WO2016021122A1 - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
WO2016021122A1
WO2016021122A1 PCT/JP2015/003555 JP2015003555W WO2016021122A1 WO 2016021122 A1 WO2016021122 A1 WO 2016021122A1 JP 2015003555 W JP2015003555 W JP 2015003555W WO 2016021122 A1 WO2016021122 A1 WO 2016021122A1
Authority
WO
WIPO (PCT)
Prior art keywords
precharge
current
time
fuel injection
injection
Prior art date
Application number
PCT/JP2015/003555
Other languages
English (en)
French (fr)
Inventor
田中 誠
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/501,523 priority Critical patent/US10197002B2/en
Priority to DE112015003611.3T priority patent/DE112015003611B4/de
Publication of WO2016021122A1 publication Critical patent/WO2016021122A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2034Control of the current gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2044Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using pre-magnetisation or post-magnetisation of the coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/503Battery correction, i.e. corrections as a function of the state of the battery, its output or its type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to a fuel injection control device for an internal combustion engine.
  • a method for driving the fuel injection valve a method has been proposed in which the coil applied voltage is set to a high voltage at the beginning of the valve opening and then switched to a low voltage.
  • the valve opening response is improved by applying a high voltage, and then the fuel injection valve is driven at a low power by switching to a low voltage.
  • the switching from the high voltage to the low voltage is performed based on the detected current detected by the current detection circuit, and the applied voltage is switched when it is determined that the detected current has reached a predetermined target peak value. It has come to be.
  • Patent Document 1 a machine difference variation amount of the actual drive current is stored in a storage unit in advance, and a target drive current is corrected based on the machine difference variation amount.
  • a precharge current smaller than the valve body is activated is supplied to the coil at the beginning of energization of the fuel injection valve, and subsequently the drive current for operating the valve body is supplied.
  • the technique of doing so is also known, and the inventor of the present application pays particular attention to the state of energization during the precharge period, and aims to improve the variation in fuel injection by improving the precharge control.
  • This disclosure is intended to provide a fuel injection control device for an internal combustion engine capable of appropriately controlling the fuel injection amount.
  • the fuel injection control device includes a valve body and an electromagnetic unit that moves the valve body from a valve closing position to a valve opening position when energized, and fuel that injects fuel when the valve body moves to the valve opening position. It is applied to an internal combustion engine provided with an injection valve.
  • the fuel injection control device supplies a precharge current smaller than the valve body to be operated to the electromagnetic part during a precharge period at the beginning of energization, and subsequently operates the valve body. Supply drive current.
  • the fuel injection control device includes: a parameter acquisition unit that acquires a current change parameter that is a parameter that correlates with a rising change speed of the drive current; and the electromagnetic change based on the current change parameter acquired by the parameter acquisition unit.
  • a precharge control unit that controls supply of a precharge current to the unit.
  • the supply of the precharge current to the electromagnetic portion of the fuel injection valve is controlled based on the current change parameter that correlates with the rising speed of the drive current. In this case, since the speed of the rising change of the drive current depends on the input energy amount in the precharge period immediately before the supply of the drive current, the current change parameter correlates with the speed of the rise change.
  • FIG. 1 is a diagram showing a schematic configuration of an engine control system.
  • FIG. 2 is a block diagram showing the configuration of the ECU.
  • FIG. 3A is a diagram showing a configuration and a state of a fuel injection valve.
  • FIG. 3B is a diagram showing the configuration and state of the fuel injection valve.
  • FIG. 4 is a time chart for explaining the driving operation of the fuel injection valve.
  • FIG. 5 is a time chart showing an outline of multistage injection.
  • FIG. 6 is a functional block diagram showing details of precharge time calculation.
  • FIG. 7 is a flowchart showing a processing procedure for precharge time calculation.
  • FIG. 1 is a diagram showing a schematic configuration of an engine control system.
  • FIG. 2 is a block diagram showing the configuration of the ECU.
  • FIG. 3A is a diagram showing a configuration and a state of a fuel injection valve.
  • FIG. 3B is a diagram showing the configuration and state of the fuel injection valve.
  • FIG. 4 is a
  • FIG. 8 is an explanatory diagram regarding the calculation of the time integral value of the drive current.
  • FIG. 9 is a flowchart showing a precharge time calculation processing procedure in the second embodiment.
  • FIG. 10 is a flowchart showing a processing procedure for precharge time calculation in the third embodiment.
  • FIG. 11 is a diagram showing a map for setting an interval time in the third embodiment.
  • FIG. 12A is a time chart specifically showing precharge control according to the third embodiment.
  • FIG. 12B is a time chart specifically showing the precharge control of the third embodiment.
  • FIG. 12C is a time chart specifically showing the precharge control of the third embodiment.
  • FIG. 12D is a time chart specifically showing the precharge control of the third embodiment.
  • FIG. 12E is a time chart specifically showing the precharge control of the third embodiment.
  • FIG. 13 is a flowchart illustrating a processing procedure of pulse correction in the fourth embodiment.
  • An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 which is a cylinder injection type multi-cylinder internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. ing.
  • a throttle valve 16 whose opening is adjusted by a motor 15 and a throttle position sensor 17 that detects the opening (throttle position) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.
  • a surge tank 18 is provided downstream of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18.
  • An intake manifold 20 that introduces air into each cylinder 21 of the engine 11 is connected to the surge tank 18, and each cylinder 21 of the engine 11 has an electromagnetic fuel injection valve 30 that directly injects fuel into the cylinder. It is attached.
  • An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder 21, and the air-fuel mixture in the cylinder is ignited by spark discharge of the ignition plug 22 of each cylinder 21.
  • the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) that detects the air-fuel ratio or rich / lean of the air-fuel mixture based on the exhaust gas, and the downstream side of the exhaust gas sensor 24 Further, a catalyst 25 such as a three-way catalyst for purifying exhaust gas is provided.
  • an exhaust gas sensor 24 air-fuel ratio sensor, oxygen sensor, etc.
  • a catalyst 25 such as a three-way catalyst for purifying exhaust gas is provided.
  • the cylinder block of the engine 11 is provided with a cooling water temperature sensor 26 that detects the cooling water temperature and a knock sensor 27 that detects knocking.
  • a crank angle sensor 28 that outputs a pulse signal every time the crankshaft rotates a predetermined crank angle is attached to the outer peripheral side of the crankshaft. Based on the crank angle signal of the crank angle sensor 28, the crank angle and the engine rotation speed are determined. Detected. The outputs of these various sensors and the output of the voltage sensor 29 that detects the battery voltage are sequentially input to the ECU 40.
  • the ECU 40 is an electronic control unit mainly composed of a microcomputer, and performs various controls of the engine 11 using detection signals of various sensors.
  • the ECU 40 corresponds to a fuel injection control device.
  • the ECU 40 calculates the fuel injection amount according to the engine operating state, controls the fuel injection of the fuel injection valve 30, and controls the ignition timing of the spark plug 22.
  • the ECU 40 includes a microcomputer 41 for controlling the engine (a microcomputer for controlling the engine 11), a drive IC 42 for driving the injector (a drive IC for driving the fuel injection valve 30), an energizing operation unit 43, A current detection unit 44 is provided.
  • the microcomputer 41 calculates a required injection amount according to the engine operating state (for example, engine speed, engine load, etc.), and generates and outputs an injection pulse from the injection time calculated based on the required injection amount.
  • the drive IC 42 and the energization operation unit 43 correspond to an injection valve drive unit and a voltage switching unit, and drive the fuel injection valve 30 to open by an injection pulse, thereby injecting fuel for the required injection amount.
  • the energization operation unit 43 includes a low-voltage power supply unit 51 and a high-voltage power supply unit 52, and a switching element that energizes the coil 31 of the fuel injection valve 30 from any one of the power supply units 51 and 52. 53 to 55.
  • the low voltage power supply unit 51 includes a low voltage output circuit that outputs a low voltage V1 of, for example, 12V
  • the high voltage power supply unit 52 outputs a high voltage V2 (boosted voltage) of, for example, 60 to 65V. It becomes more.
  • the high-voltage power supply unit 52 has a booster circuit that boosts the battery voltage.
  • the low voltage power supply unit 51 may be configured to output a plurality of different low voltages V1.
  • the low voltage V1 and the high voltage V2 are switched and applied to the coil 31 of the fuel injection valve 30 in time series.
  • the high voltage V2 is applied at the initial stage of the valve opening, thereby ensuring the valve opening responsiveness of the fuel injection valve 30, and subsequently the low voltage V1 is applied, whereby the fuel injection valve 30.
  • the valve open state is maintained.
  • the lift of the valve body is finished in a partial lift state before the valve body of the fuel injection valve 30 reaches the full lift position, and a desired amount of fuel is supplied in that state.
  • Partial lift injection to be performed is performed, and the partial lift injection will be briefly described with reference to FIGS. 3A and 3B.
  • 3A shows the operation at the time of full lift injection
  • FIG. 3B shows the operation at the time of partial lift injection.
  • the fuel injection valve 30 has a coil 31 as an electromagnetic part that generates an electromagnetic force when energized, and a needle 33 (valve element) that is driven integrally with a plunger 32 (movable core) by the electromagnetic force.
  • a needle 33 valve element
  • the fuel injection valve 30 is opened, and fuel injection is performed.
  • the time of the injection pulse is different, and when the injection pulse width is relatively long as shown in FIG. 3A (when the needle lift amount becomes the full lift amount), the needle 33 reaches the full lift position (position where the plunger 32 hits the stopper 34).
  • the current detection unit 44 detects the energization current of the coil 31 when the fuel injection valve 30 is driven to open, and the detection result is sequentially output to the drive IC 42.
  • the current detection unit 44 may have a well-known configuration, and includes, for example, a shunt resistor and an amplifier circuit.
  • precharge, step-up drive, and valve-opening maintenance drive are performed in time series during the period when the injection pulse is turned on.
  • the precharge the low voltage V1 is applied to the coil 31 prior to the application of the high voltage V2 at the start of energization of the fuel injection valve 30, and the time required to reach the target peak value of the energization current by performing the precharge. Is shortened.
  • the boost drive is performed to improve the valve opening response, and the high voltage V2 is applied to the coil 31 during the boost drive period.
  • the valve-opening maintenance drive is performed subsequent to the boost drive, and the low voltage V1 is applied to the coil 31.
  • the injection pulse is turned on, and precharge with the low voltage V1 is performed from t1 to t2.
  • a precharge current smaller than that for operating the needle 33 is supplied to the coil 31.
  • the precharge period may be a predetermined time.
  • the switching element 53 may be repeatedly turned on and off at a predetermined duty ratio to perform precharge.
  • the applied voltage of the coil 31 is switched from the low voltage V1 to the high voltage V2.
  • the drive current increases sharply compared to the precharge current that is the energization current in the period from t1 to t2.
  • the application of the high voltage V2 is stopped.
  • the needle lift is started at the timing when the drive current reaches the target peak value Ip or at the timing just before that, and the fuel injection is started along with the needle lift.
  • the determination as to whether or not the drive current has reached the target peak value Ip is performed based on the detection current detected by the current detection unit 44.
  • the energizing operation unit 43 switches the coil application voltage (V2 Is stopped).
  • the drive current decreases as the application of V2 stops, but the low voltage V1 is intermittently applied to the coil 31 based on a predetermined current threshold and a current detected by the current detector 44.
  • the current threshold value is determined in two stages, and the low voltage V1 is applied every time the drive current (detected current) becomes equal to or less than the threshold value.
  • the switching of the current threshold value may be performed at a timing when it is estimated that the needle lift has reached a predetermined partial lift amount (time t4 in the figure).
  • FIG. 5 shows driving waveforms of two front and rear injections (pre-injection and post-injection) among the multi-stage injections.
  • FIG. 5 shows two front and rear injection pulses, and the interval time INT is between the front and rear injection pulses.
  • energization of the precharge current is started at time t11
  • energization of the drive current is started at time t12.
  • post injection energization of the precharge current is started at time t21, and energization of the drive current is started at time t22.
  • the number of multi-stage injections may be set based on engine operating conditions such as engine speed and engine load.
  • the multi-stage injection interval time may be set based on the engine operating state. In the present embodiment, in the case of multistage injection of three or more stages, the interval time between each injection is made the same, but the interval time can be changed for each injection.
  • a current change parameter that correlates with the rising change speed of the drive current is calculated, and the supply of the precharge current to the coil 31 is controlled based on the current change parameter. Specifically, as the current change parameter, the arrival time until the drive current reaches a specific current threshold and the interval time during multistage injection are calculated, and precharge control is performed based on these current change parameters To do.
  • magnetism remains in the coil 31 after energization of the coil accompanying the end of fuel injection, and the magnitude of the residual magnetism depends on the elapsed time after the end of energization.
  • the interval time is included in the current change parameter.
  • FIG. 6 Each function shown in FIG. 6 is realized by the ECU 40.
  • the feedforward term (FF term) and the feedback term (FB term) of the precharge time are calculated based on various parameters, and the precharge time is calculated by the FF term and the FB term. It is said.
  • the FF term calculation unit 61 calculates a basic precharge time based on the battery voltage VB, calculates a time correction value based on the interval time INT, and uses the basic precharge time and the time correction value.
  • the basic precharge time is calculated as a larger value as the battery voltage VB is smaller.
  • the time correction value is calculated as a larger value as the interval time INT is shorter.
  • the time correction value 0.
  • the interval time INT may be a value calculated as control information for multistage injection or a value measured by a timer, a counter, or the like. When it is the time of the first injection of multistage injection or when multistage injection is not performed, interval correction is unnecessary and the time correction value is not calculated.
  • the FB term calculation unit 62 acquires a current arrival time that is a time until the drive current reaches the target peak value Ip after the start of energization of the drive current, and a target arrival time that is the target value.
  • the deviation ⁇ E is calculated from the current arrival time calculated using a timer, a counter, or the like and the predetermined target arrival time.
  • the target arrival time may be calculated based on the target peak value Ip and the like.
  • the P term and the I term are calculated based on the deviation ⁇ E.
  • the time from when the injection pulse is turned on is referred to as “arrival time”, but in addition to this, the time from the start of driving current energization (precharge end) may be referred to as “arrival time”.
  • the FB term is calculated as a positive value if the deviation ⁇ E is positive, and as a negative value if the deviation ⁇ E is negative.
  • the F / B term is calculated as a larger value on the positive side or a larger value on the negative side as the deviation ⁇ E is larger.
  • the time calculation unit 63 calculates the precharge time by adding the FF term and the FB term (P term + I term). Note that the upper and lower limit guards and the annealing process may be performed on the addition value of the FF term and the FB term. As a result, it is possible to prevent the precharge time from being erroneously calculated due to temperature characteristics and individual difference variations, or a sudden change in the precharge time.
  • FIG. 7 is a flowchart showing a precharge time calculation procedure, and this process is repeatedly executed by the ECU 40 at a predetermined cycle.
  • step S10 it is determined whether or not a precharge execution condition is satisfied.
  • step S11 it is determined whether or not a precharge time calculation condition is satisfied.
  • the execution conditions of step S10 include that the engine 11 is not in a transient state, that there is no abnormality in the drive IC 42 and various detection systems, and the like.
  • the calculation conditions in step S11 include that the current injection is an injection with the shortest injection pulse (coil energization time) among the injections in the multistage injection, the time when the partial lift injection is performed, and the like. . And if each condition of step S10, S11 is materialized, it will progress to step S12.
  • step S12 the precharge time FF term is calculated.
  • the FF term is calculated by adding the basic precharge time calculated based on the battery voltage VB and the time correction value calculated based on the interval time INT.
  • the FB term of the precharge time is calculated.
  • the actual current arrival time and the target arrival time until the drive current reaches the target peak value Ip are acquired, the arrival time deviation ⁇ E is calculated, and the deviation ⁇ E is further calculated.
  • the FB term is calculated by PI feedback calculation.
  • the current arrival time does not have to be the time until the target peak value Ip is reached, but is the time until the current threshold value that is determined as a value smaller than Ip based on the target peak value Ip. There may be.
  • step S14 the precharge time is calculated by adding the FF term and the FB term (P term + I term).
  • the precharge time calculated in this way is used for precharge control of each injection of multistage injection in the next and subsequent fuel injections.
  • the precharge control is performed by increasing the precharge time so that the precharge current integrated value in the precharge period is increased.
  • step S10 the process proceeds to step S15, the precharge time is set to 0, and the process is terminated. If step S11 is NO, the process ends without calculating the precharge time.
  • a precharge current instead of the precharge time as the precharge control amount.
  • the precharge time is set to a fixed value and the precharge current is set to be variable.
  • the FF term calculation unit 61 calculates the FF term of the precharge current
  • the FB term calculation unit 62 calculates the FB term of the precharge current, and the FF term and the FB term.
  • the control value of the precharge current is calculated.
  • the precharge control is performed so as to increase the precharge current.
  • the rising speed (change slope) of the drive current may be used instead of the current arrival time, and the FB term may be calculated based on this rising speed.
  • the precharge time is increased or the precharge current is increased as the rising speed is lower. That is, the precharge current integrated value in the precharge period is increased.
  • a time integral value at the time of rising change of the drive current may be used, and the FB term may be calculated based on this time integral value.
  • the smaller the time integration value the longer the precharge time or the larger the precharge current.
  • a target peak value Ip and a plurality of other current values I1 and 12 in this embodiment
  • the respective values are set.
  • the arrival time of is detected.
  • a time integral value for example, a dot portion in the figure
  • the supply of the precharge current to the coil 31 is controlled based on the current change parameter that correlates with the rising speed of the drive current.
  • the current change parameter correlates with the speed of the rise change. According to this, it is possible to grasp whether the amount of energy input to the coil 31 due to precharging is excessive or insufficient. Then, by controlling the supply of the precharge current, the excess or deficiency of the amount of energy input to the coil 31 can be solved. As a result, it becomes possible to appropriately control the fuel injection amount.
  • the current change parameter obtain the time until the drive current reaches the specific current threshold, the drive current rise speed, or the time integral value at the drive current rise change.
  • the precharge control is performed so that the precharge current integrated value in the precharge period becomes larger as the time becomes smaller or the time integration value becomes smaller.
  • the current arrival time, the current rise speed, and the time integral value of the drive current are parameters directly related to the precharge implementation status, and by using these as current change parameters, precharge control is preferable. Can be implemented.
  • the precharge current integrated value in the precharge period is changed, thereby changing the rising speed of the drive current.
  • the precharge control by increasing or decreasing the precharge time or the precharge current, it is possible to suppress a variation in the drive current and realize a desired fuel injection.
  • the variation in the fuel injection amount due to the valve opening response of the fuel injection valve 30 becomes larger than in the full lift injection.
  • the precharge time (precharge control amount) is calculated at the time of performing the partial lift injection, the variation in the fuel injection amount in the partial lift injection can be suitably suppressed.
  • the precharge time may be calculated based on the flowchart of FIG. 9 instead of the flowchart of FIG.
  • the calculation process of the FF term is omitted, and the previous value of the precharge time is calculated by increasing or decreasing the previous value of the precharge time based on the deviation ⁇ E between the current arrival time and the target arrival time. It is configured to do.
  • step S20 it is determined whether or not a precharge execution condition is satisfied.
  • step S21 it is determined whether or not a precharge time calculation condition is satisfied (step in FIG. 7). Same as S10 and S11). If both conditions are satisfied, the process proceeds to step S22.
  • step S22 the current arrival time and the target arrival time until the drive current reaches the target peak value Ip are acquired, and in step S23, the deviation ⁇ E is calculated by subtracting the target arrival time from the current arrival time.
  • step S24 it is determined whether or not the absolute value of the deviation ⁇ E is greater than or equal to the first threshold value TH1. If
  • step S24 If it is determined in step S24 that
  • TH2 ⁇ TH1.
  • ⁇ TH2 means that the deviation ⁇ E has converged to a minute value.
  • the process proceeds to step S27, and the increase / decrease in the precharge time is stopped.
  • both steps S24 and S26 are NO, the current precharge time is used as it is for precharge control without increasing or decreasing. Thereby, the precharge time is fixed.
  • step S20 If step S20 is NO, the process proceeds to step S28, the precharge time is set to 0, and the process is terminated. If step S21 is NO, the present process is terminated without calculating the precharge time.
  • the precharge time is increased or decreased by a predetermined value at the next and subsequent fuel injections, and then increased or decreased.
  • the increase correction or the decrease correction is stopped. In this case, variation in the fuel injection amount can be suitably suppressed while reflecting individual differences in the fuel injection valve 30 and the drive circuit, changes in temperature conditions, and the like.
  • the multicharge injection interval time and the current value immediately before the end of energization of the preinjection are used as the current change parameters, and the precharge time is variably set based on these. It is configured to do.
  • FIG. 10 is a flowchart showing a precharge time calculation procedure, and this processing is repeatedly performed by the ECU 40 at a predetermined cycle. 10 may be configured to determine whether or not the precharge execution condition and the precharge time calculation condition are successful, as in FIG. 7 described above, but the illustration is omitted here for convenience.
  • step S31 an interval time from the previous injection is acquired in the current fuel injection, and in a subsequent step S32, a current value immediately before the end of energization of the previous injection is acquired. Note that these interval times and current values immediately before the end of energization may be measured values or calculated values for control.
  • step S33 the precharge time is set based on the interval time and the current value immediately before the end of energization using the map of FIG.
  • a plurality of current values are defined as the current value [A] immediately before the end of energization of the pre-injection, and a plurality of times are defined as the interval time [ms]. Based on these parameters, the precharge time is determined. [Ms] is set. In this case, when the interval time is short, the precharge time is set to be shorter than that when the interval time is longer. Further, when the current value immediately before the end of energization is large, the precharge time is set to a shorter time than when the current value is smaller than that.
  • a region where the precharge time is 0 is defined, and switching between the case where the precharge is performed and the case where the precharge is not performed is possible depending on whether the region corresponds to this region or not. Yes.
  • the precharge control in the present embodiment will be described more specifically with reference to FIGS. 12A to 12E. 12A to 12C, the current values immediately before the end of energization of the pre-injection are all the same (2.35 A), and the interval times are 1.0 ms, 0.8 ms, and 0.4 ms, respectively. In this case, in FIGS. 12A to 12C, the precharge time is different as shown.
  • the current value immediately before the end of energization of the pre-injection is set to 5.0 A, which is larger than those in FIGS. 12A to 12C, and the interval times are set to 1.0 ms and 0.8 ms, respectively. Yes.
  • 12D and 12E have different precharge times as illustrated.
  • the precharge time is shortened when the interval time during multistage injection is short, and the precharge time is shortened when the current value immediately before the end of energization of the previous injection is large.
  • the precharge control can be suitably performed in consideration of the influence of the residual magnetism.
  • one of the interval time for multi-stage injection and the current value immediately before the end of energization for the previous injection can be set to a fixed value.
  • the charge time may be set to be variable.
  • the precharge period of the post-injection approaches the energization period of the pre-injection (injection pulse). It is also conceivable that the precharge of the post injection is started. In such a case, there is a concern that the fuel injection amount in one combustion cycle becomes too small. For example, assuming that the timing of actual injection start (valve body lift start) is constant, there is a concern that the pre-injection may be affected by extending the pre-charge time of the post-injection.
  • an upper limit value of the precharge time is determined in advance, and when the set value of the precharge time exceeds the upper limit value, the precharge time is limited by the upper limit value and the precharge time is exceeded. Based on the minute, the ejection pulse (drive current energization time) is extended and corrected.
  • FIG. 13 is a flowchart showing a processing procedure of pulse correction in this embodiment, and this processing is repeatedly performed by the ECU 40 at a predetermined cycle.
  • step S41 it is determined whether or not the precharge time (for example, the precharge time calculated in FIG. 7) exceeds the upper limit value.
  • step S42 If the precharge time> the upper limit value, the process proceeds to step S42 to guard the precharge time with the upper limit value.
  • step S43 a command to extend and correct the pulse width of the post-injection injection pulse is issued.
  • the relationship between the excess of the precharge time with respect to the upper limit value and the pulse width extension correction value is defined as a map, the pulse width extension correction value is calculated using the map, and the extension correction is performed.
  • the injection pulse is extended and corrected according to the value.
  • the injection pulse may be extended for the final injection of the multistage injection.
  • the post-injection injection pulse is extended instead of extending the precharge time.
  • fuel injection can be performed while ensuring a desired amount of fuel while suppressing variations in the energization waveform.
  • the precharge time and precharge current may be set in consideration of the temperature characteristics of the coil 31. In this case, in a state where the resistance value of the coil 31 is increased with respect to the reference value, the precharge time and the precharge current may be increased according to the increase in the resistance value.
  • the interval time for multistage injection may be a pause time between actual fuel injections caused by the preceding and following injection pulses, in addition to the pause time between injection pulses.
  • the precharge control based on the current change parameter may be performed only in the former case between the case where the multistage injection is performed and the case where the multistage injection is not performed. In this case, it is considered that the time of fuel injection per one time becomes shorter and the influence of fuel injection variation becomes larger when multistage injection is performed, but such fuel injection variation can be suitably suppressed.
  • the present disclosure can be applied to other engines in addition to the gasoline engine, and can be embodied as a fuel injection control device of a diesel engine, for example.

Abstract

エンジン(11)は燃料噴射弁(30)を備えている。燃料噴射弁(30)は、弁体と、通電により弁体を閉弁位置から開弁位置に移動させる電磁部とを有し、弁体が開弁位置に移動することにより燃料を噴射する。ECU(40)は、燃料噴射に際し、通電開始当初のプレチャージ期間において電磁部に対して弁体が作動するよりも小さいプレチャージ電流を供給するとともに、それに引き続いて弁体を作動させる駆動電流を供給する。また、ECU(40)は、駆動電流の立ち上がり変化の速さに相関するパラメータである電流変化パラメータを取得し、その取得した電流変化パラメータに基づいて、燃料噴射弁(30)の電磁部に対するプレチャージ電流の供給を制御する。

Description

内燃機関の燃料噴射制御装置 関連出願の相互参照
 本出願は、2014年8月6日に出願された日本出願番号2014-160086号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関の燃料噴射制御装置に関するものである。
 車両等に搭載される内燃機関の各気筒に燃料を噴射供給する燃料噴射弁として、例えば電磁ソレノイド式のものが知られている。この種の燃料噴射弁においては、燃料噴射弁本体に内蔵されるコイルへの通電時期及び通電時間を制御して、弁体(ニードル)を開弁方向に駆動させることで、燃料噴射時期及び燃料噴射量を制御している。
 また、燃料噴射弁の駆動手法として、コイル印加電圧を、開弁当初は高電圧とし、その後低電圧に切り替えるものが提案されている。かかる技術では、高電圧の印加により開弁応答性を高め、その後に低電圧に切り替えることで燃料噴射弁を低電力駆動するようにしている。また、高電圧から低電圧への切替は、電流検出回路により検出される検出電流に基づき実施され、その検出電流が所定の目標ピーク値に到達したと判定された際に印加電圧の切替が行われるようになっている。
 燃料噴射装置には機差ばらつきが存在するため、実際の駆動電流にばらつきが生じることが考えられ、こうした駆動電流のばらつきに起因して燃料噴射量にばらつきが生じることが懸念される。そこで特許文献1では、実駆動電流の機差ばらつき量をあらかじめ記憶部に記憶しておき、その機差ばらつき量に基づいて目標の駆動電流を補正するようにしている。
 しかしながら、燃料噴射装置における機差のばらつきは一様でなく、また時間経過に伴い変化することが考えられる。そのため、燃料噴射量のばらつきを解消するには技術改善の余地があると考えられる。
 また、燃料噴射弁の駆動に関して、燃料噴射弁への通電開始当初においてコイルに対して弁体が作動するよりも小さいプレチャージ電流を供給するとともに、それに引き続いて弁体を作動させる駆動電流を供給するようにした技術も知られており、本願発明者は特にプレチャージ期間での通電の状況に着眼し、プレチャージ制御の改良により燃料噴射ばらつきの改善を図る。
特開2014-5740号公報
 本開示は、燃料噴射量を適正に制御することができる内燃機関の燃料噴射制御装置を提供することを目的とする。
 燃料噴射制御装置は、弁体と、通電により前記弁体を閉弁位置から開弁位置に移動させる電磁部とを有し、前記弁体が開弁位置に移動することにより燃料を噴射する燃料噴射弁を備える内燃機関に適用される。燃料噴射制御装置は、燃料噴射に際し、通電開始当初のプレチャージ期間において前記電磁部に対して前記弁体が作動するよりも小さいプレチャージ電流を供給するとともに、それに引き続いて前記弁体を作動させる駆動電流を供給する。さらに、燃料噴射制御装置は、前記駆動電流の立ち上がり変化の速さに相関するパラメータである電流変化パラメータを取得するパラメータ取得部と、前記パラメータ取得部により取得した電流変化パラメータに基づいて、前記電磁部に対するプレチャージ電流の供給を制御するプレチャージ制御部と、を備える。
 燃料噴射弁による燃料噴射に際し、弁体駆動のための駆動電流の供給に先立ってプレチャージ電流を供給する場合、例えば燃料噴射弁を駆動する駆動回路において個体差や経年変化に起因するばらつきが生じていると、プレチャージによる電磁部への投入エネルギ量の過不足が生じる。そしてそれにより、燃料噴射量のばらつきが生じることが懸念される。上記構成では、駆動電流の立ち上がり変化の速さに相関する電流変化パラメータに基づいて、燃料噴射弁の電磁部に対するプレチャージ電流の供給が制御される。この場合、駆動電流の立ち上がり変化の速さは、その駆動電流の供給直前におけるプレチャージ期間での投入エネルギ量に応じたものになることから、その立ち上がり変化の速さに相関する電流変化パラメータによれば、プレチャージによる電磁部への投入エネルギ量の過不足を把握できる。そして、プレチャージ電流の供給を制御することで、電磁部への投入エネルギ量の過不足を解消できる。その結果、燃料噴射量を適正に制御することが可能となる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、エンジン制御システムの概略構成を示す図。 図2は、ECUの構成を示すブロック図。 図3Aは、燃料噴射弁の構成及び状態を示す図。 図3Bは、燃料噴射弁の構成及び状態を示す図。 図4は、燃料噴射弁の駆動動作を説明するためのタイムチャート。 図5は、多段噴射の概要を示すタイムチャート。 図6は、プレチャージ時間算出の詳細を示す機能ブロック図。 図7は、プレチャージ時間算出の処理手順を示すフローチャート。 図8は、駆動電流の時間積分値の算出に関する説明図。 図9は、第2実施形態においてプレチャージ時間算出の処理手順を示すフローチャート。 図10は、第3実施形態においてプレチャージ時間算出の処理手順を示すフローチャート。 図11は、第3実施形態においてインターバル時間を設定するマップを示す図。 図12Aは、第3実施形態のプレチャージ制御を具体的に示すタイムチャート。 図12Bは、第3実施形態のプレチャージ制御を具体的に示すタイムチャート。 図12Cは、第3実施形態のプレチャージ制御を具体的に示すタイムチャート。 図12Dは、第3実施形態のプレチャージ制御を具体的に示すタイムチャート。 図12Eは、第3実施形態のプレチャージ制御を具体的に示すタイムチャート。 図13は、第4実施形態においてパルス補正の処理手順を示すフローチャート。
(第1実施形態)
 以下、本開示を具体化した実施形態を図面に基づいて説明する。本実施形態は、車両用のガソリンエンジンを制御する制御システムとして具体化している。まず、図1に基づいてエンジン制御システムの概略構成を説明する。
 筒内噴射式の多気筒内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル位置)を検出するスロットル位置センサ17とが設けられている。
 スロットルバルブ16の下流側にはサージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。サージタンク18には、エンジン11の各気筒21に空気を導入する吸気マニホールド20が接続され、エンジン11の各気筒21には、それぞれ筒内に燃料を直接噴射する電磁式の燃料噴射弁30が取り付けられている。エンジン11のシリンダヘッドには、気筒21毎に点火プラグ22が取り付けられ、各気筒21の点火プラグ22の火花放電によって筒内の混合気に着火される。
 エンジン11の排気管23には、排出ガスに基づいて混合気の空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。
 エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、ノッキングを検出するノックセンサ27が取り付けられている。クランク軸の外周側には、クランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ28が取り付けられ、このクランク角センサ28のクランク角信号に基づいてクランク角やエンジン回転速度が検出される。これら各種センサの出力や、その他にバッテリ電圧を検出する電圧センサ29の出力は、ECU40に逐次入力される。
 ECU40は、マイクロコンピュータを主体として構成された電子制御ユニットであり、各種センサの検出信号を用いてエンジン11の各種制御を実施する。ECU40が燃料噴射制御装置に相当する。ECU40は、エンジン運転状態に応じた燃料噴射量を算出して、燃料噴射弁30の燃料噴射を制御するとともに、点火プラグ22の点火時期を制御する。
 図2に示すように、ECU40は、エンジン制御用のマイコン41(エンジン11の制御用のマイクロコンピュータ)や、インジェクタ駆動用の駆動IC42(燃料噴射弁30の駆動用IC)、通電操作部43、電流検出部44を備えている。マイコン41は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて要求噴射量を算出するとともに、この要求噴射量に基づき算出される噴射時間から噴射パルスを生成し出力する。駆動IC42及び通電操作部43は、噴射弁駆動部及び電圧切替部に相当し、噴射パルスにより燃料噴射弁30を開弁駆動して、要求噴射量分の燃料を噴射させる。
 通電操作部43は、具体的には低圧電源部51と高圧電源部52とを有するとともに、それら各電源部51,52のいずれかから燃料噴射弁30のコイル31への通電を行わせるスイッチング素子53~55を有している。この場合、低圧電源部51は、例えば12Vの低電圧V1を出力する低電圧出力回路よりなり、高圧電源部52は、例えば60~65Vの高電圧V2(昇圧電圧)を出力する高電圧出力回路よりなる。高圧電源部52はバッテリ電圧を昇圧する昇圧回路を有している。スイッチング素子53,55がオンされることで、コイル31に低電圧V1が印加され、スイッチング素子54,55がオンされることで、コイル31に高電圧V2が印加される。なお、低圧電源部51において各々異なる複数の低電圧V1が出力される構成であってもよい。
 噴射パルスにより燃料噴射弁30が開弁駆動される際には、燃料噴射弁30のコイル31に対して低電圧V1と高電圧V2とが時系列で切り替えられて印加されるようになっている。この場合、開弁初期には高電圧V2が印加されることで、燃料噴射弁30の開弁応答性が確保されるとともに、それに引き続いて低電圧V1が印加されることで、燃料噴射弁30の開弁状態が保持される。
 また本実施形態では、燃料噴射弁30の駆動態様として、燃料噴射弁30の弁体がフルリフト位置に到達する前のパーシャルリフト状態で弁体のリフトを終了させ、その状態で所望量の燃料を噴射するパーシャルリフト噴射を実施することとしており、そのパーシャルリフト噴射を図3A,図3Bを用いて簡単に説明する。なお、図3Aはフルリフト噴射時の動作を示し、図3Bはパーシャルリフト噴射時の動作を示している。
 燃料噴射弁30は、通電により電磁力を生じさせる電磁部としてのコイル31と、その電磁力によってプランジャ32(可動コア)と一体的に駆動されるニードル33(弁体)とを有しており、ニードル33が開弁位置に移動することで燃料噴射弁30が開弁状態となり、燃料噴射が行われる。図3A,図3Bでは噴射パルスの時間(通電期間)が相違しており、図3Aに示すように噴射パルス幅が比較的長くなる場合(ニードルリフト量がフルリフト量となる場合)には、ニードル33がフルリフト位置(プランジャ32がストッパ34に突き当たる位置)に到達する。一方、図3Bに示すように、噴射パルス幅が比較的短くなる場合(ニードルリフト量がパーシャルリフト量となる場合)には、ニードル33がフルリフト位置に到達しないパーシャルリフト状態(プランジャ32がストッパ34に突き当たる手前の状態)となる。そして、噴射パルスの立ち下がりに伴いコイル31の通電が停止されると、プランジャ32とニードル33とが閉弁位置に戻ることで燃料噴射弁30が閉弁状態となり、燃料噴射が停止される。
 図2に戻り、電流検出部44は、燃料噴射弁30の開弁駆動時におけるコイル31の通電電流を検出するものであり、その検出結果は駆動IC42に逐次出力される。電流検出部44は周知構成であればよく、例えばシャント抵抗と増幅回路とを有するものとなっている。
 次に、噴射パルスに基づき駆動IC42及び通電操作部43にて実施される燃料噴射弁30の駆動の基本動作を、図4により説明する。なお本実施形態では、噴射パルスがオンになる期間において、プレチャージと昇圧駆動と開弁維持駆動とが時系列で実施されるようになっている。プレチャージは、燃料噴射弁30の通電開始時に、高電圧V2の印加に先立ってコイル31に低電圧V1を印加するものであり、プレチャージの実施により、通電電流の目標ピーク値への到達時間が短縮される。昇圧駆動は、開弁応答性を高めるべく実施され、昇圧駆動期間においてコイル31に高電圧V2が印加される。開弁維持駆動は、昇圧駆動に引き続いて実施され、コイル31に低電圧V1が印加される。
 図4において、時刻t1では、噴射パルスがオンになり、t1~t2では低電圧V1によるプレチャージが実施される。t1~t2のプレチャージ期間では、コイル31に対してニードル33が作動するよりも小さいプレチャージ電流が供給される。プレチャージ期間はあらかじめ定められた時間であるとよい。プレチャージ期間では、スイッチング素子53を所定デューティ比で繰り返しオンオフさせてプレチャージを実施してもよい。
 そして、時刻t2では、コイル31の印加電圧が低電圧V1から高電圧V2に切り替えられる。これにより、時刻t2~t3の昇圧駆動期間においては、t1~t2の期間の通電電流であるプレチャージ電流に比べて、駆動電流が急峻に増加する。その後、時刻t3において、駆動電流が、あらかじめ定めた目標ピーク値Ipに到達すると、高電圧V2の印加が停止される。このとき、駆動電流が目標ピーク値Ipに到達するタイミング又はその直前のタイミングにおいてニードルリフトが開始され、そのニードルリフトに伴い燃料噴射が開始される。駆動電流が目標ピーク値Ipに到達したか否かの判定は、電流検出部44により検出された検出電流に基づいて実施される。つまり、昇圧駆動期間(t2~t3)では、駆動IC42において検出電流がIp以上になったか否かが判定され、検出電流≧Ipになった時点で通電操作部43によりコイル印加電圧の切替(V2の印加停止)が実施される。
 時刻t3以降においては、V2の印加停止に伴い駆動電流が低下するが、あらかじめ定めた電流しきい値と電流検出部44による検出電流とに基づいて、コイル31に対して低電圧V1が断続的に印加される。なお、図4では、電流しきい値を2段階で定めており、駆動電流(検出電流)がしきい値以下となる都度、低電圧V1の印加が行われるようになっている。電流しきい値の切替(高→低の切替)は、ニードルリフトが所定のパーシャルリフト量になったと推定されるタイミングで実施されるとよい(図の時刻t4)。
 その後、時刻t5で噴射パルスがオフになると、コイル31への電圧印加が停止され、駆動電流がゼロになる。そして、コイル通電の停止に伴いニードルリフトが終了され、それに合わせて燃料噴射が停止される。
 また本実施形態では、1燃焼サイクルにつき複数回の燃料噴射を行う多段噴射の実施を可能としている。多段噴射の各噴射のうち前後2つの噴射(前噴射及び後噴射)の駆動波形を図5に示す。図5では、前後2つの噴射パルスが示されており、前後の噴射パルスの間がインターバル時間INTとなっている。この場合、前噴射では、時刻t11でプレチャージ電流の通電が開始され、時刻t12で駆動電流の通電が開始される。また、後噴射では、時刻t21でプレチャージ電流の通電が開始され、時刻t22で駆動電流の通電が開始される。
 なお、多段噴射の噴射回数は、エンジン回転速度やエンジン負荷等のエンジン運転状態に基づいて設定されるとよい。また、多段噴射のインターバル時間も同様にエンジン運転状態に基づいて設定されるとよい。本実施形態では、3段以上の多段噴射の場合に、各噴射間のインターバル時間をいずれも同じにするが、噴射ごとにインターバル時間を変更することも可能である。
 ところで、プレチャージ後に駆動電流が上昇する期間(昇圧駆動期間)においては種々の要因により電流変化の傾きに差違が生じ、それに起因して燃料噴射量のばらつきが生じることが懸念される。具体的には、駆動電流の通電開始時において、それ以前のコイル通電により蓄積された電気エネルギに応じて、駆動電流の立ち上がり変化の傾きが変わると考えられる。例えば図4の時刻t1や、図5の時刻t11,t21では、その時点でのコイル31の電気エネルギに応じて、その後の駆動電流の上昇速度に差違が生じる。
 そこで本実施形態では、駆動電流の立ち上がり変化の速さに相関する電流変化パラメータを算出するとともに、その電流変化パラメータに基づいて、コイル31に対するプレチャージ電流の供給を制御する。具体的には、電流変化パラメータとして、駆動電流が特定電流しきい値に到達するまでの到達時間、多段噴射の際のインターバル時間を算出し、これらの電流変化パラメータに基づいてプレチャージ制御を実施する。
 なお、燃料噴射の終了に伴うコイル通電後には、コイル31に磁気が残留し、その残留磁気の大きさは通電終了後の経過時間に依存したものとなる。この場合、多段噴射の際のインターバル時間で考えれば、そのインターバル時間に応じて前噴射による残留磁気の大きさが変わり、ひいてはプレチャージ後における駆動電流の立ち上がり速度に影響を及ぼすものとなる。ゆえに、インターバル時間が電流変化パラメータに含まれるものとなっている。
 次に、プレチャージ時間算出の詳細を、図6に示す機能ブロック図を用いて説明する。なお、図6に示す各機能はECU40により実現されるものとなっている。図6では、各種のパラメータに基づいて、プレチャージ時間のフィードフォワード項(FF項)とフィードバック項(FB項)とを算出するとともに、それらFF項及びFB項によりプレチャージ時間の算出を行うものとしている。
 図6において、FF項算出部61では、バッテリ電圧VBに基づいて基本プレチャージ時間を算出するとともに、インターバル時間INTに基づいて時間補正値を算出し、それら基本プレチャージ時間と時間補正値とによりFF項を算出する(FF項=基本プレチャージ時間-時間補正値)。この場合、基本プレチャージ時間は、バッテリ電圧VBが小さいほど大きい値として算出される。時間補正値は、インターバル時間INTが所定値未満である場合に、インターバル時間INTが短いほど大きい値として算出される。ただし、INT≧所定値では、時間補正値=0である。
 なお、インターバル時間INTは、多段噴射の制御情報として算出される値か、又はタイマやカウンタ等により実測される値であるとよい。多段噴射の最初の噴射時である場合や、多段噴射が実施されない場合には、インターバル補正は不要であり、時間補正値が算出されないようになっている。
 また、FB項算出部62では、駆動電流の通電開始後に駆動電流が目標ピーク値Ipに到達するまでの時間である電流到達時間と、その目標値である目標到達時間とを取得するとともに、それらの偏差ΔE(=電流到達時間-目標到達時間)に基づいてFB項を算出する。このとき、タイマやカウンタ等を用いて算出した電流到達時間と、既定の目標到達時間とから偏差ΔEを算出する。なお、目標ピーク値Ip等に基づき目標到達時間が算出される構成であってもよい。そして、所定の比例ゲイン及び積分ゲインを用い、偏差ΔEに基づいてP項とI項とを算出する。本実施形態では、噴射パルスのオン時からの時間を「到達時間」とするが、これ以外に駆動電流の通電開始(プレチャージ終了)からの時間を「到達時間」としてもよい。
 このとき、FB項は、偏差ΔEが正であれば正の値として、偏差ΔEが負であれば負の値として算出される。また、F/B項は、偏差ΔEが大きいほど、正側に大きい値又は負側に大きい値として算出される。
 そして、時間算出部63では、FF項とFB項(P項+I項)との加算によりプレチャージ時間を算出する。なお、FF項とFB項との加算値に対して上下限ガードやなましの処理が行われてもよい。これにより、温度特性や個体差ばらつきに起因してプレチャージ時間が誤って算出されたり、プレチャージ時間の急変が生じたりすることが抑制される。
 図7は、プレチャージ時間の算出手順を示すフローチャートであり、本処理はECU40により所定周期で繰り返し実施される。
 図7において、ステップS10では、プレチャージの実施条件が成立しているか否かを判定し、続くステップS11では、プレチャージ時間の算出条件が成立しているか否かを判定する。ステップS10の実施条件には、エンジン11が過渡状態でないこと、駆動IC42や各種検出系において異常が生じていないこと等が含まれる。また、ステップS11の算出条件には、今回の噴射が、多段噴射における各噴射のうち噴射パルス(コイル通電時間)が最も短い噴射であること、パーシャルリフト噴射の実施時であること等が含まれる。そして、ステップS10,S11の各条件が共に成立していればステップS12に進む。
 ステップS12では、プレチャージ時間のFF項の算出を実施する。この場合、バッテリ電圧VBに基づき算出した基本プレチャージ時間と、インターバル時間INTに基づき算出した時間補正値との加算によりFF項を算出する。
 また、続くステップS13では、プレチャージ時間のFB項の算出を実施する。この場合、コイル通電の開始後において駆動電流が目標ピーク値Ipに到達するまでの実際の電流到達時間と目標到達時間とを取得するとともに、到達時間の偏差ΔEを算出し、さらにその偏差ΔEに基づいてPIフィードバック演算によりFB項を算出する。なお、電流到達時間は、目標ピーク値Ipに到達するまでの時間でなくてもよく、目標ピーク値Ipに基づいてそのIpよりも小さい値として定められる電流しきい値に到達するまでの時間であってもよい。
 そして、ステップS14では、FF項とFB項(P項+I項)との加算によりプレチャージ時間を算出する。こうして算出されたプレチャージ時間は、次回以降の燃料噴射に際し、多段噴射の各噴射のプレチャージ制御に用いられる。この場合、プレチャージ時間を増加させることにより、プレチャージ期間でのプレチャージ電流積算値が大きくなるようにしてプレチャージ制御が実施される。
 ステップS10がNOの場合には、ステップS15に進み、プレチャージ時間を0にした後、本処理を終了する。また、ステップS11がNOの場合には、プレチャージ時間の算出を実施することなく本処理を終了する。
 プレチャージ制御量として、プレチャージ時間に代えてプレチャージ電流を用いることも可能である。この場合、プレチャージ電流を固定値とし、かつプレチャージ時間を可変に設定することに代えて、プレチャージ時間を固定値とし、かつプレチャージ電流を可変に設定することとする。図6の構成で言えば、FF項算出部61にてプレチャージ電流のFF項が算出されるとともに、FB項算出部62にてプレチャージ電流のFB項が算出され、それらFF項及びFB項によりプレチャージ電流の制御値が算出される。かかる構成では、偏差ΔE(=電流到達時間-目標到達時間)が大きい場合に、プレチャージ電流を大きくするようにしてプレチャージ制御が実施される。
 電流変化パラメータとして、電流到達時間に代えて駆動電流の立ち上がり速度(変化の傾き)を用い、この立ち上がり速度に基づいてFB項の算出を行うようにしてもよい。この場合、立ち上がり速度が小さいほど、プレチャージ時間を長くするか、又はプレチャージ電流を大きくするとよい。すなわち、プレチャージ期間におけるプレチャージ電流積算値が大きくなるようにする。
 また、電流変化パラメータとして、駆動電流の立ち上がり変化時における時間積分値を用い、この時間積分値に基づいてFB項の算出を行うようにしてもよい。この場合、時間積分値が小さいほど、プレチャージ時間を長くするか、又はプレチャージ電流を大きくするとよい。時間積分値の算出に関して具体的には、図8に示すように、目標ピーク値Ipとそれ以外の複数点の電流値(本実施形態ではI1,12)とを定めておき、それら各値への到達時間を検出する。そして、各電流値と各到達時間とに基づいて駆動電流の時間積分値(例えば図のドット部分)を算出する。
 以上詳述した本実施形態によれば、以下の効果が得られる。
 燃料噴射弁30による燃料噴射に際し、例えば燃料噴射弁30の駆動回路において個体差や経年変化に起因するばらつきが生じていると、プレチャージによるコイル31への投入エネルギ量の過不足が生じる。そしてそれにより、燃料噴射量のばらつきが生じることが懸念される。上記構成では、駆動電流の立ち上がり変化の速さに相関する電流変化パラメータに基づいて、コイル31に対するプレチャージ電流の供給が制御される。この場合、駆動電流の立ち上がり変化の速さは、その駆動電流の供給直前におけるプレチャージ期間での投入エネルギ量に応じたものになることから、その立ち上がり変化の速さに相関する電流変化パラメータによれば、プレチャージによるコイル31への投入エネルギ量の過不足を把握できる。そして、プレチャージ電流の供給を制御することで、コイル31への投入エネルギ量の過不足を解消できる。その結果、燃料噴射量を適正に制御することが可能となる。
 電流変化パラメータとして、駆動電流が特定電流しきい値に到達するまでの到達時間、駆動電流の立ち上がり速度、又は駆動電流の立ち上がり変化時における時間積分値を取得し、到達時間が長いほど、立ち上がり速度が小さいほど、又は時間積分値が小さいほど、プレチャージ期間におけるプレチャージ電流積算値が大きくなるようにプレチャージ制御を実施するようにした。この場合、電流到達時間や、電流立ち上がり速度、駆動電流の時間積分値は、プレチャージの実施状況に直接的に関連するパラメータであり、これらを電流変化パラメータとして用いることにより、プレチャージ制御を好適に実施できる。
 プレチャージ時間を変更するか、又はプレチャージ電流を変更すると、プレチャージ期間におけるプレチャージ電流積算値が変わり、これにより駆動電流の立ち上がり速度が変わる。この場合、プレチャージ時間又はプレチャージ電流の増減によりプレチャージ制御を実施することで、駆動電流のばらつきを抑制して所望の燃料噴射を実現できる。
 多段噴射の実施時においては、噴射ごとの通電の時間が短いほど、すなわち要求噴射量少ないほど、開弁応答性の影響が大きくなると考えられる。この点、通電時間が最短の噴射の実施時にプレチャージ時間(プレチャージ制御量)の算出を行う構成にしたため、プレチャージ時間の算出処理の実施頻度を抑えつつも、燃料噴射弁30の開弁応答性を適正にすることができる。
 パーシャルリフト噴射では、フルリフト噴射に比べて、燃料噴射弁30の開弁応答性に起因する燃料噴射量のばらつきが大きくなると考えられる。この点、パーシャルリフト噴射の実施時にプレチャージ時間(プレチャージ制御量)の算出を行う構成にしたため、パーシャルリフト噴射での燃料噴射量のばらつきを好適に抑制できる。
 (第2実施形態)
 プレチャージ時間の算出を、図7のフローチャートに代えて図9のフローチャートに基づき実施する構成であってもよい。なお以下の処理では、FF項の算出処理を省略し、プレチャージ時間の前回値を、電流到達時間と目標到達時間との偏差ΔEに基づいて増減することで、プレチャージ時間の今回値を算出する構成としている。
 図9において、ステップS20では、プレチャージの実施条件が成立しているか否かを判定し、続くステップS21では、プレチャージ時間の算出条件が成立しているか否かを判定する(図7のステップS10,S11と同様)。そして、各条件が共に成立していればステップS22に進む。
 ステップS22では、駆動電流が目標ピーク値Ipに到達するまでの電流到達時間と目標到達時間とを取得し、続くステップS23では、電流到達時間から目標到達時間を減算して偏差ΔEを算出する。
 その後、ステップS24では、偏差ΔEの絶対値が第1しきい値TH1以上であるか否かを判定する。そして、|ΔE|≧TH1であればステップS25に進み、その偏差ΔEに応じてプレチャージ時間の前回値を増減させて、プレチャージ時間の今回値を算出する。このとき、例えば、偏差ΔEが正(電流到達時間>目標到達時間)であれば、プレチャージ時間の前回値を所定値だけ増加させることにより、プレチャージ時間の今回値を算出する。また、偏差ΔEが負(電流到達時間<目標到達時間)であれば、プレチャージ時間の前回値を所定値だけ減少させることにより、プレチャージ時間の今回値を算出する。ステップS25で算出されたプレチャージ時間は、次回以降の燃料噴射に際して用いられる。
 また、ステップS24で|ΔE|<TH1であると判定され、ステップS26に進んだ場合、今回の燃料噴射において、|ΔE|≧TH1の状態から|ΔE|<TH2の状態への移行が生じたか否かを判定する。なお、TH2<TH1である。ここで、|ΔE|<TH2になったことは、偏差ΔEが微小値に収束したことを意味し、かかる場合には、ステップS27に進んで、プレチャージ時間の増減を停止する。ステップS24,S26が共にNOの場合には、現時点のプレチャージ時間を増減すること無く、そのままプレチャージ制御に使用する。これにより、プレチャージ時間が固定される。
 ステップS20がNOの場合には、ステップS28に進み、プレチャージ時間を0にした後、本処理を終了する。また、ステップS21がNOの場合には、プレチャージ時間の算出を実施することなく本処理を終了する。
 電流到達時間の偏差ΔEの絶対値が第1しきい値TH1以上である場合に、次回以降の燃料噴射に際してプレチャージ時間を所定値だけ増補正又は減補正するとともに、その後、増補正又は減補正を実施した後の燃料噴射により、偏差ΔEの絶対値が第2しきい値TH2未満となった場合に、増補正又は減補正を停止する構成とした。この場合、燃料噴射弁30や駆動回路の個体差や温度条件の変化等を反映しつつ、燃料噴射量のばらつきを好適に抑制できる。
 (第3実施形態)
 第3実施形態では、多段噴射の実施を前提とし、電流変化パラメータとして多段噴射のインターバル時間と、前噴射の通電終了直前の電流値とを用い、これらに基づいて、プレチャージ時間を可変に設定する構成としている。
 図10は、プレチャージ時間の算出手順を示すフローチャートであり、本処理はECU40により所定周期で繰り返し実施される。なお図10では、上述の図7と同様に、プレチャージの実施条件や、プレチャージ時間の算出条件の成否が判定される構成であってもよいが、便宜上ここでは図示を省略している。
 図10において、ステップS31では、今回の燃料噴射に際し前噴射との間のインターバル時間を取得し、続くステップS32では、前噴射の通電終了直前の電流値を取得する。なお、これらのインターバル時間や通電終了直前の電流値は、実測値でもよいし、制御上の演算値でもよい。そして、ステップS33では、図11のマップを用い、インターバル時間と通電終了直前の電流値とに基づいてプレチャージ時間を設定する。
 図11では、前噴射の通電終了直前の電流値〔A〕として複数の電流値が定められるとともに、インターバル時間〔ms〕として複数の時間が定められており、これらのパラメータに基づいてプレチャージ時間〔ms〕が設定されるようになっている。この場合、インターバル時間が短いと、それよりも長い場合に比べてプレチャージ時間が短い時間に設定される。また、通電終了直前の電流値が大きいと、それよりも小さい場合に比べてプレチャージ時間が短い時間に設定される。
 また、図11では、プレチャージ時間を0とする領域が定められており、この領域に該当するか該当しないかにより、プレチャージが実施される場合と実施されない場合との切り替えが可能となっている。
 次に、本実施形態におけるプレチャージ制御を、図12A~図12Eを用いてより具体的に説明する。図12A~12Cでは、前噴射の通電終了直前の電流値をいずれも同じとし(2.35A)、その上で、インターバル時間をそれぞれ1.0ms、0.8ms、0.4msとしている。この場合、図12A~12Cでは、プレチャージ時間が図示のごとく相違している。
 また、図12D、図12Eでは、前噴射の通電終了直前の電流値をいずれも図12A~図12Cよりも大きい5.0Aとし、その上で、インターバル時間をそれぞれ1.0ms、0.8msとしている。この場合、12D,12Eでは、プレチャージ時間が図示のごとく相違している。
 要するに、後噴射の開始時点においてコイル31に前噴射の通電による磁気が残留していると、その影響を受けて駆動電流が大きくなることが考えられる。そしてかかる場合に、多段噴射の際のインターバル時間が短いほど、残留磁気が大きくなると考えられる。また、前噴射の通電終了直前の電流値が大きいほど、残留磁気が大きくなると考えられる。この点、多段噴射の際のインターバル時間が短い場合にプレチャージ時間を短くするとともに、前噴射の通電終了直前の電流値が大きい場合にプレチャージ時間を短くするようにした。これにより、残留磁気の影響を考慮した上で、プレチャージ制御を好適に実施できる。
 なお、多段噴射のインターバル時間と、前噴射の通電終了直前の電流値との一方を固定値にすることも可能であり、かかる場合には、これら両者のうち可変となる方に基づいて、プレチャージ時間が可変に設定されるとよい。
 (第4実施形態)
 多段噴射の実施時において、プレチャージ時間を延長していくと、前噴射の通電期間(噴射パルス)に対して後噴射のプレチャージ期間が近づくことになり、場合によっては前噴射の通電期間内に後噴射のプレチャージが開始されることも考えられる。かかる場合、1燃焼サイクルでの燃料噴射量が過少になることが懸念される。例えば、実際の噴射開始(弁体のリフト開始)のタイミングを一定にすることを想定すると、後噴射のプレチャージ時間を延長することに伴い前噴射に影響が及ぶことが懸念される。そこで本実施形態では、プレチャージ時間の上限値をあらかじめ定めておき、プレチャージ時間の設定値が上限値を超過する場合に、プレチャージ時間を上限値で制限するとともに、そのプレチャージ時間の超過分に基づいて、噴射パルス(駆動電流の通電時間)を延長補正する。
 図13は、本実施形態におけるパルス補正の処理手順を示すフローチャートであり、本処理はECU40により所定周期で繰り返し実施される。
 図13において、ステップS41では、プレチャージ時間(例えば図7で算出したプレチャージ時間)が上限値を超過しているか否かを判定する。上限値は、例えば後続の後噴射における駆動電流の通電開始タイミングに基づいて定められているとよく、前噴射(今回の噴射)の通電終了タイミングと後噴射の駆動電流の通電開始タイミングとの時間間隔ΔTから余裕分を差し引いた値とするとよい(上限値=ΔT-余裕分)。
 そして、プレチャージ時間>上限値であれば、ステップS42に進み、プレチャージ時間を上限値でガードする。続くステップS43では、後噴射の噴射パルスについてパルス幅を延長補正する旨を指令する。このとき、上限値に対するプレチャージ時間の超過分と、パルス幅の延長補正値との関係をマップとして規定しておき、そのマップを用いてパルス幅の延長補正値を算出するとともに、その延長補正値により噴射パルスを延長補正する。なお、噴射パルスの延長は、多段噴射の最終の噴射について行うようにするとよい。
 上記構成では、プレチャージ時間の延長により燃料噴射量の制御に支障を来すおそれがある場合に、プレチャージ時間の延長を行う代わりに後噴射の噴射パルスの延長を行うようにした。これにより、通電波形のばらつきを抑えつつも、所望の燃料量を確保するようにして燃料噴射を実施できる。
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
 コイル31の温度特性を考慮してプレチャージ時間やプレチャージ電流を設定するようにしてもよい。この場合、コイル31の抵抗値が基準値に対して増加している状態下では、その抵抗値の増加分に応じてプレチャージ時間やプレチャージ電流を大きくするとよい。
 多段噴射の際のインターバル時間は噴射パルスの間の休止時間である以外に、前後の噴射パルスにより生じる実際の燃料噴射の間の休止時間であってもよい。
 多段噴射を実施する場合と多段噴射を実施しない場合とのうち、前者の場合にのみ、電流変化パラメータに基づくプレチャージ制御を実施するようにしてもよい。この場合、多段噴射の実施時の方が、1回当たりの燃料噴射の時間が短くなり燃料噴射ばらつきの影
響が大きくなると考えられるが、こうした燃料噴射ばらつきを好適に抑制できる。
 本開示はガソリンエンジンに適用される以外に、他のエンジンにも適用が可能であり、例えばディーゼルエンジンの燃料噴射制御装置としての具体化も可能である。

Claims (11)

  1.  弁体(33)と、通電により前記弁体を閉弁位置から開弁位置に移動させる電磁部(31)とを有し、前記弁体が開弁位置に移動することにより燃料を噴射する燃料噴射弁(30)を備える内燃機関(11)に適用され、
     燃料噴射に際し、通電開始当初のプレチャージ期間において前記電磁部に対して前記弁体が作動するよりも小さいプレチャージ電流を供給するとともに、それに引き続いて前記弁体を作動させる駆動電流を供給するようにした内燃機関の燃料噴射制御装置であって、
     前記駆動電流の立ち上がり変化の速さに相関するパラメータである電流変化パラメータを取得するパラメータ取得部と、
     前記パラメータ取得部により取得した電流変化パラメータに基づいて、前記電磁部に対するプレチャージ電流の供給を制御するプレチャージ制御部と、
    を備えることを特徴とする内燃機関の燃料噴射制御装置。
  2.  前記パラメータ取得部は、前記電流変化パラメータとして、前記駆動電流の立ち上がり速度、前記駆動電流が特定電流しきい値に到達するまでの到達時間、又は前記駆動電流の立ち上がり変化時における時間積分値を取得し、
     前記プレチャージ制御部は、前記立ち上がり速度が小さいほど、前記到達時間が長いほど、又は前記時間積分値が小さいほど、前記プレチャージ期間におけるプレチャージ電流積算値が大きくなるようにプレチャージ制御を実施する請求項1に記載の内燃機関の燃料噴射制御装置。
  3.  前記プレチャージ制御部は、前記プレチャージ期間の時間長さであるプレチャージ時間、又は前記プレチャージ期間での前記プレチャージ電流の大きさをプレチャージ制御量とし、そのプレチャージ制御量を前記電流変化パラメータに基づいて可変に設定することで、プレチャージ制御を実施する請求項1又は2に記載の内燃機関の燃料噴射制御装置。
  4.  前記プレチャージ制御部は、
     前記電流変化パラメータとその目標値との偏差を算出する算出部と、
     前記偏差が第1しきい値以上である場合に、次回以降の燃料噴射に際し、前記プレチャージ期間のプレチャージ制御量を所定値だけ増補正又は減補正する補正部と、
     前記増補正又は減補正を実施した後の燃料噴射により、前記偏差が、前記第1しきい値よりも小さい第2しきい値未満となった場合に、前記増補正又は減補正を停止する補正停止部と、
    を有する請求項1乃至3のいずれか一項に記載の内燃機関の燃料噴射制御装置。
  5.  1燃焼サイクルにつき複数回の燃料噴射を行う多段噴射を実施する燃料噴射制御装置であって、
     前記プレチャージ制御部は、前記多段噴射における各噴射のうち前記燃料噴射弁の通電時間が最も短い噴射の実施に際し、当該噴射の際に求めた前記電流変化パラメータに基づいて、前記プレチャージ期間のプレチャージ制御量を算出し、そのプレチャージ制御量を他噴射のプレチャージ制御にも用いる請求項1乃至4のいずれか一項に記載の内燃機関の燃料噴射制御装置。
  6.  前記弁体がフルリフトに到達する前のパーシャルリフト状態で前記弁体のリフトを終了させてパーシャルリフト噴射を実施する燃料噴射制御装置であって、
     前記プレチャージ制御部は、前記パーシャルリフト噴射の実施に際し、前記パラメータ取得部により取得した電流変化パラメータに基づいてプレチャージ制御を実施する請求項1乃至5のいずれか一項に記載の内燃機関の燃料噴射制御装置。
  7.  1燃焼サイクルにつき複数回の燃料噴射を行う多段噴射を実施する燃料噴射制御装置であって、
     前記パラメータ取得部は、前記電流変化パラメータとして、前記多段噴射において前後に続く前噴射と後噴射との間のインターバル時間を取得し、
     前記プレチャージ制御部は、前記インターバル時間が短い場合に、それよりも長い場合に比べて前記プレチャージ期間のプレチャージ電流積算値が小さくなるように、プレチャージ制御を実施する請求項1乃至6のいずれか一項に記載の内燃機関の燃料噴射制御装置。
  8.  前記プレチャージ制御部は、前記インターバル時間に応じて、前記プレチャージを実施する場合と実施しない場合とを切り替える請求項7に記載の内燃機関の燃料噴射制御装置。
  9.  1燃焼サイクルにつき複数回の燃料噴射を行う多段噴射を実施する燃料噴射制御装置であって、
     前記パラメータ取得部は、前記電流変化パラメータとして、前記多段噴射において前後に続く前噴射と後噴射とのうち前噴射の通電終了直前の電流値を取得し、
     前記プレチャージ制御部は、前記前噴射の通電終了直前の電流値が大きい場合に、それよりも小さい場合に比べて前記プレチャージ期間のプレチャージ電流積算値が小さくなるように、プレチャージ制御を実施する請求項1乃至8のいずれか一項に記載の内燃機関の燃料噴射制御装置。
  10.  前記プレチャージ制御部は、前記前噴射の通電終了直前の電流値に応じて、前記プレチャージを実施する場合と実施しない場合とを切り替える請求項9に記載の内燃機関の燃料噴射制御装置。
  11.  前記プレチャージ制御部は、前記プレチャージ期間の時間長さであるプレチャージ時間を前記電流変化パラメータに基づいて可変に設定することで、プレチャージ制御を実施するものであり、
     前記プレチャージ時間の設定値が所定の上限値を超過する場合に、当該プレチャージ時間を前記上限値で制限するとともに、そのプレチャージ時間の超過分に基づいて、前記駆動電流の通電時間を増補正する補正部を備える請求項1乃至10のいずれか一項に記載の内燃機関の燃料噴射制御装置。

     
PCT/JP2015/003555 2014-08-06 2015-07-14 内燃機関の燃料噴射制御装置 WO2016021122A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/501,523 US10197002B2 (en) 2014-08-06 2015-07-14 Fuel injection control device for internal combustion engine
DE112015003611.3T DE112015003611B4 (de) 2014-08-06 2015-07-14 Kraftstoffeinspritzsteuerungsvorrichtung für eine Verbrennungskraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014160086A JP6314733B2 (ja) 2014-08-06 2014-08-06 内燃機関の燃料噴射制御装置
JP2014-160086 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016021122A1 true WO2016021122A1 (ja) 2016-02-11

Family

ID=55263421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003555 WO2016021122A1 (ja) 2014-08-06 2015-07-14 内燃機関の燃料噴射制御装置

Country Status (4)

Country Link
US (1) US10197002B2 (ja)
JP (1) JP6314733B2 (ja)
DE (1) DE112015003611B4 (ja)
WO (1) WO2016021122A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017201160A (ja) * 2016-05-06 2017-11-09 株式会社デンソー 燃料噴射制御装置
WO2017191170A1 (de) * 2016-05-03 2017-11-09 Continental Automotive Gmbh Verfahren zum betreiben eines kraftstoffinjektors mit leerhub
JP2022018760A (ja) * 2020-07-16 2022-01-27 株式会社デンソー 噴射制御装置
JP2022018761A (ja) * 2020-07-16 2022-01-27 株式会社デンソー 噴射制御装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772884B2 (ja) * 2013-06-24 2015-09-02 トヨタ自動車株式会社 燃料噴射弁駆動システム
JP6314733B2 (ja) 2014-08-06 2018-04-25 株式会社デンソー 内燃機関の燃料噴射制御装置
DE102015209566B3 (de) * 2015-05-26 2016-06-16 Continental Automotive Gmbh Ansteuerung von Kraftstoffinjektoren bei Mehrfacheinspritzungen
JP6477321B2 (ja) 2015-07-23 2019-03-06 株式会社デンソー 内燃機関の燃料噴射制御装置
JP6493334B2 (ja) * 2015-11-30 2019-04-03 株式会社デンソー 内燃機関の燃料噴射制御装置
JP6485402B2 (ja) * 2016-04-27 2019-03-20 トヨタ自動車株式会社 内燃機関の制御装置
DE102016112541A1 (de) * 2016-07-08 2018-01-11 Man Diesel & Turbo Se Verfahren und Steuergerät zur Funktionsprüfung eines Gasdosierventils
JP6402749B2 (ja) * 2016-07-27 2018-10-10 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP6662364B2 (ja) * 2017-03-03 2020-03-11 株式会社デンソー 燃料噴射弁および燃料噴射システム
WO2018159184A1 (ja) * 2017-03-03 2018-09-07 マツダ株式会社 エンジンの制御装置
WO2019003643A1 (ja) * 2017-06-30 2019-01-03 日立オートモティブシステムズ株式会社 電子制御装置
DE102017212080A1 (de) * 2017-07-14 2019-01-17 Continental Automotive Gmbh Verfahren zum Ansteuern eines eine Magnetspule aufweisenden magnetischen Kraftstoffeinspritzventils
US10443533B2 (en) * 2017-10-23 2019-10-15 GM Global Technology Operations LLC Mild hybrid powertrain with simplified fuel injector boost
US11215133B2 (en) 2018-04-27 2022-01-04 Hitachi Astemo, Ltd. Fuel injection control apparatus
JP7139223B2 (ja) * 2018-11-12 2022-09-20 日立Astemo株式会社 燃料噴射装置の制御装置
JP7110391B2 (ja) * 2018-11-30 2022-08-01 日立Astemo株式会社 負荷駆動装置および燃料噴射装置の制御方法
KR20210104317A (ko) * 2020-02-17 2021-08-25 현대자동차주식회사 인젝터 열림 시간 편차 개선을 위한 연료 분사 제어 장치 및 방법
KR20210104316A (ko) * 2020-02-17 2021-08-25 현대자동차주식회사 인젝터 열림 시간 편차 개선을 위한 연료 분사 제어 장치 및 방법
JP7322816B2 (ja) * 2020-05-28 2023-08-08 株式会社デンソー 噴射制御装置
JP7306339B2 (ja) * 2020-06-29 2023-07-11 株式会社デンソー 噴射制御装置
JP7415821B2 (ja) * 2020-06-29 2024-01-17 株式会社デンソー 噴射制御装置
JP7354940B2 (ja) * 2020-06-29 2023-10-03 株式会社デンソー 噴射制御装置
US11795886B2 (en) * 2021-12-13 2023-10-24 Caterpillar Inc. Reduced energy waveform for energizing solenoid actuator in fuel injector valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577562U (ja) * 1992-03-27 1993-10-22 ヤンマーディーゼル株式会社 電磁弁制御式ユニットインジェクタ
JPH11229937A (ja) * 1997-07-05 1999-08-24 Robert Bosch Gmbh 電磁弁の切換時点の検出のための方法及び装置
JP2004278411A (ja) * 2003-03-17 2004-10-07 Hitachi Ltd 内燃機関用電磁弁の駆動装置
JP2009074373A (ja) * 2007-09-19 2009-04-09 Hitachi Ltd 内燃機関の燃料噴射制御装置
JP2013234679A (ja) * 2013-08-30 2013-11-21 Hitachi Automotive Systems Ltd 燃料噴射装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2242758B1 (ja) 1973-09-05 1976-06-18 Peugeot & Renault
DE2835228A1 (de) 1978-08-11 1980-02-28 Bosch Gmbh Robert Einrichtung zur ansteuerung von elektromagnetischen verbrauchern, insbesondere von elektromagnetischen einspritzventilen bei brennkraftmaschinen
JPS60180032A (ja) * 1984-02-28 1985-09-13 株式会社ボッシュオートモーティブ システム ソレノイド駆動回路
DE19646052A1 (de) * 1996-11-08 1998-05-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines Verbrauchers
DE19735560B4 (de) * 1997-08-16 2007-06-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Verbrauchers
IT1320679B1 (it) * 2000-09-29 2003-12-10 Fiat Ricerche Dispositivo di controllo di un elettromagnete di comando di unavalvola di dosaggio di un iniettore di combustibile per un motore a
DE10150199A1 (de) * 2001-10-12 2003-04-24 Wolfgang E Schultz Verfahren und Schaltung zur Erkennung der Ankerlage eines Elektromagneten
US6766788B2 (en) * 2002-01-31 2004-07-27 Visteon Global Technologies, Inc. Pre-charging strategy for fuel injector fast opening
EP2543999A4 (en) 2010-03-05 2016-03-30 Konica Minolta Holdings Inc CELL DETECTION METHOD AND CELL DETECTION SYSTEM
JP5358621B2 (ja) 2011-06-20 2013-12-04 日立オートモティブシステムズ株式会社 燃料噴射装置
JP5851354B2 (ja) 2012-06-21 2016-02-03 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP6314733B2 (ja) 2014-08-06 2018-04-25 株式会社デンソー 内燃機関の燃料噴射制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577562U (ja) * 1992-03-27 1993-10-22 ヤンマーディーゼル株式会社 電磁弁制御式ユニットインジェクタ
JPH11229937A (ja) * 1997-07-05 1999-08-24 Robert Bosch Gmbh 電磁弁の切換時点の検出のための方法及び装置
JP2004278411A (ja) * 2003-03-17 2004-10-07 Hitachi Ltd 内燃機関用電磁弁の駆動装置
JP2009074373A (ja) * 2007-09-19 2009-04-09 Hitachi Ltd 内燃機関の燃料噴射制御装置
JP2013234679A (ja) * 2013-08-30 2013-11-21 Hitachi Automotive Systems Ltd 燃料噴射装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161370B1 (ko) 2016-05-03 2020-09-29 콘티넨탈 오토모티브 게엠베하 아이들 행정을 갖는 연료 분사기를 동작시키는 방법
WO2017191170A1 (de) * 2016-05-03 2017-11-09 Continental Automotive Gmbh Verfahren zum betreiben eines kraftstoffinjektors mit leerhub
CN109072801B (zh) * 2016-05-03 2021-12-21 大陆汽车有限公司 用于运行具有空行程的燃料喷射器的方法
CN109072801A (zh) * 2016-05-03 2018-12-21 大陆汽车有限公司 用于运行具有空行程的燃料喷射器的方法
KR20190003671A (ko) * 2016-05-03 2019-01-09 콘티넨탈 오토모티브 게엠베하 아이들 행정을 갖는 연료 분사기를 동작시키는 방법
US10989154B2 (en) 2016-05-03 2021-04-27 Vitesco Technologies GmbH Fuel injector with an idle stroke
JP2017201160A (ja) * 2016-05-06 2017-11-09 株式会社デンソー 燃料噴射制御装置
CN109328262A (zh) * 2016-05-06 2019-02-12 丰田自动车株式会社 燃料喷射控制装置
WO2017191733A1 (ja) * 2016-05-06 2017-11-09 株式会社デンソー 燃料噴射制御装置
CN109328262B (zh) * 2016-05-06 2021-08-06 丰田自动车株式会社 燃料喷射控制装置
JP2022018760A (ja) * 2020-07-16 2022-01-27 株式会社デンソー 噴射制御装置
JP2022018761A (ja) * 2020-07-16 2022-01-27 株式会社デンソー 噴射制御装置
JP7428094B2 (ja) 2020-07-16 2024-02-06 株式会社デンソー 噴射制御装置
JP7435333B2 (ja) 2020-07-16 2024-02-21 株式会社デンソー 噴射制御装置

Also Published As

Publication number Publication date
US20170226950A1 (en) 2017-08-10
DE112015003611B4 (de) 2022-08-11
DE112015003611T5 (de) 2017-05-04
JP6314733B2 (ja) 2018-04-25
JP2016037870A (ja) 2016-03-22
US10197002B2 (en) 2019-02-05

Similar Documents

Publication Publication Date Title
JP6314733B2 (ja) 内燃機関の燃料噴射制御装置
JP6206329B2 (ja) 内燃機関の燃料噴射制御装置
US9714626B2 (en) Drive device for fuel injection device
US10718290B2 (en) Device for controlling fuel injection in internal combustion engine
JP5053868B2 (ja) 燃料噴射制御装置
JP6121552B2 (ja) 内燃機関の燃料噴射制御装置
JP2010255444A (ja) 内燃機関の燃料噴射制御装置及び方法
US10876486B2 (en) Fuel injection control device
JP6493334B2 (ja) 内燃機関の燃料噴射制御装置
WO2016170739A1 (ja) 燃料噴射制御装置
JP2013137028A (ja) 内燃機関の燃料噴射制御装置及び方法
JP6844501B2 (ja) 燃料噴射弁の制御装置、及び燃料噴射弁の制御方法
JP6953862B2 (ja) 燃料噴射制御装置
JP5842619B2 (ja) インジェクタ駆動制御装置
WO2017094430A1 (ja) 内燃機関の燃料噴射制御装置
JP6642403B2 (ja) 燃料噴射制御装置
WO2018096940A1 (ja) 燃料噴射制御装置
JP7035466B2 (ja) 燃料噴射制御装置
JP2013019388A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829496

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003611

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829496

Country of ref document: EP

Kind code of ref document: A1