WO2017094430A1 - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
WO2017094430A1
WO2017094430A1 PCT/JP2016/082637 JP2016082637W WO2017094430A1 WO 2017094430 A1 WO2017094430 A1 WO 2017094430A1 JP 2016082637 W JP2016082637 W JP 2016082637W WO 2017094430 A1 WO2017094430 A1 WO 2017094430A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
fuel injection
drive
target
value
Prior art date
Application number
PCT/JP2016/082637
Other languages
English (en)
French (fr)
Inventor
敬介 矢野東
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016158557A external-priority patent/JP6493334B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112016005465.3T priority Critical patent/DE112016005465B4/de
Priority to US15/774,401 priority patent/US11346311B2/en
Publication of WO2017094430A1 publication Critical patent/WO2017094430A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2034Control of the current gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/063Lift of the valve needle

Definitions

  • the present disclosure relates to a fuel injection control device for an internal combustion engine.
  • a method for driving the fuel injection valve a method has been proposed in which the coil applied voltage is set to a high voltage at the beginning of the valve opening and then switched to a low voltage.
  • the valve opening response is improved by applying a high voltage, and then the fuel injection valve is driven at a low power by switching to a low voltage.
  • the switching from the high voltage to the low voltage is performed based on the detected current detected by the current detection circuit, and the applied voltage is switched when it is determined that the detected current has reached a predetermined target peak value. It has come to be.
  • a configuration in which a plurality of fuel injection valves are divided into a plurality of groups and the fuel injection valves are driven for each group because the fuel injection periods of the fuel injection valves of each cylinder overlap. Can be considered.
  • the structure which provides a current detection circuit for every group can be considered. In this case, if characteristic variations occur in a plurality of current detection circuits provided in each group, the driving state of each fuel injection valve cannot be controlled uniformly, which may cause variations in fuel injection amount. Is done.
  • the present disclosure has been made in view of the above problems, and a main purpose thereof is to optimize the drive of the fuel injection valve, and thus to appropriately control the fuel injection amount. Is to provide.
  • the fuel injection control device includes a plurality of fuel injection valves, a drive circuit that distributes the plurality of fuel injection valves to a plurality of drive systems, and drives each fuel injection valve in each of the drive systems, and the drive Applied to a fuel injection system of an internal combustion engine provided with each system and having a plurality of current detection circuits for detecting a drive current of each fuel injection valve, and based on the detected current detected by the current detection circuit, The drive of the fuel injection valve by the drive circuit is controlled.
  • the fuel injection control device is configured to acquire, for each drive system, a current change parameter that is a parameter correlated with a change amount of the detected current per time, and the current change parameter in each drive system.
  • a current correction unit that performs current correction on at least one of the plurality of drive systems.
  • a fuel injection system for an internal combustion engine in which a plurality of fuel injection valves are distributed to a plurality of drive systems and a current detection circuit is provided for each drive system, the detection current per time is detected for each drive system.
  • a current change parameter which is a parameter correlated with the change amount is acquired.
  • current correction is performed for at least one of the plurality of drive systems.
  • FIG. 1 is a diagram showing a schematic configuration of an engine control system
  • FIG. 2 is a block diagram showing the configuration of the ECU.
  • FIG. 3 is a time chart showing the fuel injection period of each cylinder.
  • FIG. 4 is a diagram showing the configuration and state of the fuel injection valve,
  • FIG. 5 is a time chart for explaining the driving operation of the fuel injection valve.
  • FIG. 6 is a time chart for explaining detection deviation of the current detection circuit.
  • FIG. 7 is a flowchart showing a procedure of target current correction processing.
  • FIG. 8 is a diagram illustrating the relationship between the arrival time difference ⁇ Tp and the current correction value ⁇ Ip.
  • FIG. 8 is a diagram illustrating the relationship between the arrival time difference ⁇ Tp and the current correction value ⁇ Ip.
  • FIG. 9 is a time chart for specifically explaining the peak current correction.
  • FIG. 10 is a time chart for specifically explaining the peak current correction.
  • FIG. 11 is a time chart for specifically explaining the peak current correction.
  • FIG. 12 is a time chart for specifically explaining the peak current correction.
  • FIG. 13 is a time chart for explaining detection deviation of the current detection circuit.
  • FIG. 14 is a flowchart illustrating a procedure of target current correction processing in the second embodiment.
  • FIG. 15 is a diagram illustrating a relationship between the difference ⁇ Ia in the reached current and the current correction value ⁇ Ip.
  • FIG. 16 is a time chart for explaining detection deviation of the current detection circuit.
  • FIG. 17 is a flowchart showing a procedure of target current correction processing in the third embodiment.
  • FIG. 18 is a diagram showing the relationship between the difference ⁇ I in the current integrated value and the current correction value ⁇ Ip.
  • FIG. 19 is a block diagram illustrating a configuration of an ECU in another example.
  • This embodiment is embodied as a control system for controlling a gasoline engine for a vehicle.
  • This embodiment is embodied as a control system for controlling a gasoline engine for a vehicle.
  • a schematic configuration of the engine control system will be described with reference to FIG.
  • An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 which is a cylinder injection type multi-cylinder internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. ing.
  • a throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.
  • a surge tank 18 is provided downstream of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18.
  • An intake manifold 20 that introduces air into each cylinder 21 of the engine 11 is connected to the surge tank 18, and each cylinder 21 of the engine 11 has an electromagnetic fuel injection valve 30 that directly injects fuel into the cylinder. It is attached.
  • a spark plug 22 is attached to the cylinder head of the engine 11 for each cylinder 21, and the air-fuel mixture in the cylinder is ignited by spark discharge of the spark plug 22 of each cylinder 21.
  • the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) that detects the air-fuel ratio or rich / lean of the air-fuel mixture based on the exhaust gas, and the downstream side of the exhaust gas sensor 24 Further, a catalyst 25 such as a three-way catalyst for purifying exhaust gas is provided.
  • an exhaust gas sensor 24 air-fuel ratio sensor, oxygen sensor, etc.
  • a catalyst 25 such as a three-way catalyst for purifying exhaust gas is provided.
  • the cylinder block of the engine 11 is provided with a cooling water temperature sensor 26 that detects the cooling water temperature and a knock sensor 27 that detects knocking.
  • a crank angle sensor 29 that outputs a pulse signal every time the crankshaft 28 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 28. Based on the crank angle signal of the crank angle sensor 29, the crank angle and engine rotation Speed is detected.
  • the outputs of these various sensors are input to the ECU 40.
  • the ECU 40 is an electronic control unit mainly composed of a microcomputer, and performs various controls of the engine 11 using detection signals of various sensors.
  • the ECU 40 calculates the fuel injection amount according to the engine operating state to control the fuel injection of the fuel injection valve 30 and also controls the ignition timing of the spark plug 22.
  • the ECU 40 includes a microcomputer 41 for engine control (a microcomputer for controlling the engine 11), a drive IC 42 for driving an injector (a drive IC for the fuel injection valve 30), a voltage switching circuit 43, A current detection circuit 44 is provided.
  • the microcomputer 41 corresponds to a “fuel injection control device”.
  • the microcomputer 41 calculates a required injection amount according to the engine operating state (for example, engine speed, engine load, etc.), generates an injection pulse from the injection time calculated based on the required injection amount, and outputs it to the drive IC 42.
  • the drive IC 42 and the voltage switching circuit 43 correspond to a “drive circuit”, and open the fuel injection valve 30 by an injection pulse to inject the fuel for the required injection amount.
  • the voltage switching circuit 43 is a circuit for switching the driving voltage applied to the fuel injection valve 30 of each cylinder between a high voltage and a low voltage.
  • the low voltage power supply unit 45 is turned on and off by a switching element (not shown).
  • the high-voltage power supply unit 46 supply a drive current to the coil of the fuel injection valve 30.
  • the low-voltage power supply unit 45 includes a low-voltage output circuit that outputs a low voltage V1 of, for example, 12V
  • the high-voltage power supply unit 46 includes a high-voltage output circuit that outputs a high voltage V2 (boosted voltage) of, for example, 60 to 65V.
  • the high-voltage power supply unit 46 has a booster circuit that boosts the battery voltage.
  • the low voltage V1 and the high voltage V2 are switched and applied to the fuel injection valve 30 in time series.
  • the high voltage V2 is applied at the initial stage of the valve opening, thereby ensuring the valve opening responsiveness of the fuel injection valve 30, and subsequently the low voltage V1 is applied, whereby the fuel injection valve 30.
  • the valve open state is maintained.
  • the engine 11 is a four-cylinder engine, and fuel injection is performed by outputting an injection pulse in each of the intake stroke and the compression stroke as fuel injection by the fuel injection valve 30 for each cylinder.
  • the combustion order of the # 1 to # 4 cylinders is # 1 ⁇ # 3 ⁇ # 4 ⁇ # 2.
  • the periods of fuel injection by the fuel injection valves 30 overlap in two cylinders in which the combustion order continues back and forth.
  • two cylinders with every other combustion order are grouped into drive groups 1 and 2, and a voltage switching circuit 43 and a current detection circuit 44 are provided for each drive group. ing. That is, the voltage switching circuit 43 and the current detection circuit 44 in the drive group 1 perform voltage switching and current detection for the fuel injection valves 30 of the # 1 and # 4 cylinders, and the voltage switching circuit 43 and the current detection in the drive group 2.
  • the circuit 44 is configured to perform voltage switching and current detection for the fuel injection valves 30 of the # 2 and # 3 cylinders. Thereby, each fuel injection valve 30 is driven by the drive system for each drive group.
  • the current detection circuit 44 detects an energization current when the fuel injection valve 30 is driven to open, and the detection result is sequentially output to the drive IC 42.
  • the current detection circuit 44 may have a well-known configuration, and includes, for example, a shunt resistor and a comparator.
  • a reference signal corresponding to the reference current is output from the DAC port (DAC1, DAC2) of the drive IC 42, and the comparator of the current detection circuit 44 outputs a comparison result between the drive current of each fuel injection valve 30 and the reference current. Is output.
  • each current detection circuit 44 is provided with a temperature sensor 47, and the temperature of each current detection circuit 44 is detected by this temperature sensor 47.
  • the influence of heat received from other heat sources may be different or the degree of heat dissipation may be different.
  • a temperature difference may occur in each current detection circuit 44.
  • the lift of the valve body is finished in a partial lift state before the valve body of the fuel injection valve 30 reaches the full lift position, and a desired amount of fuel is supplied in that state.
  • Partial lift injection is performed, and the partial lift injection will be briefly described with reference to FIG. In FIG. 4, (a) shows the operation at the time of full lift injection, and (b) shows the operation at the time of partial lift injection.
  • the fuel injection valve 30 has a coil 31 that generates an electromagnetic force when energized, and a needle 33 (valve element) that is driven integrally with the plunger 32 (movable core) by the electromagnetic force. Then, the needle 33 moves to the valve opening position, whereby the fuel injection valve 30 is opened, and fuel injection is performed.
  • the injection pulse time (energization period) is different, and the injection pulse width is relatively long as shown in (a) (the needle lift amount is the full lift amount). ), The needle 33 reaches the full lift position (position where the plunger 32 hits the stopper 34).
  • precharge, step-up drive, and valve-opening maintenance drive are performed in time series during the period when the injection pulse is turned on.
  • the precharge applies a low voltage (in this embodiment, the low voltage V1) at which the fuel injection valve 30 does not open prior to the application of the high voltage V2 at the start of energization of the fuel injection valve 30.
  • the boost drive is performed to improve the valve opening response, and the high voltage V2 is applied to the fuel injection valve 30 during the boost drive period.
  • the valve-opening maintenance drive is performed subsequent to the boost drive, and the low voltage V1 is applied to the fuel injection valve 30.
  • the injection pulse is turned on, and precharge with the low voltage V1 is performed from t0 to t1.
  • the precharge period the precharge is terminated based on the fact that the detected current detected by the current detection circuit 44 has reached a predetermined value.
  • the precharge period may be a predetermined time.
  • the precharging may be performed by repeatedly turning on and off the switching elements in the voltage switching circuit 43 at a predetermined duty ratio.
  • the voltage applied to the fuel injection valve 30 is switched from the low voltage V1 to the high voltage V2.
  • the drive current increases sharply compared to the period from t0 to t1.
  • the application of the high voltage V2 is stopped.
  • the needle lift is started at the timing when the drive current reaches the target peak value Ip or at the timing just before that, and the fuel injection is started along with the needle lift.
  • the determination as to whether or not the drive current has reached the target peak value Ip is performed based on the detected current detected by the current detection circuit 44.
  • the voltage switching circuit 43 switches the applied voltage (V2 applied). Stop).
  • the drive current decreases as the application of the high voltage V2 is stopped.
  • the low voltage V1 is applied to the fuel injection valve 30 based on a predetermined current threshold and the current detected by the current detection circuit 44. Applied intermittently.
  • the target hold value Ih for maintaining the valve opening is determined in two stages. From time t2 to t3, the low voltage V1 is applied based on the target hold value Iha, and from time t3 to t4, The low voltage V1 is applied based on the target hold value Ihb ( ⁇ Iha). At this time, at times t2 to t3, a high / low binary target hold value Iha having hysteresis is determined.
  • the applied voltage is switched based on the detection result of the drive current, that is, the drive profile.
  • the current detection circuit 44 there is an error in the detected current due to various factors. May be included. For example, detection errors may occur due to individual differences in shunt resistance, aging degradation, and the like. In such a case, if an error is included in the detected current with respect to the actual drive current (actual current), the timing at which the drive current reaches the target peak value Ip cannot be properly grasped, resulting in excessive fuel injection amount. There is a concern that shortages will occur.
  • each current detection circuit 44 will be described below with reference to FIG.
  • the solid line indicates the detection current of the current detection circuit 44 of the drive group 1, which matches the drive current (actual current) that actually flows through the fuel injection valve 30.
  • the alternate long and short dash line indicates the detected current of the current detection circuit 44 of the drive group 2, and the broken line indicates the actual current flowing through the fuel injection valve 30 of the drive group 2.
  • FIG. 6A shows a case where the drive current is detected lower than the actual current in the group 2 current detection circuit 44
  • FIG. 6B shows the case where the group 2 current detection circuit 44 detects the actual current.
  • the drive current is detected at a high level. That is, in FIG. 6A, the detection gain is low, and in FIG. 6B, the detection gain is high.
  • the detection deviation of the current detection circuit 44 does not occur, and both the detection current and the actual current change as indicated by the solid line.
  • the arrival time required until the detected current reaches the target peak value Ip is acquired as “Tp1”.
  • the drive group 2 due to the detection deviation of the current detection circuit 44, a deviation of the detection current (one-dot chain line) from the actual current (dashed line), that is, a deviation on the low current side occurs.
  • the arrival time required to reach the target peak value Ip is acquired as “Tp2”. At this time, since the arrival time Tp2 of the drive group 2 is longer than the arrival time Tp1 of the drive group 1, the actual current of the drive group 2 is higher than the target peak value Ip.
  • each drive group even when the applied voltage is switched at the timing when the detected current of the fuel injection valve 30 reaches the target peak value Ip (the V1 application is stopped), the timing of the voltage switch is actually set to each drive. It is considered that the fuel injection amount is different as a result. That is, in the drive group 2, the boost energy during the boost drive period is larger than that in the drive group 1, and the needle lift operation is increased. Therefore, the fuel injection amount may be excessive.
  • each drive group even if the switching of the applied voltage (V1 application stop) is performed at the timing when the drive current of the fuel injection valve 30 reaches the target peak value Ip, the timing of the voltage switching is actually set to each drive. It is conceivable that the fuel injection amount varies as a result as in FIG. That is, in the drive group 2, the boost energy during the boost drive period is smaller than that in the drive group 1, and the needle lift operation is reduced. Therefore, the fuel injection amount may be too small.
  • FIG. 6 illustrates the case where a detection deviation occurs only in the current detection circuit 44 of the drive group 2 among the current detection circuits 44 of the drive groups 1 and 2. If a detection deviation occurs and the degree of detection deviation is further different, it is considered that a peak deviation occurs as described above.
  • the microcomputer 41 detects the detected current from the predetermined reference timing for each fuel injection by the fuel injection valve 30 based on the detected currents by the current detecting circuits 44 of the drive groups 1 and 2.
  • the arrival time which is the time until it reaches, is measured, and current correction is performed for either one of the drive groups 1 and 2 based on the difference in arrival time for each current detection circuit 44.
  • the arrival time for each current detection circuit 44 corresponds to a “current change parameter”.
  • the microcomputer 41 corresponds to an “acquisition unit” and a “current correction unit”.
  • the microcomputer 41 uses the timing (t1 in FIG. 5) at which the precharge is completed and the application of the high voltage V2 is started after the injection pulse is turned on as a reference timing, and the detected current is generated from the reference timing.
  • the time required to reach the target peak value Ip is measured as the peak current arrival time Tp.
  • the microcomputer 41 sets the target peak value Ip so that the peak current arrival times Tp of the drive groups 1 and 2 are aligned. Make corrections. In this case, in each of the drive groups 1 and 2, different target peak values Ip are set according to mutual detection variations.
  • the period during which the application of the high voltage V2 is performed after the precharge is completed (t1 in FIG. 5). It is also possible to measure the peak current arrival time Tp using the timings in t2) as the reference timing. In addition, regarding the peak current arrival times Tp of the drive groups 1 and 2, it is preferable to align the Tp by making each Tp fall within a predetermined range.
  • FIG. 7 is a flowchart showing a processing procedure for target current correction, and this processing is repeatedly performed by the microcomputer 41 at a predetermined cycle.
  • correction of the target peak value Ip and the target hold value Ih is performed as correction of the target current value.
  • step S11 it is determined whether or not the execution condition of the correction logic is satisfied.
  • This implementation condition includes that the engine 11 and the vehicle are operated in a steady state, and specifically, fluctuations in parameters such as engine rotation speed, engine water temperature, load, and vehicle speed are not more than a predetermined value. Is included. Further, in the present embodiment, the engine operating state is a steady state and a predetermined state that is not an idle state (that is, a fuel injection amount of one drive of the fuel injection valve 30 is not a minute injection state that is less than a predetermined state). Included in the condition.
  • step S12 peak current arrival times Tp1 and Tp2 in the drive groups 1 and 2 are obtained.
  • Tp1 and Tp2 are acquired when the fuel injection valves 30 are driven in the drive groups 1 and 2, respectively.
  • step S12 temperature correction based on the temperature of each current detection circuit 44 may be performed for the acquired peak current arrival times Tp1 and Tp2. That is, the microcomputer 41 acquires the temperature difference of each current detection circuit 44 based on the temperature detected by the temperature sensor 47 of each current detection circuit 44, and corrects the peak current arrival times Tp1, Tp2 based on the temperature difference. .
  • one of the drive groups 1 and 2 is set as a reference temperature, and the peak current arrival time is corrected to the increase side or the decrease side based on the temperature difference.
  • step S14 the target arrival time Tptg is calculated.
  • the larger of the arrival times Tp1 and Tp2 of the drive groups 1 and 2 is set as the target arrival time Tptg.
  • the smaller of the arrival times Tp1 and Tp2 of the drive groups 1 and 2 can be set as the target arrival time Tptg.
  • arrival time Tp1, Tp2 is large means that the variation
  • the smaller change amount is used as a reference for arrival time (current control).
  • the arrival time is controlled in accordance with a drive system having a small change amount (a drive system having a large arrival time). It becomes.
  • the arrival times Tp1 and Tp2 are small, it means that the amount of change in the detected current per time is large, and setting the smaller of the arrival times Tp1 and Tp2 as the target arrival time Tptg This means that the larger change amount per hour is used as a reference for arrival time (current control).
  • the arrival time is controlled in accordance with a drive system with a large change amount (a drive system with a short arrival time). It becomes.
  • step S15 a difference ⁇ Tp between the target time Tptg and the target to be corrected among the arrival times Tp1 and Tp2 of the drive groups 1 and 2 is calculated.
  • step S14 for example, when the larger value of the arrival times Tp1 and Tp2 is set as the target arrival time Tptg, the difference between the smaller arrival time to be corrected and the target arrival time Tptg is set as ⁇ Tp. calculate.
  • step S16 it is determined whether or not the difference ⁇ Tp is larger than a predetermined threshold value TH. If ⁇ Tp> TH, the process proceeds to step S17, and the target current is corrected. At this time, the correction of the target peak value Ip in the boost drive period is performed for the group to be corrected among the drive groups 1 and 2. Specifically, the current correction value ⁇ Ip is calculated based on the difference ⁇ Tp using the relationship of FIG. According to the relationship of FIG. 8, the larger the difference ⁇ Tp, the larger the current correction value ⁇ Ip is calculated.
  • the target peak value Ip is corrected so that the peak current arrival times Tp of the drive groups 1 and 2 are aligned, and Ip1 ⁇ Ip2.
  • step S17 in addition to the correction of the target peak value Ip during the boost drive period, the target hold value Ih during the valve opening maintenance period is corrected.
  • the target hold value Ih is a current value lower than the target peak value Ip, and the target hold value Ih is based on the ratio of the target peak values Ip1 and Ip2 in each of the drive groups 1 and 2 (that is, the deviation between Ip1 and Ip2).
  • the target hold value Ih of the same drive group where the correction of the peak value Ip is performed is corrected.
  • the target hold value Ih2 is corrected. If the target hold value Ih is determined in a plurality of stages during the valve opening maintenance period, the target hold value is corrected for each of the target hold values Ih.
  • step S12 After the target current is corrected, the process returns to step S12. Steps S12 to S17 are repeated until step S16 becomes NO.
  • step S18 if current correction is performed in the current correction process, the correction result is stored. That is, the corrected target peak value Ip and target hold value Ih are stored in a backup memory (such as EEPROM). The corrected Ip and Ih are held as learning values, and are appropriately read and used when the fuel injection valve 30 is driven.
  • a backup memory such as EEPROM
  • FIGS. 9 and 10 are time charts for explaining the target current correction process more specifically.
  • correction processing of the target peak value Ip in each of the drive groups 1 and 2 will be described.
  • the drive group 1 has a longer arrival time than the drive groups 1 and 2, and the arrival time Tp2 of the drive group 2 is adjusted with the arrival time Tp1 of the drive group 1 as a reference.
  • the arrival time of the drive group 1 is shorter, and the arrival time Tp2 of the drive group 2 is adjusted with reference to the arrival time Tp1 of the drive group 1.
  • the difference ⁇ Tp is calculated by subtracting the arrival time Tp2 of the drive group 2 from the arrival time Tp1 (corresponding to Tptg) of the drive group 1, and the current correction value ⁇ Ip is calculated based on the difference ⁇ Tp. Then, the target peak value Ip2 of the drive group 2 is corrected by the current correction value ⁇ Ip.
  • the arrival times Tp1 of the drive groups 1 and 2 are again achieved.
  • Tp2 is obtained.
  • the current correction value ⁇ Ip is calculated again based on the arrival time difference ⁇ Tp, and the target peak value Ip2 of the drive group 2 is corrected by the current correction value ⁇ Ip.
  • Such correction of the target peak value Ip2 is repeatedly performed on condition that the difference ⁇ Tp is larger than the threshold value TH.
  • the current correction value ⁇ Ip is gradually decreased as the difference ⁇ Tp is gradually decreased.
  • the arrival time Tp1 of the drive group 1 is shorter than the arrival time Tp2 of the drive group 2 before time t21. Therefore, after time t21, the arrival time Tp2 of the drive group 2 is adjusted (in this case, shortened) with the drive group 1 having the shorter arrival time as a reference.
  • the difference ⁇ Tp is calculated by subtracting the arrival time Tp2 of the drive group 2 from the arrival time Tp1 (corresponding to Tptg) of the drive group 1, and the current correction value ⁇ Ip is calculated based on the difference ⁇ Tp. Then, the target peak value Ip2 of the drive group 2 is corrected by the current correction value ⁇ Ip.
  • the arrival times Tp1 of the drive groups 1 and 2 are again achieved.
  • Tp2 is obtained.
  • the current correction value ⁇ Ip is calculated again based on the arrival time difference ⁇ Tp, and the target peak value Ip2 of the drive group 2 is corrected by the current correction value ⁇ Ip.
  • Such correction of the target peak value Ip2 is repeatedly performed on condition that the difference ⁇ Tp is larger than the threshold value TH.
  • the current correction value ⁇ Ip is gradually decreased as the difference ⁇ Tp is gradually decreased.
  • FIG. 11 is a supplementary explanatory diagram regarding the correction of the target peak value Ip.
  • the target peak value Ip2 of the drive group 2 is set with reference to the target peak value Ip1 of the drive group 1. Examples of adjustments are shown. This is because, for a drive system having a large amount of change in detection current per time (a drive system having a short arrival time), the arrival time is controlled in accordance with the drive system having a small change amount (a drive system having a large arrival time). Means.
  • FIG. 11 (a) shows the same situation as FIG. 6 (b).
  • the target peak value Ip2 of the drive group 2 is corrected to the increase side based on the difference ⁇ Tp in the peak current arrival time.
  • the arrival times Tp1 and Tp2 of the drive groups 1 and 2 substantially match, and at this time, the actual peak currents of the drive groups 1 and 2 substantially match.
  • the timing at which the detection current of the drive group 2 reaches the target peak value Ip is shifted from A1 to A2. Therefore, in each of the drive groups 1 and 2, the timing for switching from the high voltage V2 to the low voltage V1, that is, the timing for switching the fuel injection valve 30 from the boost driving to the valve opening maintaining driving can be matched.
  • the needle lift amount in the partial lift state can be adjusted for each cylinder.
  • FIG. 12 is a supplementary explanatory diagram regarding the correction of the target peak value Ip, similarly to FIG. However, in FIG. 12, unlike FIG. 11, when the drive current is detected lower than the actual current in the current detection circuit 44 of the drive group 2, the drive group 2 is based on the target peak value Ip ⁇ b> 1 of the drive group 1. In this example, the target peak value Ip2 is adjusted. This is because, for a drive system with a small amount of change in detection current per time (a drive system with a long arrival time), the arrival time is controlled in accordance with a drive system with a large change amount (a drive system with a short arrival time). Means. FIG. 12 (a) shows the same situation as FIG. 6 (a).
  • the peak current arrival time Tp2 of the drive group 2 is longer than the peak current arrival time Tp1 of the drive group 1.
  • the target peak value Ip2 of the drive group 2 is corrected to the decreasing side by the correction process, so that the arrival times Tp1 and Tp2 of the drive groups 1 and 2 substantially coincide.
  • the actual peak currents of the drive groups 1 and 2 substantially match.
  • the switching timing of the high voltage V2 to the low voltage V1 that is, the switching timing of the fuel injection valve 30 from the boost driving to the valve opening maintaining driving is matched in each of the driving groups 1 and 2. Can do.
  • a peak current has been reached based on the respective detection currents by the current detection circuits 44.
  • the time Tp is measured, and the current correction is performed for any one of the drive groups based on the difference in arrival time Tp for each current detection circuit 44.
  • the peak current arrival time Tp is different between the drive groups 1 and 2 even if the injection commands of the fuel injection valves 30 are the same.
  • the current state is corrected based on the difference in the arrival time Tp, so that the driving state of each fuel injection valve 30 can be brought closer.
  • the drive of the fuel injection valve 30 can be optimized, and the fuel injection amount can be appropriately controlled.
  • the target current is corrected so that the peak current arrival times Tp1 and Tp2 of the drive groups 1 and 2 are aligned.
  • the drive profiles of the fuel injection valves 30 can be adjusted. Thereby, the dispersion
  • the actual drive current may be deviated from the target current value.
  • the target current value in at least one of the drive groups 1 and 2 is corrected, the target current value is determined for each of the drive groups 1 and 2 and the target current value is compared with the detected current. .
  • the timing at which the actual drive current reaches the target current value can be adjusted, and the variation in the fuel injection amount is also suppressed.
  • the target peak value Ip is determined for each of the drive groups 1 and 2, and the target peak value Ip and the detected current are determined. A comparison is made. In this case, in each of the drive groups 1 and 2, the timing at which the actual drive current reaches the target peak value Ip can be matched, and variation in the fuel injection amount is also suppressed. According to the configuration in which the target peak value Ip is set for each of the drive groups 1 and 2, it becomes possible to match the valve opening responsiveness of each fuel injection valve 30, and accordingly, it is possible to contribute to the suppression of variations in the fuel injection amount.
  • the target hold value Ih is corrected in addition to the correction of the target peak value Ip, it is possible to match the valve opening responsiveness of each fuel injection valve 30 and the valve body lift amount. Can contribute to the suppression of variations.
  • each fuel injection valve 30 can be driven, suppressing the excessive reduction of an energization current. That is, by setting the smaller arrival times Tp1 and Tp2 (the one with the larger amount of change in the detected current per time) as a correction target, each detection group has a detection error regardless of which drive group (drive system) is generated. It can suppress that the energization current of the fuel injection valve 30 becomes too small. Therefore, the system can be stabilized and the stable operation of the fuel injection valve 30 can be guaranteed.
  • the arrival time Tp1, Tp2 is larger (the change amount of the detected current per time is smaller), and the arrival time Tp1, Tp2 is smaller (the change amount of the detection current is larger per time).
  • the difference becomes more prominent as the time length of the energized state is longer.
  • the current detection is performed as compared with the configuration in which the threshold current is set on the lower current side than the target peak value Ip. The difference in characteristic variation of the circuit 44 can be accurately grasped.
  • the drive current at the end of precharge is different between the drive groups 1 and 2, and as a result, the precharge end timing is different between the drive groups 1 and 2.
  • the peak current arrival times Tp1 and Tp2 are measured using the timing at which the precharge is completed and the application of the high voltage V2 is started (generally, the timing within the period during which the application of the high voltage V2 is performed) as a reference timing.
  • the target current can be appropriately corrected without being affected by variations in the precharge end timing in the drive groups 1 and 2.
  • each current detection circuit 44 When there is a temperature difference in each current detection circuit 44, there is a concern that the measurement accuracy of the peak current arrival times Tp1 and Tp2 may be reduced due to the influence. In this respect, since the temperature difference of the current detection circuits 44 in the drive groups 1 and 2 is acquired and the peak current arrival times Tp1 and Tp2 are corrected based on the temperature difference, the temperature difference of the current detection circuits 44 is determined. The adverse effect by can be suppressed.
  • It is configured to measure the peak current arrival times Tp1 and Tp2 of the drive groups 1 and 2 on condition that the fuel injection amount by one drive of the fuel injection valve 30 is not less than a predetermined value and not in the minute injection state.
  • the peak current arrival times Tp1 and Tp2 of the drive groups 1 and 2 are measured, the drive current of each fuel injection valve 30 reliably reaches the target peak value Ip. Therefore, the peak current arrival times Tp1 and Tp2 can be accurately grasped, and consequently the accuracy of current correction can be improved.
  • FIG. 13 is a diagram showing variation in characteristics in each current detection circuit 44.
  • the solid line indicates the detection current of the current detection circuit 44 of the drive group 1, which matches the drive current (actual current) that actually flows through the fuel injection valve 30.
  • the alternate long and short dash line indicates the detected current of the current detection circuit 44 of the drive group 2, and the broken line indicates the actual current flowing through the fuel injection valve 30 of the drive group 2.
  • the amount of change in the detected current per time is different, for example, the reached currents Ia1 and Ia2 at the timing ta when a predetermined time has elapsed from the start of energization are different ( Ia1> Ia2).
  • the predetermined time may be determined as a time before reaching the peak current. Under such circumstances, current correction is performed based on the difference between the reached currents Ia1 and Ia2 for each drive group.
  • FIG. 14 is a flowchart showing a processing procedure of target current correction by the microcomputer 41, and this processing is performed in place of the above-described FIG. In FIG. 14, the same steps as those in FIG.
  • step S21 it is determined whether or not the execution condition of the correction logic is satisfied (same as step S11 in FIG. 7).
  • step S21 is YES
  • step S22 the reached currents Ia1 and Ia2 at the time when a predetermined time has elapsed after the start of energization in each of the drive groups 1 and 2 are acquired.
  • Ia1 and Ia2 are acquired when the fuel injection valves 30 are driven in the drive groups 1 and 2, respectively.
  • temperature correction based on the temperature of each current detection circuit 44 may be performed on the acquired reached currents Ia1 and Ia2 (same as step S12 in FIG. 7).
  • an absolute value ⁇ Ia of a difference between the reaching currents Ia1 and Ia2 in each of the drive groups 1 and 2 is calculated.
  • a drive group to be corrected is selected based on the magnitudes of the reached currents Ia1 and Ia2.
  • the larger of the reaching currents Ia 1 and Ia 2 is set as a correction target.
  • step S26 it is determined whether or not ⁇ Ia is larger than a predetermined threshold value TH2. If ⁇ Ia> TH2, the process proceeds to step S27 and the target current is corrected. At this time, the correction of the target peak value Ip in the boost drive period is performed for the group to be corrected among the drive groups 1 and 2. Specifically, the current correction value ⁇ Ip is calculated based on ⁇ Ia using the relationship of FIG. According to the relationship of FIG. 15, the larger the current correction value ⁇ Ip, the greater the value of ⁇ Ia.
  • the target peak value Ip is corrected so that the peak current arrival times Tp of the drive groups 1 and 2 are aligned.
  • step S27 in addition to the correction of the target peak value Ip during the boost drive period, the target hold value Ih during the valve opening maintenance period is corrected. However, details conform to step S17 in FIG. After the target current is corrected, the process returns to step S22. Steps S22 to S27 are repeated until step S26 becomes NO.
  • step S26 If it is determined in step S26 that ⁇ Ia ⁇ TH2, the process proceeds to step S28.
  • step S28 if current correction has been performed in the current correction process, the correction result is stored (similar to step S18 in FIG. 7).
  • the drive of the fuel injection valve 30 can be optimized, and the fuel injection amount can be appropriately controlled.
  • the third embodiment will be described focusing on differences from the first embodiment.
  • a current change parameter a current integrated value obtained by integrating the detected current until a predetermined period elapses from a predetermined reference timing for each fuel injection by the fuel injection valve 30 in the plurality of drive groups 1 and 2 is acquired.
  • the current correction is performed based on the difference between the integrated current values of the drive groups 1 and 2.
  • FIG. 16 is a diagram showing variation in characteristics in each current detection circuit 44.
  • the solid line indicates the detection current of the current detection circuit 44 of the drive group 1, which matches the drive current (actual current) that actually flows through the fuel injection valve 30.
  • the alternate long and short dash line indicates the detected current of the current detection circuit 44 of the drive group 2, and the broken line indicates the actual current flowing through the fuel injection valve 30 of the drive group 2.
  • the drive groups 1 and 2 have different amounts of change in detected current per time.
  • current integrated values ⁇ I1 and ⁇ I2 obtained by integrating detected currents from the start of energization to the end of energization are different.
  • the integration interval (predetermined interval) for integrating the detected current may be an interval from the start of energization until the detected current reaches the peak value (predetermined current value), etc., in addition to the above. Under such circumstances, current correction is performed based on the difference between the current integrated values ⁇ I1 and ⁇ I2 for each drive group.
  • FIG. 17 is a flowchart showing a processing procedure of target current correction by the microcomputer 41, and this processing is performed in place of the above-described FIG. In FIG. 17, the same steps as in FIG.
  • step S31 it is determined whether or not an execution condition for the correction logic is satisfied (same as step S11 in FIG. 7).
  • step S32 the current integrated values ⁇ I1, ⁇ I2 are acquired in the drive groups 1 and 2, respectively.
  • ⁇ I1 and ⁇ I2 are acquired when the fuel injection valves 30 are driven in the drive groups 1 and 2, respectively.
  • step S32 temperature correction based on the temperature of each current detection circuit 44 may be performed on the acquired current integrated values ⁇ I1 and ⁇ I2 (same as step S12 in FIG. 7).
  • an absolute value ⁇ I of a difference between the current integrated values ⁇ I1 and ⁇ I2 in each of the drive groups 1 and 2 is calculated.
  • a drive group to be corrected is selected based on the magnitudes of the current integrated values ⁇ I1 and ⁇ I2.
  • the larger one of the current integrated values ⁇ I1 and ⁇ I2 among the drive groups 1 and 2 is set as a correction target.
  • the smaller one of the current integrated values ⁇ I1 and ⁇ I2 in each of the drive groups 1 and 2 can be a correction target.
  • step S36 it is determined whether or not ⁇ I is larger than a predetermined threshold value TH3. If ⁇ I> TH3, the process proceeds to step S37 and the target current is corrected.
  • the correction of the target peak value Ip in the boost drive period is performed for the group to be corrected among the drive groups 1 and 2.
  • the current correction value ⁇ Ip is calculated based on ⁇ I using the relationship of FIG. According to the relationship of FIG. 18, the larger value ⁇ I is, the larger value is calculated as the current correction value ⁇ Ip.
  • the target peak value Ip is corrected so that the peak current arrival times Tp of the drive groups 1 and 2 are aligned.
  • step S37 in addition to the correction of the target peak value Ip during the boost drive period, the target hold value Ih during the valve opening maintenance period is corrected. However, details conform to step S17 in FIG. After the target current is corrected, the process returns to step S32. Steps S32 to S37 are repeated until step S36 is NO.
  • step S36 If it is determined in step S36 that ⁇ I ⁇ TH3, the process proceeds to step S38.
  • step S38 if current correction has been performed in the current correction process, the correction result is stored (similar to step S18 in FIG. 7).
  • the drive of the fuel injection valve 30 can be optimized, and the fuel injection amount can be appropriately controlled.
  • the peak current arrival time Tp is measured using the timing when the precharge is completed and the application of the high voltage V2 is started as a reference timing.
  • the peak current arrival time Tp may be measured when the injection pulse is turned on, that is, when the energization start of the fuel injection valve 30 is started as a reference timing.
  • the detected current becomes a predetermined current value lower than the target peak value Ip from the reference timing. You may make it measure the arrival time until it arrives.
  • the longer arrival time (or shorter arrival time) of the peak current arrival times Tp1 and Tp2 of the drive groups 1 and 2 is set as the target arrival time, and the difference ⁇ Tp between the arrival times is set.
  • the target peak value Ip is corrected based on this, but this may be changed.
  • the average value of the peak current arrival times Tp1 and Tp2 of the drive groups 1 and 2 may be used as the target arrival time, and the target peak value Ip may be corrected based on the difference ⁇ Tp between the arrival times.
  • the target drive time may be set to a predetermined value. In any case, the target peak value Ip may be corrected so that the arrival times Tp1 and Tp2 of the drive groups 1 and 2 are aligned.
  • the target peak values Ip1, Ip2 are corrected.
  • the target peak value Ip of one of the driving groups 1 and 2 is corrected to the increase side
  • the target peak value Ip of the other group is corrected to the decrease side.
  • the current correction is performed based on the difference in the current change parameters (arrival time, final current, current integrated value) for each drive system, but this may be changed.
  • any current change parameter (arrival time, reached current, current integrated value) for each drive system may be compared, and current correction may be performed based on the result.
  • the current change parameter for each drive system may be used.
  • Current correction may be performed based on the ratio.
  • the update limit when a target current value (for example, a target peak value) is updated, the update limit may be set. For example, the upper limit value of the target current value is determined.
  • hysteresis may be provided in the threshold used for threshold determination such as the arrival time difference ⁇ Tp.
  • the first threshold value and the second threshold value are set (first threshold value> second threshold value), and when the target current value increases, the target current value is gradually increased until the difference ⁇ Tp etc. reaches the first threshold value.
  • the target current value when the target current value is decreased, the target current value is gradually decreased until the difference ⁇ Tp or the like reaches the second threshold value.
  • FIG. 19 illustrates a configuration employed in an in-line 6-cylinder engine.
  • the combustion order of each cylinder of the in-line 6-cylinder engine is # 1 ⁇ # 5 ⁇ # 3 ⁇ # 6 ⁇ # 2 ⁇ # 4.
  • fuel injection by the fuel injection valve 30 is performed for each cylinder in the intake stroke and the compression stroke.
  • cylinders that do not overlap fuel injection periods are grouped into a drive group, and a voltage switching circuit 43 and a current detection circuit 44 are provided for each drive group. That is, # 1 cylinder and # 6 cylinder are drive group 1, # 3 cylinder is drive group 2, # 2 cylinder and # 5 cylinder are drive group 3, and # 4 cylinder is drive group 4, and voltage is applied to each drive group.
  • a switching circuit 43 and a current detection circuit 44 are provided. It is also possible to group # 3 cylinder and # 4 cylinder as drive group 3.
  • the three cylinders can be made the same drive group.
  • each cylinder may be an individual drive system. The same applies to engines with three or more cylinders.
  • the high voltage power supply unit 46 that outputs the high voltage V2 does not have to include a booster circuit that boosts the battery voltage, and may be configured by a high voltage battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

ECU40は、複数の燃料噴射弁30を複数のグループに振り分けてそのグループごとの駆動系統で各燃料噴射弁30を駆動させる駆動回路42,43と、グループごとに設けられ、各燃料噴射弁30の駆動電流を検出する複数の電流検出回路44とを備えている。マイコン41は、電流検出回路44により検出された検出電流に基づいて、駆動回路による燃料噴射弁30の駆動を制御する。また、マイコン41は、複数の電流検出回路44によるそれぞれの検出電流に基づいて、燃料噴射弁30による燃料噴射ごとの所定の基準タイミングから検出電流が所定電流値に到達するまでの時間である到達時間を計測するとともに、電流検出回路44ごとの到達時間の差に基づいて、複数のグループの少なくともいずれかについて電流補正を実施する。

Description

内燃機関の燃料噴射制御装置 関連出願の相互参照
 本出願は、2015年11月30日に出願された日本出願番号2015-233462号と、2016年8月12日に出願された日本出願番号2016-158557号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関の燃料噴射制御装置に関するものである。
 車両等に搭載される内燃機関の各気筒に燃料を噴射供給する燃料噴射弁として、例えば電磁ソレノイド式のものが知られている。この種の燃料噴射弁においては、燃料噴射弁本体に内蔵されるコイルへの通電時期及び通電時間を制御して弁体(ニードル)を開弁方向に駆動させることで、燃料噴射時期及び燃料噴射量を制御している。
 また、燃料噴射弁の駆動手法として、コイル印加電圧を、開弁当初は高電圧とし、その後低電圧に切り替えるものが提案されている。かかる技術では、高電圧の印加により開弁応答性を高め、その後に低電圧に切り替えることで燃料噴射弁を低電力駆動するようにしている。また、高電圧から低電圧への切替は、電流検出回路により検出される検出電流に基づき実施され、その検出電流が所定の目標ピーク値に到達したと判定された際に印加電圧の切替が行われるようになっている。
 また、燃料噴射装置には機差ばらつきが存在するため、実際の駆動電流にばらつきが生じることが考えられ、こうした駆動電流のばらつきに起因して燃料噴射量にばらつきが生じることが懸念される。そこで特許文献1では、実駆動電流の機差ばらつき量をあらかじめ記憶手段に記憶しておき、その機差ばらつき量に基づいて目標の駆動電流を補正するようにしている。
特開2014-5740号公報
 ところで、多気筒内燃機関では、各気筒の燃料噴射弁において燃料噴射の期間が重複する等の理由から、複数の燃料噴射弁を複数のグループに振り分けてそのグループごとに燃料噴射弁を駆動させる構成が考えられる。また、燃料噴射弁の駆動電流を検出し、その検出電流に基づいて燃料噴射弁の駆動状態を制御する場合には、グループごとに電流検出回路を設ける構成が考えられる。この場合、各グループに設けられた複数の電流検出回路で特性ばらつきが生じていると、各燃料噴射弁の駆動状態を一律に制御することができず、燃料噴射量のばらつきが生じることが懸念される。つまり、各燃料噴射弁の駆動電流を適正に把握することができないと、燃料噴射弁の開弁応答性のばらつきが生じたり、弁体リフト量のばらつきが生じたりすることが考えられ、それに起因して、燃料噴射量の過不足が生じることが懸念される。こうした不都合について技術改善の余地があると考えられる。
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、燃料噴射弁の駆動の適正化を図り、ひいては燃料噴射量を適正に制御することができる内燃機関の燃料噴射制御装置を提供することにある。
 本開示の燃料噴射制御装置は、複数の燃料噴射弁と、前記複数の燃料噴射弁を複数の駆動系統に振り分けてそれら各駆動系統においてそれぞれ前記各燃料噴射弁を駆動させる駆動回路と、前記駆動系統ごとに設けられ、前記各燃料噴射弁の駆動電流を検出する複数の電流検出回路とを備える内燃機関の燃料噴射システムに適用され、前記電流検出回路により検出された検出電流に基づいて、前記駆動回路による前記燃料噴射弁の駆動を制御する。また、燃料噴射制御装置は、前記駆動系統ごとに、前記検出電流の時間当たりの変化量に相関するパラメータである電流変化パラメータを取得する取得部と、前記各駆動系統における前記電流変化パラメータに基づいて、前記複数の駆動系統の少なくともいずれかについて電流補正を実施する電流補正部と、を備える。
 上記構成によれば、複数の燃料噴射弁が複数の駆動系統に振り分けられ、駆動系統ごとに電流検出回路が設けられた内燃機関の燃料噴射システムにおいて、駆動系統ごとに、検出電流の時間当たりの変化量に相関するパラメータである電流変化パラメータが取得される。そして、その電流変化パラメータに基づいて、複数の駆動系統の少なくともいずれかについて電流補正が実施される。かかる場合、仮にいずれかの電流検出回路に特性ばらつきが生じていると、各燃料噴射弁の噴射指令が同一であっても、各駆動系統において電流変化パラメータが相違することになるが、各駆動系統の電流変化パラメータに基づいて電流補正が実施されることで、各燃料噴射弁における駆動状態を近づけることができる。その結果、燃料噴射弁の駆動の適正化を図り、ひいては燃料噴射量を適正に制御することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、エンジン制御システムの概略構成を示す図であり、 図2は、ECUの構成を示すブロック図であり、 図3は、各気筒の燃料噴射の期間を示すタイムチャートであり、 図4は、燃料噴射弁の構成及び状態を示す図であり、 図5は、燃料噴射弁の駆動動作を説明するためのタイムチャートであり、 図6は、電流検出回路の検出ずれを説明するためのタイムチャートであり、 図7は、目標電流補正処理の手順を示すフローチャートであり、 図8は、到達時間の差分ΔTpと電流補正値ΔIpとの関係を示す図であり、 図9は、ピーク電流補正を具体的に説明するためのタイムチャートであり、 図10は、ピーク電流補正を具体的に説明するためのタイムチャートであり、 図11は、ピーク電流補正を具体的に説明するためのタイムチャートであり、 図12は、ピーク電流補正を具体的に説明するためのタイムチャートであり、 図13は、電流検出回路の検出ずれを説明するためのタイムチャートであり、 図14は、第2実施形態における目標電流補正処理の手順を示すフローチャートであり、 図15は、到達電流の差分ΔIaと電流補正値ΔIpとの関係を示す図であり、 図16は、電流検出回路の検出ずれを説明するためのタイムチャートであり、 図17は、第3実施形態における目標電流補正処理の手順を示すフローチャートであり、 図18は、電流積算値の差分ΔΣIと電流補正値ΔIpとの関係を示す図であり、 図19は、別例におけるECUの構成を示すブロック図である。
 (第1実施形態)
 以下、実施形態について図面を参照して説明する。本実施形態は、車両用のガソリンエンジンを制御する制御システムとして具体化している。まず、図1に基づいてエンジン制御システムの概略構成を説明する。
 筒内噴射式の多気筒内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
 スロットルバルブ16の下流側にはサージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。サージタンク18には、エンジン11の各気筒21に空気を導入する吸気マニホールド20が接続され、エンジン11の各気筒21には、それぞれ筒内に燃料を直接噴射する電磁式の燃料噴射弁30が取り付けられている。エンジン11のシリンダヘッドには、気筒21ごとに点火プラグ22が取り付けられ、各気筒21の点火プラグ22の火花放電によって筒内の混合気に着火される。
 エンジン11の排気管23には、排出ガスに基づいて混合気の空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。
 エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、ノッキングを検出するノックセンサ27が取り付けられている。クランク軸28の外周側には、クランク軸28が所定クランク角回転するごとにパルス信号を出力するクランク角センサ29が取り付けられ、このクランク角センサ29のクランク角信号に基づいてクランク角やエンジン回転速度が検出される。
 これら各種センサの出力はECU40に入力される。ECU40は、マイクロコンピュータを主体として構成された電子制御ユニットであり、各種センサの検出信号を用いてエンジン11の各種制御を実施する。ECU40は、エンジン運転状態に応じた燃料噴射量を算出して燃料噴射弁30の燃料噴射を制御するとともに、点火プラグ22の点火時期を制御する。
 図2に示すように、ECU40は、エンジン制御用のマイコン41(エンジン11の制御用のマイクロコンピュータ)や、インジェクタ駆動用の駆動IC42(燃料噴射弁30の駆動用IC)、電圧切替回路43、電流検出回路44を備えている。マイコン41が「燃料噴射制御装置」に相当する。マイコン41は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて要求噴射量を算出するとともに、この要求噴射量に基づき算出される噴射時間から噴射パルスを生成し、駆動IC42に出力する。駆動IC42及び電圧切替回路43は「駆動回路」に相当し、噴射パルスにより燃料噴射弁30を開弁駆動して、要求噴射量分の燃料を噴射させる。
 電圧切替回路43は、各気筒の燃料噴射弁30に印加される駆動用電圧を高電圧と低電圧とで切り替える回路であり、具体的には、図示しないスイッチング素子のオンオフにより、低圧電源部45と高圧電源部46とのいずれかから燃料噴射弁30のコイルに対して駆動電流を供給させるものとなっている。なお、低圧電源部45は、例えば12Vの低電圧V1を出力する低電圧出力回路よりなり、高圧電源部46は、例えば60~65Vの高電圧V2(昇圧電圧)を出力する高電圧出力回路よりなる。高圧電源部46はバッテリ電圧を昇圧する昇圧回路を有している。
 噴射パルスにより燃料噴射弁30が開弁駆動される際には、燃料噴射弁30に対して低電圧V1と高電圧V2とが時系列で切り替えられて印加されるようになっている。この場合、開弁初期には高電圧V2が印加されることで、燃料噴射弁30の開弁応答性が確保されるとともに、それに引き続いて低電圧V1が印加されることで、燃料噴射弁30の開弁状態が保持される。
 また本実施形態では、図3に示すように、エンジン11を4気筒エンジンとし、気筒ごとの燃料噴射弁30による燃料噴射として、吸気行程と圧縮行程とにおいて各々噴射パルスを出力して燃料噴射を実施することとしている。なお、#1~#4気筒の燃焼順序を#1→#3→#4→#2としている。この場合、燃焼順序が前後に連続する2つの気筒では、各燃料噴射弁30による燃料噴射の期間が重複することが懸念される。
 そのため、図2の構成においては、燃焼順序が一つ置きとなる2つの気筒を1まとめにして駆動グループ1,2としており、駆動グループごとに各々電圧切替回路43及び電流検出回路44が設けられている。すなわち、駆動グループ1の電圧切替回路43及び電流検出回路44では、#1,#4気筒の燃料噴射弁30について電圧切り替えと電流検出とが行われ、駆動グループ2の電圧切替回路43及び電流検出回路44では、#2,#3気筒の燃料噴射弁30について電圧切り替えと電流検出とが行われる構成となっている。これにより、駆動グループごとの駆動系統で各燃料噴射弁30が駆動される。
 電流検出回路44は、燃料噴射弁30の開弁駆動時における通電電流を検出するものであり、その検出結果は駆動IC42に逐次出力される。電流検出回路44は周知構成であればよく、例えばシャント抵抗と比較器とを有するものとなっている。なお、駆動IC42のDACポート(DAC1,DAC2)からは基準電流に相当する基準信号が出力され、電流検出回路44の比較器では、各燃料噴射弁30の駆動電流と基準電流との比較結果が出力される。
 また、各電流検出回路44にはそれぞれに温度センサ47が設けられており、この温度センサ47により、各電流検出回路44の温度が検出される。各電流検出回路44においては、ECU40の筐体内の配置等に応じて、他の発熱源からの受熱の影響度が相違したり、放熱の度合が相違したりすることが考えられ、それに起因して各電流検出回路44で温度差が生じることがある。各電流検出回路44での温度差が生じた場合には、それが温度センサ47により検出される。
 また本実施形態では、燃料噴射弁30の駆動態様として、燃料噴射弁30の弁体がフルリフト位置に到達する前のパーシャルリフト状態で弁体のリフトを終了させ、その状態で所望量の燃料を噴射するパーシャルリフト噴射を実施することとしており、そのパーシャルリフト噴射を図4を用いて簡単に説明する。なお、図4において(a)はフルリフト噴射時の動作を示し、(b)はパーシャルリフト噴射時の動作を示している。
 図4に示すように、燃料噴射弁30は、通電により電磁力を生じさせるコイル31と、その電磁力によってプランジャ32(可動コア)と一体的に駆動されるニードル33(弁体)とを有しており、ニードル33が開弁位置に移動することで燃料噴射弁30が開弁状態となり、燃料噴射が行われる。図4(a)、(b)では噴射パルスの時間(通電期間)が相違しており、(a)に示すように噴射パルス幅が比較的長くなる場合(ニードルリフト量がフルリフト量となる場合)には、ニードル33がフルリフト位置(プランジャ32がストッパ34に突き当たる位置)に到達する。一方、(b)に示すように、噴射パルス幅が比較的短くなる場合(ニードルリフト量がパーシャルリフト量となる場合)には、ニードル33がフルリフト位置に到達しないパーシャルリフト状態(プランジャ32がストッパ34に突き当たる手前の状態)となる。そして、噴射パルスの立ち下がりに伴いコイル31の通電が停止されると、プランジャ32とニードル33とが閉弁位置に戻ることで燃料噴射弁30が閉弁状態となり、燃料噴射が停止される。
 次に、駆動IC42及び電圧切替回路43により噴射パルスに基づき実施される燃料噴射弁30の駆動動作についてその詳細を図5により説明する。なお本実施形態では、噴射パルスがオンになる期間において、プレチャージと昇圧駆動と開弁維持駆動とが時系列で実施されるようになっている。プレチャージは、燃料噴射弁30の通電開始時に、高電圧V2の印加に先立って、燃料噴射弁30が開弁しない程度の低電圧(本実施形態では低電圧V1)を印加するものであり、プレチャージの実施により、駆動電流の目標ピーク値への到達時間が短縮される。昇圧駆動は、開弁応答性を高めるべく実施され、昇圧駆動期間において燃料噴射弁30に高電圧V2が印加される。開弁維持駆動は、昇圧駆動に引き続いて実施され、燃料噴射弁30に低電圧V1が印加される。
 図5において、時刻t0では、噴射パルスがオンになり、t0~t1では低電圧V1によるプレチャージが実施される。プレチャージ期間では、電流検出回路44により検出された検出電流が所定値に達したことに基づいてプレチャージが終了される。なお、プレチャージ期間はあらかじめ定められた時間であってもよい。また、電圧切替回路43内のスイッチング素子を所定デューティ比で繰り返しオンオフさせてプレチャージを実施してもよい。
 そして、時刻t1では、燃料噴射弁30への印加電圧が低電圧V1から高電圧V2に切り替えられる。これにより、時刻t1~t2の昇圧期間においてはt0~t1の期間に比べて駆動電流が急峻に増加する。その後、時刻t2において、駆動電流が、あらかじめ定めた目標ピーク値Ipに到達すると、高電圧V2の印加が停止される。このとき、駆動電流が目標ピーク値Ipに到達するタイミング又はその直前のタイミングにおいてニードルリフトが開始され、そのニードルリフトに伴い燃料噴射が開始される。駆動電流が目標ピーク値Ipに到達したか否かの判定は、電流検出回路44により検出された検出電流に基づいて実施される。つまり、昇圧期間(t1~t2)では、駆動IC42において検出電流がIp以上になったか否かが判定され、検出電流≧Ipになった時点で、電圧切替回路43により印加電圧の切替(V2印加停止)が実施される。
 時刻t2以降においては、高電圧V2の印加停止に伴い駆動電流が低下するが、あらかじめ定めた電流閾値と電流検出回路44による検出電流とに基づいて、燃料噴射弁30に対して低電圧V1が断続的に印加される。図5では、開弁維持のための目標ホールド値Ihを2段階で定めており、時刻t2~t3では、目標ホールド値Ihaに基づいて低電圧V1の印加が行われ、時刻t3~t4では、目標ホールド値Ihb(<Iha)に基づいて低電圧V1の印加が行われる。このとき、時刻t2~t3では、ヒステリシスを持たせた高低2値の目標ホールド値Ihaを定めておき、検出電流がロー側のIhaに達すると電圧印加をオンし、検出電流がハイ側のIhaに達すると電圧印加をオフする。また、時刻t3~t4では、ヒステリシスを持たせた高低2値の目標ホールド値Ihbを定めておき、検出電流がロー側のIhbに達すると電圧印加をオンし、検出電流がハイ側のIhbに達すると電圧印加をオフする。目標ホールド値Iha,Ihbの切替(高→低の切替)は、ニードルリフトが所定のパーシャルリフト量になったと推定されるタイミングで実施されるとよい(図の時刻t3)。
 その後、時刻t4で噴射パルスがオフになると、燃料噴射弁30への電圧印加が停止され、駆動電流がゼロになる。そして、燃料噴射弁30のコイル通電の停止に伴いニードルリフトが終了され、それに合わせて燃料噴射が停止される。
 燃料噴射弁30の開弁駆動に際しては、上記のとおり駆動電流の検出結果、すなわち駆動プロファイルに基づいて印加電圧の切替が実施されるが、電流検出回路44においては種々の要因により検出電流に誤差が含まれることがあると考えられる。例えば、シャント抵抗の個体差や経年劣化等により検出誤差が生じることが考えられる。かかる場合、実際の駆動電流(実電流)に対して検出電流に誤差が含まれていると、駆動電流が目標ピーク値Ipに到達するタイミングを適正に把握できず、結果として燃料噴射量の過不足が生じることが懸念される。
 また、本実施形態では、電流検出回路44を駆動グループ(駆動系統)ごとに複数備えることから、各電流検出回路44において相互に特性ばらつきが生じることが考えられる。この場合、各電流検出回路44での特性ばらつきに起因して、気筒ごとに燃料噴射量のばらつきが生じ、結果としてトルク変動の発生が懸念される。
 各電流検出回路44での特性ばらつきについて図6を用いて以下に説明する。ここでは、駆動グループ1,2の各電流検出回路44のうち駆動グループ2の電流検出回路44にのみ検出ずれが生じている場合を例示している。図6において、実線は、駆動グループ1の電流検出回路44の検出電流を示しており、これは燃料噴射弁30に実際に流れる駆動電流(実電流)に一致している。また、一点鎖線は、駆動グループ2の電流検出回路44の検出電流を示し、破線は、駆動グループ2の燃料噴射弁30に流れる実電流を示している。
 また、図6において(a)はグループ2の電流検出回路44において実電流に対して駆動電流が低めに検出される場合を示し、(b)はグループ2の電流検出回路44において実電流に対して駆動電流が高めに検出される場合を示している。つまり、図6(a)では検出ゲインが低く、図6(b)では検出ゲインが高いものとなっている。
 図6(a)において、駆動グループ1では、電流検出回路44の検出ずれが生じておらず、検出電流と実電流とは共に実線で示すように推移する。この場合、検出電流が目標ピーク値Ipに到達するまでに要した到達時間が「Tp1」として取得される。一方、駆動グループ2では、電流検出回路44の検出ずれに起因して、実電流(破線)に対して検出電流(一点鎖線)のずれ、すなわち低電流側のずれが生じており、検出電流が目標ピーク値Ipに到達するまでに要した到達時間が「Tp2」として取得される。このとき、駆動グループ2の到達時間Tp2が、駆動グループ1の到達時間Tp1よりも長引いていることから、駆動グループ2の実電流が目標ピーク値Ipよりも高電流値になっている。
 各駆動グループでは、いずれも燃料噴射弁30の検出電流が目標ピーク値Ipに到達したタイミングで印加電圧の切替(V1印加停止)が実施されたとしても、実際には電圧切替のタイミングが各駆動グループで異なり、結果として燃料噴射量の差異が生じることが考えられる。つまり、駆動グループ2では、駆動グループ1に比べて昇圧駆動期間における昇圧エネルギが大きくなり、ニードルリフト動作が大きくなることから、燃料噴射量が過多になることが考えられる。
 また、図6(b)において、駆動グループ1では、図6(a)と同様に、電流検出回路44の検出ずれが生じておらず、検出電流と実電流とは共に実線で示すように推移する。この場合、検出電流が目標ピーク値Ipに到達するまでに要した到達時間が「Tp1」として取得される。一方、駆動グループ2では、電流検出回路44の検出ずれに起因して、実電流(破線)に対して検出電流(一点鎖線)のずれ、すなわち高電流側のずれが生じており、検出電流が目標ピーク値Ipに到達するまでに要した到達時間が「Tp2」として取得される。このとき、駆動グループ2の到達時間Tp2が、駆動グループ1の到達時間Tp1よりも短縮されていることから、駆動グループ2の実電流が目標ピーク値Ipよりも低電流値になっている。
 各駆動グループでは、いずれも燃料噴射弁30の駆動電流が目標ピーク値Ipに到達したタイミングで印加電圧の切替(V1印加停止)が実施されたとしても、実際には電圧切替のタイミングが各駆動グループで異なり、図6(a)と同様に、結果として燃料噴射量の差異が生じることが考えられる。つまり、駆動グループ2では、駆動グループ1に比べて昇圧駆動期間における昇圧エネルギが小さくなり、ニードルリフト動作が小さくなることから、燃料噴射量が過少になることが考えられる。
 なお、図6には、駆動グループ1,2の各電流検出回路44のうち駆動グループ2の電流検出回路44にのみ検出ずれが生じている場合を例示したが、いずれの電流検出回路44にも検出ずれが生じている場合においてさらに検出ずれの程度が相違していれば、上記同様にピークずれが生じると考えられる。
 また、上記のような検出ずれが生じていると、それに起因して開弁維持期間での駆動電流のずれが生じる。そしてこれにより、開弁維持期間での燃料噴射弁30の駆動状態(例えばニードルリフト量)に影響が及ぶことが懸念される。
 そこで本実施形態では、マイコン41は、各駆動グループ1,2の電流検出回路44によるそれぞれの検出電流に基づいて、燃料噴射弁30による燃料噴射ごとの所定の基準タイミングから検出電流が所定電流値に到達するまでの時間である到達時間を計測し、電流検出回路44ごとの到達時間の差に基づいて、各駆動グループ1,2のいずれかについて電流補正を実施する。本実施形態では、電流検出回路44ごとの到達時間が「電流変化パラメータ」に相当する。また、マイコン41が「取得部」、「電流補正部」に相当する。
 より具体的には、マイコン41は、噴射パルスのオン後においてプレチャージが完了して高電圧V2の印加が開始されるタイミング(図5のt1)を基準タイミングとし、その基準タイミングから検出電流が目標ピーク値Ipに到達するまでの時間をピーク電流到達時間Tpとして計測する。また、マイコン41は、各駆動グループ1,2のピーク電流到達時間Tpの差分ΔTpが所定以上である場合に、各駆動グループ1,2のピーク電流到達時間Tpが揃うように目標ピーク値Ipの補正を実施する。この場合、各駆動グループ1,2では、相互の検出ばらつきに応じて、互いに相違する目標ピーク値Ipが設定されることとなる。
 なお、噴射パルスのオン後においてプレチャージが完了して高電圧V2の印加が開始されるタイミングに代えて、プレチャージが完了した後に高電圧V2の印加が行われている期間(図5のt1~t2)内のタイミングを基準タイミングとして、ピーク電流到達時間Tpを計測することも可能である。また、各駆動グループ1,2のピーク電流到達時間Tpについては、その各Tpが所定の範囲内に収まるようにすることで、Tpを揃えるようにするとよい。
 図7は、目標電流補正の処理手順を示すフローチャートであり、本処理はマイコン41により所定周期で繰り返し実施される。なお本実施形態では、目標電流値の補正として、目標ピーク値Ip及び目標ホールド値Ihの補正を実施することとしている。
 図7において、ステップS11では、補正ロジックの実施条件が成立しているか否かを判定する。この実施条件には、エンジン11や車両が定常状態で運転されていることが含まれ、具体的には、エンジン回転速度、エンジン水温、負荷、車速等の各パラメータの変動が所定以下であることが含まれる。また本実施形態では、エンジン運転状態が定常状態であること、アイドル状態でない所定状態であること(すなわち、燃料噴射弁30の1駆動の燃料噴射量が所定未満の微少噴射状態でないこと)が実施条件に含まれる。
 その後、ステップS12では、各駆動グループ1,2におけるピーク電流到達時間Tp1,Tp2を取得する。Tp1,Tp2は、各駆動グループ1,2での燃料噴射弁30の駆動時にそれぞれ取得される。このステップS12では、取得したピーク電流到達時間Tp1,Tp2について、各電流検出回路44の温度に基づく温度補正が実施されるとよい。つまり、マイコン41は、各電流検出回路44の温度センサ47による検出温度に基づいて各電流検出回路44の温度差を取得し、その温度差に基づいて、ピーク電流到達時間Tp1,Tp2を補正する。このとき、駆動グループ1,2のいずれかを基準温度とし、温度差に基づいてピーク電流到達時間を増側又は減側に補正する。
 続くステップS13では、各駆動グループ1,2のピーク電流到達時間を、所定サンプリング回数nの平均値として算出する。例えばn=20である。
 その後、ステップS14では、目標到達時間Tptgを算出する。このとき、各駆動グループ1,2の到達時間Tp1,Tp2のうち大きい方を目標到達時間Tptgとする。ただし、これ以外に、各駆動グループ1,2の到達時間Tp1,Tp2のうち小さい方を目標到達時間Tptgとすることも可能である。
 なお、到達時間Tp1,Tp2が大きいことは、検出電流の時間当たりの変化量が小さいことを意味し、到達時間Tp1,Tp2の大きい方を目標到達時間Tptgとすることは、検出電流の時間当たりの変化量が小さい方を、到達時間(電流制御)の基準とすることを意味する。この場合、検出電流の時間当たりの変化量が大きい駆動系統(到達時間の小さい駆動系統)について、当該変化量が小さい駆動系統(到達時間の大きい駆動系統)に合わせて到達時間が制御されることとなる。
 また逆に、到達時間Tp1,Tp2が小さいことは、検出電流の時間当たりの変化量が大きいことを意味し、到達時間Tp1,Tp2の小さい方を目標到達時間Tptgとすることは、検出電流の時間当たりの変化量が大きい方を、到達時間(電流制御)の基準とすることを意味する。この場合、検出電流の時間当たりの変化量が小さい駆動系統(到達時間の大きい駆動系統)について、当該変化量が大きい駆動系統(到達時間の小さい駆動系統)に合わせて到達時間が制御されることとなる。
 その後、ステップS15では、各駆動グループ1,2の到達時間Tp1,Tp2のうち補正対象となる方と、目標到達時間Tptgとの差分ΔTpを算出する。このとき、上記ステップS14において、例えば到達時間Tp1,Tp2の大きい方の値を目標到達時間Tptgとする場合には、補正対象である小さい方の到達時間と目標到達時間Tptgとの差をΔTpとして算出する。
 その後、ステップS16では、差分ΔTpが所定の閾値THよりも大きいか否かを判定する。そして、ΔTp>THであれば、ステップS17に進み、目標電流の補正を実施する。このとき、駆動グループ1,2のうち補正対象となるグループについて、昇圧駆動期間における目標ピーク値Ipの補正を実施する。具体的には、図8の関係を用い、差分ΔTpに基づいて電流補正値ΔIpを算出する。図8の関係によれば、差分ΔTpが大きいほど、電流補正値ΔIpとして大きい値が算出される。そして、各駆動グループ1,2の目標ピーク値Ip1,Ip2のうち補正を要する方を電流補正値ΔIpにより補正する(Ipx=Ipx+ΔIp)。これにより、各駆動グループ1,2のピーク電流到達時間Tpが揃うように目標ピーク値Ipが補正され、Ip1≠Ip2となる。
 ステップS17では、昇圧駆動期間における目標ピーク値Ipの補正に加えて、開弁維持期間における目標ホールド値Ihの補正を実施する。この場合、目標ホールド値Ihは、目標ピーク値Ipに比べて低い電流値であり、各駆動グループ1,2における目標ピーク値Ip1,Ip2の比率(すなわちIp1,Ip2のずれ)に基づいて、目標ピーク値Ipの補正が行われたのと同じ駆動グループの目標ホールド値Ihが補正される。例えば、駆動グループ2の目標ホールド値Ih2を、駆動グループ1の目標ホールド値Ih1を基準に補正する場合、
Ih2=Ih1×(Ip2/Ip1)
により、目標ホールド値Ih2を補正する。なお、開弁維持期間において目標ホールド値Ihが複数段階で定められている場合には、その各々について目標ホールド値を補正する。
 目標電流の補正が行われた後には、ステップS12に戻る。そして、ステップS16がNOになるまで、ステップS12~S17を繰り返し実施する。
 また、ステップS16においてΔTp≦THであると判定されると、ステップS18に進む。ステップS18では、今回の補正処理で電流補正が行われていれば、その補正結果を保存する。すなわち、補正後の目標ピーク値Ip、目標ホールド値Ihをバックアップ用のメモリ(EEPROM等)に保存する。補正後のIp,Ihは学習値として保持され、燃料噴射弁30の駆動時に適宜読み出されて用いられる。
 図9及び図10は、目標電流の補正処理をより具体的に説明するためのタイムチャートである。ここでは特に、各駆動グループ1,2における目標ピーク値Ipの補正処理について説明する。図9では、駆動グループ1,2のうち駆動グループ1の方が到達時間が大きく、その駆動グループ1の到達時間Tp1を基準として、駆動グループ2の到達時間Tp2が調整される。また、図10では、駆動グループ1の方が到達時間が小さく、その駆動グループ1の到達時間Tp1を基準として、駆動グループ2の到達時間Tp2が調整される。
 図9において、まず時刻t11以前において、各駆動グループ1,2では、検出電流が目標ピーク値Ipに到達するのに要する到達時間Tp1,Tp2が求められる。この場合、各駆動グループ1,2で到達時間が相違しており、駆動グループ1の到達時間Tp1が、駆動グループ2の到達時間Tp2よりも大きくなっている。そのため、時刻t11以降、到達時間が大きい方の駆動グループ1を基準として、駆動グループ2の到達時間Tp2の調整(この場合は延長)が行われる。
 時刻t11では、駆動グループ1の到達時間Tp1(Tptgに相当)から駆動グループ2の到達時間Tp2を減算して差分ΔTpが算出され、その差分ΔTpに基づいて電流補正値ΔIpが算出される。そして、駆動グループ2の目標ピーク値Ip2が電流補正値ΔIpにより補正される。
 その後、時刻t11~t12では、補正をしていない駆動グループ1の目標ピーク値Ip1と、補正をした駆動グループ2の目標ピーク値Ip2とを用いて、再び各駆動グループ1,2の到達時間Tp1,Tp2が求められる。そして、時刻t12では、再び到達時間の差分ΔTpに基づいて電流補正値ΔIpが算出されるとともに、その電流補正値ΔIpにより駆動グループ2の目標ピーク値Ip2が補正される。こうした目標ピーク値Ip2の補正は、差分ΔTpが閾値THよりも大きいことを条件に繰り返し実施される。時刻t11,t12等では、差分ΔTpが徐々に小さくなるのに合わせて電流補正値ΔIpが徐々に小さい値とされる。
 その後、時刻t13では、差分ΔTpが閾値TH以下であることが判定され、目標ピーク値Ip2の補正が終了される。この時刻t13では、各駆動グループ1,2の実ピーク電流が略同じになっており、これにより気筒間での燃料噴射量のばらつきが解消される。
 また、図10において、まず時刻t21以前において、駆動グループ1の到達時間Tp1が、駆動グループ2の到達時間Tp2よりも小さくなっている。そのため、時刻t21以降、到達時間が小さい方の駆動グループ1を基準として、駆動グループ2の到達時間Tp2の調整(この場合は短縮)が行われる。
 時刻t21では、駆動グループ1の到達時間Tp1(Tptgに相当)から駆動グループ2の到達時間Tp2を減算して差分ΔTpが算出され、その差分ΔTpに基づいて電流補正値ΔIpが算出される。そして、駆動グループ2の目標ピーク値Ip2が電流補正値ΔIpにより補正される。
 その後、時刻t21~t22では、補正をしていない駆動グループ1の目標ピーク値Ip1と、補正をした駆動グループ2の目標ピーク値Ip2とを用いて、再び各駆動グループ1,2の到達時間Tp1,Tp2が求められる。そして、時刻t22では、再び到達時間の差分ΔTpに基づいて電流補正値ΔIpが算出されるとともに、その電流補正値ΔIpにより駆動グループ2の目標ピーク値Ip2が補正される。こうした目標ピーク値Ip2の補正は、差分ΔTpが閾値THよりも大きいことを条件に繰り返し実施される。時刻t21,t22等では、差分ΔTpが徐々に小さくなるのに合わせて電流補正値ΔIpが徐々に小さい値とされる。
 その後、時刻t23では、差分ΔTpが閾値TH以下であることが判定され、目標ピーク値Ip2の補正が終了される。この時刻t23では、各駆動グループ1,2の実ピーク電流が略同じになっており、これにより気筒間での燃料噴射量のばらつきが解消される。
 図11は、目標ピーク値Ipの補正についての補足説明図である。図11では、駆動グループ2の電流検出回路44において駆動電流が実電流に対して高めに検出される場合に、駆動グループ1の目標ピーク値Ip1を基準として、駆動グループ2の目標ピーク値Ip2の調整が行われる事例を示している。これは、検出電流の時間当たりの変化量が大きい駆動系統(到達時間の小さい駆動系統)について、当該変化量が小さい駆動系統(到達時間の大きい駆動系統)に合わせて到達時間が制御されることを意味する。なお、図11(a)は、図6(b)と同じ状況を示すものとなっている。
 図11(a)では、上述したとおり駆動グループ2において、電流検出回路44の検出ずれに起因して、検出電流の高電流側のずれが生じており、駆動グループ1のピーク電流到達時間Tp1に対して、駆動グループ2のピーク電流到達時間Tp2が短い時間となっている。
 かかる場合に、上記補正処理によれば、図11(b)に示すように、ピーク電流到達時間の差分ΔTpに基づき駆動グループ2の目標ピーク値Ip2が増加側に補正される。これにより、各駆動グループ1,2の到達時間Tp1,Tp2が略一致し、このとき、各駆動グループ1,2の実ピーク電流が略一致する。図11(b)では、駆動グループ2の検出電流が目標ピーク値Ipに到達するタイミングがA1からA2にシフトされている。したがって、各駆動グループ1,2において高電圧V2から低電圧V1の切替のタイミング、すなわち燃料噴射弁30の昇圧駆動から開弁維持駆動への切替のタイミングを合わせることができる。特にパーシャルリフト噴射を実施する場合には、パーシャルリフト状態でのニードルリフト量を各気筒で合わせ込むことができる。
 図12は、図11と同様に、目標ピーク値Ipの補正についての補足説明図である。ただし図12では、図11とは異なり駆動グループ2の電流検出回路44において駆動電流が実電流に対して低めに検出される場合に、駆動グループ1の目標ピーク値Ip1を基準として、駆動グループ2の目標ピーク値Ip2の調整が行われる事例を示している。これは、検出電流の時間当たりの変化量が小さい駆動系統(到達時間の大きい駆動系統)について、当該変化量が大きい駆動系統(到達時間の小さい駆動系統)に合わせて到達時間が制御されることを意味する。なお、図12(a)は、図6(a)と同じ状況を示すものとなっている。
 図12(a)では、駆動グループ1のピーク電流到達時間Tp1に対して、駆動グループ2のピーク電流到達時間Tp2が長い時間となっている。そして、図12(b)に示すように、上記補正処理により駆動グループ2の目標ピーク値Ip2が減少側に補正されることにより、各駆動グループ1,2の到達時間Tp1,Tp2が略一致するとともに、各駆動グループ1,2の実ピーク電流が略一致する。この図12(b)でも上記同様、各駆動グループ1,2において高電圧V2から低電圧V1の切替のタイミング、すなわち燃料噴射弁30の昇圧駆動から開弁維持駆動への切替のタイミングを合わせることができる。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 複数の燃料噴射弁30を複数の駆動グループ(複数の駆動系統)に振り分け、グループごとに電流検出回路44を備える燃料噴射システムにおいて、各電流検出回路44によるそれぞれの検出電流に基づいてピーク電流到達時間Tpを計測し、電流検出回路44ごとの到達時間Tpの差に基づいて、各駆動グループのいずれかについて電流補正を実施する構成とした。かかる場合、仮にいずれかの電流検出回路44に特性ばらつきが生じていると、各燃料噴射弁30の噴射指令が同一であっても、各駆動グループ1,2でピーク電流到達時間Tpが相違することになるが、その到達時間Tpの差に基づいて電流補正が実施されることで、各燃料噴射弁30における駆動状態を近づけることができる。その結果、燃料噴射弁30の駆動の適正化を図り、ひいては燃料噴射量を適正に制御することができる。
 各駆動グループ1,2について各々のピーク電流到達時間Tp1,Tp2が揃うようにして目標電流の補正を実施する構成とした。この場合、各駆動グループ1,2の到達時間Tp1,Tp2が揃うことで、各燃料噴射弁30の駆動プロファイルの合わせ込みが可能となる。これにより、各燃料噴射弁30燃料噴射量のばらつきを抑制できる。
 いずれかの電流検出回路44において特性ばらつきが生じていると、検出電流が目標電流値に到達した旨が判定されたとしても、実際の駆動電流が目標電流値から乖離していることが考えられる。この点、駆動グループ1,2の少なくともいずれかにおける目標電流値を補正する構成にしたため、駆動グループ1,2ごとに目標電流値が定められ、その目標電流値と検出電流との比較が行われる。この場合、各駆動グループ1,2において、実際の駆動電流が目標電流値に到達するタイミングを合わせ込むことができ、やはり燃料噴射量のばらつきが抑制される。
 具体的には、いずれかの電流検出回路44において特性ばらつきが生じていると、検出電流が目標ピーク値Ipに到達した旨が判定されたとしても、実ピーク電流が目標ピーク値Ipから乖離していることが考えられる。この点、駆動グループ1,2の少なくともいずれかにおける目標ピーク値Ipを補正する構成にしたため、駆動グループ1,2ごとに目標ピーク値Ipがそれぞれ定められ、その目標ピーク値Ipと検出電流との比較が行われる。この場合、各駆動グループ1,2において、実際の駆動電流が目標ピーク値Ipに到達するタイミングを合わせ込むことができ、やはり燃料噴射量のばらつきが抑制される。駆動グループ1,2ごとに目標ピーク値Ipを設定する構成によれば、各燃料噴射弁30の開弁応答性を合わせ込むことが可能となり、それに伴い燃料噴射量のばらつき抑制に貢献できる。
 目標ピーク値Ipの補正に加えて、目標ホールド値Ihの補正を実施する構成にしたため、各燃料噴射弁30の開弁応答性と弁体リフト量を合わせ込むことが可能となり、ひいては燃料噴射量のばらつき抑制に貢献できる。
 いずれかの電流検出回路44において特性ばらつきが生じている場合には、燃料噴射弁30の昇圧駆動期間、開弁維持期間のいずれにおいても同様の増減傾向でグループ間のばらつきが生じる。この点、各駆動グループ1,2のいずれかの目標ピーク値Ip1,Ip2が補正された場合に、各駆動グループ1,2の目標ピーク値Ip1,Ip2に基づいて、目標ピーク値の補正が行われたのと同じ駆動グループの目標ホールド値Ihを補正する構成にしたため、目標ピーク値の補正を好適に実施でき、ひいては各燃料噴射弁30の駆動状態を適正に合わせ込むことができる。
 各駆動グループ1,2の到達時間Tp1,Tp2に差がある場合に、到達時間Tp1,Tp2の小さい方(検出電流の時間当たりの変化量が大きい方)について、到達時間Tp1,Tp2の大きい方(検出電流の時間当たりの変化量が小さい方)に合わせて電流制御を実施する構成とした(図9,図11参照)。これにより、通電電流の過剰削減を抑制しつつ各燃料噴射弁30を駆動させることができる。つまり、到達時間Tp1,Tp2の小さい方(検出電流の時間当たりの変化量が大きい方)を補正対象にすることで、検出誤差がいずれの駆動グループ(駆動系統)で生じていたとしても、各燃料噴射弁30の通電電流が過小になることが抑制できる。したがって、システムの安定化を図ることができ、燃料噴射弁30の安定動作を保証できる。
 なお、上記とは異なり到達時間Tp1,Tp2の大きい方(検出電流の時間当たりの変化量が小さい方)について、到達時間Tp1,Tp2の小さい方(検出電流の時間当たりの変化量が大きい方)に合わせて電流制御を実施する場合(図10,図12参照)には、燃料噴射弁30の駆動に要するエネルギの削減を図ることができる。この場合、燃料噴射弁30の正常駆動が確認されている状況下であれば、動作保証を行いつつ省エネルギ化の実現が可能となる。
 いずれかの電流検出回路44において特性ばらつきが生じていると、その差は、通電状態の時間長さが長いほど顕著となる。この点、基準タイミングから検出電流が目標ピーク値Ipに到達するまでの時間を到達時間として計測する構成にしたため、閾値電流を目標ピーク値Ipよりも低電流側に定める構成に比べて、電流検出回路44の特性ばらつきの差を正確に把握することができる。
 いずれかの電流検出回路44において特性ばらつきが生じていると、プレチャージ終了時点の駆動電流が各駆動グループ1,2で相違し、結果として各駆動グループ1,2でプレチャージ終了タイミングが相違することがあると考えられる。この点、プレチャージが完了して高電圧V2の印加が開始されるタイミング(広くは、高電圧V2の印加が行われる期間内のタイミング)を基準タイミングとしてピーク電流到達時間Tp1,Tp2を計測する構成したため、各駆動グループ1,2におけるプレチャージ終了タイミングのばらつきの影響を受けることなく、適正に目標電流の補正を実施できる。
 各電流検出回路44において温度差が生じていると、その影響でピーク電流到達時間Tp1,Tp2の計測の精度が低下することが懸念される。この点、各駆動グループ1,2における電流検出回路44の温度差を取得し、その温度差に基づいて、ピーク電流到達時間Tp1,Tp2を補正する構成にしたため、各電流検出回路44の温度差による悪影響を抑制できる。
 燃料噴射弁30の1駆動による燃料噴射量が所定以上であり、微少噴射状態でないことを条件に、各駆動グループ1,2のピーク電流到達時間Tp1,Tp2を計測する構成とした。これにより、各駆動グループ1,2のピーク電流到達時間Tp1,Tp2を計測する際には、各燃料噴射弁30の駆動電流が確実に目標ピーク値Ipに到達することになる。そのため、ピーク電流到達時間Tp1,Tp2を正確に把握でき、ひいては電流補正の精度向上が可能となる。
 (第2実施形態)
 以下、第2実施形態について、第1実施形態との相違点を中心に説明する。本実施形態では、電流変化パラメータとして、複数の駆動グループ1,2において燃料噴射弁30による燃料噴射ごとの所定の基準タイミングから所定時間が経過した際の検出電流である到達電流を取得するとともに、駆動グループ1,2ごとの到達電流の差に基づいて電流補正を実施することとしている。
 図13は、各電流検出回路44での特性ばらつきを示す図であり、ここでは駆動グループ2の電流検出回路44にのみ低電流側への検出ずれが生じている場合を例示している。図13において、実線は、駆動グループ1の電流検出回路44の検出電流を示しており、これは燃料噴射弁30に実際に流れる駆動電流(実電流)に一致している。また、一点鎖線は、駆動グループ2の電流検出回路44の検出電流を示し、破線は、駆動グループ2の燃料噴射弁30に流れる実電流を示している。
 図13において、駆動グループ1,2では、検出電流の時間当たりの変化量が互いに相違しており、例えば通電開始から所定時間が経過したタイミングtaでの到達電流Ia1,Ia2が相違している(Ia1>Ia2)。なお、所定時間は、ピーク電流に到達する以前の時間として定められているとよい。そして、こうした状況下において、駆動グループごとの到達電流Ia1,Ia2の差に基づいて電流補正が実施される。
 図14は、マイコン41による目標電流補正の処理手順を示すフローチャートであり、本処理は、上述の図7に置き換えて実施される。図14において、図7と同じステップについてはその旨を述べ、説明を適宜簡略する。
 図14において、ステップS21では、補正ロジックの実施条件が成立しているか否かを判定する(図7のステップS11に同じ)。ステップS21がYESの場合、ステップS22では、各駆動グループ1,2において通電開始後において所定時間が経過した時点の到達電流Ia1,Ia2を取得する。Ia1,Ia2は、各駆動グループ1,2での燃料噴射弁30の駆動時にそれぞれ取得される。このステップS22では、取得した到達電流Ia1,Ia2について、各電流検出回路44の温度に基づく温度補正が実施されるとよい(図7のステップS12に同じ)。
 続くステップS23では、各駆動グループ1,2の到達電流Ia1,Ia2を、所定サンプリング回数nの平均値として算出する。例えばn=20である。その後、ステップS24では、各駆動グループ1,2における到達電流Ia1,Ia2の差の絶対値ΔIaを算出する。
 続くステップS25では、到達電流Ia1,Ia2の大小に基づいて、補正対象となる駆動グループを選定する。このとき、各駆動グループ1,2のうち到達電流Ia1,Ia2の大きい方を補正対象とする。ただし、これ以外に、各駆動グループ1,2のうち到達電流Ia1,Ia2の小さい方を補正対象とすることも可能である。
 その後、ステップS26では、ΔIaが所定の閾値TH2よりも大きいか否かを判定する。そして、ΔIa>TH2であれば、ステップS27に進み、目標電流の補正を実施する。このとき、駆動グループ1,2のうち補正対象となるグループについて、昇圧駆動期間における目標ピーク値Ipの補正を実施する。具体的には、図15の関係を用い、ΔIaに基づいて電流補正値ΔIpを算出する。図15の関係によれば、ΔIaが大きいほど、電流補正値ΔIpとして大きい値が算出される。そして、各駆動グループ1,2の目標ピーク値Ip1,Ip2のうち補正を要する方を電流補正値ΔIpにより補正する(Ipx=Ipx+ΔIp)。これにより、各駆動グループ1,2のピーク電流到達時間Tpが揃うように目標ピーク値Ipが補正される。
 ステップS27では、昇圧駆動期間における目標ピーク値Ipの補正に加えて、開弁維持期間における目標ホールド値Ihの補正を実施する。ただし詳細は、図7のステップS17に準ずる。目標電流の補正が行われた後には、ステップS22に戻る。そして、ステップS26がNOになるまで、ステップS22~S27を繰り返し実施する。
 また、ステップS26においてΔIa≦TH2であると判定されると、ステップS28に進む。ステップS28では、今回の補正処理で電流補正が行われていれば、その補正結果を保存する(図7のステップS18と同様)。
 以上本実施形態において、上記第1実施形態と同様に、燃料噴射弁30の駆動の適正化を図り、ひいては燃料噴射量を適正に制御することができる。
 (第3実施形態)
 以下、第3実施形態について、第1実施形態との相違点を中心に説明する。本実施形態では、電流変化パラメータとして、複数の駆動グループ1,2において燃料噴射弁30による燃料噴射ごとの所定の基準タイミングから所定区間が経過するまでの検出電流を積算した電流積算値を取得するとともに、駆動グループ1,2ごとの電流積算値の差に基づいて電流補正を実施することとしている。
 図16は、各電流検出回路44での特性ばらつきを示す図であり、ここでは駆動グループ2の電流検出回路44にのみ低電流側への検出ずれが生じている場合を例示している。図16において、実線は、駆動グループ1の電流検出回路44の検出電流を示しており、これは燃料噴射弁30に実際に流れる駆動電流(実電流)に一致している。また、一点鎖線は、駆動グループ2の電流検出回路44の検出電流を示し、破線は、駆動グループ2の燃料噴射弁30に流れる実電流を示している。
 図16において、駆動グループ1,2では、検出電流の時間当たりの変化量が互いに相違しており、例えば通電開始から通電終了するまでの検出電流を積算した電流積算値ΣI1,ΣI2が相違している(ΣI1<ΣI2)。ただし、検出電流を積算する積算区間(所定区間)は、上記以外に、通電開始から検出電流がピーク値(所定電流値)に達するまでの区間等としてよい。そして、こうした状況下において、駆動グループごとの電流積算値ΣI1,ΣI2の差に基づいて電流補正が実施される。
 図17は、マイコン41による目標電流補正の処理手順を示すフローチャートであり、本処理は、上述の図7に置き換えて実施される。図17において、図7と同じステップについてはその旨を述べ、説明を適宜簡略する。
 図17において、ステップS31では、補正ロジックの実施条件が成立しているか否かを判定する(図7のステップS11に同じ)。ステップS31がYESの場合、ステップS32では、各駆動グループ1,2において電流積算値ΣI1,ΣI2を取得する。ΣI1,ΣI2は、各駆動グループ1,2での燃料噴射弁30の駆動時にそれぞれ取得される。このステップS32では、取得した電流積算値ΣI1,ΣI2について、各電流検出回路44の温度に基づく温度補正が実施されるとよい(図7のステップS12に同じ)。
 続くステップS33では、各駆動グループ1,2の電流積算値ΣI1,ΣI2を、所定サンプリング回数nの平均値として算出する。例えばn=20である。その後、ステップS34では、各駆動グループ1,2における電流積算値ΣI1,ΣI2の差の絶対値ΔΣIを算出する。
 続くステップS35では、電流積算値ΣI1,ΣI2の大小に基づいて、補正対象となる駆動グループを選定する。このとき、各駆動グループ1,2のうち電流積算値ΣI1,ΣI2の大きい方を補正対象とする。ただし、これ以外に、各駆動グループ1,2のうち電流積算値ΣI1,ΣI2の小さい方を補正対象とすることも可能である。
 その後、ステップS36では、ΔΣIが所定の閾値TH3よりも大きいか否かを判定する。そして、ΔΣI>TH3であれば、ステップS37に進み、目標電流の補正を実施する。このとき、駆動グループ1,2のうち補正対象となるグループについて、昇圧駆動期間における目標ピーク値Ipの補正を実施する。具体的には、図18の関係を用い、ΔΣIに基づいて電流補正値ΔIpを算出する。図18の関係によれば、ΔΣIが大きいほど、電流補正値ΔIpとして大きい値が算出される。そして、各駆動グループ1,2の目標ピーク値Ip1,Ip2のうち補正を要する方を電流補正値ΔIpにより補正する(Ipx=Ipx+ΔIp)。これにより、各駆動グループ1,2のピーク電流到達時間Tpが揃うように目標ピーク値Ipが補正される。
 ステップS37では、昇圧駆動期間における目標ピーク値Ipの補正に加えて、開弁維持期間における目標ホールド値Ihの補正を実施する。ただし詳細は、図7のステップS17に準ずる。目標電流の補正が行われた後には、ステップS32に戻る。そして、ステップS36がNOになるまで、ステップS32~S37を繰り返し実施する。
 また、ステップS36においてΔΣI≦TH3であると判定されると、ステップS38に進む。ステップS38では、今回の補正処理で電流補正が行われていれば、その補正結果を保存する(図7のステップS18と同様)。
 以上本実施形態において、上記第1実施形態と同様に、燃料噴射弁30の駆動の適正化を図り、ひいては燃料噴射量を適正に制御することができる。
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
 ・上記第1実施形態では、プレチャージが完了して高電圧V2の印加が開始されるタイミングを基準タイミングとしてピーク電流到達時間Tpを計測する構成としたが、これを変更してもよい。例えば、噴射パルスのオン時、すなわち燃料噴射弁30に対する通電開始時を基準タイミングとしてピーク電流到達時間Tpを計測する構成としてもよい。
 また、基準タイミングから検出電流が目標ピーク値Ipに到達するまでのピーク電流到達時間Tpを計測することに代えて、基準タイミングから検出電流が目標ピーク値Ipよりも低電流側の所定電流値に到達するまでの到達時間を計測するようにしてもよい。
 ・上記第1実施形態では、各駆動グループ1,2のピーク電流到達時間Tp1,Tp2のうち長い方の到達時間(又は短い方の到達時間)を目標到達時間として、各到達時間の差分ΔTpに基づいて目標ピーク値Ipの補正を行う構成としたが、これを変更してもよい。例えば、各駆動グループ1,2のピーク電流到達時間Tp1,Tp2の平均値を目標到達時間として、各到達時間の差分ΔTpに基づいて目標ピーク値Ipの補正を行うとよい。また、目標駆動時間を予め定められた所定値としてもよい。いずれにしても、各駆動グループ1,2の到達時間Tp1,Tp2が揃うように目標ピーク値Ipの補正を実施するとよい。
 各駆動グループ1,2のピーク電流到達時間Tp1,Tp2の平均値を目標到達時間として、各到達時間の差分ΔTpに基づいて目標ピーク値Ipの補正を行う場合には、各駆動グループ1,2の目標ピーク値Ip1,Ip2がいずれも補正される。この場合、各駆動グループ1,2のうち一方のグループの目標ピーク値Ipが増加側に、他方のグループの目標ピーク値Ipが減少側にそれぞれ補正される。
 ・上記各実施形態では、駆動系統ごとの電流変化パラメータ(到達時間、到達電流、電流積算値)の差に基づいて電流補正を実施する構成としたが、これ変更してもよい。要するに、駆動系統ごとの電流変化パラメータ(到達時間、到達電流、電流積算値)を比較し、その結果に基づいて電流補正を実施する構成であればよく、例えば、駆動系とごとの電流変化パラメータの比に基づいて電流補正を実施してもよい。
 ・上記各実施形態において、目標電流値(例えば目標ピーク値)を更新する場合に、その更新の制限を定めておいてもよい。例えば、目標電流値の上限値を定めておく構成とする。又は、到達時間の差分ΔTp等に応じて目標電流値を増加及び減少させる構成において、到達時間の差分ΔTp等の閾値判定に用いる閾値にヒステリシスを設けてもよい。この場合、第1閾値と第2閾値とを定めておき(第1閾値>第2閾値)、目標電流値の増加に際し、差分ΔTp等が第1閾値に達するまでは目標電流値を徐々に増加させる一方、目標電流値の減少に際し、差分ΔTp等が第2閾値に達するまでは目標電流値を徐々に減少させる。
 ・ECU40の別構成を説明する。図19は、直列6気筒エンジンに採用される構成を例示している。なおここでは、直列6気筒エンジンの各気筒の燃焼順序を#1→#5→#3→#6→#2→#4としている。この場合、4気筒エンジンと同様に、気筒ごとに吸気行程と圧縮行程とにおいて各々燃料噴射弁30による燃料噴射が実施される。
 図19の構成においては、やはり燃料噴射の期間が重複しない気筒を1まとめにして駆動グループとしており、駆動グループごとに各々電圧切替回路43及び電流検出回路44が設けられている。すなわち、#1気筒と#6気筒とを駆動グループ1、#3気筒を駆動グループ2、#2気筒と#5気筒とを駆動グループ3、#4気筒を駆動グループ4として、各駆動グループに電圧切替回路43及び電流検出回路44が設けられている。なお、#3気筒と#4気筒とを駆動グループ3としてまとめることも可能である。
 上記以外にも、燃料噴射の期間が重複しない関係にあれば、3つの気筒を同じ駆動グループとすることも可能である。
 また、複数の燃料噴射弁30について複数の駆動系統を有するものであれば、各駆動系統における気筒数や燃料噴射弁30の数は任意でよい。例えば2気筒エンジンにおいて、各気筒(各燃料噴射弁)の1つずつをそれぞれ個別の駆動系統としてもよい。3気筒以上のエンジンにおいても同様である。
 ・高電圧V2を出力する高圧電源部46は、バッテリ電圧を昇圧する昇圧回路を有するものでなくてもよく、高電圧バッテリからなる構成であってもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (14)

  1.  複数の燃料噴射弁(30)と、前記複数の燃料噴射弁を複数の駆動系統に振り分けてそれら各駆動系統においてそれぞれ前記各燃料噴射弁を駆動させる駆動回路(42,43)と、前記駆動系統ごとに設けられ、前記各燃料噴射弁の駆動電流を検出する複数の電流検出回路(44)とを備える内燃機関の燃料噴射システムに適用され、前記電流検出回路により検出された検出電流に基づいて、前記駆動回路による前記燃料噴射弁の駆動を制御する燃料噴射制御装置(41)であって、
     前記駆動系統ごとに、前記検出電流の時間当たりの変化量に相関するパラメータである電流変化パラメータを取得する取得部と、
     前記各駆動系統における前記電流変化パラメータに基づいて、前記複数の駆動系統の少なくともいずれかについて電流補正を実施する電流補正部と、
    を備える内燃機関の燃料噴射制御装置。
  2.  前記取得部は、前記電流変化パラメータとして、前記複数の駆動系統において前記燃料噴射弁による燃料噴射ごとの所定の基準タイミングから前記検出電流が所定電流値に到達するまでの時間である到達時間を取得し、
     前記電流補正部は、前記駆動系統ごとの前記到達時間を比較し、その結果に基づいて前記電流補正を実施する請求項1に記載の内燃機関の燃料噴射制御装置。
  3.  前記取得部は、前記電流変化パラメータとして、前記複数の駆動系統において前記燃料噴射弁による燃料噴射ごとの所定の基準タイミングから所定時間が経過した際の前記検出電流である到達電流を取得し、
     前記電流補正部は、前記駆動系統ごとの前記到達電流を比較し、その結果に基づいて前記電流補正を実施する請求項1に記載の内燃機関の燃料噴射制御装置。
  4.  前記取得部は、前記電流変化パラメータとして、前記複数の駆動系統において前記燃料噴射弁による燃料噴射ごとの所定の基準タイミングから所定区間が経過するまでの前記検出電流を積算した電流積算値を取得し、
     前記電流補正部は、前記駆動系統ごとの前記電流積算値を比較し、その結果に基づいて前記電流補正を実施する請求項1に記載の内燃機関の燃料噴射制御装置。
  5.  前記駆動回路は、前記各燃料噴射弁による燃料噴射に際し、開弁動作のための所定電圧の印加に先立って、前記各電流検出回路による検出電流に基づいて、所定の低電圧の印加によるプレチャージを実施するものであり、
     前記取得部は、前記プレチャージが完了した後に前記所定電圧の印加が行われる期間内のタイミングを前記基準タイミングとして前記電流変化パラメータを取得する請求項2乃至4のいずれか1項に記載の内燃機関の燃料噴射制御装置。
  6.  前記取得部は、前記プレチャージが完了して前記所定電圧の印加が開始されるタイミングを前記基準タイミングとして前記電流変化パラメータを取得する請求項5に記載の内燃機関の燃料噴射制御装置。
  7.  前記電流補正部は、前記複数の駆動系統について前記電流変化パラメータの実値が所定の範囲内に収まるように前記駆動電流の補正を実施する請求項1乃至6のいずれか1項に記載の内燃機関の燃料噴射制御装置。
  8.  前記電流検出回路による検出電流が所定の目標電流値に到達したことに基づいて、前記駆動回路による前記燃料噴射弁への駆動用電圧の印加を制御する制御部を備え、
     前記電流補正部は、前記電流補正として、前記複数の駆動系統の少なくともいずれかにおける前記目標電流値を補正する請求項1乃至7のいずれか1項に記載の内燃機関の燃料噴射制御装置。
  9.  前記電流補正部は、前記複数の駆動系統のうち前記検出電流の時間当たりの変化量が大きい駆動系統について、当該変化量が小さい駆動系統に合わせて前記目標電流値を補正する請求項8に記載の内燃機関の燃料噴射制御装置。
  10.  前記電流補正部は、前記複数の駆動系統のうち前記検出電流の時間当たりの変化量が小さい駆動系統について、当該変化量が大きい駆動系統に合わせて前記目標電流値を補正する請求項8に記載の内燃機関の燃料噴射制御装置。
  11.  前記駆動回路は、前記各燃料噴射弁による燃料噴射に際し、開弁動作のための所定の高電圧を印加するとともに、その高電圧印加状態で前記燃料噴射弁の駆動電流が目標ピーク値に到達したことに基づいて、前記高電圧の印加を停止して開弁維持のための所定の低電圧を印加するものであり、
     前記電流補正部は、前記目標電流値の補正として、前記複数の駆動系統の少なくともいずれかにおける前記目標ピーク値を補正する請求項8乃至10のいずれか1項に記載の内燃機関の燃料噴射制御装置。
  12.  前記開弁維持のための低電圧印加期間において、前記燃料噴射弁の駆動電流を目標ホールド値に制御するものであり、
     前記電流補正部は、前記目標電流値の補正として、前記複数の駆動系統の少なくともいずれかにおける前記目標ピーク値と前記目標ホールド値とをそれぞれ補正する請求項11に記載の内燃機関の燃料噴射制御装置。
  13.  前記電流補正部は、前記複数の駆動系統の少なくともいずれかの前記目標ピーク値が補正された場合に、各駆動系統における前記目標ピーク値に基づいて、前記目標ピーク値の補正が行われたのと同じ駆動系統の前記目標ホールド値を補正する請求項12に記載の内燃機関の燃料噴射制御装置。
  14.  前記複数の駆動系統における各電流検出回路の温度差を取得し、その温度差に基づいて、前記取得部により取得された前記電流変化パラメータを補正するパラメータ補正部を備える請求項1乃至13のいずれか1項に記載の内燃機関の燃料噴射制御装置。
PCT/JP2016/082637 2015-11-30 2016-11-02 内燃機関の燃料噴射制御装置 WO2017094430A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016005465.3T DE112016005465B4 (de) 2015-11-30 2016-11-02 Kraftstoffeinspritzsteuervorrichtung für Maschine mit interner Verbrennung
US15/774,401 US11346311B2 (en) 2015-11-30 2016-11-02 Fuel injection control device for internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015233462 2015-11-30
JP2015-233462 2015-11-30
JP2016158557A JP6493334B2 (ja) 2015-11-30 2016-08-12 内燃機関の燃料噴射制御装置
JP2016-158557 2016-08-12

Publications (1)

Publication Number Publication Date
WO2017094430A1 true WO2017094430A1 (ja) 2017-06-08

Family

ID=58797060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082637 WO2017094430A1 (ja) 2015-11-30 2016-11-02 内燃機関の燃料噴射制御装置

Country Status (2)

Country Link
US (1) US11346311B2 (ja)
WO (1) WO2017094430A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3575590B1 (en) * 2017-03-03 2021-03-31 Mazda Motor Corporation Engine control device
JP7428094B2 (ja) * 2020-07-16 2024-02-06 株式会社デンソー 噴射制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043603A (ja) * 2008-08-12 2010-02-25 Hitachi Ltd 内燃機関の燃料噴射システム
JP2013002476A (ja) * 2011-06-13 2013-01-07 Denso Corp 電磁弁駆動装置
JP2014005740A (ja) * 2012-06-21 2014-01-16 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2016075171A (ja) * 2014-10-03 2016-05-12 株式会社デンソー 内燃機関の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479161A (en) * 1982-09-27 1984-10-23 The Bendix Corporation Switching type driver circuit for fuel injector
US4618908A (en) * 1985-08-05 1986-10-21 Motorola, Inc. Injector driver control unit with internal overvoltage protection
US4964014A (en) * 1989-01-06 1990-10-16 Deere & Company Solenoid valve driver
CN102518523B (zh) * 2011-12-29 2014-07-16 北京经纬恒润科技有限公司 一种高压共轨柴油机喷油控制装置
JP6169404B2 (ja) * 2013-04-26 2017-07-26 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
JP5772884B2 (ja) * 2013-06-24 2015-09-02 トヨタ自動車株式会社 燃料噴射弁駆動システム
JP6206329B2 (ja) 2014-05-30 2017-10-04 株式会社デンソー 内燃機関の燃料噴射制御装置
JP6286714B2 (ja) * 2015-05-15 2018-03-07 株式会社ケーヒン 燃料噴射制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043603A (ja) * 2008-08-12 2010-02-25 Hitachi Ltd 内燃機関の燃料噴射システム
JP2013002476A (ja) * 2011-06-13 2013-01-07 Denso Corp 電磁弁駆動装置
JP2014005740A (ja) * 2012-06-21 2014-01-16 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2016075171A (ja) * 2014-10-03 2016-05-12 株式会社デンソー 内燃機関の制御装置

Also Published As

Publication number Publication date
US20200141347A1 (en) 2020-05-07
US11346311B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
JP6206329B2 (ja) 内燃機関の燃料噴射制御装置
JP6314733B2 (ja) 内燃機関の燃料噴射制御装置
JP6157889B2 (ja) 燃料噴射弁の制御装置
WO2017013830A1 (ja) 内燃機関の燃料噴射制御装置
US20090071443A1 (en) Fuel Injection Control Apparatus for Internal Combustion Engine
JP2010255444A (ja) 内燃機関の燃料噴射制御装置及び方法
US10428755B2 (en) Control device for internal combustion engine
JP6493334B2 (ja) 内燃機関の燃料噴射制御装置
US10876486B2 (en) Fuel injection control device
JP2018127937A (ja) 内燃機関の燃料噴射制御装置
WO2017094430A1 (ja) 内燃機関の燃料噴射制御装置
US11053882B2 (en) Fuel injection valve control device and fuel injection valve control method
JP2013137028A (ja) 内燃機関の燃料噴射制御装置及び方法
JP6953862B2 (ja) 燃料噴射制御装置
US11060474B2 (en) Fuel injection control device
JP7006155B2 (ja) 燃料噴射制御装置
WO2018096940A1 (ja) 燃料噴射制御装置
JP7035466B2 (ja) 燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005465

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870370

Country of ref document: EP

Kind code of ref document: A1