WO2016203941A1 - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
WO2016203941A1
WO2016203941A1 PCT/JP2016/066092 JP2016066092W WO2016203941A1 WO 2016203941 A1 WO2016203941 A1 WO 2016203941A1 JP 2016066092 W JP2016066092 W JP 2016066092W WO 2016203941 A1 WO2016203941 A1 WO 2016203941A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
valve
delay time
fuel
control device
Prior art date
Application number
PCT/JP2016/066092
Other languages
English (en)
French (fr)
Inventor
浩雲 石
雄希 奥田
豊原 正裕
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP16811416.3A priority Critical patent/EP3312406B1/en
Priority to CN201680035607.0A priority patent/CN107709740B/zh
Priority to US15/579,816 priority patent/US10240547B2/en
Publication of WO2016203941A1 publication Critical patent/WO2016203941A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/063Lift of the valve needle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel injection control device.
  • a fuel injection control device that corrects individual differences of fuel injection valves with respect to a minute injection amount is known (see, for example, Patent Document 1).
  • the injection amount accuracy is improved by suppressing the variation in the injection amount with respect to the main injection amount at the time of multistage injection in which minute pilot injection is performed before the main injection.
  • the present invention has been made in view of the above problems, and an object of the present invention is to detect the valve opening delay time of the fuel injection valve with high accuracy and to perform highly accurate micro injection control.
  • a fuel injection control device is provided.
  • a fuel injection control device is a fuel injection control device in which a fuel injection valve is controlled in an intermediate lift state, and has a different injection pulse width and the above-described fuel injection control device.
  • the valve opening delay time of the fuel injection valve is estimated based on a plurality of valve closing delay times obtained when the fuel injection valve is operated with an injection pulse width such that the fuel injection valve is in the intermediate lift state. It is characterized by that.
  • the valve opening delay time of the fuel injection valve can be reliably and accurately estimated, The injection amount accuracy at the time of injection can be improved.
  • FIG. 1 is an overall configuration diagram showing a schematic configuration of an internal combustion engine system to which a first embodiment of a fuel injection control device according to the present invention is applied.
  • the schematic diagram which illustrates typically the internal structure of the fuel injection valve shown in FIG.
  • FIG. 2 is a schematic diagram schematically showing valve displacement of the fuel injection valve shown in FIG. 1, in which (A) shows a state immediately after opening, (B) shows an intermediate lift state, and (C) shows a maximum lift state.
  • amendment by ECU shown in FIG. The figure which shows an example of the determination process of the injection pulse width in 2nd Embodiment of the fuel-injection control apparatus which concerns on this invention.
  • FIG. 1 shows a schematic configuration of an internal combustion engine system to which a first embodiment of a fuel injection control device according to the present invention is applied.
  • this system mainly includes an internal combustion engine (hereinafter referred to as an engine) 1, a fuel supply device 7, an engine control module (ECM) 17 for driving a fuel injection valve 2 of the engine 1, It comprises an engine control unit (ECU) (fuel injection control device) 3.
  • the fuel supply device 7 is first pressurized from the fuel tank 4 by the low pressure fuel pump 5 and regulated to a constant pressure by a fuel pressure regulator (not shown), and secondarily pressurized to a higher pressure by the high pressure fuel pump 6.
  • the fuel is supplied to the fuel injection valve 2 installed in the engine 1 through the fuel pipe 9, and a predetermined amount of fuel is injected into the combustion chamber 10 from the fuel injection valve 2.
  • the ECU 3 takes in signals from various sensors such as the crank angle sensor 8, the fuel temperature sensor 14, the exhaust temperature sensor 15, and the atmospheric pressure sensor 16, and controls the drive of the fuel injection valve 2 according to the operating conditions of the engine 1 (valve opening control). And the valve closing control).
  • various sensors such as the crank angle sensor 8, the fuel temperature sensor 14, the exhaust temperature sensor 15, and the atmospheric pressure sensor 16, and controls the drive of the fuel injection valve 2 according to the operating conditions of the engine 1 (valve opening control). And the valve closing control).
  • FIG. 2 is a schematic diagram for schematically explaining the internal configuration of the fuel injection valve 2 shown in FIG.
  • the fuel injection valve 2 basically generates a valve seat 21, a valve body 22, an anchor (mover) 24, a zero spring 23 provided between the anchor 24 and the valve body 22, and electromagnetic force.
  • the valve element 22 is in contact with the valve seat 21 by the pressure of the fuel supplied from the upper part of the fuel injection valve 2 and the load of the spring 27.
  • a drive current excitation current
  • a magnetic flux is generated between the anchor 24 and the magnetic core 26 to generate a magnetic attractive force.
  • the anchor 24 moves in the valve opening direction, and the anchor 24 and the magnetic core 26 come into contact with each other (this state is referred to as a valve opening completion state). Call).
  • the valve body 22 is separated from the valve seat 21 and fuel is injected from the fuel injection valve chamber 29 into the combustion chamber 10.
  • the valve body 22 starts the valve closing operation by the pressure of the fuel and the load of the spring 27, and the valve body 22 and the anchor 24 move together to perform the valve closing operation.
  • the injection stops (this state is called a valve closing completion state).
  • the fuel injection valve 2 shown in FIG. 2 includes a nozzle holder and a yoke (not shown), but the configuration not shown does not characterize the present invention.
  • FIG. 3 is a block diagram showing an internal configuration of the ECM 17 shown in FIG.
  • the ECM 17 includes a booster circuit 33, a drive circuit 34, a fuel injection valve drive waveform command unit 35, an injection pulse width command unit 36, and control software included therein.
  • the voltage of the battery is supplied to the booster circuit 33 via the drive relay.
  • the booster circuit 33 boosts the battery voltage to generate a high voltage, and supplies the high voltage and the battery voltage to the drive circuit 34.
  • the ECU 3 takes in signals from various sensors such as the crank angle sensor 8, the fuel temperature sensor 14, the exhaust temperature sensor 15, and the atmospheric pressure sensor 16, and drives the fuel injection valve 2 according to the operating conditions of the engine 1.
  • the time (injection pulse width) is calculated, the injection pulse width is input to the injection pulse width command unit 36, and transmitted to the drive circuit 34 together with the drive waveform calculated by the fuel injection valve drive waveform command unit 35.
  • the drive circuit 34 supplies a current by controlling the voltage applied to the coil 28 of the fuel injection valve 2.
  • the ECU 3 communicates with the drive circuit 34 via the injection pulse width command unit 36 and the fuel injection valve drive waveform command unit 35, and depends on the pressure of the fuel supplied to the fuel injection valve 2 and the operating conditions of the engine 1. Thus, the drive current generated by the drive circuit 34 can be switched as desired.
  • the anchor 24 collides with the magnetic core 26.
  • a state in which the valve body 22 is at the maximum height position is referred to as a maximum lift state (also referred to as a full lift state) (FIG. 4C).
  • a state in which the valve body 22 is at a height position lower than the above-described maximum height position before the anchor 24 collides with the magnetic core 26 is referred to as an intermediate lift state (also referred to as a half lift state). 4 (B)).
  • the ECU 3 controls the injection pulse width, the drive current, or the drive voltage so that the valve element 22 is in the maximum lift state when the required fuel injection amount is large. Further, when the required fuel injection amount is small, the injection pulse width, drive current, or drive voltage is controlled so that the valve body 22 is in the intermediate lift state.
  • valve opening delay time of the fuel injection valve 2 The time when the valve body 22 starts to inject fuel away from the valve seat 21 is referred to as the valve opening delay time of the fuel injection valve 2.
  • valve closing delay time of the fuel injection valve 2 The time when the valve body 22 is seated on the valve seat 21 and the fuel injection is stopped is referred to as the valve closing delay time of the fuel injection valve 2.
  • the valve opening delay time or the valve closing delay time varies depending on various factors such as a mechanical shape error, current error, voltage error, fuel pressure and temperature error for each fuel injector 2. Therefore, by detecting the valve opening delay time or the valve closing delay time, the fuel valve opening delay time or the valve closing delay time is specified, and an error from the target valve opening timing or the target valve closing timing, that is, the fuel It is possible to know the injection amount error.
  • the injection pulse width, the drive current, or the drive voltage can be corrected based on the valve opening delay time or the valve closing delay time so as to reduce the fuel injection amount error.
  • the correction amount of the injection pulse width, driving current, or driving voltage is calculated by multiplying the valve opening delay time or the valve closing delay time by a predetermined coefficient, or a predetermined value is calculated from the valve opening delay time or the valve closing delay time.
  • the correction amount of the injection pulse width, the drive current, or the drive voltage may be calculated.
  • FIG. 5 is a flowchart for explaining a calculation procedure of the estimated valve opening delay time Ta ′ of the fuel injection valve 2 by the ECU 3 shown in FIG.
  • step S1 it is determined whether or not the operating state of the engine 1 satisfies the following learning condition.
  • Condition 1 The engine speed is idling.
  • Condition 2 The fuel pressure is within a predetermined range.
  • Condition 3 The exhaust gas temperature is within a predetermined range.
  • Condition 4 The fuel temperature is within a predetermined range.
  • Condition 5 Atmospheric pressure is not less than a predetermined value.
  • step S2 it is determined that the learning conditions are satisfied, that is, various environmental conditions such as temperature and fuel pressure conditions are satisfied. Start.
  • step S3 the injection pulse width Ti is calculated (set).
  • multi-stage injection is performed by dividing one fuel injection into a plurality of times.
  • the ECU 3 is one of the divided injection pulse widths obtained by dividing the injection pulse width of one combustion cycle into a plurality of divided injection pulse widths (that is, one of the divided injection pulse widths of one combustion cycle divided into a plurality of times)
  • One injection amount ratio is changed over a plurality of cycles, and an injection pulse width such that the fuel injection valve 2 is controlled in an intermediate lift state is set as the injection pulse width Ti.
  • the ECU 3 divides the idle injection amount necessary for maintaining the target idle rotation speed, that is, the fuel injection amount during the idling operation, and performs a small amount of divided injection.
  • the injection amount ratio is changed over a plurality of cycles.
  • FIG. 6 is a diagram showing an example of a process for determining the injection pulse width Ti by the ECU 3 shown in FIG.
  • the fuel injection amount during idle operation is divided into three, and one or a plurality of injection amount ratios thereof are changed over three cycles.
  • each injection amount ratio in the first cycle when setting each injection amount ratio in the first cycle to 50%, 30%, and 20%, respectively, change each injection amount ratio in the second cycle to 60%, 30%, and 10%, respectively.
  • Each injection amount ratio may be changed to 25%, 35%, and 40%, respectively.
  • the injection amount ratio only needs to be in an intermediate lift state by any injection, and the ratio and the number of times are not limited to the illustrated example.
  • FIG. 7 is a view for explaining the relationship among the injection pulse for driving the fuel injection valve 2, the drive current, and the displacement amount of the valve body 22.
  • the drive circuit 34 applies a high voltage to the coil 28 of the fuel injection valve 2 from a high voltage source boosted to a voltage higher than the battery voltage, and drives the coil 28. Supply of current is started.
  • the drive current reaches the maximum current value Ipeak, the drive circuit 34 stops applying the high voltage. Thereafter, the applied voltage is reduced to zero volts or less to decrease the current value (see L101 in FIG. 7).
  • the drive circuit 34 controls application of the battery voltage to switch to a predetermined current (see L102 in FIG. 7).
  • step S4 shown in FIG. 5 as described above, based on the injection pulse width Ti calculated in step S3, supply of the drive current to the fuel injection valve 2 is started via the drive circuit 34, and the valve body 22 is driven in the valve opening direction.
  • the fuel injection valve 2 is driven by such a supply current profile.
  • the lift of the valve body 22 is started from the application of a high voltage until the maximum current value is reached, and then reaches the target lift position.
  • the valve body 22 After reaching the target lift position, the valve body 22 performs a bouncing operation due to a collision between the anchor 24 and the magnetic core 26, and the valve body 22 is predetermined by the magnetic attractive force generated by the holding current (see L102 in FIG. 7).
  • the valve is in a stable valve opening state (see P103 in FIG. 7) after resting on the target lift. Thereafter, when the injection pulse is turned off and the supply of the drive current is stopped, the valve body 22 moves in the valve closing direction and the valve closing state is reached (see P104 in FIG. 7).
  • step S5 fuel injection is performed depending on whether or not an inflection point (P201 in FIG. 8) appears when the temporarily interrupted drive current is recovered and held at a constant current value. It is determined whether or not the valve body 22 of the valve 2 is in a half-open state. When the valve body 22 of the fuel injection valve 2 is fully opened, the acceleration of the valve body 22 changes suddenly due to the collision between the anchor 24 and the magnetic core 26. For example, the inflection point is obtained by differentiating the drive current twice. Can be confirmed. If the answer to step S5 is affirmative (YES), the process proceeds to step S6, and if the answer is negative (NO), the process returns to step S3.
  • an inflection point P201 in FIG. 8
  • step S6 when the coil 28 is de-energized, the injection pulse is turned off, and the valve closing operation of the fuel injection valve 2 is started, but the tail voltage generated by the residual magnetic flux (L202 in FIG. 8).
  • the time corresponding to the inflection point (determined by, for example, twice differentiation) in the process of decreasing (see) toward zero volts is detected as the valve closing completion timing Tb.
  • step S7 the difference between the valve closing completion timing Tb detected in step S6 and the injection pulse stop timing (here, the same value as the injection pulse width) Ti is calculated as the valve closing delay time Tb '.
  • the valve closing delay time Tb ′ is calculated by the following equation (1).
  • step S8 it is determined whether or not the number of samples of the valve closing delay time Tb 'calculated in step S7 is two or more. If the answer to step S7 is affirmative (YES), the process proceeds to step S9, and if the answer is negative (NO), the process returns to step S3.
  • Ti1, Ti2, Ti3, Ti4, Ti5, Tb'1, Tb'2, Tb'3, Tb'4, and Tb'5 in FIG. 9 correspond to FIG.
  • the following equations (2) to A linear approximation formula is calculated by (6).
  • the parameters a and b representing the linear relationship between the injection pulse width Ti and the valve closing delay time Tb ′ can be calculated from the above equations (4) and (6).
  • step S10 the injection pulse width Ti 'when the valve closing delay time Tb' becomes 0, that is, the intersection of the approximate straight line and the horizontal axis, is obtained using the linear approximation formula calculated in step S9. Specifically, the injection pulse width Ti ′ is calculated by the following equation (7).
  • the injection pulse width Ti ′ calculated in this way is an injection pulse width in which the valve closing operation of the fuel injection valve 2 is not detected and the valve closing operation cannot be performed. That is, this injection pulse width Ti ′ is the maximum injection pulse width at which the valve body 22 of the fuel injection valve 2 does not open and the injection pulse width equal to the valve opening start time.
  • step S11 the injection pulse width Ti 'is determined as an estimated value of the valve opening delay time Ta (estimated valve opening delay time Ta').
  • the ECU (fuel injection control device) 3 of the present embodiment in one cycle of the engine 1 that satisfies the learning conditions, one fuel injection is divided into a plurality of times, and multistage injection is performed. Alternatively, a plurality of injection amount ratios are changed over a plurality of cycles, and the injection pulse width is such that the fuel injection valve 2 is controlled in an intermediate lift state, and corresponding to this (that is, fuel injection is performed with the injection pulse width).
  • the valve opening delay time of the fuel injection valve 2 is estimated using the valve closing delay time (obtained when the valve 2 is operated). Therefore, regardless of whether the valve opening delay time Ta can be detected, the valve opening delay time can be obtained reliably and with high accuracy.
  • the injection pulse ratio Ti is determined by changing the injection amount ratio over a plurality of cycles, it is possible to give a sufficient time to recover the boosted voltage for each cycle. In addition, a stable valve opening operation can be ensured.
  • the injection pulse width when the valve closing delay time becomes 0 is set as the valve opening delay of the fuel injection valve 2. Since the time is estimated, the calculation load can be significantly reduced.
  • FIG. 10 is a flowchart for explaining the fuel injection control procedure using the fuel injection amount correction by the ECU 3 shown in FIG. 1, and based on the estimated valve opening delay time Ta ′ obtained by the calculation procedure shown in FIG. 2 is a flowchart illustrating a procedure for correcting injection amount errors of a plurality of fuel injection valves 2 provided in FIG.
  • step S21 the estimated valve opening delay time Ta 'of the fuel injection valve 2 provided in each cylinder of the engine 1 is read.
  • step S22 a fuel injection time Tab for determining a single injection amount is calculated based on the valve closing completion timing Tb (see FIG. 8) and the estimated valve opening delay time Ta '. Specifically, the fuel injection time Tab is calculated by the following equation (8).
  • step S23 the maximum value Tabmax of the fuel injection time Tab of the fuel injection valve 2 of each cylinder is calculated and set as the target injection time of all the fuel injection valves 2. Specifically, the maximum value Tabmax is calculated by the following equation (9).
  • step S24 an error (deviation) ⁇ Tab between the fuel injection time Tab to be corrected and the maximum value Tabmax is calculated as a correction reference value.
  • the correction reference value ⁇ Tab is calculated by the following equation (10).
  • a drive current correction value ⁇ Tp is calculated based on the correction reference value ⁇ Tab and a predetermined correction coefficient G1. Specifically, the correction reference value ⁇ Tp is calculated by the following equation (11).
  • step S26 correction is performed so as to lengthen the boost application time from when the drive current starts to reach the maximum value, in accordance with the drive current correction value ⁇ Tp calculated in step S25.
  • the ECU (fuel injection control device) 3 of the present embodiment calculates the fuel injection time Tab of the fuel injection valve 2 of each cylinder from the estimated valve opening delay time Ta ′ and the detected valve closing completion timing Tb. Based on this, the drive current supplied to each fuel injection valve 2 is corrected. Therefore, by switching ON / OFF the current switch of the drive circuit 34 of the ECM 17, the drive current supplied to the fuel injection valve 2 of each cylinder can be easily corrected so that the fuel injection time of each cylinder matches.
  • the boosting application time of the drive current is made longer. to correct. Therefore, since the injection of all the fuel injection valves 2 can be reliably performed by giving a larger valve opening force than before correction, a highly reliable fuel injection device can be provided. As a result, each of the fuel injectors 2 provided in the engine 1 can be provided. It is possible to accurately inject a minute injection amount while suppressing an injection amount error (variation in machine difference) of the fuel injection valve 2.
  • the correction value ⁇ Tp of the drive current is calculated in step S25, and in step S26, the fuel injection whose estimated valve opening delay time Ta ′ is longer than that of the other fuel injection valves based on the correction value ⁇ Tp.
  • the boosting application time from the start of supplying the drive current to the maximum value is increased for the valve, for example, in step S25, based on the correction reference value ⁇ Tab and a predetermined correction coefficient G2.
  • the estimated valve opening delay time Ta ′ is longer than the other fuel injection valves. You may correct
  • the minute fuel amount can be adjusted by correcting the injection pulse width, so the injection amount of each fuel injection valve 2 can be adjusted. Errors can be suppressed.
  • the second embodiment is a modification in which the first embodiment is a basic form, and is the same as the first embodiment except as described below.
  • one fuel injection is divided into a plurality of times, and any one or a plurality of the injection amount ratios are divided into a plurality of cycles (in the illustrated example, 3), and the horizontal axis indicates the injection pulse width (divided injection pulse width) such that the fuel injection valve 2 is controlled in the intermediate lift state, and the valve closing delay time corresponding to them is vertical.
  • a linear approximation formula was obtained by taking the axis, and the valve opening delay time was estimated using the linear approximation formula.
  • the injection pulse width of one cycle is divided into a plurality, and the injection amount ratio of any one of them is changed over at least two cycles, and the fuel injection valve 2 is controlled in the intermediate lift state.
  • Such an injection pulse width (divided injection pulse width) may be taken on the horizontal axis, and the corresponding valve closing delay time may be taken on the vertical axis to obtain a linear approximation formula.
  • FIG. 11 is a diagram showing an example of a determination process of the injection pulse width Ti in the second embodiment of the fuel injection control apparatus according to the present invention.
  • the injection pulse width of one cycle is divided into two injections, and one or both of the injection amount ratios are changed over two cycles.
  • these injection pulses when there is one or more injection pulse widths such that the fuel injection valve 2 is controlled in the intermediate lift state, these injection pulse widths are taken on the horizontal axis, corresponding to this.
  • a linear approximation formula may be obtained by taking the valve closing delay time on the vertical axis.
  • This embodiment is a modification based on the first embodiment or the second embodiment, and is the same as the first embodiment or the second embodiment described above, except as described below.
  • the injection pulse width of one cycle is divided into a plurality of portions, and any one of the injection amount ratios is changed over at least two consecutive cycles.
  • one injection amount ratio may be changed in two non-continuous cycles.
  • FIG. 12 is a diagram showing an example of a determination process of the injection pulse width Ti in the third embodiment of the fuel injection control apparatus according to the present invention.
  • the injection amount ratio from the first cycle to the third cycle is not changed, and any one injection amount ratio is changed from the fourth cycle, and the injection amount ratios in the fifth and sixth cycles are changed. Is the same as the injection amount ratio in the fourth cycle.
  • the estimated valve opening delay time is calculated by obtaining the above-described linear approximation expression using the injection pulse widths of the third cycle and the sixth cycle.
  • the valve closing delay time obtained when the fuel injection valve 2 is operated with the same injection pulse width the same combination data is increased, and an average value thereof is taken. Since the pulsation of the injection amount caused by the change of the injection command is reduced, the estimation accuracy of the valve opening delay time can be increased.
  • one fuel injection is divided into a plurality of times, and one or a plurality of the injection amount ratios thereof are changed over a plurality of cycles, and
  • a linear approximation formula is obtained using only one injection pulse width in one cycle.
  • a plurality of different injection pulse widths in one combustion cycle (in other words, a plurality of divided injection pulse widths obtained by dividing the injection pulse width of one combustion cycle into a plurality of different divided injection pulse widths) are used.
  • a linear approximation formula may be obtained.
  • FIG. 13 is a diagram showing an example of an injection pulse width determination process in the fourth embodiment of the fuel injection control apparatus according to the present invention.
  • the injection pulse width of one cycle is divided into a plurality of (for example, four-stage injection) and the fuel injection valve 2 is controlled in an intermediate lift state
  • the injection pulse width becomes one or more.
  • the linear approximation formula may be obtained by taking these injection pulse widths on the horizontal axis and corresponding valve closing delay times on the vertical axis.
  • the estimated valve opening delay time can be calculated in one cycle, and the valve opening delay time of the fuel injection valve 2 can be estimated using the injection pulse having a small fuel pressure fluctuation in a smaller cycle. Therefore, both the correction efficiency and the correction accuracy of the injection amount error can be improved.
  • each said embodiment is applied to the fuel injection valve 2 mounted in the ignition type internal combustion engine
  • the fuel injection mounted in the compression ignition type internal combustion engine diesel engine or premix compression ignition
  • it may be applied to the valve 2.
  • Each of the above embodiments is applied to the fuel injection valve 2 that directly injects fuel into the combustion chamber of the internal combustion engine, but is applied to a port injection type fuel injection valve mounted on an intake pipe outside the intake valve. It goes without saying.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

燃料噴射弁の開弁遅れ時間を精度良く検出して、高精度な微少噴射制御を実施することのできる燃料噴射制御装置を提供する。異なる噴射パルス幅Tiで且つ燃料噴射弁2が中間リフト状態となるような噴射パルス幅Tiで当該燃料噴射弁2を動作させた際に求められる複数の閉弁遅れ時間Tb'に基づいて、燃料噴射弁2の開弁遅れ時間を推定する。

Description

燃料噴射制御装置
 本発明は、燃料噴射制御装置に関する。
 多段噴射を実施する燃料噴射技術において、微少噴射量に対する燃料噴射弁の個体差を補正する燃料噴射制御装置が知られている(例えば、特許文献1参照)。この従来の燃料噴射制御装置では、メイン噴射の前に微少なパイロット噴射を行なう多段噴射時に、メイン噴射量に対する噴射量変動を抑制することで、噴射量精度を高めている。
特開2003-314338号公報
 ところで、上記特許文献1に所載のような従来の燃料噴射制御装置では、燃料噴射弁(インジェクタ)駆動信号の立ち上がり時刻から実開弁時期までの経過時間を、開弁遅れ時間として検出している。しかしながら、開弁の時には燃料噴射弁の動作が急激でなく、電流の変曲点と共にノイズが検出されることから、上記燃料噴射弁の実開弁時期を高精度に求めることは難しい。また、変曲点の存在しない電流特性を備えた燃料噴射弁では、その電流特性から実開弁時期を求めることができず、その結果、開弁遅れ時間を検出することができないといった課題がある。
 本発明は、前記問題に鑑みてなされたものであって、その目的とするところは、燃料噴射弁の開弁遅れ時間を精度良く検出して、高精度な微少噴射制御を実施することのできる燃料噴射制御装置を提供することにある。
 上記する課題を解決するために、本発明に係る燃料噴射制御装置は、燃料噴射弁が中間リフト状態で制御されるようになっている燃料噴射制御装置であって、異なる噴射パルス幅で且つ前記燃料噴射弁が前記中間リフト状態となるような噴射パルス幅で前記燃料噴射弁を動作させた際に求められる複数の閉弁遅れ時間に基づいて、前記燃料噴射弁の開弁遅れ時間を推定することを特徴とする。
 本発明によれば、異なる噴射パルス幅であって燃料噴射弁が中間リフト状態となるような噴射パルス幅で当該燃料噴射弁を動作させた際に求められる複数の閉弁遅れ時間に基づいて、当該燃料噴射弁の開弁遅れ時間を推定することにより、例えば中間リフト状態を用いて微少噴射を行う燃料噴射弁について、その燃料噴射弁の開弁遅れ時間を確実に且つ精度良く推定でき、微少噴射時の噴射量精度を向上させることができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明に係る燃料噴射制御装置の第1実施形態が適用される内燃機関システムの概略構成を示す全体構成図。 図1に示す燃料噴射弁の内部構成を模式的に説明する模式図。 図1に示すECMの内部構成を示すブロック図。 図1に示す燃料噴射弁の弁変位を模式的に示す模式図であり、(A)は開弁直後の状態、(B)は中間リフト状態、(C)は最大リフト状態を示す図。 図1に示すECUによる燃料噴射弁の推定開弁遅れ時間の算出手順を説明するフローチャート。 図1に示すECUによる噴射パルス幅の決定プロセスの一例を示す図。 燃料噴射弁を駆動する噴射パルスと駆動電流と弁体の変位量との関係を説明する図。 図1に示すECUによる中間リフト状態の判定プロセスと閉弁完了時期の検出プロセスを説明する図。 図1に示すECUによる推定開弁遅れ時間の算出方法の一例を示す図。 図1に示すECUによる燃料噴射量補正を用いた燃料噴射制御手順を説明するフローチャート。 本発明に係る燃料噴射制御装置の第2実施形態における噴射パルス幅の決定プロセスの一例を示す図。 本発明に係る燃料噴射制御装置の第3実施形態における噴射パルス幅の決定プロセスの一例を示す図。 本発明に係る燃料噴射制御装置の第4実施形態における噴射パルス幅の決定プロセスの一例を示す図。
 以下、本発明に係る内燃噴射制御装置の実施形態を図面を参照して説明する。
[第1実施形態]
 図1は、本発明に係る燃料噴射制御装置の第1実施形態が適用される内燃機関システムの概略構成を示したものである。
 図示するように、本システムは、主に、内燃機関(以下、エンジンという)1と、燃料供給装置7と、エンジン1の燃料噴射弁2を駆動するためのエンジンコントロールモジュール(ECM)17と、エンジンコントロールユニット(ECU)(燃料噴射制御装置)3とで構成されている。燃料供給装置7は、燃料タンク4から低圧燃料ポンプ5により一次加圧されて不図示の燃圧レギュレータにより一定の圧力に調圧されるとともに、高圧燃料ポンプ6でより高い圧力に二次加圧された燃料を、燃料配管9を介してエンジン1に設置されている燃料噴射弁2に供給し、その燃料噴射弁2から所定量の燃料を燃焼室10内に噴射する。ECU3は、クランク角度センサ8、燃料温度センサ14、排気温度センサ15、大気圧センサ16などの各種センサから信号を取り込み、エンジン1の運転条件に応じた燃料噴射弁2の駆動制御(開弁制御及び閉弁制御)に必要な演算を行う。
 図2は、図1に示す燃料噴射弁2の内部構成を模式的に説明する模式図である。
 燃料噴射弁2は、基本的に、弁座21と、弁体22と、アンカー(可動子)24と、アンカー24と弁体22との間に設けられたゼロスプリング23と、電磁力が生成されるコイル28と、磁化される磁気コア26と、弁体22を閉弁方向に付勢するスプリング27とを備えている。
 燃料噴射弁2の上部から供給される燃料の圧力とスプリング27の荷重によって、弁体22が弁座21と接触している。コイル28に駆動電流(励磁電流)を供給すると、アンカー24と磁気コア26との間に磁束が発生して磁気吸引力が発生する。その磁気吸引力が燃料の圧力とスプリング27の荷重による力の和を超えると、アンカー24が開弁方向に移動し、アンカー24と磁気コア26とが接触する(この状態を開弁完了状態と呼ぶ)。その結果、弁体22が弁座21から離れ、燃料が燃料噴射弁室内29から燃焼室10に噴射される。
 コイル28への通電が遮断されると、磁気回路中に生じていた磁束が消滅し、磁気吸引力も消滅する。弁体22は、燃料の圧力とスプリング27の荷重によって閉弁動作を開始し、弁体22とアンカー24とが共に動いて閉弁動作を行い、弁体22が弁座21と接触して燃料噴射が停止する(この状態を閉弁完了状態と呼ぶ)。なお、図2に示す燃料噴射弁2は不図示のノズルホルダとヨークなどに構成されるが、図示しない構成は本発明を特徴づけるものではない。
 図3は、図1に示すECM17の内部構成を示すブロック図である。
 ECM17は、昇圧回路33と、駆動回路34と、燃料噴射弁駆動波形指令部35と、噴射パルス幅指令部36と、その中にある制御ソフトウェアなどで構成されている。バッテリの電圧が駆動リレーを介して昇圧回路33へ供給され、昇圧回路33は、バッテリ電圧を昇圧して高電圧を生成し、その高電圧とバッテリ電圧を駆動回路34へ供給する。ECU3は、前記したように、クランク角度センサ8、燃料温度センサ14、排気温度センサ15、大気圧センサ16などの各種センサから信号を取り込み、エンジン1の運転条件に応じて燃料噴射弁2の駆動時間(噴射パルス幅)の演算を行い、その噴射パルス幅を噴射パルス幅指令部36に入力し、燃料噴射弁駆動波形指令部35で演算された駆動波形と共に駆動回路34に送信する。
 駆動回路34は、燃料噴射弁2のコイル28に印加する電圧を制御して電流を供給するものである。ECU3は、噴射パルス幅指令部36と燃料噴射弁駆動波形指令部35を介して、駆動回路34と通信を行っており、燃料噴射弁2に供給する燃料の圧力とエンジン1の運転条件に応じて、駆動回路34で生成する駆動電流を所望に切り替えることが可能である。
 ここで、本実施形態においては、コイル28に駆動電流が供給され、弁体22が弁座21から離れて開弁した後(図4(A))、アンカー24が磁気コア26に衝突して弁体22が最大高さ位置となる状態を最大リフト状態(フルリフト状態ともいう)と呼ぶ(図4(C))。また、アンカー24が磁気コア26に衝突する前の状態で、弁体22が前記した最大高さ位置よりも低い高さ位置となる状態を中間リフト状態(ハーフリフト状態ともいう)と呼ぶ(図4(B))。ECU3は、必要な燃料噴射量が多い場合には、弁体22が最大リフト状態となるように噴射パルス幅や駆動電流、または駆動電圧を制御する。また、必要な燃料噴射量が少ない場合には、弁体22が中間リフト状態となるように噴射パルス幅や駆動電流、または駆動電圧を制御する。
 弁体22が弁座21から離れて燃料を噴射し始める時期を燃料噴射弁2の開弁遅れ時間と呼ぶ。また、弁体22が弁座21に着座し、燃料噴射を停止する時期を燃料噴射弁2の閉弁遅れ時間と呼ぶ。開弁遅れ時間、または閉弁遅れ時間は、燃料噴射弁2ごとの機械的な形状の誤差、電流の誤差、電圧の誤差、燃料の圧力及び温度の誤差など、種々の要因によって変動する。そのため、開弁遅れ時間、または閉弁遅れ時間を検出することにより、燃料の開弁遅れ時間、または閉弁遅れ時間を特定し、目標開弁時期、または目標閉弁時期との誤差、すなわち燃料噴射量の誤差を知ることができる。さらに、開弁遅れ時間、または閉弁遅れ時間に基づいて、燃料噴射量の誤差を低減するように噴射パルス幅や駆動電流、または駆動電圧を補正することができる。例えば、開弁遅れ時間、または閉弁遅れ時間に所定の係数を乗算して噴射パルス幅や駆動電流、または駆動電圧の補正量を算出したり、開弁遅れ時間、または閉弁遅れ時間から所定の定数を減算して噴射パルス幅や駆動電流、または駆動電圧の補正量を算出したりすればよい。
 図5は、図1に示すECU3による前記した燃料噴射弁2の推定開弁遅れ時間Ta’の算出手順を説明するフローチャートである。
 まず、ステップS1では、エンジン1の運転状態が以下の学習条件を満足するか否かを判定する。
 条件1:エンジン回転数がアイドリング状態である。
 条件2:燃料圧力が所定範囲内である。
 条件3:排気温度が所定範囲内である。
 条件4:燃料温度が所定範囲内である。
 条件5:大気圧が所定値以上である。
 上記の条件1~5が全て成立した時点で、学習条件が成立している、すなわち温度や燃圧条件などの各種環境条件が成立していると判定して(ステップS2)、微少噴射量学習を開始する。
 ステップS3では、噴射パルス幅Tiを算出(設定)する。ここでは、1回の燃料噴射を複数回に分けて多段噴射を実施する。ECU3は、一燃焼サイクルの噴射パルス幅を複数の分割噴射パルス幅に分けたうちのいずれか一つの分割噴射パルス幅(すなわち、一燃焼サイクルの噴射パルス幅を複数回に分けたうちのいずれか一つの噴射量割合)を複数サイクルに亘って変更し、且つ燃料噴射弁2が中間リフト状態で制御されるような噴射パルス幅を、噴射パルス幅Tiとして設定する。より詳細には、ECU3は、目標アイドル回転数を保つために必要なアイドル噴射量、つまりアイドル運転時の燃料噴射量を分割し、微少量の分割噴射を実施するが、そのうち、各段噴射の噴射量割合を複数サイクルに亘って変更する。
 図6は、図1に示すECU3による噴射パルス幅Tiの決定プロセスの一例を示す図である。図示するように、アイドル運転時の燃料噴射量を3分割し、そのうちのいずれか一つまたは複数の噴射量割合を3つのサイクルに亘って変更する。例えば、第1サイクルの各噴射量割合をそれぞれ50%、30%、20%にセットする場合、第2サイクルの各噴射量割合をそれぞれ60%、30%、10%に変更し、第3サイクルの各噴射量割合をそれぞれ25%、35%、40%に変更してもよい。なお、噴射量割合はいずれかの噴射で中間リフト状態となっていればよく、その割合や回数は図示例に限定されない。
 図7は、燃料噴射弁2を駆動する噴射パルスと駆動電流と弁体22の変位量との関係を説明する図である。ECM17の駆動回路34に噴射パルスが入力されると、駆動回路34はバッテリ電圧よりも高い電圧に昇圧された高電圧源から燃料噴射弁2のコイル28に高電圧を印加し、コイル28に駆動電流の供給が開始される。駆動電流が、最大電流値Ipeakに到達すると、駆動回路34は高電圧の印加を停止する。その後、印加する電圧をゼロボルト以下にして電流値を低下させる(図7中、L101参照)。電流値がゼロより小さくなると、駆動回路34はバッテリ電圧の印加をスイッチングして所定の電流になるように制御する(図7中、L102参照)。
 図5に示すステップS4では、上記したように、ステップS3で算出された噴射パルス幅Tiに基づいて、駆動回路34を介して燃料噴射弁2への駆動電流の供給を開始し、その弁体22を開弁方向に駆動する。
 このような供給電流のプロファイルにより、燃料噴射弁2は駆動される。図7に示すように、一般に、高電圧の印加から最大電流値に到達するまでの間に弁体22のリフトは開始され、その後、目標リフト位置に到達する。目標リフト位置到達後、アンカー24と磁気コア26との衝突により、弁体22がバウンド動作を行い、保持電流(図7中、L102参照)が生成する磁気吸引力によって、弁体22は所定の目標リフトに静止して安定な開弁状態(図7中、P103参照)となる。その後、噴射パルスをOFFにし、駆動電流の供給が停止されると、弁体22が閉弁方向に移動して閉弁完了状態(図7中、P104参照)となる。
 次いで、ステップS5では、図8に示すように、一時遮断された駆動電流が回復して一定の電流値に保持する時に変曲点(図8中、P201)が現れるか否かによって、燃料噴射弁2の弁体22が半開状態であるか否かを判定する。燃料噴射弁2の弁体22が全開状態になった場合、アンカー24と磁気コア26との衝突により弁体22の加速度が急変するため、例えば駆動電流を2回微分することによって前記変曲点を確認できる。このステップS5の答えが肯定(YES)である場合には、ステップS6に進み、その答えが否定(NO)である場合には、ステップS3に戻る。
 次に、ステップS6では、コイル28への通電が遮断されると、噴射パルスがOFFになり、燃料噴射弁2の閉弁動作が開始するが、残留磁束によって生じるテール電圧(図8中、L202参照)がゼロボルトに向かって減少する過程の変曲点(例えば2回微分で求められる)に対応する時間を閉弁完了時期Tbとして検出する。
 次に、ステップS7では、ステップS6で検出された閉弁完了時期Tbと噴射パルス停止時期(ここでは、噴射パルス幅と同値)Tiの差を閉弁遅れ時間Tb’として算出する。具体的には、閉弁遅れ時間Tb’を下記の式(1)により算出する。
〔数1〕
Tb’=Tb-Ti  …(1)
 ステップS8では、ステップS7で算出された閉弁遅れ時間Tb’のサンプル数が2点以上か否かを判定する。このステップS7の答えが肯定(YES)である場合には、ステップS9に進み、その答えが否定(NO)である場合には、ステップS3に戻る。
 次に、ステップS9では、図9に示すように、噴射パルス幅Tiを横軸に取り、各噴射パルス幅Tiに対応する閉弁遅れ時間Tb’を縦軸に取ることで、直線近似式(Tb’=aTi+b)のパラメータa,bを算出する。なお、図9のTi1,Ti2,Ti3,Ti4,Ti5、Tb’1,Tb’2,Tb’3,Tb’4,Tb’5は、図7と対応している。例えば、3セットの噴射パルス幅と閉弁遅れ時間(Ti5,Tb’5)、(Ti4,Tb’4)、(Ti3,Tb’3)をとった場合には、下記の式(2)~(6)により直線近似式を算出する。
〔数2〕
F(a,b)=(a×Ti5+b-Tb’5)+(a×Ti4+b-Tb’4)+(a×Ti3+b-Tb’3)  …(2)
 
dF/da=2×Ti5×(a×Ti5+b-Tb’5)+2×Ti4×(a×Ti4+b-Tb’4)+2×Ti3×(a×Ti3+b-Tb’3)=0  …(3)
 
a×(Ti5+Ti4+Ti3)+b×(Ti5+Ti4+Ti3)=Ti5×Tb’5+Ti4×Tb’4+Ti3×Tb’3  …(4)
 
dF/db=2×(a×Ti5+b-Tb’5)+2×(a×Ti4+b-Tb’4)+2×(a×Ti3+b-Tb’3)=0  …(5)
 
a×(Ti5+Ti4+Ti3)+3×b=Tb’5+Tb’4+Tb’3  …(6)
 そして、上記した式(4)と式(6)により、噴射パルス幅Tiと閉弁遅れ時間Tb’の線形関係を表すパラメータa,bを計算することができる。
 次に、ステップS10では、ステップS9で算出されている直線近似式を用いて、閉弁遅れ時間Tb’が0となるときの噴射パルス幅Ti’、すなわち近似直線と横軸の交点を求める。具体的には、噴射パルス幅Ti’を下記の式(7)により算出する。
〔数3〕
Ti’=|b/a|  …(7)
 このように計算された噴射パルス幅Ti’は、燃料噴射弁2の閉弁動作が検出されず、閉弁動作が実行できない噴射パルス幅である。すなわち、この噴射パルス幅Ti’は、燃料噴射弁2の弁体22が開かない最大噴射パルス幅であると共に開弁開始時間に等しい噴射パルス幅である。
 そこで、ステップS11では、その噴射パルス幅Ti’を開弁遅れ時間Taの推定値(推定開弁遅れ時間Ta’)として決定する。
 上記したように、従来技術では、燃料噴射弁2の開弁遅れ時間Taを求めるために、駆動電流または駆動電圧の波形変化を検出する必要がある。しかし、開弁の時には燃料噴射弁2の動作が急激でなく、電流はノイズと共に検出されることから、開弁遅れ時間を高精度に検知することが難しい。また、駆動電流や駆動電圧の変曲点を得るために、なるべく傾きの小さい駆動波形が求められるが、その傾きが小さすぎると、燃料噴射弁2の開弁がなされず、燃料噴射が不安定になってしまう可能性がある。
 本実施形態のECU(燃料噴射制御装置)3では、学習条件を満足したエンジン1のあるサイクルにおいて、1回の燃料噴射を複数回に分けて多段噴射を実施するが、そのうちのいずれか一つまたは複数の噴射量割合を複数サイクルに亘って変更し、且つ当該燃料噴射弁2が中間リフト状態で制御されるような噴射パルス幅と、これに対応する(すなわち、その噴射パルス幅で燃料噴射弁2を動作させた際に求められる)閉弁遅れ時間を用いて、燃料噴射弁2の開弁遅れ時間を推定する。そのため、開弁遅れ時間Taを検知できるか否かに関わらず、開弁遅れ時間を確実に且つ高精度に求めることができる。
 また、噴射量割合を複数サイクルに亘って変更して噴射パルス幅Tiを決定するため、サイクルごとに昇圧された電圧の回復に充分な時間を与えることができるので、続けて燃料噴射を行うときに、安定的な開弁動作を確保することができる。
 また、噴射パルス幅と閉弁遅れ時間をそれぞれ横軸と縦軸に取ることで得られる直線近似式において、閉弁遅れ時間が0となるときの噴射パルス幅を燃料噴射弁2の開弁遅れ時間として推定するため、演算負荷を格段に小さくすることができる。
 図10は、図1に示すECU3による燃料噴射量補正を用いた燃料噴射制御手順を説明するフローチャートであり、図5に示す算出手順で求められた推定開弁遅れ時間Ta’に基づいて、エンジン1に設けられた複数の燃料噴射弁2の噴射量誤差を補正する手順を説明するフローチャートである。
 まず、ステップS21では、エンジン1の各気筒に設けられた燃料噴射弁2の推定開弁遅れ時間Ta’を読み込む。
 次いで、ステップS22では、閉弁完了時期Tb(図8参照)と推定開弁遅れ時間Ta’に基づいて、1回の噴射量を決定する燃料噴射時間Tabを算出する。具体的には、燃料噴射時間Tabを下記の式(8)により算出する。
〔数4〕
Tab=Tb-Ta’  …(8)
 次に、ステップS23では、各気筒の燃料噴射弁2の燃料噴射時間Tabの最大値Tabmaxを算出し、それを全ての燃料噴射弁2の目標噴射時間とする。具体的には、最大値Tabmaxを下記の式(9)により算出する。
〔数5〕
Tabmax=max(Tab1,Tab2,Tab3,Tab4・・・)  …(9)
 次に、ステップS24では、補正対象とする燃料噴射時間Tabと最大値Tabmaxの誤差(偏差)ΔTabを補正基準値として算出する。具体的には、補正基準値ΔTabを下記の式(10)により算出する。
〔数6〕
ΔTab=Tabmax-Tab  …(10)
 次に、ステップS25では、補正基準値ΔTabと予め決められた補正係数G1に基づいて、駆動電流の補正値ΔTpを算出する。具体的には、補正基準値ΔTpを下記の式(11)により算出する。
〔数7〕
ΔTp=ΔTab×G1  …(11)
 そして、ステップS26では、ステップS25で算出された駆動電流の補正値ΔTpに応じて、駆動電流を供給開始してから最大値に到達するまでの昇圧印加時間を長くするように補正する。
 このように、本実施形態のECU(燃料噴射制御装置)3では、推定開弁遅れ時間Ta’と検出された閉弁完了時期Tbから各気筒の燃料噴射弁2の燃料噴射時間Tabを算出し、これに基づき各燃料噴射弁2に供給する駆動電流を補正する。そのため、ECM17の駆動回路34の電流スイッチのON/OFFを切り替えることで、各気筒の燃料噴射時間が一致するように各気筒の燃料噴射弁2に供給する駆動電流を容易に補正できる。
 また、推定開弁遅れ時間Ta’が他の燃料噴射弁よりも長い、すなわちスプリング荷重が他の燃料噴射弁よりも大きい燃料噴射弁に対して、上記駆動電流の昇圧印加時間を長くするように補正する。そのため、補正前より大きな開弁力を与えることによって、全ての燃料噴射弁2の噴射が確実に実行できるので、信頼性の高い燃料噴射装置を提供でき、その結果、エンジン1に配備された各燃料噴射弁2の噴射量誤差(機差ばらつき)を抑制して、微少な噴射量を正確に噴射することができる。
 なお、上記実施形態では、ステップS25で、駆動電流の補正値ΔTpを算出し、ステップS26で、その補正値ΔTpに基づいて推定開弁遅れ時間Ta’が他の燃料噴射弁よりも長い燃料噴射弁に対して駆動電流の供給開始から最大値到達までの昇圧印加時間を長くするように補正しているが、例えば、ステップS25で、補正基準値ΔTabと予め決められた補正係数G2に基づいて噴射パルス幅の補正値ΔTi(=ΔTab×G2)を算出し、ステップS26で、その補正値ΔTiに基づいて推定開弁遅れ時間Ta’が他の燃料噴射弁よりも長い燃料噴射弁に対して噴射パルス幅を長くするように補正してもよい。
 この構成によれば、駆動電流を個別に制御できない駆動回路34であっても、噴射パルス幅を補正することにより、微少な燃料量を調整することができるので、各燃料噴射弁2の噴射量誤差を抑制することができる。
[第2実施形態]
 本第2実施形態は、第1実施形態を基礎的形態とする変形形態であり、以下に説明する以外は前述の第1実施形態と同一である。
 上記第1実施形態では、学習条件を満足したエンジン1のサイクルにおいて、1回の燃料噴射を複数回に分けて、そのうちのいずれか一つまたは複数の噴射量割合を複数サイクル(図示例では、3サイクル)に亘って変更し、且つ当該燃料噴射弁2が中間リフト状態で制御されるような噴射パルス幅(分割噴射パルス幅)を横軸に取り、それらに対応する閉弁遅れ時間を縦軸に取ることで直線近似式を求め、その直線近似式を用いて開弁遅れ時間を推定することとした。
 これに代えて、1サイクルの噴射パルス幅を複数に分けて、そのうちのいずれか一つの噴射量割合を少なくとも2サイクルに亘って変更し、且つ当該燃料噴射弁2が中間リフト状態で制御されるような噴射パルス幅(分割噴射パルス幅)を横軸に取り、これに対応する閉弁遅れ時間を縦軸に取ることで直線近似式を求めてもよい。
 図11は、本発明に係る燃料噴射制御装置の第2実施形態における噴射パルス幅Tiの決定プロセスの一例を示す図である。本第2実施形態では、1サイクルの噴射パルス幅を2回噴射に分けて、そのうちのいずれか一つまたは両方の噴射量割合を2サイクルに亘って変更する。この4回の噴射パルスの中で、燃料噴射弁2が中間リフト状態で制御されるような噴射パルス幅が一つ以上となる場合、これらの噴射パルス幅を横軸に取り、これに対応する閉弁遅れ時間を縦軸に取ることで直線近似式を求めてもよい。
 この第2実施形態によれば、少ないサイクルにおける噴射パルス幅と、その噴射パルス幅で燃料噴射弁2を動作させた際に求められる閉弁遅れ時間を用いて燃料噴射弁2の開弁遅れ時間を推定できるので、推定に要するサイクルを減らすことができ、噴射量誤差の補正をより高速化に行うことができる。
[第3実施形態]
 本実施形態は、第1実施形態または第2実施形態を基礎的形態とする変形形態であり、以下に説明する以外は前述の第1実施形態または第2実施形態と同一である。
 上記第2実施形態では、1サイクルの噴射パルス幅を複数に分けて、そのうちのいずれか一つの噴射量割合を連続する少なくとも2サイクルに亘って変更している。
 これに対して、一つの噴射量割合を連続しない2サイクルで変更させるようにしてもよい。
 図12は、本発明に係る燃料噴射制御装置の第3実施形態における噴射パルス幅Tiの決定プロセスの一例を示す図である。本第3実施形態では、1サイクル目から3サイクル目までの噴射量割合を変更せず、4サイクル目からいずれか一つの噴射量割合を変更し、5サイクル目と6サイクル目の噴射量割合は4サイクル目の噴射量割合と同じとしている。そして、3サイクル目と6サイクル目の噴射パルス幅を用いて前記した直線近似式を求めて推定開弁遅れ時間を算出する。
 この第3実施形態によれば、同じ噴射パルス幅で燃料噴射弁2を動作させた際に求められる閉弁遅れ時間を使用することで、同じ組み合わせデータが増え、その平均値をとることによって、噴射指令の変更により生じる噴射量の脈動が小さくなるので、開弁遅れ時間の推定精度を高めることができる。
[第4実施形態]
 本実施形態は、第1実施形態または第2実施形態を基礎的形態とする変形形態であり、以下に説明する以外は前述の第1実施形態または第2実施形態と同一である。
 上記実施形態では、学習条件を満足したエンジン1のサイクルにおいて、1回の燃料噴射を複数回に分けて、そのうちのいずれか一つまたは複数の噴射量割合を複数サイクルに亘って変更し、且つ当該燃料噴射弁2が中間リフト状態で制御されるような噴射パルス幅において、1サイクル中の1つの噴射パルス幅のみを用いて直線近似式を求めることとした。
 これに代えて、一燃焼サイクル中の複数の異なる噴射パルス幅(言い換えれば、一燃焼サイクルの噴射パルス幅を複数の異なる分割噴射パルス幅に分けたもののうちの複数の分割噴射パルス幅)を用いて直線近似式を求めてもよい。
 図13は、本発明に係る燃料噴射制御装置の第4実施形態における噴射パルス幅の決定プロセスの一例を示す図である。本第4実施形態では、1サイクルの噴射パルス幅を複数(例えば4段噴射)に分けて、燃料噴射弁2が中間リフト状態で制御されるような噴射パルス幅が一つ以上となる場合、これらの噴射パルス幅を横軸に取り、これに対応する閉弁遅れ時間を縦軸に取ることで直線近似式を求めてもよい。
 この第4実施形態によれば、1サイクル間で推定開弁遅れ時間を算出することができ、より少ないサイクルにおける燃圧変動が小さい噴射パルスを用いて燃料噴射弁2の開弁遅れ時間を推定できるので、噴射量誤差の補正効率や補正精度の両方を向上させることができる。
 なお、上記各実施形態は、点火式の内燃機関に搭載された燃料噴射弁2に適用されているが、圧縮時着火式の内燃機関(ディーゼルエンジンまたは予混合圧縮着火)に搭載された燃料噴射弁2に適用してもよいことは勿論である。また、上記各実施形態は、内燃機関の燃焼室内に燃料を直接噴射する燃料噴射弁2に適用されているが、吸気バルブ外の吸気管に搭載されたポート噴射式燃料噴射弁に適用してもよいことは言うまでも無い。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1 内燃機関(エンジン)
 2 燃料噴射弁
 3 エンジンコントロールユニット(ECU)(燃料噴射制御装置)
 4 燃料タンク
 5 低圧燃料ポンプ
 6 高圧燃料ポンプ
 7 燃料供給装置
 8 クランク角度センサ
 9 燃料配管
 10 燃焼室
 14 燃料温度センサ
 15 排気温度センサ
 16 大気圧センサ
 17 エンジンコントロールモジュール(ECM)
 21 弁座
 22 弁体
 23 ゼロスプリング
 24 アンカー
 26 磁気コア
 27 スプリング
 28 コイル

Claims (12)

  1.  燃料噴射弁が中間リフト状態で制御されるようになっている燃料噴射制御装置であって、
     異なる噴射パルス幅で且つ前記燃料噴射弁が前記中間リフト状態となるような噴射パルス幅で前記燃料噴射弁を動作させた際に求められる複数の閉弁遅れ時間に基づいて、前記燃料噴射弁の開弁遅れ時間を推定することを特徴とする燃料噴射制御装置。
  2.  一燃焼サイクルの噴射パルス幅を複数の分割噴射パルス幅に分けたうちのいずれか一つの分割噴射パルス幅を複数サイクルに亘って変更して前記燃料噴射弁を動作させた際に求められる複数の閉弁遅れ時間に基づいて、前記開弁遅れ時間を推定することを特徴とする、請求項1に記載の燃料噴射制御装置。
  3.  一燃焼サイクルの噴射パルス幅を複数の異なる分割噴射パルス幅に分けて前記燃料噴射弁を動作させた際に求められる複数の閉弁遅れ時間に基づいて、前記開弁遅れ時間を推定することを特徴とする、請求項1に記載の燃料噴射制御装置。
  4.  前記複数の閉弁遅れ時間が、同じ噴射パルス幅で且つ前記燃料噴射弁が前記中間リフト状態となるような噴射パルス幅で前記燃料噴射弁を動作させた際に求められる閉弁遅れ時間を更に含むことを特徴とする、請求項1に記載の燃料噴射制御装置。
  5.  各噴射パルス幅と各噴射パルス幅に対応する閉弁遅れ時間の線形関係から前記開弁遅れ時間を推定することを特徴とする、請求項1に記載の燃料噴射制御装置。
  6.  各噴射パルス幅と各噴射パルス幅に対応する閉弁遅れ時間の線形関係から求められる直線近似式において、閉弁遅れ時間が0としたときの噴射パルス幅を前記開弁遅れ時間として推定することを特徴とする、請求項5に記載の燃料噴射制御装置。
  7.  前記燃料噴射制御装置は、複数の燃料噴射弁について各燃料噴射弁の開弁遅れ時間を推定すると共に、推定した開弁遅れ時間に基づいて各燃料噴射弁に供給する駆動電流を補正することを特徴とする、請求項1に記載の燃料噴射制御装置。
  8.  前記燃料噴射制御装置は、推定した開弁遅れ時間が他の燃料噴射弁よりも長い燃料噴射弁に対して駆動電流の供給開始から最大値到達までの昇圧印加時間を長くするように前記駆動電流を補正することを特徴とする、請求項7に記載の燃料噴射制御装置。
  9.  前記燃料噴射制御装置は、複数の燃料噴射弁について各燃料噴射弁の開弁遅れ時間を推定すると共に、推定した開弁遅れ時間に基づいて各燃料噴射弁の噴射パルス幅を補正することを特徴とする、請求項1に記載の燃料噴射制御装置。
  10.  前記燃料噴射制御装置は、推定した開弁遅れ時間が他の燃料噴射弁よりも長い燃料噴射弁に対して噴射パルス幅を長くするように前記噴射パルス幅を補正することを特徴とする、請求項9に記載の燃料噴射制御装置。
  11.  複数の燃料噴射弁が中間リフト状態で制御されるようになっている燃料噴射制御装置であって、
     異なる噴射パルス幅で且つ前記燃料噴射弁が前記中間リフト状態となるような噴射パルス幅で前記燃料噴射弁を動作させた際に求められる複数の閉弁遅れ時間に基づいて、各燃料噴射弁の開弁遅れ時間を推定すると共に、推定した開弁遅れ時間が他の燃料噴射弁よりも長い燃料噴射弁に対して駆動電流の供給開始から最大値到達までの昇圧印加時間を長くするように前記駆動電流を補正することを特徴とする燃料噴射制御装置。
  12.  複数の燃料噴射弁が中間リフト状態で制御されるようになっている燃料噴射制御装置であって、
     異なる噴射パルス幅で且つ前記燃料噴射弁が前記中間リフト状態となるような噴射パルス幅で前記燃料噴射弁を動作させた際に求められる複数の閉弁遅れ時間に基づいて、各燃料噴射弁の開弁遅れ時間を推定すると共に、推定した開弁遅れ時間が他の燃料噴射弁よりも長い燃料噴射弁に対して噴射パルス幅を長くするように前記噴射パルス幅を補正することを特徴とする燃料噴射制御装置。
PCT/JP2016/066092 2015-06-19 2016-06-01 燃料噴射制御装置 WO2016203941A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16811416.3A EP3312406B1 (en) 2015-06-19 2016-06-01 Fuel injection control device
CN201680035607.0A CN107709740B (zh) 2015-06-19 2016-06-01 燃料喷射控制装置
US15/579,816 US10240547B2 (en) 2015-06-19 2016-06-01 Fuel injection control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015123394A JP6453169B2 (ja) 2015-06-19 2015-06-19 燃料噴射制御装置
JP2015-123394 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016203941A1 true WO2016203941A1 (ja) 2016-12-22

Family

ID=57545663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066092 WO2016203941A1 (ja) 2015-06-19 2016-06-01 燃料噴射制御装置

Country Status (5)

Country Link
US (1) US10240547B2 (ja)
EP (1) EP3312406B1 (ja)
JP (1) JP6453169B2 (ja)
CN (1) CN107709740B (ja)
WO (1) WO2016203941A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228595A1 (ja) * 2022-05-24 2023-11-30 日立Astemo株式会社 燃料噴射制御装置及び燃料噴射制御方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106354A (ja) * 2015-12-08 2017-06-15 株式会社デンソー 制御装置
DE102016219890B3 (de) * 2016-10-12 2017-08-03 Continental Automotive Gmbh Verfahren und Steuereinrichtung zum Steuern eines Schaltventils
JP6751654B2 (ja) * 2016-11-14 2020-09-09 日立オートモティブシステムズ株式会社 燃料噴射装置の制御装置
DE102017215017A1 (de) * 2017-08-28 2019-02-28 Hitachi Automotive Systems, Ltd. Verfahren und Einrichtung zum Betreiben eines elektromagnetisch betätigten Ventils eines Kraftstoffeinspritzers
DE102020210991B3 (de) * 2020-09-01 2021-10-07 Vitesco Technologies GmbH Verfahren zum Ansteuern eines Magnetkraftstoffinjektors zum Betreiben in einem Verbrennungsmotor eines Kraftfahrzeugs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002400A (ja) * 2011-06-20 2013-01-07 Hitachi Automotive Systems Ltd 燃料噴射装置
JP2015075087A (ja) * 2013-10-11 2015-04-20 株式会社デンソー 内燃機関の燃料噴射制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314338A (ja) 2002-04-25 2003-11-06 Denso Corp 内燃機関用噴射量制御装置
DE102004027824A1 (de) * 2004-06-08 2006-01-05 Robert Bosch Gmbh Kraftstoffinjektor mit variabler Aktorübersetzung
DE102009018289B3 (de) * 2009-04-21 2010-06-17 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE102009045469A1 (de) * 2009-10-08 2011-04-14 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines Ventils
WO2013191267A1 (ja) * 2012-06-21 2013-12-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置
DE102013204103A1 (de) * 2013-03-11 2014-09-11 Robert Bosch Gmbh Verfahren zum Ansteuern eines Einspritzventils
US9926874B2 (en) * 2013-07-29 2018-03-27 Hitachi Automotive Systems, Ltd. Drive device for fuel injection device, and fuel injection system
JP6130280B2 (ja) * 2013-09-25 2017-05-17 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
DE102013222603A1 (de) * 2013-11-07 2015-05-07 Robert Bosch Gmbh Verfahren zum Erkennen eines Fehlers im Öffnungsverhalten eines Injektors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002400A (ja) * 2011-06-20 2013-01-07 Hitachi Automotive Systems Ltd 燃料噴射装置
JP2015075087A (ja) * 2013-10-11 2015-04-20 株式会社デンソー 内燃機関の燃料噴射制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228595A1 (ja) * 2022-05-24 2023-11-30 日立Astemo株式会社 燃料噴射制御装置及び燃料噴射制御方法

Also Published As

Publication number Publication date
EP3312406A1 (en) 2018-04-25
US20180156147A1 (en) 2018-06-07
CN107709740A (zh) 2018-02-16
JP2017008764A (ja) 2017-01-12
EP3312406A4 (en) 2019-01-02
EP3312406B1 (en) 2020-01-15
US10240547B2 (en) 2019-03-26
CN107709740B (zh) 2021-02-05
JP6453169B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6453169B2 (ja) 燃料噴射制御装置
US10634083B2 (en) Drive device for fuel injection device
US9322356B2 (en) Method and control unit for operating a valve
US9970376B2 (en) Fuel injection controller and fuel injection system
WO2016021122A1 (ja) 内燃機関の燃料噴射制御装置
US7930089B2 (en) Controller for a solenoid operated valve
JP5790611B2 (ja) 燃料噴射制御装置
JP5287915B2 (ja) 燃料噴射状態推定装置
EP2039918A1 (en) Fuel injection control apparatus for internal combustion engine
CN107304727B (zh) 用于电磁启动致动器的最佳驱动信号控制的方法和装置
CN106988916B (zh) 用于确定燃料喷射器的打开延迟持续时间的方法
US8844501B2 (en) Control and regulation method for an internal combustion engine having a common rail system
KR102559402B1 (ko) 솔레노이드 밸브 인젝터의 제어 방법
JP5382006B2 (ja) 燃料噴射制御装置
JP6445155B2 (ja) 燃料噴射制御装置
JP7413928B2 (ja) 内燃機関の燃料噴射制御装置
CN108730060B (zh) 喷射器的控制装置
JP7139223B2 (ja) 燃料噴射装置の制御装置
US11236697B2 (en) Fuel injection control device and fuel injection control method
WO2023166665A1 (ja) 電磁弁駆動装置
JP2019127856A (ja) 燃料噴射弁の異常判定装置
JP2019190367A (ja) インジェクタ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579816

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811416

Country of ref document: EP