WO2019225076A1 - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
WO2019225076A1
WO2019225076A1 PCT/JP2019/005211 JP2019005211W WO2019225076A1 WO 2019225076 A1 WO2019225076 A1 WO 2019225076A1 JP 2019005211 W JP2019005211 W JP 2019005211W WO 2019225076 A1 WO2019225076 A1 WO 2019225076A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
valve
operation time
valve body
injection valve
Prior art date
Application number
PCT/JP2019/005211
Other languages
English (en)
French (fr)
Inventor
史博 板羽
修 向原
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112019001830.2T priority Critical patent/DE112019001830T5/de
Priority to JP2020521022A priority patent/JP6970823B2/ja
Priority to US17/051,883 priority patent/US11193442B2/en
Publication of WO2019225076A1 publication Critical patent/WO2019225076A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel injection control device that controls injection of fuel into an internal combustion engine.
  • Patent Document 1 discloses a technique for indirectly detecting an individual difference related to timing when a valve body of a fuel injection valve is opened or closed based on electrical characteristics such as a change in inductance. Yes.
  • Patent Document 1 there is an abnormality (failure, deterioration, etc.) in an electric signal input circuit for detecting electrical characteristics, a filter, a fuel injection valve body, a drive circuit for driving the fuel injection valve, and other components.
  • performance degradation occurs, it becomes a disturbance of solid difference detection.
  • valve opening completion or valve closing completion is detected in the presence of disturbance, the difference between the target injection amount and the actual injection amount increases, which may cause deterioration of fuel efficiency and exhaust performance, and unintended torque fluctuations of the internal combustion engine. There is sex.
  • Patent Document 2 describes that individual differences are learned by a predetermined method, but learning is prohibited when a learning execution condition is not satisfied.
  • this Patent Document 2 does not specifically describe the detection of individual differences, and further does not describe a specific example in which the learning execution condition is not satisfied. For this reason, the problem of patent document 1 is not solved even by the technique of patent document 2.
  • An object of the present invention is to provide a fuel injection control device capable of detecting individual differences of fuel injection valves and appropriately collecting information on the individual differences.
  • a fuel injection control device includes a fuel injection valve drive circuit that supplies current or voltage to a coil of a fuel injection valve to drive the fuel injection valve, and the fuel injection valve A valve body operating time detector for detecting a valve body operating time related to the operation of the valve body; and the fuel injection valve, the valve based on information related to the valve body operating time detected by the valve body operating time detector A body operation time detection unit, or a state determination unit that determines that at least one of the fuel injection valve drive circuits is abnormal.
  • the fuel injection control device of the present invention it is possible to provide a fuel injection control device capable of detecting individual differences of fuel injection valves and appropriately collecting information on the individual differences.
  • FIG. 1 shows a basic configuration of an internal combustion engine provided with a fuel injection control device according to a first embodiment. It is a block diagram explaining the structure of 109 A of fuel-injection control apparatuses of ECU109 shown in FIG. 2 is a schematic diagram illustrating a configuration example of a fuel injection valve 105.
  • FIG. 4 is a timing chart showing an example of temporal changes in an injection pulse Sp, a drive voltage Vd, a drive current Id, and a displacement amount (valve displacement) H of a valve body 303 when the internal combustion engine 101 performs a normal operation.
  • FIG. 6 is a timing chart for explaining a procedure for detecting a valve element operating time of the fuel injection valve 105 by a valve element operating time detector 211; It is a graph explaining the procedure which detects the valve body operating time of the fuel injection valve 105 by the valve body operating time detection part 211.
  • FIG. It is a graph explaining the procedure which detects the valve body operating time of the fuel injection valve 105 by the valve body operating time detection part 211.
  • FIG. It is a block diagram explaining the structural example of the valve body operating time detection part. An abnormality determination method performed by the state determination unit 212 according to the first embodiment will be described. It is the schematic explaining the injection amount correction
  • FIG. 1 shows a basic configuration of an internal combustion engine provided with a fuel injection control device according to a first embodiment of the present invention.
  • an internal combustion engine 101 as a control target includes a piston 102, an intake valve 103, and an exhaust valve 104 in a cylinder.
  • the internal combustion engine 101 may be an internal combustion engine having a plurality of, for example, four cylinders (# 1 to # 4), but FIG. 1 illustrates one of the plurality of cylinders. Only the cylinder is shown.
  • the fuel injection valve 105 directly injects fuel into the combustion chamber in the cylinder, and the cylinder head is provided with an ignition plug 106 and an ignition coil 107.
  • the water jacket of the cylinder is provided with a coolant temperature sensor 108.
  • An ECU (Engine Control Unit) 109 is provided as a control unit for controlling the internal combustion engine 101.
  • a crank angle sensor 11 that measures a crankshaft angle of the internal combustion engine 101 is attached to the piston 102.
  • the ECU 109 is provided with an accelerator opening sensor 12 that measures the opening of the accelerator operated by the driver. Detection signals from the crank angle sensor 11 and the accelerator opening sensor 12 are input to the fuel injection control device 109A of the ECU 109.
  • an intake pipe 110 for introducing air sucked into the internal combustion engine 101 is provided at the front stage of the intake valve 103, and an exhaust pipe 111 exhausted from the cylinder is provided at the rear stage of the exhaust valve 104. Yes.
  • a three-way catalyst 112 for purifying the exhaust gas and an oxygen sensor 113 are provided on the exhaust pipe 111. Further, the intake pipe 110 is provided with a collector 115, a throttle valve 119, and an air flow meter 120.
  • the air sucked into the internal combustion engine 101 is introduced into the intake pipe 110 via the air flow meter 120, the throttle valve 119 and the collector 115, and then supplied to the combustion chamber 121 via the intake valve 103.
  • the output signal of the air flow meter 120 is supplied to the fuel injection control device 109A of the ECU 109.
  • the fuel used in the internal combustion engine 101 is sent from the fuel tank 123 to the high pressure fuel pump 125 provided in the internal combustion engine 101 by the low pressure fuel pump 124.
  • the high-pressure fuel pump 125 increases the pressure of the fuel introduced into the interior by power transmitted from an exhaust cam shaft (not shown) of the exhaust cam 128. Specifically, the pressure of the fuel introduced into the high-pressure fuel pump 125 is increased by moving the plunger provided in the high-pressure fuel pump 125 up and down.
  • the opening / closing valve provided in the suction port is controlled by a solenoid so that the fuel pressure of the fuel discharged from the high-pressure fuel pump 125 becomes a desired pressure.
  • the high-pressure fuel is sent to the fuel injection valve 105 via the high-pressure fuel pipe 129, and the fuel injection valve 105 injects the fuel into the combustion chamber 121 based on a command from the fuel injection control device 109 A provided in the ECU 109. To do.
  • the internal combustion engine 101 is provided with a fuel pressure sensor 13 for measuring the pressure in the high-pressure fuel pipe 129 in order to control the high-pressure fuel pump 125.
  • the fuel injection control device 109A of the ECU 109 is configured to perform so-called feedback control based on the output of the fuel pressure sensor 13 so that the fuel pressure in the high-pressure fuel pipe 129 becomes a desired pressure.
  • the internal combustion engine 101 includes the ignition plug 106 and the ignition coil 107, and the ECU 109 performs energization control on the ignition coil 107 and ignition control by the ignition plug 106 based on the output from the fuel pressure sensor 13. Execute. As a result, the intake air and fuel are combusted by the spark emitted from the spark plug 106 in the combustion chamber 121, and the piston 102 is pushed down by this pressure.
  • Exhaust gas generated by combustion is discharged to the exhaust pipe 111 through the exhaust valve 104, purified by the catalytic action of the three-way catalyst 112, and discharged to the outside. Further, the oxygen concentration of the exhaust gas is measured by the oxygen sensor 113 provided on the upstream side of the three-way catalyst 112. The output signal of the oxygen sensor 113 is supplied to the fuel injection control device 109A of the ECU 109.
  • the ECU 109 calculates the required torque of the internal combustion engine 101 from the signal of the accelerator opening sensor 12, and determines whether or not the engine is in an idle state.
  • the ECU 109 further calculates the rotational speed of the internal combustion engine 101 (hereinafter referred to as the engine speed) from the signal of the crank angle sensor 11, and the cooling water temperature of the internal combustion engine 101 obtained from the water temperature sensor 108 and the start of the internal combustion engine 101.
  • the three-way catalyst 112 has a function of determining whether or not the three-way catalyst 112 has been warmed up.
  • the ECU 109 calculates the intake air amount necessary for the internal combustion engine 101 from the above-mentioned required torque of the internal combustion engine 101, and outputs an opening signal corresponding to the intake air amount to the throttle valve 119, and the fuel injection control device 109A Then, a fuel amount corresponding to the intake air amount is calculated, a fuel injection signal corresponding to the fuel amount is output to the fuel injection valve 105, and an ignition signal is output to the ignition coil 107.
  • the fuel injection control device 109A includes a drive IC 200, an engine state detection unit 201, a fuel injection pulse signal calculation unit 202, a fuel injection drive waveform command unit 203, a high voltage generation unit (step-up device) 206, fuel injection drive units 207a and 207b, A valve element operating time detection unit 211, a state determination unit 212, and a fuel injection amount correction unit 213 are provided.
  • the drive IC 200 is a drive control unit that controls the entire fuel injection control device 109A.
  • the engine state detection unit 201 collects and provides various types of information such as the engine speed of the internal combustion engine 101, the intake air amount, the cooling water temperature, the fuel pressure, and the failure state of the internal combustion engine.
  • the fuel injection pulse signal calculation unit 202 calculates the pulse width Wp of the injection pulse Sp that defines the fuel injection period of the fuel injection valve 105 based on various information obtained from the engine state detection unit 201, and has the pulse width Wp.
  • a drive pulse Sp is output.
  • the fuel injection drive waveform command unit 203 calculates a command value Swf relating to the waveform of the drive current Id supplied to open or maintain the valve of the fuel injection valve 105, and outputs the command value Swf to the drive IC 200. By controlling the waveform of the drive current Id, the lift amount and valve closing timing of the valve body can be set appropriately, and the fuel injection amount can be precisely controlled.
  • the high voltage generator 206 is a booster that boosts the battery voltage Vbat supplied via the fuse 204 and the relay 205 to the boosted voltage Vboost.
  • This boosted voltage Vboost is a voltage required when the electromagnetic solenoid fuel injection valve 105 is changed from the closed state to the open state.
  • the high voltage generation unit 206 boosts the battery voltage Vbat to the boost voltage Vboost based on a command from the drive IC 200.
  • the battery voltage Vbat is used to keep the opened fuel injection valve 105 open. In other words, there are two types of voltages supplied to the fuel injection valve 105: the battery voltage Vbat and the boosted voltage Vboost.
  • Fuel injection driving units 207a and 207b are provided on the upstream side and the downstream side of the fuel injection valve 105, respectively.
  • the fuel injection driving units 207a and 207b are switching devices that are turned ON / OFF according to a control signal from the driving IC 200, and thereby switch (switch) the supply of the driving current Id to the fuel injection valve 105.
  • the drive IC 200 turns on / off the fuel injection drive units 207a and 207b based on the injection pulse Sp calculated by the fuel injection pulse signal calculation unit 202 and the command value Swf of the drive current waveform calculated by the fuel injection drive waveform command unit 203.
  • the drive current Id supplied to the fuel injection valve 105 is controlled by switching OFF and applying the boosted voltage Vboost or the battery voltage Vbat to the fuel injection valve 105.
  • the valve element operating time detection unit 211 has a function of detecting the valve element operating time of the fuel injection valve 105 when a predetermined condition is given.
  • the valve element operation time is defined as a concept including both the valve opening completion time from a certain reference point to the valve opening completion time or the valve closing completion time from a certain reference point to the valve closing completion time.
  • the valve element operation time detected by the valve element operation time detection unit 211 is detected as a factor of correction performed in the fuel injection amount correction unit 213 that corrects the fuel injection amount of the internal combustion engine 101. Detailed functions will be described later.
  • the state determination unit 212 has a function of determining the state of the fuel injection valve 105, the valve body operation time detection unit 211, or the fuel injection drive units 207a and 207b according to the detection result of the valve body operation time detection unit 211. The specific procedure for determination will be described later.
  • the fuel injection amount correction unit 213 determines the correction of the fuel injection amount to be performed in the internal combustion engine 101 according to the information on the valve body operation time detected by the valve body operation time detection unit 211, and outputs a signal for performing the correction. Generate. The correction in the fuel injection amount correction unit 213 is stopped according to the determination result in the state determination unit 212.
  • the fuel injection valve 105 may include a movable core 301, a housing 302, a valve body 303, a fixed core 304, a solenoid 305, a valve seat 306, a set spring 308, and a zero spring 309.
  • the housing 302 constitutes the housing of the fuel injection valve 105, and a fixed core 304 is fixed in the housing 302.
  • a solenoid 305 is disposed around the fixed core 304.
  • the valve body 303 is disposed with the central axis of the housing 302 as a longitudinal direction, is disposed so as to be movable along the central axis of the housing 302, and is urged toward the valve seat 306 by a set spring 308.
  • the movable core 301 is urged by a zero spring 309 to the lower end of the fixed core 304.
  • a through hole is formed in the central axis of the movable core 301, and the valve body 303 is movably disposed along the through hole.
  • the interior of the housing 302 is filled with fuel, and when a current flows through the solenoid 305, the movable core 301 is attracted by the solenoid 305, and the lower end of the valve body 303 is separated from the valve seat 306. As a result, fuel is injected from the nozzle hole 307 of the valve 303 that has been blocked by the valve body 303.
  • the movable core 301 descends against the elastic force of the zero spring 309 and returns to the initial position after the fuel injection is completed.
  • FIG. 4 shows an example of the injection pulse Sp, the drive voltage Vd, the drive current Id, and the displacement amount (valve displacement) H of the valve body 303 when the internal combustion engine 101 performs a normal operation.
  • the injection pulse Sp rises (becomes ON state), and the fuel injection drive unit 207a and the fuel injection drive unit 207b are turned on (conduction state), whereby the boost voltage Vboost is applied to the fuel injection valve 105. Is started.
  • the boosted voltage Vboost is applied as the drive voltage Vd to the solenoid 305 of the fuel injection valve 105, the drive current Id starts to flow, and the drive current Id starts to rise gradually.
  • a magnetic flux is generated between the fixed core 304 and the movable core 301, and a magnetic attraction force toward the fixed core 304 acts on the movable core 301.
  • the movable core 301 and the valve body 303 move together until the movable core 301 collides with the fixed core 304.
  • the movable core 301 moves until the valve displacement H is St1 + St2, and this state is a so-called full lift state.
  • the movement of the movable core 301 may be suppressed by about the valve displacement St1, which is the above-described half lift state.
  • the fuel injection driving unit 207b is turned on in order to supply only a magnetic attraction force sufficient to maintain the movable core 301 attracted to the fixed core 304.
  • the fuel injection driving unit 207a is intermittently turned on (repeated ON and OFF at a predetermined duty ratio).
  • the drive voltage Vd applied to the solenoid 305 is switched between the battery voltage Vbat and 0 V at a predetermined cycle, so that the drive current Id flowing through the solenoid 305 is within a predetermined range.
  • the injection pulse Sp falls, whereby both of the fuel injection drive units 207a and 207b are turned off, the drive voltage Vd applied to the solenoid 305 decreases, and the drive current Id flowing through the solenoid 305 also decreases. . Then, the magnetic flux generated between the fixed core 304 and the movable core 301 gradually disappears, and the magnetic attractive force acting on the movable core 301 disappears. Therefore, the valve body 303 is pushed back in the valve closing direction of the valve seat 306 with a predetermined time delay due to the pressing force of the set spring 308 and the pressing force of the fuel pressure. At time t7, the valve body 303 is returned to the original position, the lower end of the valve body 303 comes into contact with the valve seat 306 and is closed, and fuel injection stops.
  • FIG. 5 is a timing chart in the case of performing the same operation
  • FIGS. 6 and 7 are enlarged views of graphs of the drive voltage Vd, the drive current Id, and the twice differential value thereof, respectively.
  • the operation up to time t1 is the same as the normal operation in FIG.
  • the injection pulse Sp is turned on, whereby the boost voltage Vboost is applied as the drive voltage Vd to the solenoid 305 of the fuel injection valve 105, and the drive current Id begins to flow, and the drive current Id gradually increases.
  • the movable core 301 starts moving toward the fixed core 304 from time t2, for example.
  • the boosted voltage Vboost is cut off, so that the drive current Id decreases rapidly, and the drive voltage Vd swings to the negative value side due to the back electromotive force of the solenoid 305.
  • the drive voltage Vd returns to the battery voltage Vbat for a short period again at time t14.
  • the drive voltage Vd is set to 0 V.
  • the fluctuation amount of the drive current Id becomes small.
  • the movable core 301 collides with the fixed core 304, and the full lift state is maintained thereafter.
  • the battery voltage Vbat is supplied to the solenoid 305 by PWM control as in the normal operation.
  • the acceleration of the movable core 301 changes and the inductance of the solenoid 305 changes.
  • the change in inductance of the solenoid 305 is considered to appear as an inflection point in the drive current Id flowing through the solenoid 305 or the drive voltage Vd applied to the solenoid 305, the drive voltage Vd is almost equal when the valve is opened. Since it is maintained constant, an inflection point does not appear in the drive voltage Vd, and the inflection point appears in the drive current Id (near reference numeral 501).
  • the timing at which the valve body 303 is opened can be detected.
  • an inflection point that occurs when the valve body of the fuel injection valve 105 opens or closes is detected, and the timing at which the inflection point appears is determined. This is detected as the timing at which the fuel injection valve 105 opens or closes.
  • the inflection point means a point at which the curve changes in a change curve such as current or voltage, and more specifically, a point where the second-order differential value of the change curve has an extreme value. means.
  • An inflection point is generated in the drive voltage Vd due to a change in the inductance of the solenoid 305 during the period in which the counter electromotive force decreases (from time t6) (reference numeral 502).
  • the fuel injection control device detects the valve opening timing of the valve body 303 based on the generation timing of the inflection point of the drive current Id, and closes the valve body 303. Can be detected based on the generation timing of the inflection point of the drive voltage Vd.
  • the valve opening completion time (503) can be detected by measuring the time between the timing when the injection pulse Sp rises (time t1) and the timing when the inflection point of the drive current Id occurs.
  • the valve closing completion time (504) can be detected by measuring the time from the timing (time t6) at which the injection pulse Sp falls to the timing at which the inflection point of the drive voltage Vd occurs.
  • Such valve opening completion time or valve closing completion time is detected as a valve body operation time for each fuel injection valve 105 of different cylinders and specified as an individual difference, and the fuel injection amount is controlled based on this individual difference. Can do.
  • the inflection point is obtained by second-order differentiation of the curve (time series data) of the drive current Id flowing through the solenoid 305 or the curve of the drive voltage Vd applied to the solenoid 305. Can do.
  • the inflection point described above appears as a maximum value or a minimum value. Therefore, the above-mentioned inflection point can be specified by detecting the extreme positions of the second-order differential curves.
  • FIG. 6 shows a part of the curve of the drive voltage Vd during the valve closing operation and the time-series data of the second order differential value
  • 601 is an extreme value corresponding to the inflection point 502.
  • FIG. 7 shows a part of the curve of the drive current Id during the valve opening operation and the time-series data of the second order differential value
  • 701 is an extreme value corresponding to the inflection point 501. Note that the drive voltage Vd in FIG. 6 is shown by being reversed in the positive and negative directions with respect to FIGS.
  • the second-order differential value of the drive voltage Vd and the second-order differential value of the drive current Id shown in FIGS. 6 and 7 are obtained by passing the signals of the drive voltage Vd and the drive current Id through a low-pass filter and smoothing the data. Some are obtained by second-order differentiation.
  • the S / N ratio of the measured drive current Id and drive voltage Vd is low and the noise level is large, the extreme value is detected from the result of second-order differentiation of the time series data of the drive current Id and drive voltage Vd. Can be difficult, a low pass filter can be used. When the S / N ratio is sufficiently high, the low-pass filter can be omitted.
  • time-series data to be subjected to the second order differentiation is as follows:
  • the drive current Id after a certain time has elapsed from the rising timing of the injection pulse Sa (in other words, after a certain time has elapsed from the rising of the driving voltage Vd or the driving current Id).
  • Time-series data, or time-series data of the drive voltage Vd after a certain time has elapsed from the falling timing of the injection pulse Sa (in other words, after a certain time has elapsed from the fall of the drive voltage Vd or the drive current Id) It is preferable.
  • the state determination unit 212 is based on the fuel injection valve 105, the valve body operation time detection unit 211, and the fuel injection valve 105. It is determined whether the functions of various circuits for driving the engine and other components in the fuel injection control device 109A are normal or abnormal.
  • the circuit for driving the fuel injection valve 105 includes a drive IC 200, a high voltage generation unit 206, fuel injection drive units 207a and 207b, and signal lines electrically connected thereto.
  • a harness for connecting the fuel injection control device 127 and the power supply device for the battery voltage Vbat, a harness for connecting the fuel injection control device 127 and the fuel injection valve 105, and the like are included.
  • valve element operation time detector 211 may be configured to include a multiplexer 801, an AD converter 802, a wide area extraction filter 803, and a peak detector 804 as an example.
  • the multiplexer 801 has a function of selectively inputting signals from a plurality of fuel injection valves 105 provided in a plurality of cylinders (# 1 to # 4). Although not shown, a shunt resistor is provided between the downstream terminal of the solenoid 305 of the fuel injection valve 105 and the ground terminal, and the voltage across the shunt resistor can be input to the multiplexer 801.
  • the AD converter 802 is a circuit that converts an analog signal input from the fuel injection valve 105 via the multiplexer 801 into a digital signal.
  • the A / D converter 802 can convert the downstream terminal voltage of the solenoid 305 of the fuel injection valve 105 or the differential voltage of the upper and lower terminal voltages into a digital signal.
  • the wide area extraction filter 803 has a function of smoothing the digital signal and differentiating the smoothed signal by the second order.
  • the peak detector 804 has a function of detecting an extreme value from a signal that is second-order differentiated by the wide-area extraction filter 803 and emphasizes the inflection point.
  • the peak detector 804 specifies the timing at which the second-order differential value is maximized among the times when the extreme value is detected, and for example, measures the time from the timing when the injection pulse Sp rises, thereby completing the valve opening. Time can be detected.
  • valve element operating time detector 211 may detect a variation due to a minute noise component as an inflection point. In this case, the valve element operation time calculated by the valve element operation time detector 211 is not synchronized with the actual valve element operation of the fuel injection valve 105, and the time is deviated from the normal time. .
  • valve element operation time detection unit 211 Although the fuel injection valve 105 is operating normally, the change caused by the valve element operation of the fuel injection valve 105 from the drive current Id or the drive voltage Vd. The inflection point cannot be detected accurately, and the valve element operating time deviates from that in the normal state. For example, when the multiplexer 801 breaks down, it becomes impossible to input the drive current Id or the drive voltage Vd at a desired timing. Even when a fault occurs in the A / D converter 802, the wide-area extraction filter 803, or the peak detector 804, the inflection point synchronized with the valve body operation cannot be extracted from the drive voltage Vd or the drive current Id, and the valve body operation The time is different from the normal time.
  • the valve element operation time is synchronized with the operation of the valve element 303. It will not be time. Therefore, in the first embodiment, the valve element operation time is detected by the valve element operation time detection unit 211, and the state determination unit 212 compares the valve element operation time with a reference value to determine whether there is an abnormality. To do.
  • valve closing completion time which is the time from the time when the injection pulse Sp falls to the maximum value of the second derivative curve of the drive voltage Vd.
  • the valve closing completion time will be described as an example, but the same technique can be applied when detecting the valve opening completion time.
  • the state determination unit 212 determines whether or not the valve closing completion time 904 of the valve body 303 is within the setting range 902.
  • the setting range 902 is a range of the valve closing completion time expected when there is no abnormality in any of the fuel injection valve 105, the circuit for driving the fuel injection valve 105, and the valve element operation time detection unit 211.
  • the setting range 902 is stored in a storage unit (not shown) of the state determination unit 212.
  • the state determination unit 212 determines that an abnormality has occurred.
  • the state determination unit 212 determines that all of the above components are normal.
  • valve closing completion time 904 When one detected valve closing completion time 904 does not fall within the setting range 902, it is not determined that there is an abnormality. Among the plurality of valve closing completion times 904 obtained, a predetermined ratio of the valve closing completion time 904 is obtained. It is also possible to determine “abnormal” when it does not fall within the setting range 902.
  • the setting range 902 is calculated in advance by experiment in consideration of a change in the valve element operation time when the fuel injection valve 105 is deteriorated, and is stored in a storage unit (not shown) of the state determination unit 212. Further, the valve element operating time of the fuel injection valve 105 also varies depending on the fuel pressure. For this reason, the setting range 902 can measure the fuel pressure, and the range can be varied according to the fuel pressure.
  • the sampling period of the drive voltage Vd is set as in a range 901 shown in FIG.
  • the sampling range 901 is preferably set to start after a predetermined time has elapsed after the injection pulse Sp has fallen. It is possible to avoid erroneous detection of the inflection point due to the counter electromotive force after the ejection pulse Sp is lowered.
  • the fuel injection amount correction unit 213 detects the valve opening completion time that is stored in advance as a reference and the valve opening detected by the valve body operation time detection unit 211.
  • a valve opening completion deviation which is a deviation of completion time is calculated.
  • a valve closing completion deviation which is a deviation between the valve closing completion time that is stored in advance as a reference and the valve closing completion time detected by the valve element operation time detector 211, is calculated.
  • valve opening start deviation is calculated by adding the gain 1 / K to the valve opening completion deviation 1202.
  • valve closing completion deviation 1203 is also calculated.
  • the pulse width of the curve of the valve displacement H is calculated and compared with the pulse width H (s) of the reference valve displacement H stored in advance. Then, the deviation between the two is calculated. Thereby, the correction amount of the injection pulse width Wp with respect to the required injection amount can be determined.
  • both the valve opening start deviation 1201 and the valve closing completion deviation 1203 are used, but the injection pulse width may be corrected using either the valve opening completion deviation 1202 or the valve closing completion deviation 1203. it can.
  • the driving pulse width Wp is corrected.
  • the injection amount can be corrected by correcting the driving current Ip. For example, when the valve opening completion time detected by the valve element operation detection unit 211 is longer than the reference valve opening completion time, the valve element 303 is opened by relatively increasing the peak current of the drive current Ip. It is possible to speed up the valve operation (shorten the valve opening completion time).
  • valve opening completion time detected by the valve element operation detection unit 211 is shorter than the reference valve opening completion time
  • the peak current of the drive current Ip is made relatively small so that the valve element 303
  • the valve opening operation can be delayed.
  • the valve closing completion time detected by the valve element operation detection unit 211 is longer than the reference valve closing completion time
  • the valve opening operation of the valve body 303 can be delayed.
  • the valve closing completion time detected by the valve element operating time detector 211 is shorter than the reference valve closing completion time, the valve element 303 is accelerated by increasing the peak current. be able to. Therefore, it is possible to approach the characteristics of the reference fuel injection valve.
  • the injection amount correction described above is performed based on at least one of the valve opening completion time or the valve closing completion time detected by the valve element operation time detection unit. Since the value also becomes abnormal, appropriate correction cannot be performed, and it becomes difficult to perform fuel injection with the required injection amount. Therefore, the correction of the fuel injection amount performed by the fuel injection amount correction unit 213 is performed by any of the fuel injection valve 105, the circuit for driving the fuel injection valve 105, and the valve element operation time detection unit 211 in the state determination unit 212. Only when it is determined that there is no abnormality. On the other hand, if the state determination unit 212 determines that these components are abnormal, the correction performed by the fuel injection amount correction unit 213 is prohibited.
  • the state determination unit 212 transmits a prohibition signal Sinh to the fuel injection amount correction unit 213, and the fuel injection amount correction unit 213 stops the correction operation based on the prohibition signal Sinh. Further, the valve element operation time detection unit 211 also stops the valve element operation time detection operation based on the prohibition signal Sinh.
  • valve opening completion time and the valve closing completion time detected by the valve element operation time detection unit 211 and the state determination result calculated by the state determination unit 212 are stored in storage means such as an EEPROM provided inside or separately. You can remember it.
  • FIG. 11 shows a drive current Id, a pulse signal indicating whether or not the operation of the valve element operation time detection unit 211 is being executed, a determination result (state determination result) of the state determination unit 212, and a valve element stored in the storage unit. It is a timing chart which shows the time change of data of operation time.
  • valve body operation time detection unit 211 When detection of the valve body operation time by the valve body operation time detection unit 211 is completed at time t21 and the state determination unit 212 determines “normal”, the valve body stored in the storage unit The operation time 1 (1305) is updated to the valve element operation time 2 (1306) which is the latest detection result. After time t21, the fuel injection amount is corrected using the valve body operating time 2 (1306).
  • the valve body operating time 2 (1306) is stored in the period from time t22 to t23 when the power source of the fuel injection control device 109A is turned off at time t22 and the power source of the fuel injection control device 109A is turned on at time t23. It is kept stored in the means.
  • the valve element operation time 2 ( The update of 1306) is prohibited, and the valve body operating time 2 (1306) is used as it is for the latest injection amount correction.
  • the valve element operation time detection unit 211 detects the valve element operation time to detect the individual difference, and on the basis of the information related to the valve element operation time.
  • the state determination unit 212 can determine whether there is an abnormality. Therefore, it is possible to appropriately collect information on individual differences. Further, by determining whether or not the injection amount correction is possible based on the determination result, unintended injection amount fluctuations can be prevented, and deterioration of fuel efficiency and exhaust performance can be prevented.
  • the abnormality determination method in the state determination part 212 of this 2nd Embodiment is demonstrated.
  • whether or not there is an abnormality is determined based on whether or not the data of the plurality of valve closing completion times detected by the operation of the valve body a plurality of times are within the standard deviation range. Also by this method, the same effect as that of the first embodiment can be obtained.
  • the valve closing completion time is measured three times, and whether or not there is an abnormality is determined by whether or not it is within the standard deviation range, in other words, whether or not the variation is larger than a predetermined set amount. doing.
  • the valve closing completion time detected by the valve element operation time detection unit 211 is May differ for each detection.
  • valve closing completion times 1001, 1002, and 1003 are detected. If the standard deviation of each valve closing completion time is included in the predetermined range 901, it is determined as normal, and the standard deviation is predetermined. If out of range, it is determined as abnormal. By determining the standard deviation in this way, even if each valve closing completion time is included in the predetermined range 902 (FIG. 9), it is possible to determine that there is an abnormality because the standard deviation is large. Become. It should be noted that the predetermined range 901 can be obtained in advance by experiments in consideration of electrical and mechanical variations of the fuel injection valve and electrical variations of the constituent circuits.
  • FIG. 1 The overall configuration of the apparatus (FIGS. 1 to 3 and FIG. 8) and the basic operation (FIGS. 5 to 7) of the fuel injection control device 109A are substantially the same as those of the above-described embodiment, so that overlapping explanations are given. Is omitted.
  • the determination method in the state determination unit 212 is different from the above-described embodiment.
  • the abnormality determination method in the state determination part 212 of this 3rd Embodiment is demonstrated.
  • deterioration with time is one of the factors that change the valve element operating time.
  • the fuel injection valve 105, the circuit for driving the fuel injection valve 105, and the valve closing time detected when the valve element operation time detection unit 211 is normal 1103 and the newly detected valve closing completion When the time 1102 is compared, if there is a divergence greater than the change due to deterioration over time, it can be determined as abnormal.
  • the valve closing completion time 1103 detected at normal time is compared with the newly detected valve closing completion time 1102, and if the difference 1104 is equal to or less than a predetermined value, the state determination unit 212 determines that the fuel injection valve 105, fuel injection A circuit for driving the valve 105, a circuit for driving the fuel injection valve 105, the fuel injection valve 105, if the valve element operating time detection unit 211 determines that the difference is equal to or greater than a predetermined value, and One of the valve element operation time detection units 211 determines that there is an abnormality. By making such a determination, it is possible to make a robust determination against deterioration of the fuel injection valve 105 and the like. It should be noted that all the determination methods of the first to third embodiments can be incorporated into one state determination unit 212.
  • FIG. 14 is a bar graph showing the degree of variation in the valve element operating time in the plurality of cylinders INJ # 1 to INJ4.
  • the valve body operation time is also a value close to the reference value.
  • the valve element operating time may be outside the normal range.
  • Such a cylinder can detect an abnormality by the method of the first embodiment (FIG. 9).
  • the valve element operating time is close to the reference value, but there may be a large variation in the valve element operating time between a plurality of cycles. In this case, an abnormality can be detected by executing the method of the second embodiment (FIG. 12).
  • the drive current It can also be determined by the magnitude of the second-order differential value of Id or drive voltage Vd.
  • the second-order differential value of the drive voltage Vd or the drive current Id can be specified in advance by experiments, it is determined whether the second-order differential value is normal or abnormal depending on whether the magnitude of the second-order differential value is within a predetermined range. Can do.
  • the wiring for transmitting various data and commands representatively shows what is considered necessary for the description, and all the control lines provided in the corresponding product And information lines are not necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • each of the above-described configurations, functions, processing units, and the like may be realized by hardware including, for example, an analog integrated circuit, a digital integrated circuit, or an analog / digital mixed integrated circuit.
  • each of the above-described configurations, functions, and the like may be realized by a program in which the processor realizes each function. Such a program can be recorded on a recording medium such as a hard disk drive, a flash memory device, or a recording disk (CD-ROM, DVD-RAM, etc.).
  • Injection hole 308 ... Set spring 309 ... Zero spring, 503 ... Valve opening completion time, 504 ... Valve closing completion time, 801 ... Multiplexer, 802 ... AD converter, 803 ... Wide area extraction filter, 804 ... Peak detector, 902 ... Setting range, 904, 1001 to 1003, 1102, 1103 ... valve closing completion time, 1201 ... valve opening start deviation 1202 ... opening completion deviation, 1203 ... closed complete deviation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

燃料噴射弁の個体差を検知するとともに、その個体差の情報の収集を適切に実行することができる燃料噴射制御装置を提供する。そのため、この燃料噴射制御装置は、燃料噴射弁のコイルに電流又は電圧を供給して前記燃料噴射弁を駆動する燃料噴射弁駆動回路と、前記燃料噴射弁の弁体の動作に関する弁体動作時間を検出する弁体動作時間検出部と、前記弁体動作時間検出部により検出された弁体動作時間に関連する情報に基づいて、前記燃料噴射弁、前記弁体動作時間検出部、又は燃料噴射弁駆動回路の少なくとも一つが異常であると判定する状態判定部とを備える。

Description

燃料噴射制御装置
 本発明は、内燃機関への燃料の噴射を制御する燃料噴射制御装置に関する。
 近年の自動車燃費・排気規制の強化から、内燃機関の低燃費化と高出力化を同時に達成し、内燃機関の広い運転領域に適合することが求められている。その達成手段の一つとして、燃料噴射弁のダイナミックレンジの拡大が要求されている。燃料噴射弁のダイナミックレンジ拡大には、従来の静流特性を確保しつつ、動流特性を改善することが必要となる。この動流特性の改善方法として、ハーフリフト制御による最小噴射量の低減が知られている。このハーフリフト制御は、燃料噴射弁の弁体を完全に開弁する位置(フルリフト位置)までは到達させずに閉弁位置に戻す制御である。
 近年、特に直接噴射式の内燃機関の燃料噴射制御では、1サイクル当たりの噴射を数段に分割する多段噴射方式が広く採用されている。多段噴射方式の場合、分割数が増えると一段当たりの噴射量を小さくする必要が生じる。このため、多段噴射の各段の噴射をハーフリフト制御により実現することで、1段当たりの噴射量を小さくすることができる。
 ハーフリフト制御では、フルリフト制御の場合に比べ、弁体の位置制御をより高精度に行う必要がある。ハーフリフト制御における噴射量のばらつきは、燃料噴射弁の個体差に起因して大きくなることが知られている。複数の内燃機関が有する燃料噴射弁の各々を同一の駆動パルスで駆動したとしても、燃料噴射弁毎のスプリング特性やソレノイド特性等の固体差によって、各燃料噴射弁の弁体の動きが変化し、燃料噴射弁の開弁完了時間や閉弁完了時間がばらついてしまうので、結果として複数の内燃機関の間で噴射量がばらついてしまう。
 このため、燃料噴射弁毎に生じる個体差を判定する様々な技術が提案されている。例えば、特許文献1には、燃料噴射弁の弁体が開弁状態又は閉弁状態となったタイミングに関する個体差をインダクタンスの変化などの電気的特性に基づき間接的に検知する技術について開示されている。しかし、特許文献1では、電気的特性を検知するための電気信号の入力回路、フィルタ、燃料噴射弁本体、燃料噴射弁を駆動するための駆動回路、その他の構成要素に異常(故障、劣化、性能低下など)が発生した場合、固体差検知の外乱となる。外乱がある状態で開弁完了若しくは閉弁完了の検知を行うと、目標噴射量と実際の噴射量の乖離が大きくなり、燃費性能や排気性能の悪化、内燃機関の意図しないトルク変動を引き起こす可能性がある。
 一方、特許文献2では、個体差を所定の方法で学習する一方、学習実行条件が不成立となった場合に学習を禁止することが記載されている。しかし、この特許文献2では、個体差の検知について具体的に記載がなく、更に、学習実行条件を不成立とする場合の具体例に関しても記載が無い。このため、特許文献1の問題はこの特許文献2の技術によっても解決されるものではない。
特開2014-152697号公報 国際公開第2017/006814号
 本発明は、燃料噴射弁の個体差を検知するとともに、その個体差の情報の収集を適切に実行することができる燃料噴射制御装置を提供することを目的とする。
 上記の課題を解決するため、本発明に係る燃料噴射制御装置は、燃料噴射弁のコイルに電流又は電圧を供給して前記燃料噴射弁を駆動する燃料噴射弁駆動回路と、前記燃料噴射弁の弁体の動作に関する弁体動作時間を検出する弁体動作時間検出部と、前記弁体動作時間検出部により検出された弁体動作時間に関連する情報に基づいて、前記燃料噴射弁、前記弁体動作時間検出部、又は燃料噴射弁駆動回路の少なくとも一つが異常であると判定する状態判定部とを備える。
 本発明の燃料噴射制御装置によれば、燃料噴射弁の個体差を検知するとともに、その個体差の情報の収集を適切に実行することができる燃料噴射制御装置を提供することができる。
第1の実施の形態に係る燃料噴射制御装置を備えた内燃機関の基本構成を示している。 図1に示すECU109の燃料噴射制御装置109Aの構成を説明するブロック図である。 燃料噴射弁105の構成例を説明する概略図である。 内燃機関101が通常の動作を行う場合における、噴射パルスSp、駆動電圧Vd、駆動電流Id、弁体303の変位量(弁変位)Hの時間的変化の一例を示すタイミングチャートである。 弁体動作時間検出部211により燃料噴射弁105の弁体動作時間を検知する手順を説明するタイミングチャートである。 弁体動作時間検出部211により燃料噴射弁105の弁体動作時間を検知する手順を説明するグラフである。 弁体動作時間検出部211により燃料噴射弁105の弁体動作時間を検知する手順を説明するグラフである。 弁体動作時間検出部211の構成例を説明するブロック図である。 第1の実施の形態の状態判定部212による異常判定方法について説明する。 燃料噴射量補正部213での噴射量補正について説明する概略図である。 第1の実施の形態における噴射量補正の禁止に関し説明するタイミングチャートである。 第2の実施の形態の状態判定部212による異常判定方法について説明する。 第3の実施の形態の状態判定部212による異常判定方法について説明する。 本発明の実施の形態の効果を説明するグラフである。
 以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
[第1の実施の形態]
 図1は、本発明の第1の実施の形態に係る燃料噴射制御装置を備えた内燃機関の基本構成を示している。
 図1において、制御対象としての内燃機関101は、シリンダ内にピストン102、吸気弁103、排気弁104を備えている。内燃機関101は、一例としては、複数、例えば4個の気筒(シリンダ)(#1~#4)を有した内燃機関とすることができるが、図1は、複数の気筒のうちの1つの気筒のみを図示している。燃料噴射弁105はシリンダ内の燃焼室内に燃料を直接噴射するものであり、シリンダヘッドには点火プラグ106と点火コイル107が備えられている。シリンダのウォータジャケットには冷却水の水温センサ108が備えられている。この内燃機関101を制御する制御部として、ECU(Engine Control Unit)109が設けられている。なお、ピストン102には、内燃機関101のクランク軸角度を計測するクランク角度センサ11が取り付けられている。また、ECU109には、運転者が操作するアクセルの開度を計測するアクセル開度センサ12が設けられている。クランク角度センサ11、及びアクセル開度センサ12の検知信号は、ECU109の燃料噴射制御装置109Aに入力される。
 また、吸気弁103の前段には、内燃機関101に吸入される空気を導入するための吸気管110が設けられ、排気弁104の後段には、シリンダから排出される排気管111が設けられている。排気管111上には、この排気ガスを浄化するための三元触媒112、及び酸素センサ113が備えられている。また、吸気管110には、コレクタ115、スロットル弁119、及び空気流量計120が設けられている。
 内燃機関101に吸入される空気は、空気流量計120、スロットル弁119、コレクタ115を介して吸気管110に導入され、その後吸気弁103を介して燃焼室121に供給される。空気流量計120の出力信号は、ECU109の燃料噴射制御装置109Aに供給される。
 内燃機関101で用いられる燃料は、燃料タンク123から低圧燃料ポンプ124により、内燃機関101に備わる高圧燃料ポンプ125へ送られる。高圧燃料ポンプ125は、排気カム128の排気カム軸(図示せず)から伝達される動力により、内部に導入された燃料の圧力を昇圧させる。具体的には、高圧燃料ポンプ125内に備えられたプランジャーを上下動させることで高圧燃料ポンプ125内に導入された燃料の圧力が昇圧される。ECU109からの制御指令値に基づき、高圧燃料ポンプ125から吐出される燃料の圧力燃料圧が所望の圧力になるように、その吸入口に備わる開閉バルブがソレノイドにより制御される。高圧化された燃料は、高圧燃料配管129を介して燃料噴射弁105へ送られ、燃料噴射弁105は、ECU109内に備わる燃料噴射制御装置109Aの指令に基づき、燃料を燃焼室121内へ噴射する。
 内燃機関101には、高圧燃料ポンプ125を制御するため、高圧燃料配管129内の圧力を計測する燃料圧力センサ13が設けられている。ECU109の燃料噴射制御装置109Aは、この燃料圧力センサ13の出力に基づき、高圧燃料配管内129の燃料圧を所望の圧力になる様、所謂フィードバック制御を行うように構成されている。前述したように、内燃機関101は、点火プラグ106及び点火コイル107を備えており、ECU109は、燃料圧力センサ13からの出力に基づき、点火コイル107への通電制御と点火プラグ106による点火制御を実行する。これにより、燃焼室121内で吸入空気と燃料は、点火プラグ106から放たれる火花により燃焼し、この圧力によりピストン102が押し下げられる。
 燃焼により生じた排気ガスは、排気弁104を介して、排気管111に排出され、三元触媒112の触媒作用により浄化されて外部に排出される。また、排気ガスの酸素濃度が、三元触媒112の上流側に設けられた酸素センサ113により計測される。酸素センサ113の出力信号は、ECU109の燃料噴射制御装置109Aに供給される。
 ECU109の制御についてより詳細に説明する。ECU109は、アクセル開度センサ12の信号から、内燃機関101の要求トルクを算出するとともに、アイドル状態であるか否かの判定等を行う。ECU109は更に、クランク角度センサ11の信号から内燃機関101の回転速度(以下、エンジン回転数という)を演算するとともに、水温センサ108から得られる内燃機関101の冷却水温度と内燃機関101の始動後の経過時間等から三元触媒112が暖機された状態であるか否かを判断する機能を有する。
 また、ECU109は、前述の内燃機関101の要求トルクなどから、内燃機関101に必要な吸入空気量を算出し、それに見合った開度信号をスロットル弁119に出力するとともに、燃料噴射制御装置109Aは、吸入空気量に応じた燃料量を算出して燃料噴射弁105にそれに応じた燃料噴射信号を出力し、更に、点火コイル107に点火信号を出力する。
 次に、図2のブロック図を用いて、図1に示すECU109の燃料噴射制御装置109Aの構成を説明する。
 燃料噴射制御装置109Aは、駆動IC200、エンジン状態検知部201、燃料噴射パルス信号演算部202、燃料噴射駆動波形指令部203、高電圧生成部(昇圧装置)206、燃料噴射駆動部207a、207b、弁体動作時間検出部211、状態判定部212、及び燃料噴射量補正部213を備える。駆動IC200は、燃料噴射制御装置109Aの全体の制御を司る駆動制御部である。エンジン状態検知部201は、内燃機関101のエンジン回転数、吸入空気量、冷却水温度、燃料圧力や内燃機関エンジンの故障状態などの各種情報を集約し、提供する。
 燃料噴射パルス信号演算部202は、エンジン状態検知部201から得られる各種情報に基づき、燃料噴射弁105の燃料噴射期間を規定する噴射パルスSpのパルス幅Wpを演算し、そのパルス幅Wpを有する駆動パルスSpを出力する。燃料噴射駆動波形指令部203は、燃料噴射弁105の開弁又は開弁維持するために供給する駆動電流Idの波形に関する指令値Swfを算出し、駆動IC200へ出力する。駆動電流Idの波形が制御されることにより、弁体のリフト量や閉弁時期を適切に設定し、燃料噴射量を精密に制御することができる。
 高電圧生成部206は、ヒューズ204とリレー205を介して供給されるバッテリ電圧Vbatを、昇圧電圧Vboostに昇圧させる昇圧装置である。この昇圧電圧Vboostは、電磁ソレノイド式の燃料噴射弁105を閉弁状態から開弁状態に変化させる際に必要となる電圧である。高電圧生成部206は、駆動IC200からの指令に基づき、バッテリ電圧Vbatを昇圧電圧Vboostまで昇圧する。なお、バッテリ電圧Vbatは、開弁した燃料噴射弁105を開弁状態に維持するために用いられる。すなわち、燃料噴射弁105に供給される電圧は、バッテリ電圧Vbatと昇圧電圧Vboostの2種類がある。
 燃料噴射弁105の上流側と下流側には、それぞれ燃料噴射駆動部207a、207bが備えられている。燃料噴射駆動部207a、207bは、駆動IC200からの制御信号に従いON/OFF動作されるスイッチング装置であり、これにより燃料噴射弁105に対する駆動電流Idの供給の切り替え(スイッチング)を行う。駆動IC200は、燃料噴射パルス信号演算部202で演算された噴射パルスSp、燃料噴射駆動波形指令部203で演算された駆動電流波形の指令値Swfに基づいて燃料噴射駆動部207a、207bのON/OFFを切り替え、燃料噴射弁105に昇圧電圧Vboost又はバッテリ電圧Vbatを印加することで、燃料噴射弁105へ供給する駆動電流Idを制御する。
 弁体動作時間検出部211は、所定の条件を与えた場合の、燃料噴射弁105の弁体動作時間を検出する機能を有する。弁体動作時間とは、ある基準点から開弁完了時刻までの開弁完了時間、又はある基準点から閉弁完了時刻までの閉弁完了時間の両方を含む概念として定義される。弁体動作時間検出部211で検出される弁体動作時間は、内燃機関101の燃料噴射量を補正する燃料噴射量補正部213において行われる補正のファクターとして検出されるものである。詳しい機能については後述する。
 状態判定部212は、弁体動作時間検出部211での検出結果に従い、燃料噴射弁105、弁体動作時間検出部211、又は燃料噴射駆動部207a、207bの状態を判定する機能を有する。判定の具体的な手順等は後述する。
 燃料噴射量補正部213は、弁体動作時間検出部211で検出された弁体動作時間の情報に従い、内燃機関101において行うべき燃料噴射量の補正を判定し、その補正を行うための信号を生成する。なお、燃料噴射量補正部213における補正は、状態判定部212における判定結果に従い停止される。
 次に、図3を参照して燃料噴射弁105の構成例を説明する。
 燃料噴射弁105は、一例として、可動コア301、ハウジング302、弁体303、固定コア304、ソレノイド305、弁座306、セットスプリング308、ゼロスプリング309を備えて構成され得る。
 ハウジング302は、燃料噴射弁105の筐体を構成し、ハウジング302内には固定コア304が固定されている。固定コア304の周囲には、ソレノイド305が配置されている。弁体303は、ハウジング302の中心軸を長手方向として配置され、ハウジング302の中心軸に沿って移動可能に配置され、またセットスプリング308により弁座306の方向に付勢されている。また、可動コア301は、固定コア304の下端に、ゼロスプリング309により付勢されている。可動コア301の中心軸には貫通穴が形成されており、この貫通穴に沿って弁体303は移動可能に配置されている。
 内燃機関101の運転時には、ハウジング302の内部は燃料で満たされており、ソレノイド305に電流が流れると可動コア301がソレノイド305に吸引されて、弁体303の下端が弁座306から離れる。これにより、弁体303によって塞がれていた弁303の噴孔307から燃料が噴射される。ソレノイド305の電流が遮断されると、燃料噴射の終了後に可動コア301はゼロスプリング309の弾性力に抗して下降して初期位置に戻る。
 図4のタイミングチャートを参照して、内燃機関101が通常の動作を行う場合における、噴射パルスSp、駆動電圧Vd、駆動電流Id、弁体303の変位量(弁変位)Hの一例を示す。
 時刻t0~t1では、燃料噴射パルス信号演算部202から出力される噴射パルスSpがOFF状態であるため、燃料噴射駆動部207a、207bがOFF状態となり、燃料噴射弁105には駆動電流Idが流れない。したがって、燃料噴射弁105において、セットスプリング308の付勢力によって弁体303が弁座306の閉弁方向へ付勢され、弁体303の下端が弁座306と当接したままとなり噴孔307が閉じられ、燃料は噴射されない。
 次いで、時刻t1で、噴射パルスSpが立ち上がり(ON状態となり)、燃料噴射駆動部207aと燃料噴射駆動部207bがON状態(導通状態)となり、これにより燃料噴射弁105には昇圧電圧Vboostの印加が開始される。燃料噴射弁105のソレノイド305には駆動電圧Vdとして昇圧電圧Vboostが印加され、更に駆動電流Idも流れ始め、駆動電流Idは徐々に上昇を開始する。これにより、固定コア304と可動コア301との間に磁束が生じ、可動コア301に対し固定コア304に向けた磁気吸引力が働く。
 ソレノイド305に供給される駆動電流Idが増加し、可動コア301に作用する磁気吸引力がゼロスプリング309による付勢力を上回ると、可動コア301が固定コア304の方向へ吸引されて上方に移動し始める(時刻t1~t2)。可動コア301が所定の長さだけ移動すると、可動コア301と弁体303とが一体となって移動し始め(時刻t2)、弁体303は弁座306から離れ、弁座306は開弁されて燃料の噴射が開始される。
 可動コア301と弁体303は、可動コア301が固定コア304に衝突するまで一体となって移動する。図4では、弁変位HがSt1+St2まで可動コア301が移動し、この状態がいわゆるフルリフトの状態である。なお、弁変位St1程度までに可動コア301の移動を抑制する場合もあり、これが上述のハーフリフト状態である。
 ここで、可動コア301と固定コア304とが勢いよく衝突すると可動コア301が固定コア304で跳ね返って噴孔307から噴射される燃料の流量が乱れる虞がある。そこで、可動コア301が固定コア304に衝突する前の時刻t3、つまり駆動電流Idがピーク電流Ip2に到達したときに、燃料噴射駆動部207a、207bをOFF状態(非導通状態)とする。これにより、ソレノイド305に印加される駆動電圧Vdは、逆起電力により負の値まで減少し、駆動電流Idもこれに伴い急激に減少するので、可動コア301及び弁体303の勢いは低下する。
 時刻t4から噴射パルスSpが立ち下がる時刻t6までは、可動コア301が固定コア304に引き寄せられた状態を維持するのに十分な磁気吸引力のみを供給するため、燃料噴射駆動部207bをオン状態に維持した状態で燃料噴射駆動部207aを間欠的にONにする(所定のデューティ比でONとOFFを繰り返す)PWM制御を行う。ソレノイド305に印加される駆動電圧Vdは、所定の周期でバッテリ電圧Vbatと0Vの間で切り替わり、これによりソレノイド305に流れる駆動電流Idが所定の範囲内に収まるようにする。
 時刻t6で、噴射パルスSpが立ち下がり、これにより燃料噴射駆動部207a、207bがいずれもオフ状態となり、ソレノイド305へ印加される駆動電圧Vdが減少し、ソレノイド305に流れる駆動電流Idも減少する。すると、固定コア304と可動コア301との間に生じた磁束が次第に消滅し、可動コア301に作用する磁気吸引力が消滅する。よって、弁体303は、セットスプリング308の付勢力と燃圧による押圧力により、所定の時間遅れを持って弁座306の閉弁方向へ押し戻される。そして、時刻t7では、弁体303が元の位置まで戻され、弁体303の下端が弁座306に当接して閉弁されて、燃料の噴射が停止する。
 なお、噴射パルスSpが立ち下がった時刻t6以降は、燃料噴射弁105内の残留磁力を素早く低下させ、弁体303が早期に閉弁状態に復帰するように、燃料噴射弁105を駆動する際とは逆方向に駆動電圧Vdを供給する。
 次に、図5~図7を参照して、弁体動作時間検出部211により燃料噴射弁105の弁体動作時間を検知する手順を説明する。ここで検知された弁体動作時間が、燃料噴射量補正部213における補正値の演算に用いられる。図5は、同動作を行う場合のタイミングチャートであり、図6、及び図7は、それぞれ駆動電圧Vd、駆動電流Id、及びその2回微分値のグラフの拡大図である。
 時刻t1までの動作は、図4の通常動作と同一である。時刻t1で、噴射パルスSpがON状態となり、これにより燃料噴射弁105のソレノイド305には駆動電圧Vdとして昇圧電圧Vboostが印加され、更に駆動電流Idも流れ始め、駆動電流Idは徐々に上昇を開始する。可動コア301は、例えば時刻t2から固定コア304に向けて移動を開始する。
 次いで、時刻t13において、昇圧電圧Vboostが遮断され、これにより駆動電流Idは急激に減少し、駆動電圧Vdはソレノイド305の逆起電力により負の値側に振れる。その後、駆動電圧Vdは再び時刻t14で短期間だけバッテリ電圧Vbatまで復帰する。その後、駆動電圧Vdは0Vとされるが、これにより、駆動電流Idの変動量は小さくなり、この状態で可動コア301が固定コア304に衝突し、以後フルリフト状態が維持される。フルリフト状態を維持するため、時刻t15以降は、通常動作と同様にバッテリ電圧VbatがPWM制御によりソレノイド305に供給される。
 時刻t14以降のいずれかの時点で可動コア301と固定コア304とが衝突すると、可動コア301の加速度が変化し、ソレノイド305のインダクタンスが変化する。ここで、ソレノイド305のインダクタンスの変化は、ソレノイド305に流れる駆動電流Id又はソレノイド305に印加される駆動電圧Vdに変曲点として現れると考えられるものの、開弁する際には駆動電圧Vdがほぼ一定に維持されるため、駆動電圧Vdに変曲点は現れず、変曲点は駆動電流Idに現れる(符号501付近)。この駆動電流Idの変曲点が現れるタイミング(時刻)を検出することで、弁体303の開弁のタイミングを検知することができる。換言すれば、燃料噴射制御装置109Aから供給される電圧又は電流において、燃料噴射弁105の弁体が開弁又は閉弁する際に生じる変曲点を検出し、この変曲点が現れるタイミングを、燃料噴射弁105が開弁するタイミング、又は閉弁するタイミングとして検出する。ここで変曲点とは、電流や電圧などの変化曲線において、その曲がり方が変わる点を意味しており、より具体的には、当該変化曲線の2階微分値が極値を有する点を意味する。
 一方で、燃料噴射弁105の弁体303を閉弁する際には、弁体303が弁座306と衝突する時に、ゼロスプリング309が伸長から圧縮に転じ、可動コア301の運動方向が逆転することにより加速度が変化し、ソレノイド305のインダクタンスが変化する。
弁体303が閉弁するタイミングでは、ソレノイド305に流れる駆動電流Idが遮断されており、ソレノイド305の両端の電圧Vdは逆起電力となり、駆動電流Idが0に収束すると徐々に逆起電力も減少していく。逆起電力が減少していく期間(時刻t6~)においてソレノイド305のインダクタンスが変化することで、駆動電圧Vdに変曲点が発生する(符号502)。この駆動電圧Vdの変曲点が現れるタイミング(時刻)を検出することで、弁体の閉弁のタイミングを検知することができる。
 このように、この第1の実施の形態の燃料噴射制御装置は、弁体303の開弁タイミングについては駆動電流Idの変曲点の発生タイミングに基づいて検知し、弁体303の閉弁タイミングについては駆動電圧Vdの変曲点の発生タイミングに基づいて検知することができる。例えば、噴射パルスSpが立ち上がったタイミング(時刻t1)から駆動電流Idの変曲点の発生タイミングまでの間の時間を計測することで、開弁完了時間(503)を検出することができる。また、噴射パルスSpが立ち下がったタイミング(時刻t6)から、駆動電圧Vdの変曲点の発生タイミングまでの間の時間を計測することで、閉弁完了時間(504)を検出することができる。このような開弁完了時間又は閉弁完了時間を弁体動作時間として、異なる気筒の燃料噴射弁105毎に検知して個体差として特定し、この個体差に基づいて燃料噴射量を制御することができる。
 図6及び図7に示すように、変曲点は、ソレノイド305に流れる駆動電流Idの曲線(時系列データ)又はソレノイド305に印加される駆動電圧Vdの曲線を2階微分することで求めることができる。2階微分曲線において、前述の変曲点が極大値又は極小値として現れる。よって、それらの2階微分曲線の極値の位置を検出することで前述の変曲点を特定することができる。
 図6は、閉弁動作中の駆動電圧Vdの曲線の一部と、その2階微分値の時系列データであり、601は変曲点502に対応する極値である。図7は、開弁動作中の駆動電流Idの曲線の一部と、その2階微分値の時系列データであり、701は変曲点501に対応する極値である。尚、図6の駆動電圧Vdは、図4、5に対して正負逆転させて記載している。
 図6及び図7で示した駆動電圧Vdの2階微分値と駆動電流Idの2階微分値は、駆動電圧Vdと駆動電流Idの信号にローパスフィルタを通過させ、平滑化したデータに対して2階微分をして得たものある。計測される駆動電流Idや駆動電圧VdのS/N比が低く、そのノイズレベルが大きい場合は、駆動電流Idや駆動電圧Vdの時系列データの2階微分の結果から極値を検知することが難しくなるため、ローパスフィルタが用いられ得る。S/N比が十分に高い場合には、ローパスフィルタは省略することも可能である。
 また、2階微分を施す時系列データは、・噴射パルスSaの立ち上がりタイミングから一定時間経過した後(言い換えれば、駆動電圧Vd又は駆動電流Idの立ち上がりから一定時間経過した後)の駆動電流Idの時系列データ、又は・噴射パルスSaの立下りタイミングから一定時間経過した後(言い換えれば、駆動電圧Vd又は駆動電流Idの立ち下がりから一定時間経過した後)の駆動電圧Vdの時系列データとすることが好ましい。
 噴射パルスSaが立ち上がったタイミング(時刻t1)の直後の駆動電流Idの時系列データ、又は、噴射パルスSaが立ち下がったタイミング(時刻t6)の直後の駆動電圧Vdの時系列データに対して2階微分を施すと、電圧の切り替え時(例えば昇圧電圧Vboostからバッテリ電圧Vbat)や、駆動電圧Vdを遮断した後の逆起電力の発生時などが極値として現れる可能性があり、変曲点を正確に特定することができない虞があるためである。
 次に、図8を参照して、図2の弁体動作時間検出部211の構成の一例について説明する。状態判定部212は、弁体動作時間検出部211で算出された開弁完了時間もしくは閉弁完了時間に関する情報に基づいて、燃料噴射弁105、弁体動作時間検出部211、及び燃料噴射弁105を駆動するための各種回路、並びにその他燃料噴射制御装置109A内の構成要素の機能が正常であるか、それとも異常があるかを判定する。
 ここで、燃料噴射弁105を駆動するための回路(燃料噴射弁駆動回路)には、駆動IC200、高電圧生成部206、燃料噴射駆動部207a、207b、それらに電気的に接続する信号線、燃料噴射制御装置127とバッテリ電圧Vbatの電源装置とを接続するハーネス、燃料噴射制御装置127と燃料噴射弁105とを接続するハーネス等が含まれる。
 図8に示すように、弁体動作時間検出部211は、一例として、マルチプレクサ801、AD変換器802、広域抽出フィルタ803、及びピーク検出器804を備えて構成され得る。
 マルチプレクサ801は、複数の気筒(#1~#4)に設けられる複数の燃料噴射弁105からの信号を選択的に入力させる機能を有する。なお、図示は省略するが、燃料噴射弁105のソレノイド305の下流側端子と接地端子との間はシャント抵抗が設けられ、このシャント抵抗の両端電圧をマルチプレクサ801に入力することができる。
 AD変換器802は、マルチプレクサ801を介して燃料噴射弁105から入力されるアナログ信号をデジタル信号に変換する回路である。A/D変換器802は、燃料噴射弁105のソレノイド305の下流側端子電圧、又は、上下の端子電圧の差動電圧をデジタル信号に変換することができる。
 また、広域抽出フィルタ803は、このデジタル信号を平滑化するとともに、平滑化された信号を2階微分する機能を有する。ピーク検出器804は、広域抽出フィルタ803によって2階微分されて変曲点が強調された信号から極値を検出する機能を有する。尚、ピーク検出器804では、極値が検出される時間のうち、2階微分値が最大となるタイミングを特定し、例えば噴射パルスSpが立ち上がるタイミングからの時間を計測することで、開弁完了時間を検知することができる。
 燃料噴射弁105、燃料噴射弁105を駆動するための回路、及び弁体動作時間検出部211のいずれかに異常(故障、劣化など)が発生すると、駆動電流Id又は駆動電圧Vdの変曲点の発生タイミング等が変化し、更には2階微分曲線の極値の発生タイミングが変化する。
 例えば、燃料噴射弁105の開固着や閉固着が発生した場合、燃料噴射弁105が開弁又は閉弁していないため、駆動電流Id又は駆動電圧Vdの変曲点が検知されないと考えられるが、実際は弁体動作時間検出部211は、微小なノイズ成分による変動を変曲点として検知してしまう場合がある。この場合、弁体動作時間検出部211で算出される弁体動作時間は実際の燃料噴射弁105の弁体動作と同期したものではなく、その時間は正常時と比較して乖離したものとなる。
 また、燃料噴射弁105を駆動するための回路が故障等した場合は、燃料噴射弁105を正常に駆動できなくなるため、故障した状態で弁体動作時間検出部211を動作させると、検知される変曲点は弁体303の実際の動作と同期したものにならない。
 また、弁体動作時間検出部211についても同様で、燃料噴射弁105が正常に動作しているにもかかわらず、その駆動電流Id又は駆動電圧Vdから燃料噴射弁105の弁体動作によって生じる変曲点を正確に検知できず、弁体動作時間は正常時と比較して乖離する。例えば、マルチプレクサ801が故障すると、所望のタイミングで駆動電流Id又は駆動電圧Vdを入力することができなくなる。A/D変換器802、広域抽出フィルタ803、又はピーク検出器804の故障が発生した場合も、駆動電圧Vdや駆動電流Idから弁体動作に同期した変曲点を抽出できず、弁体動作時間は正常時と比較して乖離したものとなる。
 上述した通り、燃料噴射弁105、燃料噴射弁105を駆動するための回路、及び弁体動作時間検出部211のいずれかに異常が発生すると、弁体動作時間は弁体303の動作に同期した時間とならない。そこで、この第1の実施の形態では、弁体動作時間を弁体動作時間検出部211で検出し、この弁体動作時間を状態判定部212において基準値と比較することで異常の有無を判断する。
 図9を参照して、噴射パルスSpが立ち下がった時刻から、駆動電圧Vdの2階微分曲線の最大値までの時間である閉弁完了時間による異常判定方法について説明する。尚、本例では閉弁完了時間について例示的に説明するが、開弁完了時間を検知する場合にも同様の手法を適用することができる。
 図9の方法は、弁体303の閉弁完了時間904が設定範囲902内にあるか否かを状態判定部212において判定するものである。設定範囲902は、燃料噴射弁105、燃料噴射弁105を駆動するための回路、弁体動作時間検出部211のいずれにも異常がない場合に予想される閉弁完了時間の範囲である。この設定範囲902は、状態判定部212の図示しない記憶部に記憶される。
 弁体動作時間検出部211で検出された閉弁完了時間904が設定範囲902に収まらない場合には、状態判定部212により異常が発生したと判定される。弁体動作時間検出部211で検出された閉弁完了時間904が設定範囲902に収まっている場合には、状態判定部212により上記構成要素はいずれも正常であると判定される。
 検出された1つの閉弁完了時間904が設定範囲902に収まらない場合に異常と判定するのではなく、複数通り得られた閉弁完了時間904のうち、所定の割合の閉弁完了時間904が設定範囲902に収まらない場合に「異常」と判定することも可能である。
 上記設定範囲902は、燃料噴射弁105の劣化時における弁体動作時間の変化を考慮し、予め実験によって算出しておき、状態判定部212の図示しない記憶部に記憶させておく。また、燃料噴射弁105の弁体動作時間は燃圧によっても変化する。このため、上記設定範囲902は、燃圧を計測し、この燃圧に従ってその範囲が可変となるようにすることもできる。
 この第1の実施の形態では、駆動電圧Vdのサンプリング期間を図9に示す範囲901のように設定する。このサンプリング範囲901は、噴射パルスSpが立ち下がった後、所定の時間が経過した後に開始するように設定することが好ましい。噴射パルスSpを立ち下げた後の逆起電力による変曲点が誤検出されることを避けることができる。
 弁体動作時間検出部211での検知が完了すると、燃料噴射量補正部213は、予め記憶しておいた基準となる開弁完了時間と、弁体動作時間検出部211で検知された開弁完了時間の偏差である開弁完了偏差を算出する。同様に、予め記憶しておいた基準となる閉弁完了時間と、弁体動作時間検出部211で検知された閉弁完了時間の偏差である閉弁完了偏差を算出する。
 開弁開始偏差と開弁完了偏差とは相関があり、これを図10を参照して説明する。図10において、実線のグラフは弁体変位Hの標準的な曲線を示し、点線のグラフは実際の弁体変位を示している。一般に、開弁完了偏差1202は、各燃料噴射弁105の噴射特性に関わらず開弁開始偏差1201の略定数倍(K倍)であることが知られている。そこで、開弁完了偏差1202にゲイン1/Kを積算して開弁開始偏差1201を算出する。同様にして、閉弁完了偏差1203も算出する。そして、開弁開始偏差1201と閉弁完了偏差1203とに基づいて、弁変位Hの曲線のパルス幅を算出し、予め記憶しておいた基準の弁変位Hのパルス幅H(s)と比較し、両者の偏差を算出する。これにより、要求噴射量に対する噴射パルス幅Wpの補正量を決定することができる。
 尚、上記例では開弁開始偏差1201と閉弁完了偏差1203との両方を用いたが、開弁完了偏差1202と閉弁完了偏差1203のどちらか一方を用いて噴射パルス幅を補正することもできる。
 また、上記例では駆動パルス幅Wpを補正したが、駆動電流Ipを補正することで、噴射量補正を実施することも可能である。例えば、基準となる開弁完了時間に対して、弁体動作検出部211で検知した開弁完了時間が長い場合、駆動電流Ipのピーク電流を相対的に大きくすることで、弁体303の開弁動作を早める(開弁完了時間を短く)することができる。
 逆に、基準となる開弁完了時間に対して、弁体動作検出部211で検知した開弁完了時間が短い場合、駆動電流Ipのピーク電流を相対的に小さくすることで、弁体303の開弁動作を遅くすることができる。このように、基準となる燃料噴射弁105の特性に近づけることができる。閉弁完了時間についても同様に、基準となる閉弁完了時間に対して、弁体動作検出部211で検知した閉弁完了時間が長い場合、駆動電流鵜Ipのピーク電流を小さくすることで、弁体303の開弁動作を遅くすることができる。逆に、基準となる閉弁完了時間に対して、弁体動作時間検出部211で検知した閉弁完了時間が短い場合、ピーク電流を大きくすることで、弁体303の開弁動作を早くすることができる。そのため、基準となる燃料噴射弁の特性に近づけることができる。
 上記で説明した噴射量補正は、弁体動作時間検出部で検出した開弁完了時間もしくは閉弁完了時間の少なくとも一方に基づいて補正を実施しているため、これらの値が異常となると、補正値も異常となるため、適切な補正を行うことができず、要求の噴射量で燃料噴射を実施することが困難になる。よって、燃料噴射量補正部213で実施する燃料噴射量の補正は、状態判定部212において、燃料噴射弁105、燃料噴射弁105を駆動するための回路、弁体動作時間検出部211のいずれにも異常がないと判定された場合のみ実施される。一方、状態判定部212でこれら構成要素に異常であると判定された場合は、燃料噴射量補正部213で実施する補正を禁止する。状態判定部212は、異常と判定がされた場合に、禁止信号Sinhを燃料噴射量補正部213に送信し、燃料噴射量補正部213は、この禁止信号Sinhに基づき、補正動作を停止する。また、弁体動作時間検出部211も、この禁止信号Sinhに基づき、弁体動作時間の検出動作を停止する。
 なお、弁体動作時間検出部211で検知した開弁完了時間及び閉弁完了時間、並びに状態判定部212で算出された状態判定結果は、それらの内部又は別途設けられたEEPROMなどの記憶手段に記憶しておくことができる。
 図11は、駆動電流Id、弁体動作時間検出部211の動作が実行中か否かを表すパルス信号、状態判定部212の判定結果(状態判定結果)、及び記憶手段に記憶される弁体動作時間のデータの時間的変化を示すタイミングチャートである。
 時刻t21にて弁体動作時間検出部211での弁体動作時間の検出が完了し、状態判定部212にて「正常」との判定がされた場合は、記憶手段に記憶されている弁体動作時間1(1305)を最新の検知結果である弁体動作時間2(1306)に更新する。時刻t21以降は、弁体動作時間2(1306)を用いて燃料噴射量の補正が実行される。
 時刻t22で燃料噴射制御装置109Aの電源がOFFとされ、時刻t23では燃料噴射制御装置109Aの電源がONとされる、時刻t22~t23の期間においても、弁体動作時間2(1306)は記憶手段に記憶されたまま維持されている。一方、時刻t24にて再度弁体動作時間検出部211の検知が完了し、状態判定部212にて「異常」の判定がなされた場合は、記憶手段に記憶されている弁体動作時間2(1306)の更新は禁止され、最新の噴射量補正は弁体動作時間2(1306)がそのまま用いられる。このような構成とすることで、状態判定部212が異常判定したとしても、正常判定された際に記憶した弁体動作時間を用いて燃料噴射量の補正を実施することができる。
 このように、第1の実施の形態によれば、弁体動作時間検出部211で弁体動作時間を検出して個体差を検出する一方で、その弁体動作時間に関連する情報に基づいて、状態判定部212において異常の有無を判断することができる。従って、個体差の情報の収集を適切に実行することが可能になる。更に、その判断結果に基づいて噴射量補正の可否判断を行うことで、意図しない噴射量変動を防止することができ、燃費性能や排気性能の悪化を防止することができる。
[第2の実施の形態]
 次に、第2の実施の形態に係る燃料噴射制御装置を、図12を参照して説明する。装置の全体構成(図1~図3、図8)や、燃料噴射制御装置109Aの基本的な動作(図5~図7)は、第1の実施の形態と略同一であるので、重複する説明は省略する。ただし、この第2の実施の形態では、状態判定部212における判定方法が第1の実施の形態とは異なっている。
 図12を参照して、この第2の実施形態の状態判定部212における異常の判定方法を説明する。この第2の実施の形態では、複数回の弁体の動作により検知された複数の閉弁完了時間のデータが、標準偏差の範囲に収まっているか否かにより異常の有無を判断する。この方法によっても、第1の実施の形態と同様の効果を得ることができる。
 図12の例では、閉弁完了時間を3回計測し、それが標準偏差の範囲に収まっているか否か、換言すればバラつきが所定の設定量よりも大きいか否かにより異常の有無を判定している。燃料噴射弁105、燃料噴射弁105を駆動するための回路、及び弁体動作時間検出部211のいずれかに異常が発生した場合、弁体動作時間検出部211で検知した閉弁完了時間が、検知する毎に異なる場合がある。
 図10では、3回の閉弁完了時間1001、1002、1003を検出し、各閉弁完了時間の標準偏差が所定範囲901内に含まれていればあれば正常と判定し、標準偏差が所定範囲外であれば異常と判定する。このように標準偏差の大きさを判定することで、各閉弁完了時間が所定範囲902内(図9)に含まれていたとしても、標準偏差が大きいことから異常と判定することが可能となる。なお、尚、所定範囲901は燃料噴射弁の電気的、機械的なばらつきや、構成回路の電気的ばらつきを考慮し、あらかじめ実験より求めておくことができる。
[第3の実施の形態]
 次に、第3の実施の形態に係る燃料噴射制御装置を、図13を参照して説明する。装置の全体構成(図1~図3、図8)や、燃料噴射制御装置109Aの基本的な動作(図5~図7)は、前述の実施の形態と略同一であるので、重複する説明は省略する。ただし、この第3の実施の形態では、状態判定部212における判定方法が前述の実施の形態とは異なっている。
 図13を参照して、この第3の実施形態の状態判定部212における異常の判定方法を説明する。
 同一の燃料噴射弁105において、弁体動作時間を変化させる要因の一つに経時劣化がある。つまり、燃料噴射弁105、燃料噴射弁105を駆動するための回路、弁体動作時間検出部211がいずれもが正常である場合に検知した閉弁完了時間1103と、新たに検知した閉弁完了時間1102を比較した時に、経時劣化による変化以上の乖離がある場合、異常と判定できる。従って、正常時に検知した閉弁完了時間1103と、新たに検知した閉弁完了時間1102を比較し、その差1104が所定値以下であれば、状態判定部212は、燃料噴射弁105、燃料噴射弁105を駆動するための回路、弁体動作時間検出部211が正常と判定し、その差1104が所定値以上であれば、燃料噴射弁105、燃料噴射弁105を駆動するための回路、及び弁体動作時間検出部211のいずれかが異常と判定する。このように判定することで、燃料噴射弁105等の劣化に対してロバストな判定が可能となる。
 なお、第1~第3の実施の形態の判定方法を、1つの状態判定部212にすべて取り込むことも可能である。
 図14を参照して、本発明の実施の形態の効果を説明する。図14は、複数の気筒INJ#1~4における弁体動作時間のバラつきの度合を棒グラフで示している。正常な燃料噴射制御装置INJ#1、INJ#4では、弁体動作時間にバラつきは殆どなく、弁体動作時間も基準値に近い値となる。しかし、図14のINJ#3のように、弁体動作時間が正常範囲外となる場合がある。このような気筒は、第1の実施の形態(図9)の方法により異常を検出することができる。また、INJ#2のように、弁体動作時間が基準値に近いが、複数のサイクル間で弁体動作時間のバラつきが大きい場合がある。この場合は、第2の実施の形態(図12)の方法を実行することにより異常を検出することができる。
 尚、図9~11では開弁完了時間と閉弁完了時間に基づく異常判定を行う例について説明したが、開弁完了時間と閉弁完了時間の代わりに、又はこれに追加して、駆動電流Idもしくは駆動電圧Vdの2階微分値の大きさによって判定することもできる。
 前述したように、開弁完了や閉弁完了によって生じる変曲点は可動コア301の加速度変化によって発生する。したがって、駆動電圧Vdもしくは駆動電流Idの2階微分値をあらかじめ実験により特定することができるため、2階微分値の大きさが所定の範囲内であるか否かで正常もしくは異常を判定することができる。
 以上、本発明の実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、上記の実施の形態の電気的構成の説明において、各種データや命令を伝達する配線は、説明上必要と考えられるものを代表的に示しており、対応する製品で設けられる全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 また、上記の各構成、機能、処理部等は、例えばアナログ集積回路やデジタル集積回路、又はアナログ/デジタル混載型集積回路等からなるハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムにより実現してもよい。そのようなプログラムは、ハードディスクドライブ、フラッシュメモリ装置、記録ディスク(CD-ROM、DVD-RAMなど)の記録媒体に記録することができる。
11…クランク角度センサ、 12…アクセル開度センサ、 13…燃料圧力センサ、 101…内燃機関、 102…ピストン、 103…吸気弁、 104…排気弁、 105…燃料噴射弁、 106…点火プラグ、 107…点火コイル、 108…水温センサ、 109…ECU、 109A…燃料噴射制御装置、 110…吸気管、 111…排気管、 112…三元触媒、 113…酸素センサ、 115…コレクタ、 119…スロットル弁、 120…空気流量計、 121…燃焼室、 123…燃料タンク、 124…低圧燃料ポンプ、 125…高圧燃料ポンプ、 127…燃料噴射制御装置、 128…排気カム、 129…高圧燃料配管、 201…エンジン状態検知部、 202…燃料噴射パルス信号演算部、 203…燃料噴射駆動波形指令部、 204…ヒューズ、 205…リレー、 206…高電圧生成部(昇圧装置)、 207a、207b…燃料噴射駆動部、 211…弁体動作時間検出部、 212…状態判定部、 213…燃料噴射量補正部、 301…可動コア、 302…ハウジング、 303…弁体、 304…固定コア、 305…ソレノイド、 306…弁座、 307…噴孔、 308…セットスプリング、 309…ゼロスプリング、 503…開弁完了時間、 504…閉弁完了時間、 801…マルチプレクサ、 802…AD変換器、 803…広域抽出フィルタ、 804…ピーク検出器、 902…設定範囲、 904、1001~1003、1102、1103…閉弁完了時間、 1201…開弁開始偏差、 1202…開弁完了偏差、 1203…閉弁完了偏差。

Claims (13)

  1.  燃料噴射弁のコイルに電流又は電圧を供給して前記燃料噴射弁を駆動する燃料噴射弁駆動回路と、
     前記燃料噴射弁の弁体の動作に関する弁体動作時間を検出する弁体動作時間検出部と、
     前記弁体動作時間検出部により検出された弁体動作時間に関連する情報に基づいて、前記燃料噴射弁、前記弁体動作時間検出部、又は前記燃料噴射弁駆動回路の少なくとも一つが異常であると判定する状態判定部とを備える燃料噴射制御装置。
  2.  前記弁体動作時間検出部は、前記燃料噴射弁駆動回路から供給される電圧又は電流において、前記燃料噴射弁の弁体が開弁又は閉弁する際に生じる変曲点を検出し、この変曲点が現れるタイミングを、前記燃料噴射弁が開弁するタイミング、又は閉弁するタイミングとして検出する、請求項1に記載の燃料噴射制御装置。
  3.  前記弁体動作時間検出部は、前記燃料噴射弁駆動回路から供給される電圧又は電流において、前記燃料噴射弁の弁体が閉弁又は閉弁する際に生じる変曲点を検出し、この変曲点に基づいて、前記燃料噴射弁が開弁又は閉弁するタイミングを検出する、請求項1に記載の燃料噴射制御装置。
  4.  前記弁体動作時間検出部は、
     前記燃料噴射弁の弁体が開弁する際には、前記燃料噴射弁駆動回路から供給される電流における変曲点を検出し、
     前記燃料噴射弁の弁体が閉弁する際には、前記燃料噴射弁駆動回路から供給される電圧における変曲点を検出する、請求項3に記載の燃料噴射制御装置。
  5.  前記弁体動作時間検出部は、前記変曲点が現れるタイミングに従って、前記燃料噴射弁が開弁又は閉弁するタイミングを検出する、請求項3又は4に記載の燃料噴射制御装置。
  6.  前記変曲点が現れるタイミングを、前記燃料噴射弁が開弁するタイミング、又は閉弁するタイミングとして検出する、請求項5に記載の燃料噴射制御装置。
  7.  前記変曲点は、前記電圧又は前記電流の変化曲線の2階微分値の極値に基づいて検出される、請求項2~6のいずれか1項に記載の燃料噴射制御装置。
  8.  前記状態判定部は、前記弁体動作時間検出部により検出された前記弁体動作時間が設定範囲外となった場合に、前記燃料噴射弁、前記弁体動作時間検出部、又は前記燃料噴射弁駆動回路の少なくとも一つが異常であると判定する、請求項1~7のいずれか1項に記載の燃料噴射制御装置。
  9.  前記状態判定部は、前記弁体動作時間検出部により検出された前記弁体動作時間のばらつきが設定量に比べて大きい場合に、前記燃料噴射弁、前記弁体動作時間検出部、又は前記燃料噴射弁駆動回路の少なくとも一つが異常であることを判定する、請求項1~7のいずれか1項に記載の燃料噴射制御装置。
  10.  前記状態判定部は、前記弁体動作時間検出部により検出された前記弁体動作時間と設定基準値との差が設定量に比べて大きい場合に、前記燃料噴射弁、前記弁体動作時間検出部、又は前記燃料噴射弁駆動回路の少なくとも一つが異常であると判定する、請求項1~8のいずれか1項に記載の燃料噴射制御装置。
  11.  前記状態判定部が前記燃料噴射弁、前記弁体動作時間検出部、及び前記燃料噴射弁駆動回路が正常であると判定した場合に、前記弁体動作時間検出部により検出された弁体動作時間に基づき、前記燃料噴射弁の噴射量を補正する補正部を更に備えたことを特徴とする請求項1~7のいずれか1項に記載の燃料噴射制御装置。
  12.  前記状態判定部が前記燃料噴射弁、前記弁体動作時間検出部、及び前記燃料噴射弁駆動回路の少なくとも一つが異常であると判定した場合に、前記補正部による補正が禁止される、請求項11に記載の燃料噴射制御装置。
  13.  前記補正部は、前記弁体動作時間検出部から得られた前記弁体動作時間を記憶部に記憶可能に構成され、前記補正部による補正が禁止された場合に、前記記憶部に記憶されている前記弁体動作時間の更新が禁止される、請求項12に記載の燃料噴射制御装置。
PCT/JP2019/005211 2018-05-23 2019-02-14 燃料噴射制御装置 WO2019225076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019001830.2T DE112019001830T5 (de) 2018-05-23 2019-02-14 Kraftstoffeinspritzsteuervorrichtung
JP2020521022A JP6970823B2 (ja) 2018-05-23 2019-02-14 燃料噴射制御装置
US17/051,883 US11193442B2 (en) 2018-05-23 2019-02-14 Fuel injection control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-098595 2018-05-23
JP2018098595 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225076A1 true WO2019225076A1 (ja) 2019-11-28

Family

ID=68616897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005211 WO2019225076A1 (ja) 2018-05-23 2019-02-14 燃料噴射制御装置

Country Status (4)

Country Link
US (1) US11193442B2 (ja)
JP (1) JP6970823B2 (ja)
DE (1) DE112019001830T5 (ja)
WO (1) WO2019225076A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148117A (ja) * 2020-03-24 2021-09-27 日立Astemo株式会社 電磁弁駆動装置
WO2022239309A1 (ja) * 2021-05-11 2022-11-17 日立Astemo株式会社 燃料噴射制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542885B2 (en) * 2018-07-03 2023-01-03 Hitachi Astemo, Ltd. Load drive circuit and load drive system
WO2020240985A1 (ja) * 2019-05-24 2020-12-03 日立オートモティブシステムズ株式会社 燃料噴射制御装置及び燃料噴射制御方法
JP7424240B2 (ja) * 2020-07-29 2024-01-30 株式会社デンソー 噴射制御装置
US11946430B2 (en) * 2021-12-22 2024-04-02 Caterpillar Inc. Optimized energy waveform for fuel injector trimming based on valve arrival time
CN114704682A (zh) * 2022-03-31 2022-07-05 无锡威孚高科技集团股份有限公司 电控阀驱系统及电控阀驱系统的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152697A (ja) * 2013-02-08 2014-08-25 Hitachi Automotive Systems Ltd 燃料噴射装置の駆動装置
JP2015055277A (ja) * 2013-09-11 2015-03-23 本田技研工業株式会社 電磁弁の駆動制御装置
WO2017006814A1 (ja) * 2015-07-09 2017-01-12 日立オートモティブシステムズ株式会社 燃料噴射装置の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587300B2 (ja) * 2001-01-16 2004-11-10 株式会社デンソー 集積回路装置
JP3894088B2 (ja) * 2002-10-07 2007-03-14 株式会社日立製作所 燃料供給装置
EP2428670B1 (en) * 2006-04-03 2021-06-09 Delphi Technologies IP Limited Drive circuit for an injector arrangement
DE102006055341B3 (de) * 2006-11-23 2008-03-13 Siemens Ag Verfahren zur Lokalisierung eines Fehlerorts innerhalb eines Kraftstoffeinspritzsystems
JP6070502B2 (ja) * 2013-10-11 2017-02-01 株式会社デンソー 内燃機関の燃料噴射制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152697A (ja) * 2013-02-08 2014-08-25 Hitachi Automotive Systems Ltd 燃料噴射装置の駆動装置
JP2015055277A (ja) * 2013-09-11 2015-03-23 本田技研工業株式会社 電磁弁の駆動制御装置
WO2017006814A1 (ja) * 2015-07-09 2017-01-12 日立オートモティブシステムズ株式会社 燃料噴射装置の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148117A (ja) * 2020-03-24 2021-09-27 日立Astemo株式会社 電磁弁駆動装置
JP7361644B2 (ja) 2020-03-24 2023-10-16 日立Astemo株式会社 電磁弁駆動装置
WO2022239309A1 (ja) * 2021-05-11 2022-11-17 日立Astemo株式会社 燃料噴射制御装置
JP7492654B2 (ja) 2021-05-11 2024-05-29 日立Astemo株式会社 燃料噴射制御装置

Also Published As

Publication number Publication date
JPWO2019225076A1 (ja) 2021-03-25
US20210123393A1 (en) 2021-04-29
DE112019001830T5 (de) 2020-12-24
US11193442B2 (en) 2021-12-07
JP6970823B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2019225076A1 (ja) 燃料噴射制御装置
US9903305B2 (en) Control device for internal combustion engine
JP6314733B2 (ja) 内燃機関の燃料噴射制御装置
US9970376B2 (en) Fuel injection controller and fuel injection system
US10309336B2 (en) Control device for fuel injection valve
JP6520814B2 (ja) 燃料噴射制御装置
US10823102B2 (en) Control device for fuel injection valve
JP2017201156A (ja) 燃料噴射制御装置
JP6483495B2 (ja) 燃料噴射弁用の昇圧制御装置
JP2017201160A (ja) 燃料噴射制御装置
CN113167185B (zh) 燃料喷射控制装置
JP6844501B2 (ja) 燃料噴射弁の制御装置、及び燃料噴射弁の制御方法
JP2013137028A (ja) 内燃機関の燃料噴射制御装置及び方法
JP7444004B2 (ja) 噴射制御装置
JP6945053B2 (ja) 燃料噴射制御装置、燃料噴射制御方法
WO2018096940A1 (ja) 燃料噴射制御装置
JP7506666B2 (ja) 燃料噴射制御装置及び燃料噴射制御方法
US11873775B2 (en) Fuel injection control device
JP6748743B2 (ja) 燃料噴射制御装置及び燃料噴射制御方法
WO2019039115A1 (ja) 燃料噴射制御装置及び燃料噴射制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521022

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19807294

Country of ref document: EP

Kind code of ref document: A1