WO2023166665A1 - 電磁弁駆動装置 - Google Patents

電磁弁駆動装置 Download PDF

Info

Publication number
WO2023166665A1
WO2023166665A1 PCT/JP2022/009145 JP2022009145W WO2023166665A1 WO 2023166665 A1 WO2023166665 A1 WO 2023166665A1 JP 2022009145 W JP2022009145 W JP 2022009145W WO 2023166665 A1 WO2023166665 A1 WO 2023166665A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
correction amount
period
fuel injection
energization period
Prior art date
Application number
PCT/JP2022/009145
Other languages
English (en)
French (fr)
Inventor
大地 川上
宜明 住舎
純平 古川
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/009145 priority Critical patent/WO2023166665A1/ja
Publication of WO2023166665A1 publication Critical patent/WO2023166665A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically

Definitions

  • the present invention relates to a solenoid valve drive device.
  • Patent Document 1 discloses a fuel injection control device. This fuel injection control device is applied to a fuel injection system capable of performing multi-stage injection in which fuel is injected multiple times within a combustion cycle.
  • the fuel injection control device disclosed in Patent Document 1 calculates the magnetic flux remaining in the fuel injection valve, and corrects the injection mode of the post-injection based on the calculated residual magnetic flux.
  • the fuel injection control device disclosed in Patent Document 2 estimates the residual voltage of the solenoid coil of the fuel injection valve, and corrects the valve opening period based on the estimated residual voltage.
  • the present invention has been made in view of the above-described problems, and is an electromagnetic valve driving device that causes a fuel injection valve to inject fuel a plurality of times during one combustion cycle of an internal combustion engine.
  • the purpose is to suppress the increase in the load on
  • the present invention adopts the following configuration as means for solving the above problems.
  • a first aspect of the present invention is an electromagnetic valve driving device that controls the energization period of a solenoid coil provided in a fuel injection valve and causes the fuel injection valve to inject fuel a plurality of times during one combustion cycle of an internal combustion engine.
  • the energization is suspended from the completion time of the preceding energization period, which is the energization period for the previous fuel injection in the one combustion cycle, to the start time of the latter energization period, which is the energization period for the next fuel injection.
  • a storage unit for storing a correction amount map indicating a relationship between a period and a correction amount for the latter energization period; and obtaining the correction amount from a command value for the energization suspension period based on the correction amount map, and obtaining the correction.
  • an energization control unit for energizing the solenoid coil based on the post-correction energization period, which is the post-stage energization period corrected by the energization period correction unit. and the configuration is adopted.
  • the fuel injection valve includes a movable core that is moved by energization of the solenoid coil, and abuts against the movable core at the maximum movement position of the movable core.
  • the storage unit stores, as the correction amount map, the energization suspension period and the correction amount when the movable core is in contact with the fixed core during one fuel injection and the maximum drive is performed.
  • the energization period correcting unit stores a maximum drive correction amount map showing the relationship between and, when the fuel injection based on the preceding energization period and the fuel injection based on the latter energization period are the maximum drive, A configuration is adopted in which the correction amount is obtained from the command value for the energization suspension period based on the maximum drive correction amount map.
  • the fuel injection valve includes a movable core that is moved by energization of the solenoid coil, and a movable core that is at a maximum movement position of the movable core. a fixed core that abuts against the core, and the storage unit stores the correction amount map as the correction amount map in the case of halfway driving in which the movable core is not moved until the movable core abuts against the fixed core in one fuel injection.
  • a midway drive correction amount map showing the relationship between the rest period and the correction amount is stored, and the energization period correcting unit determines whether the fuel injection based on the preceding energization period and the fuel injection based on the post energization period is performed in the middle.
  • the correction amount is obtained from the command value for the energization suspension period based on the halfway drive correction amount map.
  • the fuel injection valve has a movable core that is moved by energization of the solenoid coil, and abuts against the movable core at the maximum movement position of the movable core.
  • the storage unit stores, as the correction amount map, the energization suspension period and the correction amount when the movable core is in contact with the fixed core during one fuel injection and the maximum drive is performed. and a relationship between the energization suspension period and the correction amount when halfway driving is performed in which the movable core is not moved until it contacts the fixed core in one fuel injection.
  • the energization period correction unit determines whether the fuel injection is the maximum drive or the halfway drive, and determines the fuel injection based on the pre-stage energization period and the above
  • the correction amount is obtained from the command value for the energization suspension period based on the maximum drive correction amount map, and the fuel injection is performed based on the preceding energization period.
  • the fuel injection based on the post-energization period are the halfway drive, the correction amount is obtained from the command value for the energization suspension period based on the halfway drive correction amount map.
  • a fifth aspect of the present invention is the third or fourth aspect, wherein the halfway drive correction amount map indicates the relationship between the energization suspension period and the correction amount according to the pre-stage energization period, and
  • the energization period correction unit employs a configuration in which the correction amount is obtained from the command value for the preceding energization period and the command value for the energization suspension period.
  • a sixth aspect of the present invention is, in any one of the first to fifth aspects, further comprising a valve closing detecting section for detecting closing of the fuel injection valve, wherein the energization period correction section corrects the post-correction energization period and the valve closing detection time by the valve closing detection unit, and further corrects the post correction energization period after the calculation of the difference.
  • the following fuel injection is caused by at least one of the residual magnetic force and the increase in the effective boost voltage due to the influence of the previous fuel injection.
  • the energization pause period and the correction amount are associated with each other so that the valve closing timing in the next fuel injection is advanced according to the advance of the valve opening timing in the next fuel injection.
  • the storage unit stores a correction amount map showing the relationship between the energization suspension period and the correction amount for the subsequent energization period. Further, the correction amount for the subsequent energization period is obtained based on the correction amount map from the command value for the energization suspension period. Therefore, the present invention reduces the load of arithmetic processing compared to the case of obtaining the correction amount for the post-stage energization period without using the correction amount map. Therefore, according to the present invention, in an electromagnetic valve driving device that injects fuel multiple times into a fuel injection valve during one combustion cycle of an internal combustion engine, it is possible to suppress an increase in the computational processing load due to correction relating to fuel injection. becomes possible.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a fuel injection valve controlled by an electromagnetic valve driving device according to one embodiment of the present invention
  • FIG. 1 is a schematic configuration diagram of an electromagnetic valve drive device in one embodiment of the present invention
  • FIG. 4 is a conceptual diagram of a correction amount map for full lift
  • FIG. 11 is a schematic diagram showing a state in which the post-stage energization period is corrected and shortened using a correction amount map for full lift
  • FIG. 4 is a conceptual diagram of a half-lift correction amount map
  • FIG. 11 is a schematic diagram showing how the post-stage energization period is corrected and shortened using a half-lift correction amount map; 4 is a flow chart for explaining the operation of the electromagnetic valve driving device in one embodiment of the present invention; FIG. 5 is a schematic diagram showing a state in which three or more fuel injections are performed in one fuel cycle in a modification of the electromagnetic valve driving device according to one embodiment of the present invention;
  • FIG. 1 is a schematic diagram showing a schematic configuration of a fuel injection valve 100 controlled by an electromagnetic valve driving device 1 of this embodiment.
  • a solenoid valve driving device 1 of this embodiment is a driving device that drives a fuel injection valve 100 .
  • the solenoid valve driving device 1 according to the present embodiment drives a fuel injection valve 100 (solenoid valve) that injects fuel into an internal combustion engine mounted on a vehicle.
  • a fuel injection valve 100 is an electromagnetic valve (solenoid valve) that injects fuel into an internal combustion engine such as a gasoline engine or a diesel engine mounted on a vehicle.
  • FIG. 1 is a schematic configuration diagram of a fuel injection valve 100.
  • the fuel injection valve 100 includes a fixed core 101, a valve seat 102, a solenoid coil 103, a needle 104, a valve body 105, a retainer 106, a lower stopper 107, a valve body biasing spring 108, a movable core 109, and A movable core biasing spring 110 is provided.
  • the fixed core 101, the valve seat 102, and the solenoid coil 103 are fixed members.
  • Needle 104, valve element 105, retainer 106, lower stopper 107, valve element biasing spring 108, movable core 109, and movable core biasing spring 110 are movable members.
  • the fixed core 101 is a cylindrical member fixed to the housing (not shown) of the fuel injection valve 100 .
  • Fixed core 101 is made of a magnetic material.
  • a valve seat 102 is fixed to the housing of the fuel injection valve 100 .
  • the valve seat 102 has an injection hole 102a.
  • the injection hole 102 a is a hole through which fuel is injected, and is closed when the valve body 105 is seated on the valve seat 102 and opened when the valve body 105 is separated from the valve seat 102 .
  • the solenoid coil 103 is formed by winding an electric wire into a ring.
  • the solenoid coil 103 is arranged concentrically with the fixed core 101 .
  • the solenoid coil 103 is electrically connected to the solenoid valve driving device 1 .
  • the solenoid coil 103 forms a magnetic path including the fixed core 101 and the movable core 109 when energized by the solenoid valve driving device 1 .
  • the needle 104 is an elongated rod member extending along the central axis of the fixed core 101 . Needle 104 is moved in the axial direction of the central axis of fixed core 101 (the direction in which needle 104 extends) by the attractive force generated by the magnetic path including fixed core 101 and movable core 109 .
  • the installation attitude of the fuel injection valve 100 is not particularly limited. However, in the following description, in the axial direction of the central axis of the fixed core 101, the direction in which the movable core 109 moves due to the attraction force is referred to as upward, and the direction opposite to the direction in which the movable core 109 moves due to the attraction force. called downward.
  • the valve body 105 is formed at the lower tip of the needle 104 .
  • the valve body 105 closes the injection hole 102a by being seated on the valve seat 102, and opens the injection hole 102a by being separated from the valve seat 102.
  • Retainer 106 includes guide member 106a and flange 106b.
  • Guide member 106 a is a cylindrical member fixed to the upper tip of needle 104 .
  • the flange 106b is formed to protrude in the radial direction of the needle 104 at the upper end of the guide member 106a.
  • the lower end face of the flange 106 b is a contact face with the movable core biasing spring 110 .
  • An upper end face of the flange 106b is a contact face with the valve body biasing spring 108. As shown in FIG.
  • the lower stopper 107 is a cylindrical member fixed to the needle 104 between the valve seat 102 and the guide member 106a.
  • the upper end surface of the lower stopper 107 is a contact surface with the movable core 109 .
  • the valve body biasing spring 108 is a compression coil spring housed inside the fixed core 101, and is interposed between the inner wall surface of the housing and the flange 106b.
  • a valve body biasing spring 108 biases the valve body 105 downward. That is, when the solenoid coil 103 is not energized, the valve body 105 is brought into contact with the valve seat 102 by the biasing force of the valve body biasing spring 108 .
  • the movable core 109 is arranged between the guide member 106 a and the lower stopper 107 .
  • the movable core 109 is a cylindrical member and provided coaxially with the needle 104 .
  • the movable core 109 has a through hole in the center through which the needle 104 is inserted, and is movable along the extending direction of the needle 104 .
  • An upper end surface of the movable core 109 is a contact surface with the fixed core 101 and the movable core biasing spring 110 .
  • the lower end surface of the movable core 109 is a contact surface with the lower stopper 107 .
  • the movable core 109 is made of a magnetic material.
  • the movable core biasing spring 110 is a compression coil spring interposed between the flange 106 b and the movable core 109 .
  • a movable core biasing spring 110 biases the movable core 109 downward. That is, when the solenoid coil 103 is not energized, the movable core 109 is brought into contact with the lower stopper 107 by the biasing force of the movable core biasing spring 110 .
  • FIG. 2 is a schematic configuration diagram of the solenoid valve driving device 1 according to this embodiment.
  • the electromagnetic valve drive device 1 includes a drive device 2 and a control device 3 .
  • the driving device 2 includes a power supply device 2a and a switch 2b.
  • the power supply device 2a includes at least one of a battery and a booster circuit.
  • the battery is installed in the vehicle.
  • the booster circuit boosts the battery voltage Vb, which is the output voltage of the battery, and outputs the boosted voltage Vs.
  • the power supply device 2 a may energize the solenoid coil 103 by outputting the battery voltage Vb to the solenoid coil 103 .
  • the power supply device 2 a may energize the solenoid coil 103 by outputting the boosted voltage Vs to the solenoid coil 103 .
  • the voltage output from the power supply device 2 a to the solenoid coil 103 is controlled by the control device 3 .
  • energization of the solenoid coil 103 is controlled by the control device 3 .
  • the switch 2b is controlled by the control device 3 to be on or off.
  • the solenoid coil 103 is supplied with the voltage output from the power supply 2a.
  • energization of the solenoid coil 103 is started.
  • the switch 2b is controlled to be turned off, the voltage supply from the power supply 2a to the solenoid coil 103 is stopped. As a result, the energization of the solenoid coil 103 is stopped.
  • the control device 3 includes a voltage detection section 3a and a control processing section 3b.
  • Voltage detector 3 a detects voltage Vc generated in solenoid coil 103 .
  • the voltage Vc is the voltage across the solenoid coil 103 .
  • the voltage detection unit 3a outputs the detected voltage Vc to the control processing unit 3b.
  • the control processing unit 3b includes a valve closing detection unit 3c, an energization control unit 3d, an energization period correction unit 3e, and a storage unit 3f.
  • the valve closing detector 3c detects that the valve body 105 is closed. For example, the valve closing detector 3c detects valve closing of the fuel injection valve 100 based on the voltage Vc detected by the voltage detector 3a. As an example, the valve closing detector 3c detects the valve closing of the valve element 105 by detecting the inflection point of the voltage Vc detected by the voltage detector 3a. However, the valve closing detector 3c detects the valve closing of the valve body 105 by detecting the inflection point of the voltage Vc detected by the voltage detector 3a processed by a predetermined process. The machining voltage may be a differential value of the voltage Vc. High frequency components may be removed from the voltage Vc used to detect the valve closing of the valve body 105 by a filter.
  • the energization control unit 3d controls the power supply device 2a.
  • the energization control unit 3d controls the switch 2b to be on or off.
  • the solenoid coil 103 is energized by the energization control unit 3d turning on the switch 2b.
  • the energization control unit 3d turns off the switch 2b, thereby stopping the energization of the solenoid coil 103.
  • the energization control unit 3d controls the energization period Ti based on the program stored in the storage unit 3f and the post-correction energization period obtained by the energization period correction unit 3e, which will be described later.
  • the energization period Ti indicates the period in which the solenoid coil 103 is energized, and is the time from the start of energization to the solenoid coil 103 at the energization start time T1 to the energization stop time T2 at which the energization is stopped.
  • the control device 3 controls the injection amount of fuel injected from the fuel injection valve 100 (hereinafter referred to as fuel injection amount) by controlling the energization period Ti.
  • the electromagnetic valve driving device 1 of the present embodiment supplies fuel to the fuel injection valve 100 multiple times in one combustion cycle of the internal combustion engine (for example, a cycle in which an intake stroke, a compression stroke, a combustion stroke, and an exhaust stroke are sequentially performed once each). Perform multi-stage injection control to inject.
  • the fuel injection valve 100 performs two fuel injections in one combustion cycle will be described. Among the two fuel injections performed in one combustion cycle, the first fuel injection is called a pre-injection. Further, the next fuel injection is called post-stage injection.
  • the fuel injection valve 100 injects fuel for each energization period Ti. That is, in this embodiment, two energization periods Ti are provided in one combustion cycle.
  • the previous energization period Ti is the energization period for the pre-injection.
  • the preceding energization period Ti is referred to as a preceding energization period Tia.
  • the next energization period Ti is the energization period for the post-injection.
  • the next energization period Ti is referred to as a subsequent energization period Tib.
  • an energization pause period Tp during which energization to the solenoid coil 103 is stopped.
  • the energization suspension period Tp is a period from the energization stop time T2 of the former energization period Tia to the energization start time T1 of the latter energization period Tib.
  • the energization period correction unit 3e corrects the post-stage energization period Tib based on a correction amount map M, which will be described later, stored in the storage unit 3f.
  • the energization period correction unit 3e refers to the correction amount map M and obtains the correction amount for the subsequent energization period Tib based on the command value for the energization suspension period Tp.
  • the command value for the energization suspension period Tp may be obtained directly from the program if it is stored in advance in the program.
  • command value for the energization suspension period Tp may be calculated based on the energization start time T1 of the subsequent energization period Tib from the energization stop time T2 of the former energization period Tia.
  • the energization period correction unit 3e corrects the subsequent energization period Tib based on the calculated correction amount.
  • the corrected post-stage energization period Tib (hereinafter referred to as post-stage corrected energization period Tib) is input to the energization control section 3d.
  • the energization control unit 3d energizes the solenoid coil 103 for the post-stage injection based on the post-stage correction energization period Tib.
  • the start timing of the post-injection is earlier than the design value due to the influence of the residual magnetic force after the pre-injection and the increase in the effective boost voltage.
  • the residual magnetic force is the magnetic force that remains in the fuel injection valve 100 due to the influence of the pre-stage injection.
  • the magnetic force generated in the fuel injection valve 100 by the pre-injection tends to 0 after the pre-injection, but does not become 0 immediately. Therefore, the magnetic force may remain in the fuel injection valve 100 at the energization start time T1 of the post-stage energization period Tib.
  • the magnetic force remaining in the fuel injection valve 100 at the energization start time T1 of the subsequent energization period Tib is the residual magnetic force. Due to the influence of this residual magnetic force, the attractive force of the movable core 109 in the post-injection is higher than the designed value. As a result, the start timing of the post-stage injection is advanced.
  • the effective boosted voltage is the voltage applied to the solenoid coil 103 at the energization start time T1 of the energization period Ti.
  • the voltage remaining in the solenoid coil 103 once drops to the clamp voltage, and then returns to 0 over time. Therefore, the voltage of the solenoid coil 103 may not return to 0 at the energization start time T1 of the subsequent stage energization period Tib. Due to the influence of this residual voltage, the boosted voltage applied to the solenoid coil 103 at the energization start time T1 of the subsequent stage energization period Tib becomes higher than the designed value. That is, the effective boosted voltage increases. As a result, the start timing of the post-stage injection is advanced.
  • the correction amount map M is a map showing the relationship between the energization suspension period Tp and the correction amount for the subsequent energization period Tib.
  • This correction amount is set so as to advance the end timing of the post-injection by the amount of the advance in the start timing of the post-injection due to the increase in the residual magnetic force and the effective boost voltage.
  • the energization stop time T2 of the post-stage energization period Tib is set to the time Ta so that the post-stage energization period Tib is shortened by the time Ta.
  • the amount of correction is set so as to speed up the process. This correction amount is obtained in advance by experiments or simulations.
  • the effect of residual magnetism and the effect of increasing the effective boost voltage decrease over time. That is, the longer the energization suspension period Tp, the less the degree of advance of the start timing of the post-injection. Therefore, in the correction amount map M, the energization suspension period Tp and the correction amount are related such that the longer the energization suspension period Tp, the smaller the correction amount.
  • the full-lift correction amount map Ma (maximum drive correction amount map) is a correction amount map M used when fuel injection in one combustion cycle is full-lift injection. That is, in the present embodiment, the full-lift correction amount map Ma is referred to when the front-stage injection and the rear-stage injection are full-lift injections.
  • the full-lift injection is a fuel injection that moves the movable core 109 of the fuel injection valve 100 until it abuts against the fixed core 101 for one fuel injection. That is, in full lift injection, the movable core 109 is moved to the maximum position within the movable range. That is, the full-lift correction amount map Ma used in such full-lift injection is the energization suspension period Tp and the post-stage energization period Tib when the movable core 109 contacts the fixed core 101 in one fuel injection and the maximum drive is performed. and the correction amount.
  • FIG. 3 is a conceptual diagram of the full-lift correction amount map Ma.
  • the full-lift correction amount map Ma is a map showing the relationship between the energization suspension period Tp and the correction amount for the post-stage energization period Tib.
  • the amount of correction for the post-stage energization period Tib is abbreviated as "XX".
  • the energization suspension period Tp is divided into Tp1 to Tpn at regular intervals.
  • the correction amount of the post-stage energization period Tib is set for each of Tp1 to Tpn.
  • FIG. 4 is a schematic diagram showing how the post-stage energization period Tib is corrected and shortened using the full-lift correction amount map Ma.
  • the upper part shows the change over time of the voltage applied to the solenoid coil 103
  • the lower part shows the change over time of the amount of movement of the movable core 109 from the valve closed state.
  • the movement start time of the movable core 109 for the post-stage injection advances by the time Ta, and the movable core 109 moves to the valve closing position. is also advanced by the time Ta. As a result, the difference from the design value of the fuel injection amount in the post-stage injection can be reduced.
  • the half-lift correction amount map Mb (half-lift correction amount map) is a correction amount map M used when fuel injection in one combustion cycle is half-lift injection. That is, in the present embodiment, when the pre-injection and the post-injection are half-lift injections, the half-lift correction amount map Mb is referred to.
  • Half-lift injection is fuel injection in which the movable core 109 of the fuel injection valve 100 is not moved until it comes into contact with the fixed core 101 for one fuel injection. That is, in the half-lift injection, the movable core 109 is not moved to the maximum position within the movable range.
  • Such half-lift injection is also called ballistic injection because the position of the movable core 109 changes over time in a parabolic manner.
  • the maximum displacement position of movable core 109 is not limited to half of the maximum position of movable core 109 in full-lift injection.
  • the half-lift correction amount map Mb used in such a half-lift injection is the energization rest period Tp in the case of halfway driving in which the movable core 109 is not moved until it comes into contact with the fixed core 101 in one fuel injection. and the correction amount of the post-stage energization period Tib. Further, in the half-lift correction amount map Mb, the energization suspension period Tp and the correction amount are related according to the value of the preceding stage energization period Tia.
  • FIG. 5 is a conceptual diagram of the half-lift correction amount map Mb.
  • the half-lift correction amount map Mb is a map showing the relationship between the energization suspension period Tp and the correction amount of the post-stage energization period Tib according to the value of the pre-stage energization period Tia.
  • the correction amount of the post-stage energization period Tib is omitted as "XX".
  • the energization suspension period Tp is divided into Tp1 to Tpn at regular intervals.
  • the correction amount for the post-stage energization period Tib is set for each of Tp1 to Tpn.
  • the pre-stage energization period Tia is divided into Tia1 to Tian at regular intervals. Correction amounts for the energization suspension period Tp and the post-stage energization period Tib are set for each of these Tia1 to Tian. That is, in the half-lift correction amount map Mb, the correction amount for the post-stage energization period Tib can be obtained using the pre-stage energization period Tia and the energization suspension period Tp as parameters.
  • FIG. 6 is a schematic diagram showing how the post-stage energization period Tib is corrected and shortened using the half-lift correction amount map Mb.
  • the upper part shows the change over time of the voltage applied to the solenoid coil 103
  • the lower part shows the change over time of the amount of movement of the movable core 109 from the valve closed state.
  • the movement start time of the movable core 109 for the post-stage injection is advanced by the time Ta, and the valve closing position of the movable core 109 is shortened.
  • the return time to is also advanced by the time Ta.
  • the difference from the design value of the fuel injection amount in the post-stage injection can be reduced.
  • the residual magnetic force of the fuel injection valve 100 varies greatly depending on the value of the pre-stage energization period Tia. Therefore, in the half-lift correction amount map Mb, the energization suspension period Tp and the correction amount of the post-stage energization period Tib are associated with each other according to the value of the pre-stage energization period Tia. The difference to the design value of the quantity can be reduced.
  • the storage unit 3f stores the correction amount map M described above.
  • the storage unit 3f stores, as the correction amount maps M, a full-lift correction amount map Ma and a half-lift correction amount map Mb.
  • the storage unit 3f also stores a drive control program for the fuel injection valve 100 and various calculated values.
  • FIG. 7 is a flowchart for explaining an example of the operation of the control processor 3b in multi-stage injection control.
  • control processor 3b determines whether or not multiple fuel injections in one combustion cycle are full lift injections (step S1).
  • the energization period correction unit 3e determines whether or not the fuel injection is the full lift injection based on the program stored in the storage unit 3f or a command input from the outside.
  • the energization period correction unit 3e refers to the full-lift correction amount map Ma (step S2). Subsequently, the energization period correction unit 3e determines a correction amount for the subsequent energization period Tib (step S3).
  • the energization period correction unit 3e obtains the command value of the energization suspension period Tp based on the program stored in the storage unit 3f or a command input from the outside.
  • the energization period correction unit 3e refers to the full-lift correction amount map Ma and determines the correction amount for the subsequent energization period Tib based on the command value for the energization suspension period Tp.
  • the control processing unit 3b causes the fuel injection valve 100 to perform fuel injection based on the correction amount of the post-stage energization period Tib determined in step S3 (step S4).
  • the energization period correction unit 3e corrects the post-stage energization period Tib based on the correction amount obtained in step S3 to generate the post-stage corrected energization period Tib.
  • the energization control unit 3d energizes the solenoid coil 103 based on the preceding energization period Tia based on the program stored in the storage unit 3f and the subsequent correction energization period Tib obtained by the energization period correction unit 3e. As a result, the fuel injection valve 100 injects fuel in multiple stages.
  • the energization period correction unit 3e refers to the half-lift correction amount map Mb (step S5). Subsequently, the energization period correction unit 3e determines a correction amount for the subsequent energization period Tib (step S6).
  • the energization period correction unit 3e obtains the command value of the energization suspension period Tp based on the program stored in the storage unit 3f or a command input from the outside.
  • the energization period correction unit 3e obtains a command value of the preceding energization period Tia based on the program stored in the storage unit 3f or a command input from the outside.
  • the energization period correction unit 3e refers to the half-lift correction amount map Mb and determines the correction amount for the subsequent energization period Tib based on the command value for the energization suspension period Tp and the command value for the preceding energization period Tia.
  • the control processing unit 3b causes the fuel injection valve 100 to perform fuel injection based on the correction amount of the post-stage energization period Tib determined in step S6 (step S7).
  • the energization period correction unit 3e corrects the post-stage energization period Tib based on the correction amount obtained in step S6 to generate the post-stage corrected energization period Tib.
  • the energization control unit 3d energizes the solenoid coil 103 based on the preceding energization period Tia based on the program stored in the storage unit 3f and the subsequent correction energization period Tib obtained by the energization period correction unit 3e. As a result, the fuel injection valve 100 injects fuel in multiple stages.
  • the solenoid valve driving device 1 of this embodiment controls the energization period Ti of the solenoid coil 103 provided in the fuel injection valve 100 . Further, the electromagnetic valve drive device 1 of the present embodiment causes the fuel injection valve 100 to inject fuel multiple times during one combustion cycle of the internal combustion engine.
  • the electromagnetic valve drive device 1 of this embodiment includes a storage section 3f, an energization period correction section 3e, and an energization control section 3d.
  • the storage unit 3f stores data from the completion time of the preceding energization period Tia, which is the energization period Ti for the previous fuel injection in one combustion cycle, to the start time of the subsequent energization period Tib, which is the energization period Ti for the next fuel injection.
  • the energization period correction unit 3e obtains a correction amount from the command value of the energization suspension period Tp based on the correction amount map M, and corrects the subsequent energization period Tib based on the obtained correction amount.
  • the energization control unit 3d energizes the solenoid coil 103 based on the post-stage correction energization period, which is the post-stage energization period Tib corrected by the energization period correction unit 3e.
  • the storage unit 3f stores a correction amount map M indicating the relationship between the energization suspension period Tp and the correction amount of the subsequent energization period Tib. Further, the correction amount for the subsequent energization period Tib is obtained based on the correction amount map M from the command value for the energization suspension period Tp. Therefore, compared to the case where the correction amount of the post-stage energization period Tib is obtained without using the correction amount map M, an increase in the computational processing load is suppressed. Therefore, the electromagnetic valve driving device 1 of the present embodiment can suppress an increase in the computational processing load due to the correction relating to the fuel injection.
  • the fuel injection valve 100 includes a movable core 109 and a fixed core 101 .
  • the movable core 109 is moved by energizing the solenoid coil 103 .
  • the fixed core 101 contacts the movable core 109 at the maximum movement position of the movable core 109 .
  • the storage unit 3f stores a full-lift correction amount map Ma as the correction amount map M.
  • FIG. The full-lift correction amount map Ma shows the relationship between the energization suspension period Tp and the correction amount when performing maximum driving (full-lift injection) in which the movable core 109 contacts the fixed core 101 in one fuel injection.
  • the energization period correction unit 3e performs correction for full lift when the fuel injection (previous injection) based on the preceding energization period Tia and the fuel injection (post injection) based on the post energization period Tib are the maximum drive (full lift injection). Based on the amount map Ma, the correction amount is obtained from the command value of the energization suspension period Tp.
  • the electromagnetic valve drive device 1 of this embodiment can correct the post-energization period Tib using the full-lift correction amount map Ma that matches the characteristics of the increase in the residual magnetic force and the effective boost voltage in the full-lift injection. Therefore, the electromagnetic valve driving device 1 of the present embodiment can further reduce the difference between the fuel injection amount in the post-injection of the full-lift injection and the design value.
  • the storage unit 3f stores a half-lift correction amount map Mb as the correction amount map M.
  • the half-lift correction amount map Mb shows the relationship between the energization stop period Tp and the correction amount when halfway driving (half-lift injection) is performed in which the movable core 109 is not moved until it comes into contact with the fixed core 101 in one fuel injection. indicates
  • the energization period correction unit 3e obtains the correction amount from the command value of the energization suspension period Tp based on the half-lift correction amount map Mb when the pre-injection and the post-injection are halfway driven (half-lift injection).
  • the electromagnetic valve driving device 1 of this embodiment can correct the post-stage energization period Tib using the half-lift correction amount map Mb that matches the characteristics of the increase in the residual magnetic force and the effective boost voltage in the half-lift injection. can. Therefore, the solenoid valve driving device 1 of the present embodiment can further reduce the difference between the fuel injection amount in the post-injection of the half-lift injection and the design value.
  • the storage unit 3f stores a full-lift correction amount map Ma and a half-lift correction amount map Mb. Further, the energization period correction unit 3e determines whether the fuel injection is full lift injection or half lift injection. The energization period correction unit 3e obtains the correction amount from the command value of the energization suspension period Tp based on the full-lift correction amount map Ma when the front injection and the rear injection are full-lift injections. Further, the energization period correction unit 3e obtains the correction amount from the command value of the energization suspension period Tp based on the half-lift correction amount map Mb when the pre-injection and the post-injection are half-lift injections.
  • the solenoid valve driving device 1 of this embodiment selects the correction amount map M suitable for each characteristic regardless of whether the fuel injection of the fuel injection valve 100 is full-lift injection or half-lift injection. can be used to correct the post-stage energization period Tib.
  • the half-lift correction amount map Mb indicates the relationship between the energization suspension period Tp and the correction amount of the post-stage energization period Tib according to the value of the pre-stage energization period Tia.
  • the half-lift correction amount map Mb indicates the relationship between the energization suspension period Tp and the correction amount of the post-stage energization period Tib for each range of the former-stage energization period Tia.
  • the energization period correction unit 3e obtains the correction amount from the command value of the preceding energization period Tia and the command value of the energization suspension period Tp.
  • the degree of influence on the post-stage injection greatly differs depending on the value of the pre-stage energization period Tia. Therefore, by using such a half-lift correction amount map Mb, it is possible to correct the post-stage energization period Tib suitable for the value of the pre-stage energization period Tia.
  • the post-injection valve opening timing is advanced in accordance with at least one of the residual magnetic force due to the effect of the pre-injection and the increase in the effective boost voltage.
  • the energization suspension period Tp and the correction amount are related so that the valve closing timing at is advanced. Therefore, the electromagnetic valve driving device 1 of the present embodiment can suppress an increase in the fuel injection amount due to an increase in the residual magnetic force and the effective boost voltage due to the influence of the pre-stage injection.
  • FIG. 8 is a schematic diagram showing a situation in which three or more fuel injections are performed in one fuel cycle.
  • the upper part shows the change over time in the voltage applied to the solenoid coil 103
  • the middle part shows the change over time in the amount of movement of the movable core 109 from the valve closed state
  • the lower part shows the amount of variation in the fuel injection amount relative to the design value. is shown.
  • the valve closing detection time Tx when fuel injection is performed based on the corrected post-stage energization period Tib is set to valve closing detection time Tx.
  • the difference from the estimated valve closing time obtained from the post-stage energization period Tib after correction may be calculated. Based on this difference, the post-correction energization period after calculating the difference may be further corrected. By further correcting the post-correction energization period in this way, it is possible to suppress fluctuations in the fuel injection amount from the design value due to individual differences in the fuel injection valve 100, temperature, and fuel pressure.
  • Solenoid valve driving device 3c Valve closing detection unit 3d Energization control unit 3e Energization period correction unit 3f Storage unit 100 Fuel injection valve 101 Fixed core 103 Solenoid coil 109 Movable core M Correction amount map Ma Full-lift correction amount map Mb Half-lift correction Quantity map T1 Energization start time T2 Energization stop time Ti Energization period Tia Pre-stage energization period Tib Latter-stage energization period (latter-stage correction energization period) Tp Energization suspension period Tx Valve closing detection time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

燃料噴射弁に設けられたソレノイドコイルへの通電期間を制御し、内燃機関の1燃焼サイクル中に燃料噴射弁に複数回燃料を噴射させる電磁弁駆動装置であって、1燃焼サイクル中の先の燃料噴射のための通電期間である前段通電期間の完了時刻から次の燃料噴射のための通電期間である後段通電期間の開始時刻までの通電休止期間と、後段通電期間に対する補正量との関係を示す補正量マップを記憶する記憶部と、補正量マップに基づいて通電休止期間の指令値から補正量を求め、求めた補正量に基づいて後段通電期間を補正する通電期間補正部と、通電期間補正部で補正された後段通電期間である後段補正通電期間に基づいてソレノイドコイルへの通電を行う通電制御部とを備える。

Description

電磁弁駆動装置
 本発明は、電磁弁駆動装置に関するものである。
 例えば、特許文献1は、燃料噴射制御装置を開示する。この燃料噴射制御装置は、燃焼サイクル内で燃料を複数回噴射する多段噴射を実行可能な燃料噴射システムに適用される。特許文献1に開示された燃料噴射制御装置は、燃料噴射弁に残留する磁束を算出し、算出した残留磁束に基づいて後段噴射の噴射態様を補正する。また、特許文献2に開示された燃料噴射制御装置は、燃料噴射弁のソレノイドコイルの残留電圧を推定し、推定した残留電圧に基づいて開弁期間を補正する。
日本国特開2018-96275号公報 日本国特開2017-96118号公報
 しかしながら、特許文献1に開示された燃料噴射制御装置では、残留磁束を算出する演算を行う必要がある。また、特許文献2に開示された燃料噴射装置では、残留電圧を推定する演算を行う必要がある。内燃機関における燃焼サイクルは、短期間に多数行われる。このため、特許文献1及び特許文献2に開示された燃料噴射制御装置のように、燃焼サイクル内で多数の演算処理を行うことは、燃料噴射制御装置の演算処理の負荷が大幅に増大する。
 本発明は、上述する問題点に鑑みてなされたもので、内燃機関の1燃焼サイクル中に燃料噴射弁に複数回燃料を噴射させる電磁弁駆動装置において、燃料噴射に関する補正を行うことによる演算処理の負荷の増大を抑制することを目的とする。
 本発明は、上記課題を解決するための手段として、以下の構成を採用する。
 本発明の第1の態様は、燃料噴射弁に設けられたソレノイドコイルへの通電期間を制御し、内燃機関の1燃焼サイクル中に上記燃料噴射弁に複数回燃料を噴射させる電磁弁駆動装置であって、上記1燃焼サイクル中の先の燃料噴射のための上記通電期間である前段通電期間の完了時刻から次の燃料噴射のための上記通電期間である後段通電期間の開始時刻までの通電休止期間と、上記後段通電期間に対する補正量との関係を示す補正量マップを記憶する記憶部と、上記補正量マップに基づいて上記通電休止期間の指令値から上記補正量を求め、求めた上記補正量に基づいて上記後段通電期間を補正する通電期間補正部と、上記通電期間補正部で補正された上記後段通電期間である後段補正通電期間に基づいて上記ソレノイドコイルへの通電を行う通電制御部とを備えるという構成を採用する。
 本発明の第2の態様は、上記第1の態様において、上記燃料噴射弁が、上記ソレノイドコイルへの通電により移動される可動コアと、上記可動コアの最大移動位置にて上記可動コアに当接する固定コアとを備え、上記記憶部が、上記補正量マップとして、1回の上記燃料噴射にて上記可動コアが上記固定コアと当接する最大駆動を行う場合における上記通電休止期間と上記補正量との関係を示す最大駆動補正量マップを記憶し、上記通電期間補正部は、上記前段通電期間に基づく上記燃料噴射と上記後段通電期間に基づく上記燃料噴射とが上記最大駆動である場合に、上記最大駆動補正量マップに基づいて上記通電休止期間の指令値から上記補正量を求めるという構成を採用する。
 本発明の第3の態様は、上記第1または第2の態様において、上記燃料噴射弁が、上記ソレノイドコイルへの通電により移動される可動コアと、上記可動コアの最大移動位置にて上記可動コアに当接する固定コアとを備え、上記記憶部が、上記補正量マップとして、1回の上記燃料噴射にて上記可動コアが上記固定コアと当接するまで移動されない中途駆動を行う場合における上記通電休止期間と上記補正量との関係を示す中途駆動補正量マップを記憶し、上記通電期間補正部が、上記前段通電期間に基づく上記燃料噴射と上記後段通電期間に基づく上記燃料噴射とが上記中途駆動である場合に、上記中途駆動補正量マップに基づいて上記通電休止期間の指令値から上記補正量を求めるという構成を採用する。
 本発明の第4の態様は、上記第1の態様において、上記燃料噴射弁が、上記ソレノイドコイルへの通電により移動される可動コアと、上記可動コアの最大移動位置にて上記可動コアに当接する固定コアとを備え、上記記憶部が、上記補正量マップとして、1回の上記燃料噴射にて上記可動コアが上記固定コアと当接する最大駆動を行う場合における上記通電休止期間と上記補正量との関係を示す最大駆動補正量マップと、1回の上記燃料噴射にて上記可動コアが上記固定コアと当接するまで移動されない中途駆動を行う場合における上記通電休止期間と上記補正量との関係を示す中途駆動補正量マップとを記憶し、上記通電期間補正部が、上記燃料噴射が上記最大駆動であるか上記中途駆動であるかを判定し、上記前段通電期間に基づく上記燃料噴射と上記後段通電期間に基づく上記燃料噴射とが上記最大駆動である場合に、上記最大駆動補正量マップに基づいて上記通電休止期間の指令値から上記補正量を求め、上記前段通電期間に基づく上記燃料噴射と上記後段通電期間に基づく上記燃料噴射とが上記中途駆動である場合に、上記中途駆動補正量マップに基づいて上記通電休止期間の指令値から上記補正量を求めるという構成を採用する。
 本発明の第5の態様は、上記第3または第4の態様において、上記中途駆動補正量マップが、上記前段通電期間に応じて、上記通電休止期間と上記補正量との関係を示し、上記通電期間補正部は、上記前段通電期間の指令値と、上記通電休止期間の指令値とから上記補正量を求めるという構成を採用する。
 本発明の第6の態様は、上記第1~第5いずれかの態様において、上記燃料噴射弁の閉弁を検出する閉弁検出部を備え、上記通電期間補正部が、上記後段補正通電期間から求められる推定閉弁時刻と、上記閉弁検出部による閉弁検出時刻との差分を算出し、上記差分の算出以降の上記後段補正通電期間をさらに補正するという構成を採用する。
 本発明の第7の態様は、上記第1~第6いずれかの態様において、先の上記燃料噴射の影響による残留磁力と実行昇圧電圧の増加との少なくともいずれかに起因する次の上記燃料噴射における開弁タイミングの早期化に応じて、次の上記燃料噴射における閉弁タイミングが早期化されるように、上記通電休止期間と上記補正量とが関係づけられているという構成を採用する。
 本発明によれば、通電休止期間と後段通電期間の補正量との関係を示す補正量マップを記憶部が記憶している。また、後段通電期間の補正量は、通電休止期間の指令値から補正量マップに基づいて求められる。このため、本発明は、補正量マップを用いないで後段通電期間の補正量を求める場合と比較して、演算処理の負荷が低減する。したがって、本発明によれば、内燃機関の1燃焼サイクル中に燃料噴射弁に複数回燃料を噴射させる電磁弁駆動装置において、燃料噴射に関する補正を行うことによる演算処理の負荷の増大を抑制することが可能となる。
本発明の一実施形態における電磁弁駆動装置により制御される燃料噴射弁の概略構成を示す模式図である。 本発明の一実施形態における電磁弁駆動装置の概略構成図である。 フルリフト用補正量マップの概念図である。 フルリフト用補正量マップを用いて後段通電期間を補正して短くした様子を示す模式図である。 ハーフリフト用補正量マップの概念図である。 ハーフリフト用補正量マップを用いて後段通電期間を補正して短くした様子を示す模式図である。 本発明の一実施形態における電磁弁駆動装置の動作を説明するためのフローチャートである。 本発明の一実施形態における電磁弁駆動装置の変形例において、1燃料サイクルにおいて3回以上の燃料噴射を行う場合の様子を示す模式図である。
 以下、図面を参照して、本発明に係る電磁弁駆動装置の一実施形態について説明する。
 図1は、本実施形態の電磁弁駆動装置1により制御される燃料噴射弁100の概略構成を示す模式図である。本実施形態の電磁弁駆動装置1は、燃料噴射弁100を駆動する駆動装置である。具体的には、本実施形態に係る電磁弁駆動装置1は、車両に搭載された内燃機関に燃料を噴射する燃料噴射弁100(電磁弁)を駆動対象とする。
 燃料噴射弁100は、車両に搭載されたガソリンエンジンあるいはディーゼルエンジン等の内燃機関に燃料を噴射する電磁弁(ソレノイド弁)である。図1は、燃料噴射弁100の概略構成図である。図1に示すように、燃料噴射弁100は、固定コア101、弁座102、ソレノイドコイル103、ニードル104、弁体105、リテーナ106、ロアストッパ107、弁体付勢バネ108、可動コア109、及び可動コア付勢バネ110を備える。本実施形態では、固定コア101、弁座102、及びソレノイドコイル103は固定部材である。ニードル104、弁体105、リテーナ106、ロアストッパ107、弁体付勢バネ108、可動コア109、及び可動コア付勢バネ110は可動部材である。
 固定コア101は、円筒状の部材であり、燃料噴射弁100のハウジング(不図示)に固定されている。固定コア101は、磁性材料によって形成されている。弁座102は、燃料噴射弁100のハウジングに固定されている。弁座102は、噴射孔102aを有する。噴射孔102aは、燃料が噴射される孔であって、弁座102に弁体105が着座した場合に閉鎖され、弁体105が弁座102から離間した場合に開放される。
 ソレノイドコイル103は、電線が環状に巻回されることにより形成されている。ソレノイドコイル103は、固定コア101と同心状に配置されている。ソレノイドコイル103は、電磁弁駆動装置1と電気的に接続されている。ソレノイドコイル103は、電磁弁駆動装置1から通電されることで、固定コア101及び可動コア109を含む磁路を形成する。
 ニードル104は、固定コア101の中心軸に沿って延在する長尺状の棒部材である。ニードル104は、固定コア101及び可動コア109を含む磁路により発生する吸引力によって、固定コア101の中心軸の軸方向(ニードル104の延在方向)に移動される。
 なお、燃料噴射弁100の設置姿勢は特に限定されるものではない。ただし、以下の説明において、固定コア101の中心軸の軸方向において、上記吸引力により可動コア109が移動する方向を上方と称し、上記吸引力により可動コア109が移動する方向と反対の方向を下方と称する。
 弁体105は、ニードル104における下方の先端に形成されている。弁体105は、弁座102に着座することによって噴射孔102aを閉鎖し、弁座102から離間することによって噴射孔102aを開放する。リテーナ106は、ガイド部材106a及びフランジ106bを備える。ガイド部材106aは、ニードル104における上方の先端に固定された円筒状の部材である。フランジ106bは、上方におけるガイド部材106aの端部において、ニードル104の径方向に突出するように形成されている。フランジ106bは、下方の端面が可動コア付勢バネ110との当接面である。また、フランジ106bにおける上方の端面は、弁体付勢バネ108との当接面である。
 ロアストッパ107は、弁座102とガイド部材106aとの間のニードル104に固定された円筒状の部材である。このロアストッパ107は、上方の端面が可動コア109との当接面である。
 弁体付勢バネ108は、固定コア101の内部に収容された圧縮コイルバネであり、ハウジングの内壁面と、フランジ106bと間に介挿されている。弁体付勢バネ108は、弁体105を下方に付勢する。すなわち、ソレノイドコイル103に通電されてない場合には、弁体付勢バネ108の付勢力により、弁体105が弁座102に当接される。
 可動コア109は、ガイド部材106aとロアストッパ107との間に配置されている。可動コア109は、円筒状の部材であり、ニードル104と同軸に設けられている。この可動コア109は、中央にニードル104が挿通される貫通孔が形成されており、ニードル104の延在方向に沿って移動可能である。可動コア109の上方の端面は、固定コア101及び可動コア付勢バネ110との当接面である。一方、可動コア109の下方の端面は、ロアストッパ107との当接面である。可動コア109は、磁性材料によって形成されている。
 可動コア付勢バネ110は、フランジ106bと可動コア109との間に介挿されている圧縮コイルバネである。可動コア付勢バネ110は、可動コア109を下方に付勢する。すなわち、可動コア109は、ソレノイドコイル103に給電されていない場合には、可動コア付勢バネ110の付勢力により、ロアストッパ107に当接される。
 次に、本実施形態に係る電磁弁駆動装置1について、説明する。図2は、本実施形態に係る電磁弁駆動装置1の概略構成図である。図2に示すように、電磁弁駆動装置1は、駆動装置2及び制御装置3を備える。
 駆動装置2は、図2に示すように、電源装置2a及びスイッチ2bを備える。電源装置2aは、バッテリ及び昇圧回路の少なくともいずれかを備える。バッテリは、車両に搭載されている。昇圧回路は、バッテリの出力電圧であるバッテリ電圧Vbを昇圧し、その昇圧した電圧である昇圧電圧Vsを出力する。
 電源装置2aは、バッテリ電圧Vbをソレノイドコイル103に出力することでソレノイドコイル103に通電してもよい。電源装置2aは、昇圧電圧Vsをソレノイドコイル103に出力することでソレノイドコイル103に通電してもよい。電源装置2aからソレノイドコイル103へ出力される電圧は、制御装置3によって制御される。また、ソレノイドコイル103への通電は、制御装置3によって制御される。
 スイッチ2bは、制御装置3によってオン状態又はオフ状態に制御される。スイッチ2bがオン状態に制御されると、電源装置2aから出力される電圧がソレノイドコイル103に供給される。これにより、ソレノイドコイル103への通電が開始される。スイッチ2bがオフ状態に制御されると、電源装置2aからソレノイドコイル103への電圧の供給が停止される。これにより、ソレノイドコイル103への通電が停止される。
 制御装置3は、電圧検出部3a及び制御処理部3bを備える。電圧検出部3aは、ソレノイドコイル103に発生する電圧Vcを検出する。例えば、電圧Vcは、ソレノイドコイル103の両端の電圧である。電圧検出部3aは、検出した電圧Vcを制御処理部3bに出力する。
 制御処理部3bは、閉弁検出部3c、通電制御部3d、通電期間補正部3e及び記憶部3fを備える。閉弁検出部3cは、弁体105の閉弁を検出する。例えば、閉弁検出部3cは、電圧検出部3aが検出した電圧Vcに基づいて、燃料噴射弁100の閉弁を検出する。一例として、閉弁検出部3cは、電圧検出部3aが検出した電圧Vcの変曲点を検出することで、弁体105の閉弁を検出する。ただし、閉弁検出部3cは、電圧検出部3aが検出した電圧Vcが所定の処理によって加工された電圧の変曲点を検出することで、弁体105の閉弁を検出する。加工電圧は、電圧Vcの微分値であってもよい。また、弁体105の閉弁の検出に用いられる電圧Vcは、フィルタにより高周波成分が除去されてもよい。
 通電制御部3dは、電源装置2aを制御する。通電制御部3dは、スイッチ2bをオン状態またはオフ状態に制御する。通電制御部3dがスイッチ2bをオン状態に制御することで、ソレノイドコイル103へ通電される。通電制御部3dがスイッチ2bをオフ状態に制御することで、ソレノイドコイル103への通電が停止される。通電制御部3dは、記憶部3fに記憶されたプログラムや後述する通電期間補正部3eで求められた後段補正通電期間に基づいて、通電期間Tiを制御する。通電期間Tiは、ソレノイドコイル103に通電される期間を示し、通電開始時刻T1においてソレノイドコイル103への通電を開始してから、当該通電を停止する通電停止時刻T2までの時間である。制御装置3は、この通電期間Tiを制御することで、燃料噴射弁100から噴射される燃料の噴射量(以下、燃料噴射量という)を制御する。
 本実施形態の電磁弁駆動装置1は、内燃機関の1燃焼サイクル(例えば、吸入行程、圧縮行程、燃焼行程及び排気行程を順次1回ずつ行うサイクル)において、燃料噴射弁100に複数回燃料を噴射させる多段噴射制御を行う。本実施形態では、1燃焼サイクルにおいて、2回の燃料噴射を燃料噴射弁100に行わせる例について説明する。1燃焼サイクルにおいて行われる2回の燃料噴射のうち、先の燃料噴射を前段噴射という。また、次の燃料噴射を後段噴射という。
 燃料噴射弁100は、1度の通電期間Tiごとに燃料を噴射する。つまり、本実施形態においては、1燃焼サイクルにおいて2度の通電期間Tiが設けられている。先の通電期間Tiは、前段噴射のための通電期間である。先の通電期間Tiを前段通電期間Tiaという。次の通電期間Tiは、後段噴射のための通電期間である。次の通電期間Tiを後段通電期間Tibという。
 また、前段通電期間Tiaと後段通電期間Tibとの間には、ソレノイドコイル103への通電が停止される期間である通電休止期間Tpが設けられる。この通電休止期間Tpは、前段通電期間Tiaの通電停止時刻T2から後段通電期間Tibの通電開始時刻T1までの期間である。
 通電期間補正部3eは、記憶部3fに記憶された後述の補正量マップMに基づいて、後段通電期間Tibを補正する。通電期間補正部3eは、補正量マップMを参照し、通電休止期間Tpの指令値に基づいて後段通電期間Tibの補正量を求める。この通電休止期間Tpの指令値は、予めプログラムに記憶されていればプログラムから直接取得してもよい。また、この通電休止期間Tpの指令値は、前段通電期間Tiaの通電停止時刻T2から後段通電期間Tibの通電開始時刻T1に基づいて算出してもよい。
 さらに、通電期間補正部3eは、求めた補正量に基づいて、後段通電期間Tibを補正する。補正された後段通電期間Tib(以下、後段補正通電期間Tibという)は、通電制御部3dに入力される。通電制御部3dは、後段補正通電期間Tibに基づいて、後段噴射に関する通電をソレノイドコイル103に対して行う。
 ここで、多段噴射制御を行う場合には、前段噴射後の残留磁力と実行昇圧電圧の増加との影響によって、後段噴射の開始タイミングが設計値よりも早期化する。残留磁力は、前段噴射の影響により燃料噴射弁100に残留する磁力である。前段噴射により燃料噴射弁100にて発生した磁力は、前段噴射後に0に向かうが、直ぐに0にはならない。このため、後段通電期間Tibの通電開始時刻T1において燃料噴射弁100に磁力が残留する場合がある。後段通電期間Tibの通電開始時刻T1において燃料噴射弁100に残留する磁力が残留磁力である。この残留磁力の影響により、後段噴射における可動コア109の吸引力が設計値よりも高まる。これによって、後段噴射の開始タイミングが早期化する。
 実行昇圧電圧は、通電期間Tiの通電開始時刻T1にてソレノイドコイル103に印加される電圧である。前段噴射が完了すると、ソレノイドコイル103に残留する電圧は、一度クランプ電圧まで低下し、その後に時間を掛けて0に戻る。このため、後段通電期間Tibの通電開始時刻T1においてソレノイドコイル103の電圧が0に戻っていない場合がある。この残留する電圧の影響で、後段通電期間Tibの通電開始時刻T1においてソレノイドコイル103に印加される昇圧電圧が設計値よりも高まる。すなわち、実行昇圧電圧が増加する。これによって、後段噴射の開始タイミングが早期化する。
 補正量マップMは、通電休止期間Tpと、後段通電期間Tibに対する補正量との関係を示すマップである。この補正量は、上述の残留磁力及び実行昇圧電圧の増加による後段噴射の開始タイミングの早期化の分、後段噴射の終了タイミングを早期化するように設定されている。具体的には、後段噴射の開始タイミングが設計値よりも時間Ta分早期化する場合には、後段通電期間Tibが時間Ta分短くなるように後段通電期間Tibの通電停止時刻T2を時間Ta分早めるように補正量が設定されている。この補正量は、予め実験やシミュレーションによって求められる。
 上述のように、残留磁力による影響と、実行昇圧電圧の増加による影響とは、時間の経過と共に低下する。つまり、通電休止期間Tpが長くなる程、後段噴射の開始タイミングの早期化の程度が小さくなる。このため、補正量マップMにおいては、通電休止期間Tpが長くなる程、補正量が小さくなるように、通電休止期間Tpと補正量とが関係づけられている。
 また、本実施形態においては、補正量マップMとして、フルリフト用補正量マップMaと、ハーフリフト用補正量マップMbとが記憶部3fに記憶されている。フルリフト用補正量マップMa(最大駆動補正量マップ)は、1燃焼サイクルにおける燃料噴射がフルリフト噴射である場合に用いられる補正量マップMである。つまり、本実施形態においては、前段噴射と後段噴射とがフルリフト噴射である場合に、フルリフト用補正量マップMaが参照される。
 フルリフト噴射は、1回の燃料噴射にあたり、燃料噴射弁100の可動コア109を固定コア101に当接するまで移動させる燃料噴射である。つまり、フルリフト噴射では、可動コア109が移動可能な範囲における最大位置まで移動される。つまり、このようなフルリフト噴射で用いられるフルリフト用補正量マップMaは、1回の燃料噴射にて可動コア109が固定コア101と当接する最大駆動を行う場合における通電休止期間Tpと後段通電期間Tibの補正量との関係を示している。
 図3は、フルリフト用補正量マップMaの概念図である。この図に示すように、フルリフト用補正量マップMaは、通電休止期間Tpと後段通電期間Tibの補正量との関係を示すマップである。なお、図3においては、後段通電期間Tibの補正量を「XX」として省略して図示している。例えば、図3に示すように、フルリフト用補正量マップMaにおいては、通電休止期間Tpは、一定の期間ごとにTp1からTpnに分けられている。また、フルリフト用補正量マップMaでは、Tp1からTpnごとに後段通電期間Tibの補正量が設定されている。
 図4は、フルリフト用補正量マップMaを用いて後段通電期間Tibを補正して短くした様子を示す模式図である。図4においては、上段にソレノイドコイル103に通電する電圧の経時変化を示し、下段に可動コア109の閉弁状態からの移動量の経時変化を示している。図4に示すように、フルリフト用補正量マップMaを用いて後段通電期間Tibを短く補正すると、後段噴射の可動コア109の動きだし時刻が時間Ta早期化した分、可動コア109の閉弁位置への戻り時刻も時間Ta分早期化される。この結果、後段噴射における燃料噴射量の設計値に対する差を低減することができる。
 ハーフリフト用補正量マップMb(中途駆動補正量マップ)は、1燃焼サイクルにおける燃料噴射がハーフリフト噴射である場合に用いられる補正量マップMである。つまり、本実施形態においては、前段噴射と後段噴射とがハーフリフト噴射である場合、ハーフリフト用補正量マップMbが参照される。
 ハーフリフト噴射は、1回の燃料噴射にあたり、燃料噴射弁100の可動コア109を固定コア101に当接するまで移動させない燃料噴射である。つまり、ハーフリフト噴射では、可動コア109が移動可能な範囲における最大位置まで移動されない。このようなハーフリフト噴射では、可動コア109の位置が経時的に放物線を描くように変化するためバリスティック噴射とも呼ばれる。なお、ハーフリフト噴射において、可動コア109の最大変位位置は、フルリフト噴射における可動コア109の最大位置の半分に限定されるものではない。
 つまり、このようなハーフリフト噴射で用いられるハーフリフト用補正量マップMbは、1回の燃料噴射にて可動コア109が固定コア101と当接するまで移動されない中途駆動を行う場合における通電休止期間Tpと後段通電期間Tibの補正量との関係を示している。また、ハーフリフト用補正量マップMbは、前段通電期間Tiaの値に応じて、通電休止期間Tpと補正量とが関係づけられている。
 図5は、ハーフリフト用補正量マップMbの概念図である。この図に示すように、ハーフリフト用補正量マップMbは、前段通電期間Tiaの値に応じて、通電休止期間Tpと後段通電期間Tibの補正量との関係を示すマップである。なお、図5においては、後段通電期間Tibの補正量を「XX」として省略して図示している。例えば、図5に示すように、ハーフリフト用補正量マップMbにおいては、通電休止期間Tpは、一定の期間ごとにTp1からTpnに分けられている。また、ハーフリフト用補正量マップMbでは、Tp1からTpnごとに後段通電期間Tibの補正量が設定されている。
 さらに、ハーフリフト用補正量マップMbにおいては、前段通電期間Tiaが一定期間ごとにTia1からTianに分けられている。これらのTia1からTianごとに、通電休止期間Tpと、後段通電期間Tibの補正量が設定されている。つまり、ハーフリフト用補正量マップMbにおいては、前段通電期間Tiaと通電休止期間Tpとをパラメータとして、後段通電期間Tibの補正量を求めることができる。
 図6は、ハーフリフト用補正量マップMbを用いて後段通電期間Tibを補正して短くした様子を示す模式図である。図6においては、上段にソレノイドコイル103に通電する電圧の経時変化を示し、下段に可動コア109の閉弁状態からの移動量の経時変化を示している。図6に示すように、ハーフリフト用補正量マップMbを用いて後段通電期間Tibを短く補正すると、後段噴射の可動コア109の動きだし時刻が時間Ta早期化した分、可動コア109の閉弁位置への戻り時刻も時間Ta分早期化される。この結果、後段噴射における燃料噴射量の設計値に対する差を低減することができる。
 なお、ハーフリフト噴射にて多段噴射制御を行う場合には、前段通電期間Tiaの値によって、燃料噴射弁100の残留磁力が大きく異なる。このため、ハーフリフト用補正量マップMbにおいて、前段通電期間Tiaの値に応じて、通電休止期間Tpと後段通電期間Tibの補正量とが関係づけられることで、より確実に後段噴射の燃料噴射量の設計値に対する差を低減することができる。
 記憶部3fは、上述の補正量マップMを記憶している。本実施形態においては、記憶部3fは、補正量マップMとして、フルリフト用補正量マップMaと、ハーフリフト用補正量マップMbとを記憶している。また、記憶部3fは、燃料噴射弁100の駆動制御プログラムや、各種演算値を記憶する。
 続いて、図7を参照して、多段噴射制御における制御処理部3bの動作の一例について説明する。図7は、多段噴射制御における制御処理部3bの動作の一例を説明するためのフローチャートである。
 図7に示すように、制御処理部3bは、1燃焼サイクルにおける複数回の燃料噴射がフルリフト噴射であるか否かを判定する(ステップS1)。ここでは、通電期間補正部3eが、記憶部3fに記憶されたプログラムや外部から入力される指令に基づいて、燃料噴射がフルリフト噴射であるか否かを判定する。
 ステップS1においてフルリフト噴射であると判定された場合には、通電期間補正部3eは、フルリフト用補正量マップMaを参照する(ステップS2)。続いて、通電期間補正部3eは、後段通電期間Tibの補正量を決定する(ステップS3)。ここでは、通電期間補正部3eは、記憶部3fに記憶されたプログラムや外部から入力される指令に基づいて、通電休止期間Tpの指令値を得る。通電期間補正部3eは、フルリフト用補正量マップMaを参照して、通電休止期間Tpの指令値に基づいて後段通電期間Tibの補正量を決定する。
 その後、制御処理部3bは、ステップS3で決定された後段通電期間Tibの補正量に基づいて、燃料噴射弁100に燃料噴射を行わせる(ステップS4)。ここでは、通電期間補正部3eは、ステップS3で求めた補正量に基づいて、後段通電期間Tibを補正して、後段補正通電期間Tibを生成する。通電制御部3dは、記憶部3fに記憶されたプログラムに基づく前段通電期間Tiaや、通電期間補正部3eで求められた後段補正通電期間Tibに基づいて、ソレノイドコイル103に通電する。これによって、燃料噴射弁100は燃料を多段噴射する。
 一方、ステップS1において、フルリフト噴射でないと判定された場合には、燃料噴射がハーフリフト噴射である。このため、通電期間補正部3eは、ハーフリフト用補正量マップMbを参照する(ステップS5)。続いて、通電期間補正部3eは、後段通電期間Tibの補正量を決定する(ステップS6)。ここでは、通電期間補正部3eは、記憶部3fに記憶されたプログラムや外部から入力される指令に基づいて、通電休止期間Tpの指令値を得る。また、通電期間補正部3eは、記憶部3fに記憶されたプログラムや外部から入力される指令に基づいて、前段通電期間Tiaの指令値を得る。通電期間補正部3eは、ハーフリフト用補正量マップMbを参照して、通電休止期間Tpの指令値及び前段通電期間Tiaの指令値に基づいて後段通電期間Tibの補正量を決定する。
 その後、制御処理部3bは、ステップS6で決定された後段通電期間Tibの補正量に基づいて、燃料噴射弁100に燃料噴射を行わせる(ステップS7)。ここでは、通電期間補正部3eは、ステップS6で求めた補正量に基づいて、後段通電期間Tibを補正して、後段補正通電期間Tibを生成する。通電制御部3dは、記憶部3fに記憶されたプログラムに基づく前段通電期間Tiaや、通電期間補正部3eで求められた後段補正通電期間Tibに基づいて、ソレノイドコイル103に通電する。これによって、燃料噴射弁100は燃料を多段噴射する。
 以上のような本実施形態の電磁弁駆動装置1は、燃料噴射弁100に設けられたソレノイドコイル103への通電期間Tiを制御する。また、本実施形態の電磁弁駆動装置1は、内燃機関の1燃焼サイクル中に燃料噴射弁100に複数回燃料を噴射させる。本実施形態の電磁弁駆動装置1は、記憶部3fと、通電期間補正部3eと、通電制御部3dとを備える。記憶部3fは、1燃焼サイクル中の先の燃料噴射のための通電期間Tiである前段通電期間Tiaの完了時刻から次の燃料噴射のための通電期間Tiである後段通電期間Tibの開始時刻までの通電休止期間Tpと、後段通電期間Tibに対する補正量との関係を示す補正量マップMを記憶する。通電期間補正部3eは、補正量マップMに基づいて通電休止期間Tpの指令値から補正量を求め、求めた補正量に基づいて後段通電期間Tibを補正する。通電制御部3dは、通電期間補正部3eで補正された後段通電期間Tibである後段補正通電期間に基づいてソレノイドコイル103への通電を行う。
 このような本実施形態の電磁弁駆動装置1では、通電休止期間Tpと後段通電期間Tibの補正量との関係を示す補正量マップMを記憶部3fが記憶している。また、通電休止期間Tpの指令値から補正量マップMに基づいて後段通電期間Tibの補正量が求められる。このため、補正量マップMを用いないで後段通電期間Tibの補正量を求める場合と比較して、演算処理の負荷の増加が抑制される。したがって、本実施形態の電磁弁駆動装置1は、燃料噴射に関する補正を行うことによる演算処理の負荷の増大を抑制できる。
 また、燃料噴射弁100は、可動コア109と、固定コア101とを備えている。可動コア109は、ソレノイドコイル103への通電により移動される。固定コア101は、可動コア109の最大移動位置にて可動コア109に当接する。本実施形態の電磁弁駆動装置1では、記憶部3fは、補正量マップMとして、フルリフト用補正量マップMaを記憶する。フルリフト用補正量マップMaは、1回の燃料噴射にて可動コア109が固定コア101と当接する最大駆動(フルリフト噴射)を行う場合における通電休止期間Tpと補正量との関係を示す。また、通電期間補正部3eは、前段通電期間Tiaに基づく燃料噴射(前段噴射)と後段通電期間Tibに基づく燃料噴射(後段噴射)とが最大駆動(フルリフト噴射)である場合に、フルリフト用補正量マップMaに基づいて通電休止期間Tpの指令値から補正量を求める。
 このような本実施形態の電磁弁駆動装置1は、フルリフト噴射における残留磁力や実行昇圧電圧の増加の特性に合ったフルリフト用補正量マップMaを用いて後段通電期間Tibを補正することができる。このため、本実施形態の電磁弁駆動装置1は、フルリフト噴射の後段噴射での燃料噴射量と設計値との差をより低減することができる。
 また、本実施形態の電磁弁駆動装置1では、記憶部3fは、補正量マップMとして、ハーフリフト用補正量マップMbを記憶する。ハーフリフト用補正量マップMbは、1回の燃料噴射にて可動コア109が固定コア101と当接するまで移動されない中途駆動(ハーフリフト噴射)を行う場合における通電休止期間Tpと補正量との関係を示す。通電期間補正部3eは、前段噴射と後段噴射とが中途駆動(ハーフリフト噴射)である場合に、ハーフリフト用補正量マップMbに基づいて通電休止期間Tpの指令値から補正量を求める。
 このような本実施形態の電磁弁駆動装置1は、ハーフリフト噴射における残留磁力や実行昇圧電圧の増加の特性に合ったハーフリフト用補正量マップMbを用いて後段通電期間Tibを補正することができる。このため、本実施形態の電磁弁駆動装置1は、ハーフリフト噴射の後段噴射での燃料噴射量と設計値との差をより低減することができる。
 また、本実施形態の電磁弁駆動装置1では、記憶部3fは、フルリフト用補正量マップMaと、ハーフリフト用補正量マップMbとを記憶する。また、通電期間補正部3eは、燃料噴射がフルリフト噴射であるかハーフリフト噴射であるかを判定する。通電期間補正部3eは、前段噴射と後段噴射とがフルリフト噴射である場合に、フルリフト用補正量マップMaに基づいて通電休止期間Tpの指令値から補正量を求める。また、通電期間補正部3eは、前段噴射と後段噴射とがハーフリフト噴射である場合に、ハーフリフト用補正量マップMbに基づいて通電休止期間Tpの指令値から補正量を求める。
 このような本実施形態の電磁弁駆動装置1は、燃料噴射弁100の燃料噴射がフルリフト噴射とハーフリフト噴射とのいずれである場合にも、それぞれの特性に合った補正量マップMを選択して後段通電期間Tibを補正することができる。
 また、本実施形態の電磁弁駆動装置1では、ハーフリフト用補正量マップMbは、前段通電期間Tiaの値に応じて、通電休止期間Tpと後段通電期間Tibの補正量との関係を示す。上記実施形態においては、ハーフリフト用補正量マップMbは、前段通電期間Tiaの変域ごとに、通電休止期間Tpと後段通電期間Tibの補正量との関係を示す。また、通電期間補正部3eは、前段通電期間Tiaの指令値と、通電休止期間Tpの指令値とから補正量を求める。ハーフリフト噴射においては、前段通電期間Tiaの値によって、後段噴射への影響の程度が大きく異なる。このため、このようなハーフリフト用補正量マップMbを用いることで、前段通電期間Tiaの値に適した後段通電期間Tibの補正を行うことができる。
 また、本実施形態の電磁弁駆動装置1においては、前段噴射の影響による残留磁力と実行昇圧電圧の増加との少なくともいずれかに起因する後段噴射における開弁タイミングの早期化に応じて、後段噴射における閉弁タイミングが早期化されるように、通電休止期間Tpと補正量とが関係づけられている。このため、本実施形態の電磁弁駆動装置1は、前段噴射の影響による残留磁力と実行昇圧電圧の増加とによる燃料噴射量の増加を抑制することが可能となる。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 上記実施形態においては、1燃焼サイクルにおいて、2回の燃料噴射を行う例について説明した。しかしながら、これに限定されるものではない。1燃焼サイクルにおいて、3回以上の燃料噴射を行ってもよい。このような場合には、時間的に連続する2つの燃料噴射の先の燃料噴射を前段噴射とし、後の燃料噴射(次の燃料噴射)を後段噴射とすることで、上記実施形態と同様の制御を行うことができる。
 図8は、1燃料サイクルにおいて3回以上の燃料噴射を行う場合の様子を示す模式図である。図8においては、上段にソレノイドコイル103に通電する電圧の経時変化を示し、中段に可動コア109の閉弁状態からの移動量の経時変化を示し、下段に設計値に対する燃料噴射量の変動量を示している。図8に示すように、例えば、1燃料サイクルにおいて3回以上の燃料噴射を行う場合には、補正後の後段通電期間Tibに基づいて燃料噴射を行った際の閉弁検出時刻Txを閉弁検出部3cで検出し、補正後の後段通電期間Tibから求められる推定閉弁時刻との差分を算出するようにしても良い。この差分に基づいて、差分を算出した以降の後段補正通電期間をさらに補正するようにしてもよい。このように後段補正通電期間をさらに補正することで、燃料噴射弁100の個体差や、温度や燃料圧力に起因する燃料噴射量の設計値からの変動を抑制することが可能になる。
1 電磁弁駆動装置
3c 閉弁検出部
3d 通電制御部
3e 通電期間補正部
3f 記憶部
100 燃料噴射弁
101 固定コア
103 ソレノイドコイル
109 可動コア
M 補正量マップ
Ma フルリフト用補正量マップ
Mb ハーフリフト用補正量マップ
T1 通電開始時刻
T2 通電停止時刻
Ti 通電期間
Tia 前段通電期間
Tib 後段通電期間(後段補正通電期間)
Tp 通電休止期間
Tx 閉弁検出時刻

Claims (7)

  1.  燃料噴射弁に設けられたソレノイドコイルへの通電期間を制御し、内燃機関の1燃焼サイクル中に前記燃料噴射弁に複数回燃料を噴射させる電磁弁駆動装置であって、
     前記1燃焼サイクル中の先の燃料噴射のための前記通電期間である前段通電期間の完了時刻から次の燃料噴射のための前記通電期間である後段通電期間の開始時刻までの通電休止期間と、前記後段通電期間に対する補正量との関係を示す補正量マップを記憶する記憶部と、
     前記補正量マップに基づいて前記通電休止期間の指令値から前記補正量を求め、求めた前記補正量に基づいて前記後段通電期間を補正する通電期間補正部と、
     前記通電期間補正部で補正された前記後段通電期間である後段補正通電期間に基づいて前記ソレノイドコイルへの通電を行う通電制御部と
     を備える電磁弁駆動装置。
  2.  前記燃料噴射弁は、前記ソレノイドコイルへの通電により移動される可動コアと、前記可動コアの最大移動位置にて前記可動コアに当接する固定コアとを備え、
     前記記憶部は、前記補正量マップとして、1回の前記燃料噴射にて前記可動コアが前記固定コアと当接する最大駆動を行う場合における前記通電休止期間と前記補正量との関係を示す最大駆動補正量マップを記憶し、
     前記通電期間補正部は、前記前段通電期間に基づく前記燃料噴射と前記後段通電期間に基づく前記燃料噴射とが前記最大駆動である場合に、前記最大駆動補正量マップに基づいて前記通電休止期間の指令値から前記補正量を求める
     請求項1記載の電磁弁駆動装置。
  3.  前記燃料噴射弁は、前記ソレノイドコイルへの通電により移動される可動コアと、前記可動コアの最大移動位置にて前記可動コアに当接する固定コアとを備え、
     前記記憶部は、前記補正量マップとして、1回の前記燃料噴射にて前記可動コアが前記固定コアと当接するまで移動されない中途駆動を行う場合における前記通電休止期間と前記補正量との関係を示す中途駆動補正量マップを記憶し、
     前記通電期間補正部は、前記前段通電期間に基づく前記燃料噴射と前記後段通電期間に基づく前記燃料噴射とが前記中途駆動である場合に、前記中途駆動補正量マップに基づいて前記通電休止期間の指令値から前記補正量を求める
     請求項1または2記載の電磁弁駆動装置。
  4.  前記燃料噴射弁は、前記ソレノイドコイルへの通電により移動される可動コアと、前記可動コアの最大移動位置にて前記可動コアに当接する固定コアとを備え、
     前記記憶部は、前記補正量マップとして、1回の前記燃料噴射にて前記可動コアが前記固定コアと当接する最大駆動を行う場合における前記通電休止期間と前記補正量との関係を示す最大駆動補正量マップと、1回の前記燃料噴射にて前記可動コアが前記固定コアと当接するまで移動されない中途駆動を行う場合における前記通電休止期間と前記補正量との関係を示す中途駆動補正量マップとを記憶し、
     前記通電期間補正部は、前記燃料噴射が前記最大駆動であるか前記中途駆動であるかを判定し、前記前段通電期間に基づく前記燃料噴射と前記後段通電期間に基づく前記燃料噴射とが前記最大駆動である場合に、前記最大駆動補正量マップに基づいて前記通電休止期間の指令値から前記補正量を求め、前記前段通電期間に基づく前記燃料噴射と前記後段通電期間に基づく前記燃料噴射とが前記中途駆動である場合に、前記中途駆動補正量マップに基づいて前記通電休止期間の指令値から前記補正量を求める
     請求項1記載の電磁弁駆動装置。
  5.  前記中途駆動補正量マップは、前記前段通電期間に応じて、前記通電休止期間と前記補正量との関係を示し、
     前記通電期間補正部は、前記前段通電期間の指令値と、前記通電休止期間の指令値とから前記補正量を求める
     請求項3または4記載の電磁弁駆動装置。
  6.  前記燃料噴射弁の閉弁を検出する閉弁検出部を備え、
     前記通電期間補正部は、前記後段補正通電期間から求められる推定閉弁時刻と、前記閉弁検出部による閉弁検出時刻との差分を算出し、前記差分の算出以降の前記後段補正通電期間をさらに補正する
     請求項1~5いずれか一項に記載の電磁弁駆動装置。
  7.  先の前記燃料噴射の影響による残留磁力と実行昇圧電圧の増加との少なくともいずれかに起因する次の前記燃料噴射における開弁タイミングの早期化に応じて、次の前記燃料噴射における閉弁タイミングが早期化されるように、前記通電休止期間と前記補正量とが関係づけられている請求項1~6いずれか一項に記載の電磁弁駆動装置。
PCT/JP2022/009145 2022-03-03 2022-03-03 電磁弁駆動装置 WO2023166665A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009145 WO2023166665A1 (ja) 2022-03-03 2022-03-03 電磁弁駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009145 WO2023166665A1 (ja) 2022-03-03 2022-03-03 電磁弁駆動装置

Publications (1)

Publication Number Publication Date
WO2023166665A1 true WO2023166665A1 (ja) 2023-09-07

Family

ID=87883335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009145 WO2023166665A1 (ja) 2022-03-03 2022-03-03 電磁弁駆動装置

Country Status (1)

Country Link
WO (1) WO2023166665A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101552A (ja) * 1992-09-18 1994-04-12 Nippondenso Co Ltd 内燃機関の燃料噴射制御装置
JP2004293381A (ja) * 2003-03-26 2004-10-21 Mazda Motor Corp エンジンの始動装置
JP2017201160A (ja) * 2016-05-06 2017-11-09 株式会社デンソー 燃料噴射制御装置
JP2019167832A (ja) * 2018-03-22 2019-10-03 日立オートモティブシステムズ株式会社 燃料噴射弁の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101552A (ja) * 1992-09-18 1994-04-12 Nippondenso Co Ltd 内燃機関の燃料噴射制御装置
JP2004293381A (ja) * 2003-03-26 2004-10-21 Mazda Motor Corp エンジンの始動装置
JP2017201160A (ja) * 2016-05-06 2017-11-09 株式会社デンソー 燃料噴射制御装置
JP2019167832A (ja) * 2018-03-22 2019-10-03 日立オートモティブシステムズ株式会社 燃料噴射弁の制御装置

Similar Documents

Publication Publication Date Title
JP6314733B2 (ja) 内燃機関の燃料噴射制御装置
US9970376B2 (en) Fuel injection controller and fuel injection system
CN109328261B (zh) 燃料喷射控制装置
US9494100B2 (en) Determining the closing point in time of an injection valve on the basis of an analysis of the actuation voltage using an adapted reference voltage signal
CN109328262B (zh) 燃料喷射控制装置
JP6121552B2 (ja) 内燃機関の燃料噴射制御装置
CN107965395B (zh) 喷射器控制装置以及喷射器控制方法
JP6520816B2 (ja) 燃料噴射制御装置
CN107709740B (zh) 燃料喷射控制装置
CN109072808B (zh) 燃料喷射控制装置
WO2019225076A1 (ja) 燃料噴射制御装置
JP6445927B2 (ja) 燃料噴射弁の制御装置
WO2023166665A1 (ja) 電磁弁駆動装置
JP6157681B1 (ja) インジェクタの制御装置及びその制御方法
JPH06101552A (ja) 内燃機関の燃料噴射制御装置
JP7283418B2 (ja) 内燃機関の燃料噴射制御装置
JP7444004B2 (ja) 噴射制御装置
JP2019027299A (ja) 燃料噴射制御装置
JP6642403B2 (ja) 燃料噴射制御装置
US10344699B2 (en) Control device for injector
JP7006155B2 (ja) 燃料噴射制御装置
JP2024022186A (ja) 噴射制御装置
US11359569B2 (en) Control unit of fuel injection device
JP7292238B2 (ja) 電磁弁駆動装置
JP2016211452A (ja) 燃料噴射弁の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929810

Country of ref document: EP

Kind code of ref document: A1