cap 200 or the substrate 300, and is interposed between the end surface 205 of the edge 202 of the cap 200 and the first surface 302 of the substrate 300.
  • the bonding material 350 is a resin adhesive (for example, an epoxy adhesive).
  • the bonding material 350 may be a low-melting glass (for example, lead borate or tin phosphate).
  • the piezoelectric vibration element 100 has one end (the end on the conductive adhesive 340, 342 side) as a fixed end and the other end as a free end.
  • the piezoelectric vibration element 100 may be fixed to the substrate 300 at both ends in the longitudinal direction.
  • the substrate 300 includes connection electrodes 320 and 322 formed on the first surface 302 (upper surface), and extraction electrodes 320 a and 220 a that are extracted from the connection electrodes 320 and 322 toward the outer edge of the first surface 302. 322a.
  • the connection electrodes 320 and 322 are disposed on the inner side of the outer edge of the substrate 300 so that the piezoelectric vibration element 100 can be disposed substantially at the center of the first surface 302 of the substrate 300.
  • connection electrode 320 is connected to the connection electrode 124 of the piezoelectric vibration element 100 via the conductive adhesive 340, while the connection electrode 322 is connected to the piezoelectric vibration element 100 via the conductive adhesive 342.
  • the electrode 134 is connected.
  • the extraction electrode 320a is extracted from the connection electrode 320 toward any one corner portion of the substrate 300, while the extraction electrode 322a is extracted from the connection electrode 322 toward another corner portion of the substrate 300. Yes.
  • a plurality of external electrodes 330, 332, 334, and 336 are formed at each corner of the substrate 300.
  • the extraction electrode 320a is on the X axis negative direction side and the Z ′ axis negative direction side.
  • the lead electrode 322a is connected to the external electrode 332 formed at the corners on the X-axis positive direction side and the Z′-axis positive direction side. As shown in FIG.
  • external electrodes 334 and 336 may be formed in the remaining corner portions, and these external electrodes may be dummy patterns that are not electrically connected to the piezoelectric vibration element 100.
  • the dummy pattern may be electrically connected to a terminal (terminal not connected to any other electronic element) provided on a mounting substrate (not shown) on which the piezoelectric vibrator is mounted.
  • the corner portion of the substrate 300 has a cut-out side surface formed by cutting a part of the corner portion into a cylindrical curved surface shape (also called a castellation shape), and the external electrodes 330 and 332. , 334, 336 are continuously formed over the cut-out side surface and the second surface 304 (lower surface).
  • the shape of the corner portion of the substrate 300 is not limited to this, and the shape of the cutout may be planar, or the corner of the corner portion may remain without being cutout.
  • substrate 300, an extraction electrode, and an external electrode is not limited to the above-mentioned example, It can apply in various deformation
  • the connection electrodes 320 and 322 are arranged on different sides on the first surface 302 of the substrate 300 such that one is formed on the Z′-axis positive direction side and the other is formed on the Z′-axis negative direction side. It may be.
  • the piezoelectric vibration element 100 is supported by the substrate 300 at both one end and the other end in the longitudinal direction.
  • the number of external electrodes is not limited to four, and may be two arranged on a diagonal, for example.
  • the external electrode is not limited to the one disposed at the corner portion, and may be formed on any side surface of the substrate 300 excluding the corner portion.
  • a cut-out side surface obtained by cutting a part of the side surface into a cylindrical curved surface may be formed, and the external electrode may be formed on the side surface excluding the corner portion.
  • the other external electrodes 334 and 336 which are dummy patterns may not be formed.
  • a through hole penetrating from the first surface 302 to the second surface 304 may be formed in the substrate 300, and electrical conduction from the connection electrode formed on the first surface 302 to the second surface 304 may be achieved by the through hole. .
  • the piezoelectric vibrator 1 by applying an AC voltage between the pair of first and second excitation electrodes 120 and 130 in the piezoelectric vibration element 100 via the external electrodes 330 and 332,
  • the piezoelectric substrate 110 vibrates in a predetermined vibration mode such as a thickness shear vibration mode, and resonance characteristics associated with the vibration are obtained.
  • the piezoelectric vibration element 100 is mounted on the substrate 300 via the conductive adhesives 340 and 342 (S10).
  • the piezoelectric vibration element 100 and the substrate 300 are prepared.
  • the piezoelectric resonator element 100 is a crystal resonator
  • a crystal material is cut into a wafer shape with a predetermined cut angle from an artificial quartz or natural quartz ore, and formed into a predetermined rectangular outer shape by dicing or etching, and thereafter
  • Various electrodes including the first and second excitation electrodes 120 and 130 are formed by sputtering, vacuum deposition, or the like.
  • a paste-like conductive material is applied to a predetermined region on the first surface 302 of the substrate 300, and the applied conductive material is baked to form an electrode pattern including connection electrodes, extraction electrodes, and external electrodes.
  • These electrode patterns can also be formed by appropriately combining a sputtering method, a vacuum deposition method, or a plating method.
  • the conductive adhesives 340 and 342 are provided in advance on the connection electrodes 320 and 322 of the substrate 300 or the connection electrodes 124 and 134 of the piezoelectric vibration element 100, and are thermally cured after the piezoelectric vibration element 100 is mounted on the substrate 300. .
  • the thermosetting of the conductive adhesives 340 and 342 is performed, for example, by maintaining the temperature at about 180 ° C. or higher and 190 ° C. or lower for about 30 minutes.
  • the piezoelectric vibration element 100 may be mounted on each substrate 300 obtained by dividing a wafer-like substrate, or may be mounted on each region of the wafer-like substrate.
  • the substrate 300 is separated into pieces for each piezoelectric vibration element 100 by dicing or the like in a subsequent process.
  • the piezoelectric vibration element 100 mounted on the substrate 300 is maintained in a high temperature and high humidity environment (S11).
  • the piezoelectric vibration element 100 on the substrate 300 is accommodated in a sealed space of a processing apparatus such as an oven.
  • This sealed space is capable of controlling its temperature and humidity in the atmosphere independently of the surrounding environment, which is the manufacturing environment of the piezoelectric vibrator.
  • the temperature environment in step S11 may be in the range of 40 ° C. or more and 121 ° C. or less, for example. If the temperature is lower than 40 ° C., there is not so much temperature difference from the ambient temperature of the manufacturing environment (for example, 25 ° C.), and if it exceeds 121 ° C., the materials constituting the piezoelectric vibration element 100 and the substrate 300 may be deteriorated.
  • the temperature environment may be in a range of 92 ° C. or higher and 98 ° C. or lower (that is, near 95 ° C.).
  • the humidity environment in step S11 may be, for example, in the range of 70% RH or more and 95% RH. If it is less than 70% RH, there is not much difference in humidity from the ambient humidity of the manufacturing environment, and if it exceeds 95% RH, there is a possibility that condensation occurs on the piezoelectric vibration element 100 or the substrate 300.
  • the humidity environment may be in the range of 82% RH or more and 88% RH (that is, around 85% RH).
  • the processing time in step S11 may be, for example, in a range from 30 minutes to 168 hours. If it is less than 30 minutes, the effect of high temperature and high humidity may be difficult to obtain, and if it exceeds 168 hours, it may hinder the efficiency of the manufacturing process of the piezoelectric vibrator. The longer the treatment time, the higher the effect of high temperature and humidity. Preferably, the treatment time may be in the range of 30 minutes to 24 hours.
  • the environment of temperature and humidity in step 11 may be a temperature and humidity environment lower than that of the conductive adhesives 340 and 342 (step 10) or the bonding material 350 (step S13).
  • the processing time in step 11 may be longer than each processing time of the process of the conductive adhesives 340 and 342 (step 10) or the process of the bonding material 350 (step S13).
  • step S11 reveals the fluctuation of the frequency characteristics of the piezoelectric vibrator before performing the frequency adjustment described later.
  • the step S11 is performed before the cap 200 is mounted and in a state where the piezoelectric vibration element 100 on the substrate 300 is exposed to the outside, so that the conductive adhesives 340 and 342 are targeted.
  • the temperature and humidity can be easily controlled.
  • a plasma is formed under vacuum, an ion beam is formed by Ar ions by applying a high voltage to Ar ions in the plasma, and this ion beam is used as the first excitation electrode 120 in the piezoelectric vibration element 100. (That is, the excitation electrode on the side opposite to the side facing the substrate 300) is irradiated.
  • the first excitation electrode 120 of the piezoelectric vibration element 100 is trimmed by ion beam etching, and the thickness thereof is gradually reduced.
  • the frequency of the piezoelectric vibration element 100 is gradually increased toward a desired target value. Adjusted.
  • the ion beam irradiation amount can be controlled by opening and closing a shutter (not shown) provided between the ion beam irradiation source and the piezoelectric vibration element 100.
  • a shutter not shown
  • Such an irradiation process with an ion beam can be performed once or a plurality of times depending on the difference between the measured value before the frequency adjustment and the target value, for example, when performing a plurality of times, the frequency is measured for each irradiation, You may repeat based on this measured value and target value.
  • the frequency adjustment of the piezoelectric vibration element 100 in the step S12 is performed at any timing after the step of making the frequency characteristic change in the step S11 obvious, so that the product manifested in the step S11 is realized.
  • the frequency characteristics can be easily adjusted so as to obtain a desired frequency characteristic in consideration of the variation in frequency characteristics for each.
  • the cap 200 is bonded to the substrate 300 via the bonding material 350 (S13).
  • the bonding material 350 is a resin adhesive
  • a paste-like resin adhesive can be provided on the end surface 205 of the cap 200 by a dipping method or the like, and then the cap 200 can be bonded to the substrate 300.
  • the bonding material 350 is a resin adhesive
  • the cap 200 and the substrate 300 are bonded by heating and curing, for example, in the range of 150 ° C. to 180 ° C.
  • low-melting glass may be used as the bonding material 350.
  • the cap 200 and the substrate 300 are bonded by heating and baking in a range of 300 ° C. to 360 ° C., for example.
  • the resin adhesive is easier to take moisture into the internal space 206 than the glass material, but according to the present embodiment, since the influence of moisture by such a resin adhesive can be suppressed, the resin adhesive is used as the bonding material 350. It is also useful when using.
  • the piezoelectric vibration element 100 mounted on the substrate 300 is maintained in a high temperature and high humidity environment, and then the frequency of the piezoelectric vibration element 100 is adjusted.
  • the frequency adjustment of the piezoelectric vibration element 100 it is possible to make the frequency adjustment of the piezoelectric vibration element 100 to obtain a desired frequency characteristic in consideration of the variation in the frequency characteristic for each of the manifested products by revealing the fluctuation of the frequency characteristic. . Therefore, a piezoelectric vibrator having a desired frequency characteristic can be easily manufactured.
  • step S11 in FIG. 3 an experimental example will be described with respect to the step of maintaining the piezoelectric vibration element 100 in a high temperature and high humidity environment.
  • the graph in FIG. 4 shows test data for the high temperature and high humidity treatment (step S11). Specifically, high temperature and high humidity treatment (conditions: temperature 95 ° C. and humidity 85% RH) (1) No treatment (treatment 0 minutes), (2) Treatment time 30 minutes, (3) Treatment time 2 hours and ( 4) The frequency variation when each of the four types of samples maintained at the treatment time of 24 hours is left at a temperature of 85 ° C. and a humidity of 85% RH for a predetermined time as a subsequent environmental test is shown.
  • the graph of FIG. 5 shows a normal distribution (indicating a range of ⁇ 3 ⁇ and an average value) of data in which the environmental test is left for 500 hours in the graph of FIG.
  • the absolute value of the frequency variation rate can be made smaller when the processing time is 30 minutes than when the processing time of the high-temperature and high-humidity processing is 0 minutes. Further, as shown in FIG. 5, when the data for which the environmental test is left for 500 hours is viewed as an average value, the longer the high temperature and high humidity treatment time, the smaller the absolute value of the frequency variation rate becomes 0 [ It can be seen that the value approaches [ppm].
  • each embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
  • each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
  • Piezoelectric vibrator 100 Piezoelectric vibration element 110 Piezoelectric substrate 120 First excitation electrode 130 Second excitation electrode 200 Cap (lid member) 204 Concave portion 300 Substrate (base member) 320, 322 Connection electrode 320a, 322a Lead electrode 340, 342 Conductive adhesive 350 Bonding material

Abstract

圧電振動子(1)の製造方法は、圧電振動素子(100)を導電性接着剤(340,342)を介してベース部材(300)に実装すること、ベース部材(300)に実装された圧電振動素子(100)を周囲よりも高温及び高湿の環境に所定時間維持すること、イオンビームによるエッチングによって圧電振動素子(100)の周波数調整を行うこと、及び、圧電振動素子(100)を密封封止するように、リッド部材(200)を接合材(350)を介してベース部材(300)に接合することを含む。

Description

圧電振動子の製造方法
 本発明は、圧電振動子の製造方法に関する。
 発振装置や帯域フィルタなどに用いられる圧電振動子の製造方法として、例えば特許文献1に記載されているように、圧電振動素子(例えば水晶片)を導電性接着剤を介して基板上に実装し、所望の周波数特性を備えるよう圧電振動素子の周波数調整を行い、その後、凹状の金属カバーによって圧電振動素子を内部空間に密封封止することによって圧電振動子を製造することが知られている。
 しかしながら、従来、圧電振動素子の封止工程の製造プロセス又は完成後の製品使用時等において、密封封止した内部空間の湿度によって導電性接着剤の物性変化が引き起こされ、これによって圧電振動子の周波数特性が変動することがあった。このような周波数特性の変動は、所望の周波数特性を得るための周波数調整の工程を行った後に起こり、また、周波数特性の変動量は製品ごとにばらつきがあって予測が困難であることから、所望の周波数特性を備える圧電振動子を製造することが難しい場合があった。
特開2012-191648号公報
 本発明はこのような事情に鑑みてなされたものであり、所望の周波数特性を備える圧電振動子を容易に製造することを目的とする。
 本発明の一側面に係る圧電振動子の製造方法は、(a)圧電振動素子を導電性接着剤を介してベース部材に実装すること、(b)ベース部材に実装された圧電振動素子を周囲よりも高温及び高湿の環境に所定時間維持すること、(c)イオンビームによるエッチングによって圧電振動素子の周波数調整を行うこと、及び、(d)圧電振動素子を密封封止するように、リッド部材を接合材を介してベース部材に接合することを含む。
 上記構成によれば、基板上に実装された圧電振動素子を高温及び高湿の環境に維持し、その後に圧電振動素子の周波数調整を行う。これにより、周波数特性の変動を顕在化させて、かかる顕在化した製品ごとの周波数特性のばらつきをも考慮して、所望の周波数特性を得るための圧電振動素子の周波数調整を行うことができる。したがって、所望の周波数特性を備える圧電振動子を容易に製造することができる。
 上記圧電振動子の製造方法において、(b)は、圧電振動素子を40℃以上121℃以下の温度、かつ、70%RH以上95%RH以下の湿度の環境において、30分以上168時間以下の時間に維持することを含んでもよい。
 上記圧電振動子の製造方法において、ベース部材は、圧電振動素子が搭載される上面に形成された接続電極と、接続電極からベース部材の上面の外縁に向かって引き出された引出電極とを含み、(a)は、圧電振動素子を導電性接着剤を介して接続電極に電気的に接続することを含んでもよい。
 上記圧電振動子の製造方法において、圧電振動素子は、圧電基板と、圧電基板に形成された励振電極とを含み、(c)は、励振電極をイオンビームによるエッチングによってトリミングすることを含んでもよい。
 上記圧電振動子の製造方法において、圧電基板は水晶基板であってもよい。
 上記圧電振動子の製造方法において、リッド部材は、ベース部材に対向する凹部を有するキャップであってもよい。
 上記圧電振動子の製造方法において、接合材は樹脂接着剤であってもよい。
 これによれば、樹脂接着剤による湿気の影響を抑制することができる。
 本発明によれば、所望の周波数特性を備える圧電振動子を容易に製造することができる。
図1は、本発明の一実施形態に係る圧電振動子の分解斜視図である。 図2は、図1のII-II線断面図である。 図3は、本発明の一実施形態に係る圧電振動子の製造方法を示すフローチャートである。 図4は、本発明の一実施形態に係る圧電振動子の製造方法を説明するための実験例を示す図である。 図5は、本発明の一実施形態に係る圧電振動子の製造方法を説明するための実験例を示す図である。
 以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施の形態に限定して解するべきではない。
 図1及び図2を参照しつつ、本発明の一実施形態に係る圧電振動子を説明する。この圧電振動子は、後述の本発明の一実施形態に係る圧電振動子の製造方法を適用して製造されたものである。ここで、図1は、圧電振動子の分解斜視図であり、図2は図1のII-II線断面図である。なお、図2においては圧電振動素子の各種電極は図示を省略している。
 図1に示すように、本実施形態に係る圧電振動子1は、圧電振動素子100と、リッド部材の一例であるキャップ200と、ベース部材の一例である基板300とを備える。キャップ200及び基板300は、圧電振動素子100を収容するためのケース又はパッケージである。
 圧電振動素子100は、圧電基板110と、圧電基板110に形成された第1及び第2励振電極120,130とを含む。第1励振電極120は、圧電基板110の第1面112に形成され、また、第2励振電極130は、圧電基板110の第1面112とは反対の第2面114に形成されている。
 圧電基板110は、所与の圧電材料から形成され、その材料は特に限定されるものではない。図1に示す例では、圧電振動素子100は、ATカット水晶基板である圧電基板110を有する水晶振動素子である。ATカットの水晶基板は、人工水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1度30分回転させた軸をそれぞれY´軸及びZ´軸とした場合、X軸及びZ´軸によって特定される面(以下、「XZ´面」と呼ぶ。他の軸によって特定される面についても同様である。)と平行な面を主面として切り出されたものである。図1に示す例では、ATカット水晶基板である圧電基板110は、Z´軸方向に平行な長手方向と、X軸方向に平行な短手方向と、Y´軸方向に平行な厚さ方向を有しており、XZ´面において略矩形形状をなしている。ATカット水晶基板を用いた水晶振動素子は、広い温度範囲で極めて高い周波数安定性を有し、また、経時変化特性にも優れている上、低コストで製造することが可能である。また、ATカット水晶振動素子は、厚みすべり振動モード(Thickness Shear Mode)を主振動として用いられることが多い。
 なお、本実施形態に係る圧電基板は上記構成に限定されるものではなく、例えば、X軸方向に平行な長手方向と、Z´軸方向に平行な短手方向とを有するATカット水晶基板を適用してもよいし、ATカット以外の異なるカットの水晶基板であってもよいし、又は、水晶以外のセラミックなどのその他の圧電材料を適用してもよい。
 第1励振電極120は、圧電基板110の第1面112(Y´軸正方向側のXZ´面)に形成され、また、第2励振電極130は、圧電基板110の第1面112とは反対の第2面114(すなわち、Y´軸負方向側のXZ´面)に形成されている。第1及び第2励振電極120,130は一対の電極であり、XZ´面において互いに略全体が重なり合うように配置されている。
 圧電基板110には、第1励振電極120に引出電極122を介して電気的に接続された接続電極124と、第2励振電極130に引出電極132を介して電気的に接続された接続電極134とが形成されている。具体的には、引出電極122は、第1面112において第1励振電極120からZ´軸負方向側短辺に向かって引き出され、さらに圧電基板110のZ´軸負方向側の側面を通って、第2面114に形成された接続電極124に接続されている。他方、引出電極132は、第2面114において第2励振電極130からZ´軸負方向側短辺に向かって引き出され、第2面114に形成された接続電極134に接続されている。接続電極124,134は、Z´軸負方向側の短辺に沿って配置され、これらの接続電極124,134は、後述する導電性接着剤340,342を介して基板300に電気的導通を図るとともに機械的に保持される。なお、本実施形態において、接続電極124,134及び引出電極122,132の配置やパターン形状は限定されるものではなく、他の部材との電気的接続を考慮して適宜変更することができる。
 第1及び第2励振電極120,130を含む上記各電極は、例えば、下地をクロム(Cr)層で形成し、クロム層の表面に金(Au)層を形成してもよく、その材料は限定されるものではない。
 キャップ200は、基板300の第1面302に対向して開口した凹部204を有する。凹部204には、開口の全周に亘って、凹部204の底面から立ち上がるように形成された縁部202が設けられており、縁部202は、基板300の第1面302に対向する端面205を有する。図2に示すように、この端面205は、凹部204の底面から略垂直に立ち上がるように突出する縁部202の先端面であってもよい。キャップ200の材料は、例えば金属であってもよい。これによればキャップ200を接地電位に電気的に接続させることによりシールド機能を付加することができる。あるいは、キャップ200は、絶縁材料又は金属・絶縁材料の複合構造であってもよい。
 変形例として、キャップ200は、凹部開口中心から開口縁に向かって開口縁から突出するフランジ部を有してもよい。この場合、フランジ部が基板の第1面に対向する端面を有してもよい。フランジ部を有するキャップによれば、端面のサイズ、すなわちキャップと基板との接合領域の面積を大きくできるため、両者の接合強度の向上が図れる。
 基板300の第1面302には、圧電振動素子100が搭載される。図1に示す例では、基板300は、Z´軸方向に平行な長手方向と、X軸方向に平行な短手方向と、Y´軸方向に平行な厚さ方向を有しており、XZ´面において略矩形形状をなしている。基板300は、例えば絶縁性セラミックで形成されている。より具体的には、複数の絶縁性セラミックシートを積層して焼成することによって形成されている。あるいは、基板300は、ガラス材料(例えばケイ酸塩ガラス、又はケイ酸塩以外を主成分とする材料であって、昇温によりガラス転移現象を有する材料)、水晶材料(例えばATカット水晶)又はガラスエポキシ材料などで形成してもよい。基板300は耐熱性材料から構成されることが好ましい。基板300は、単層であっても複数層であってもよく、複数層である場合、第1面302の最表層に形成された絶縁層を含んでもよい。また、基板300は、平板な板状をなしてもよいし、あるいは、キャップ200に対向する向きに開口した凹状をなしてもよい。図2に示すように、キャップ200及び基板300の両者が接合材350を介して接合されることによって、圧電振動素子100が、キャップ200の凹部204と基板300とによって囲まれた内部空間(キャビティ)206に密封封止される。
 接合材350は、キャップ200又は基板300の全周に亘って環状に設けられており、キャップ200の縁部202の端面205と、基板300の第1面302との間に介在している。接合材350は樹脂接着剤(例えばエポキシ接着剤)である。なお、接合材350は低融点ガラス(例えば鉛ホウ酸系や錫リン酸系等)であってもよい。
 図2に示す例では、圧電振動素子100は、その一方端(導電性接着剤340,342側の端部)が固定端であり、その他方端が自由端となっている。なお、変形例として、圧電振動素子100は、長手方向の両端において基板300に固定されていてもよい。
 図1に示すように、基板300は、第1面302(上面)に形成された接続電極320,322と、接続電極320,322から第1面302の外縁に向かって引き出される引出電極320a,322aとを含む。接続電極320,322は、圧電振動素子100が基板300の第1面302の略中央に配置することができるように、基板300の外縁よりも内側に配置されている。
 接続電極320には、導電性接着剤340を介して、圧電振動素子100の接続電極124が接続され、他方、接続電極322には、導電性接着剤342を介して、圧電振動素子100の接続電極134が接続される。
 引出電極320aは、接続電極320から基板300のいずれか1つのコーナー部に向かって引き出され、他方、引出電極322aは、接続電極322から基板300の他の1つのコーナー部に向かって引き出されている。また、基板300の各コーナー部には、複数の外部電極330,332,334,336が形成されており、図1に示す例では、引出電極320aがX軸負方向及びZ´軸負方向側のコーナー部に形成された外部電極330に接続され、他方、引出電極322aがX軸正方向及びZ´軸正方向側のコーナー部に形成された外部電極332に接続されている。また図1に示すように、残りのコーナー部には、外部電極334,336が形成されていてもよく、これらの外部電極は圧電振動素子100とは電気的に接続されないダミーパターンであってもよい。ダミーパターンは、圧電振動子が実装される実装基板(図示しない)に設けられた端子(他のいずれの電子素子とも接続されない端子)に電気的に接続されてもよい。このようなダミーパターンを形成することにより、外部電極を形成するための導電材料の付与が容易になり、また、全てのコーナー部に外部電極を形成することができるため、圧電振動子を他の部材に電気的に接続する処理工程も容易となる。
 図1に示す例では、基板300のコーナー部は、その一部が円筒曲面状(キャスタレーション形状とも呼ばれる。)に切断して形成された切り欠き側面を有しており、外部電極330,332,334,336は、このような切り欠き側面及び第2面304(下面)にかけて連続的に形成されている。なお、基板300のコーナー部の形状はこれに限定されるものではなく、切り欠きの形状は平面状であってもよいし、切り欠きがなく、コーナー部の角が残っていてもよい。
 なお、基板300の接続電極、引出電極及び外部電極の各構成は上述の例に限定されるものではなく、様々に変形して適用することができる。例えば、接続電極320,322は、一方がZ´軸正方向側に形成され、他方がZ´軸負方向側に形成されるなど、基板300の第1面302上において互いに異なる側に配置されていてもよい。このような構成においては、圧電振動素子100が、長手方向の一方端及び他方端の両方において基板300に支持されることになる。また、外部電極の個数は4つに限るものではなく、例えば対角上に配置された2つであってもよい。また、外部電極はコーナー部に配置されたものに限らず、コーナー部を除く基板300のいずれかの側面に形成されてもよい。この場合、既に説明したとおり、側面の一部を円筒曲面状に切断した切り欠き側面を形成し、コーナー部を除く当該側面に外部電極を形成してもよい。さらに、ダミーパターンである他の外部電極334,336は形成しなくてもよい。また、基板300に第1面302から第2面304へ貫通するスルーホールを形成し、このスルーホールによって第1面302に形成した接続電極から第2面304へ電気的導通を図ってもよい。
 図1に示すような圧電振動子1においては、外部電極330,332を介して、圧電振動素子100における一対の第1及び第2励振電極120,130の間に交流電圧を印加することにより、厚みすべり振動モードなどの所定の振動モードで圧電基板110が振動し、該振動に伴う共振特性が得られる。
 次に、図3のフローチャートに基づいて本発明の一実施形態に係る圧電振動子の製造方法を説明する。本実施形態では、一例として、図1及び図2に示す圧電振動子を製造する方法を説明する。
 図3に示すように、圧電振動素子100を導電性接着剤340,342を介して基板300に実装する(S10)。
 まず、圧電振動素子100及び基板300をそれぞれ用意する。圧電振動素子100が水晶振動子である場合、水晶材料を人工水晶又は天然水晶の原石から所定のカット角でウエハ状に切り出し、ダイシング又はエッチングすることによって所定の矩形の外形形状に形成し、その後、スパッタ法又は真空蒸着法等によって第1及び第2励振電極120,130をはじめとする各種電極を形成する。また、基板300の第1面302に、例えば、ペースト状の導電材料を所定領域に塗布し、塗布した導電材料を焼成することによって接続電極、引出電極及び外部電極を含む電極パターンを形成する。これらの電極パターンは、スパッタ法、真空蒸着法又はめっき法を適宜組み合わせても形成することができる。
 導電性接着剤340,342は、例えば、基板300の接続電極320,322又は圧電振動素子100の接続電極124,134に予め設けておき、圧電振動素子100を基板300に搭載した後に熱硬化させる。導電性接着剤340,342の熱硬化は、例えば約180℃以上190℃以下の温度に約30分維持することによって行う。
 なお、圧電振動素子100は、ウエハ状の基板を個片化したそれぞれの基板300に実装してもよいし、あるいは、ウエハ状の基板のそれぞれの領域に実装してもよい。ウエハ状の基板に圧電振動素子100を実装した場合は、後工程において圧電振動素子100ごとに基板300がダイシングなどによって個片化される。
 次に、基板300に実装された圧電振動素子100を高温及び高湿の環境に維持する(S11)。
 具体的には、基板300上の圧電振動素子100をオーブンなどの処理装置の密閉空間に収容する。この密閉空間は、圧電振動子の製造環境である周囲から独立して、大気中においてその温度及び湿度を制御可能となっている。
 ここで、ステップS11における温度環境は、例えば、40℃以上121℃以下の範囲であってもよい。40℃未満では製造環境の周囲の温度(例えば25℃)とそれほど温度差がなく、また121℃を超えると圧電振動素子100や基板300を構成する材料が劣化するおそれがある。好ましくは、温度環境は92℃以上98℃以下の範囲(すなわち95℃付近)であってもよい。
 また、ステップS11における湿度環境は、例えば、70%RH以上95%RHの範囲であってもよい。70%RH未満では製造環境の周囲の湿度とそれほど湿度差がなく、また95%RHを超えると圧電振動素子100や基板300に結露が生じるおそれがある。好ましくは、湿度環境は82%RH以上88%RHの範囲(すなわち85%RH付近)であってもよい。
 また、ステップS11における処理時間は、例えば、30分以上168時間以下の範囲であってもよい。30分未満であると高温及び高湿の効果が得られにくい場合があり、また168時間を超えると圧電振動子の製造工程の効率化の妨げとなる場合がある。処理時間が長ければ長いほど高温及び高湿の効果を得ることができる。好ましくは、処理時間は30分以上24時間以下の範囲であってもよい。
 なお、ステップ11における温度及び湿度の環境は、導電性接着剤340,342の処理(ステップ10)又は接合材350の処理(ステップS13)よりも低い温度かつ高い湿度環境であってもよい。また、ステップ11における処理時間は、導電性接着剤340,342の処理(ステップ10)又は接合材350の処理(ステップS13)の各処理時間よりも長くてもよい。
 こうして、基板300上の圧電振動素子100を、周囲よりも高温及び高湿の環境に所定時間維持することによって、導電性接着剤340,342の湿度による物性変化を敢えて引き起こし、また、導電性接着剤340,342に残存する熱応力を緩和させることができる。導電性接着剤340,342は、圧電振動素子100と基板300との両者を機械的かつ電気的に接続する部位であるため、湿度による物性変化や残存する熱応力が圧電振動子の周波数特性の変動を招く要因となりやすい。そこで、ステップS11による処理によって、後述する周波数調整を行う前に、圧電振動子の周波数特性の変動を顕在化させる。
 上記ステップS11は、キャップ200が搭載される前であって、基板300上の圧電振動素子100が外部に露出している状況下で行われることから、導電性接着剤340,342を目標とすべき温度及び湿度に容易に制御することができる。
 次に、所望の周波数特性を得るための圧電振動素子100の周波数調整を行う(S12)。
 具体的には、真空下においてプラズマを形成し、プラズマ中のArイオンに高電圧を印加することによってArイオンによるイオンビームを形成し、このイオンビームを、圧電振動素子100における第1励振電極120(すなわち基板300を向く側とは反対側の励振電極)に照射する。圧電振動素子100の第1励振電極120は、イオンビームによるエッチングによってトリミングされ、その厚さが徐々に薄くなり、圧電振動素子100の周波数は、所望の目標値に向かって徐々に高くなる方向に調整される。イオンビームの照射量は、イオンビームの照射源と圧電振動素子100との間に設けたシャッタ(図示しない)を開閉動作させることによって制御することができる。このようなイオンビームによる照射工程は、例えば、周波数調整前の測定値と目標値との差分に応じて1回又は複数回行うことができ、複数回行う場合は照射ごとに周波数を測定し、かかる測定値と目標値に基づいて繰り返し行ってもよい。
 このように、上記ステップS12による圧電振動素子100の周波数調整を、上記ステップS11の周波数特性の変動を顕在化させる工程終了後のいずれかのタイミングで行うことによって、上記ステップS11によって顕在化した製品ごとの周波数特性のばらつきをも考慮して、所望の周波数特性を得るよう周波数特性の調整を容易に行うことができる。
 その後、キャップ200を接合材350を介して基板300に接合する(S13)。
 例えば、接合材350が樹脂接着剤である場合、ディッピング法などによってペースト状の樹脂接着剤をキャップ200の端面205に設け、その後、キャップ200を基板300に接合することができる。接合材350が樹脂接着剤である場合、キャップ搭載後、例えば150℃以上180℃以下の範囲で加熱し硬化させることによって、キャップ200と基板300とを接合する。あるいは、接合材350として、低融点ガラスを用いてもよく、この場合、キャップ搭載後、例えば300℃以上360℃以下の範囲で加熱し焼成させることによって、キャップ200と基板300とを接合する。樹脂接着剤は、ガラス材料よりも湿気を内部空間206に取り込みやすいが、本実施形態によればこのような樹脂接着剤による湿気の影響を抑制することができるため、接合材350として樹脂接着剤を用いた場合にも有益である。
 本実施形態に係る圧電振動子の製造方法によれば、基板300上に実装された圧電振動素子100を高温及び高湿の環境に維持し、その後に圧電振動素子100の周波数調整を行う。これにより、周波数特性の変動を顕在化させて、かかる顕在化した製品ごとの周波数特性のばらつきをも考慮して、所望の周波数特性を得るための圧電振動素子100の周波数調整を行うことができる。したがって、所望の周波数特性を備える圧電振動子を容易に製造することができる。
 次に、図4及び図5を参照しつつ、圧電振動素子100の高温及び高湿の環境に維持する工程(図3のステップS11)について実験例を説明する。
 図4のグラフは、高温高湿処理(ステップS11)についての試験データを示すものである。具体的には、高温高湿処理(条件:温度95℃及び湿度85%RH)を(1)処理なし(処理0分)、(2)処理時間30分、(3)処理時間2時間及び(4)処理時間24時間に維持した4種類の各サンプルを、その後の環境試験として、温度85℃及び湿度85%RHに所定時間放置したときの周波数変動を示すものである。図4のグラフの縦軸は周波数変動率[ppm](高温高湿処理前の共振周波数に対する高温高湿処理前後の共振周波数の差分の割合)を示し、横軸は試験時間[hr](環境試験の放置時間)を示している。
 図5のグラフは、図4のグラフのうち、環境試験の放置時間が500時間経過のデータの正規分布(±3σの範囲及び平均値を示す)を示したものである。
 図4に示されるとおり、高温高湿処理の処理時間が0分の場合よりも、処理時間が30分の場合が周波数変動率の絶対値を小さくできる。また、図5に示されるとおり、環境試験の放置時間が500時間経過したデータを平均値で見ると、高温高湿処理の時間が長ければ長いほど周波数変動率の絶対値が小さくなり、0[ppm]に近づくことがわかる。
 なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
   1 圧電振動子
 100 圧電振動素子
 110 圧電基板
 120 第1励振電極
 130 第2励振電極
 200 キャップ(リッド部材)
 204 凹部
 300 基板(ベース部材)
 320,322 接続電極
 320a,322a 引出電極
 340,342 導電性接着剤
 350 接合材

Claims (7)

  1.  (a)圧電振動素子を導電性接着剤を介してベース部材に実装すること、
     (b)前記ベース部材に実装された圧電振動素子を周囲よりも高温及び高湿の環境に所定時間維持すること、
     (c)イオンビームによるエッチングによって前記圧電振動素子の周波数調整を行うこと、及び、
     (d)前記圧電振動素子を密封封止するように、リッド部材を接合材を介して前記ベース部材に接合すること
    を含む、圧電振動子の製造方法。
  2.  前記(b)は、前記圧電振動素子を40℃以上121℃以下の温度、かつ、70%RH以上95%RH以下の湿度の環境において、30分以上168時間以下の時間に維持することを含む、請求項1記載の圧電振動子の製造方法。
  3.  前記ベース部材は、前記圧電振動素子が搭載される上面に形成された接続電極と、当該接続電極から前記ベース部材の上面の外縁に向かって引き出された引出電極とを含み、
     前記(a)は、前記圧電振動素子を前記導電性接着剤を介して前記接続電極に電気的に接続することを含む、請求項1又は2に記載の圧電振動子の製造方法。
  4.  前記圧電振動素子は、圧電基板と、前記圧電基板に形成された励振電極とを含み、
     前記(c)は、前記励振電極をイオンビームによるエッチングによってトリミングすることを含む、請求項1から3のいずれか一項に記載の圧電振動子の製造方法。
  5.  前記圧電基板は水晶基板である、請求項4記載の圧電振動子の製造方法。
  6.  前記リッド部材は、前記ベース部材に対向する凹部を有するキャップである、請求項1から5のいずれか一項に記載の圧電振動子の製造方法。
  7.  前記接合材は樹脂接着剤である、請求項1から6のいずれか一項に記載の圧電振動子の製造方法。
     
PCT/JP2016/067504 2015-06-15 2016-06-13 圧電振動子の製造方法 WO2016204110A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017525214A JP6361829B2 (ja) 2015-06-15 2016-06-13 圧電振動子の製造方法
CN201680034000.0A CN107710602B (zh) 2015-06-15 2016-06-13 压电振子的制造方法
US15/818,854 US10742188B2 (en) 2015-06-15 2017-11-21 Method of manufacturing piezoelectric resonator unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-120014 2015-06-15
JP2015120014 2015-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/818,854 Continuation US10742188B2 (en) 2015-06-15 2017-11-21 Method of manufacturing piezoelectric resonator unit

Publications (1)

Publication Number Publication Date
WO2016204110A1 true WO2016204110A1 (ja) 2016-12-22

Family

ID=57546691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067504 WO2016204110A1 (ja) 2015-06-15 2016-06-13 圧電振動子の製造方法

Country Status (4)

Country Link
US (1) US10742188B2 (ja)
JP (1) JP6361829B2 (ja)
CN (1) CN107710602B (ja)
WO (1) WO2016204110A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165644A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 振動素子の周波数調整方法、振動素子の製造方法および振動素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489468B (zh) * 2021-07-13 2024-02-13 赛莱克斯微系统科技(北京)有限公司 一种谐振器的调频方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054272A (ja) * 2006-07-25 2008-03-06 Epson Toyocom Corp 圧電デバイスの製造方法
WO2011030571A1 (ja) * 2009-09-14 2011-03-17 株式会社村田製作所 圧電振動装置の製造方法
JP2011061269A (ja) * 2009-09-07 2011-03-24 Seiko Epson Corp 弾性表面波デバイスの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206214A (ja) * 1989-02-06 1990-08-16 Oki Electric Ind Co Ltd 弾性表面波フィルタの製造方法
JPH09298434A (ja) * 1996-04-26 1997-11-18 Kinseki Ltd 圧電振動子の製造方法
JP3717034B2 (ja) * 1998-11-10 2005-11-16 株式会社村田製作所 弾性表面波素子
JP2001267440A (ja) * 2000-03-22 2001-09-28 Seiko Epson Corp 気密容器及び気密容器の製造方法
US8689426B2 (en) * 2008-12-17 2014-04-08 Sand 9, Inc. Method of manufacturing a resonating structure
JP5526188B2 (ja) 2009-12-09 2014-06-18 日本電波工業株式会社 表面実装水晶振動子
JP5002696B2 (ja) * 2009-12-09 2012-08-15 日本電波工業株式会社 表面実装水晶振動子及びその製造方法
JP2012065304A (ja) * 2010-08-16 2012-03-29 Seiko Epson Corp 圧電振動デバイス及びその製造方法、共振周波数の調整方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054272A (ja) * 2006-07-25 2008-03-06 Epson Toyocom Corp 圧電デバイスの製造方法
JP2011061269A (ja) * 2009-09-07 2011-03-24 Seiko Epson Corp 弾性表面波デバイスの製造方法
WO2011030571A1 (ja) * 2009-09-14 2011-03-17 株式会社村田製作所 圧電振動装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165644A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 振動素子の周波数調整方法、振動素子の製造方法および振動素子

Also Published As

Publication number Publication date
CN107710602A (zh) 2018-02-16
US20180076785A1 (en) 2018-03-15
JP6361829B2 (ja) 2018-07-25
US10742188B2 (en) 2020-08-11
JPWO2016204110A1 (ja) 2018-03-01
CN107710602B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
US10523173B2 (en) Quartz crystal resonator and method for manufacturing the same, and quartz crystal resonator unit and method for manufacturing the same
US20130002096A1 (en) Piezoelectric vibrating device and method for manufacturing same
JP6281734B2 (ja) 圧電振動子及びその製造方法
TWI649963B (zh) Crystal vibration element
JP6361829B2 (ja) 圧電振動子の製造方法
US10615331B2 (en) Crystal vibrator and crystal vibration device
US10938368B2 (en) Piezoelectric-resonator-mounting substrate, and piezoelectric resonator unit and method of manufacturing the piezoelectric resonator unit
US8686621B2 (en) Piezoelectric devices and methods for manufacturing the same
US8823247B2 (en) Piezoelectric vibrating devices including respective packages in which castellations include respective connecting electrodes
WO2018212184A1 (ja) 圧電振動子の製造方法
JP2016144091A (ja) 振動子の製造方法
JP6540955B2 (ja) 電子部品及びその製造方法
US11196405B2 (en) Electronic component and method of manufacturing the same
JP2023025996A (ja) 圧電振動子、圧電発振器及び圧電振動子の製造方法
JP2023025995A (ja) 圧電振動子、圧電発振器及び圧電振動子の製造方法
WO2023181487A1 (ja) 水晶振動素子及びその製造方法
JP2023025994A (ja) 圧電振動子、圧電発振器及び圧電振動子の製造方法
JP6701161B2 (ja) 圧電振動デバイス及びその製造方法
US11152908B2 (en) Method for manufacturing piezoelectric vibration element and method for manufacturing piezoelectric vibrator
WO2023286327A1 (ja) 圧電振動子及び圧電振動子の製造方法
US11309864B2 (en) Piezoelectric resonator unit and method for manufacturing the piezoelectric resonator unit
WO2017169864A1 (ja) 圧電振動子
CN107852146B (zh) 水晶振动片以及水晶振子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811584

Country of ref document: EP

Kind code of ref document: A1