WO2016203926A1 - 燃料電池用電極構造体、金属セパレータ、上記燃料電池用電極構造体と金属セパレータとを用いた燃料電池セル、及び上記燃料電池用電極構造体作製用金型 - Google Patents
燃料電池用電極構造体、金属セパレータ、上記燃料電池用電極構造体と金属セパレータとを用いた燃料電池セル、及び上記燃料電池用電極構造体作製用金型 Download PDFInfo
- Publication number
- WO2016203926A1 WO2016203926A1 PCT/JP2016/065616 JP2016065616W WO2016203926A1 WO 2016203926 A1 WO2016203926 A1 WO 2016203926A1 JP 2016065616 W JP2016065616 W JP 2016065616W WO 2016203926 A1 WO2016203926 A1 WO 2016203926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- electrode structure
- electrode assembly
- membrane electrode
- diffusion layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/433—Casing-in, i.e. enclosing an element between two sheets by an outlined seam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0276—Sealing means characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0286—Processes for forming seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/34—Electrical apparatus, e.g. sparking plugs or parts thereof
- B29L2031/3468—Batteries, accumulators or fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to an electrode structure for a fuel cell, and more specifically, an electrode structure for a fuel cell, a metal separator, and the above electrode for a fuel cell, in which gas is prevented from flowing into a seal space at the outer edge of the membrane electrode assembly.
- the present invention relates to a fuel cell using a structure and a metal separator, and a mold for producing the fuel cell electrode structure.
- the fuel cell stack is formed by laminating a plurality of single cells between two end plates and applying a tightening load in the stacking direction by tightening bolts or casings, and the single cell is a pair of separators having corrugated plates, A fuel cell electrode structure in which a membrane electrode assembly and a frame are integrally formed is sandwiched.
- the membrane electrode assembly includes an electrolyte membrane and a pair of electrodes disposed on both surfaces thereof, and the electrode includes a catalyst layer and a gas diffusion layer formed on the outer surface of the catalyst layer, and the gas diffusion layer
- the electrode For example, carbon paper subjected to water repellent treatment is used.
- a gas flow path is formed between the membrane electrode assembly and the corrugated plate along the reaction surface, and fuel gas and oxidant gas supplied to the gas flow path leak to the outside, or fuel gas and oxidant gas In order to prevent them from mixing with each other, a seal member is provided on the outer edge of the membrane electrode assembly.
- Patent Document 1 discloses a membrane electrode structure in which an electrolyte membrane is sandwiched between outer peripheries of electrodes and a gasket punched out in substantially the same shape as the outer peripheral portion of the separator is joined. Even if a thin electrode membrane structure is employed by making the surface of the separator in contact with the electrode in contact with the peripheral edge of the gasket, the gasket can be sufficiently compressed, and the outside of the fuel cell can be compressed. It is described that the gas leak to can be prevented.
- Patent Document 2 a liquid seal is applied to a groove portion provided on the outer periphery of a separator, and the electrode film structure is sandwiched between a pair of separators to crush the liquid seal, and the gas diffusion layer of the electrode film structure It is disclosed that the liquid seal is brought into close contact with the end face of the film to prevent the reaction gas from blowing around the membrane electrode structure.
- the reaction gas may blow around the electrode film structure without passing through the reaction surface, and the power generation efficiency may decrease. That is, since there is a step between the surface where the separator and the electrode are in contact and the surface where the separator and the gasket are in contact, the shape of the gasket needs to match the step of the separator and the shape of the electrode film structure. .
- a metal separator it is difficult to process the seal groove at a right angle, and in addition, a gasket with punched rubber has low dimensional accuracy, and a gap is generated between the membrane electrode structure and the gasket. easy.
- FIG. 1 shows an example of the relationship between the distance between the electrode film structure and the seal member and the flow rate of the reaction gas that blows around the electrode film structure without contributing to power generation.
- the present invention has been made in view of such problems of the prior art.
- the object of the present invention is to reduce the power generation efficiency due to the reaction gas flowing around the membrane electrode assembly without flowing through the reaction surface.
- a fuel cell electrode structure, a metal separator, a fuel cell using the fuel cell electrode structure and a metal separator, and the fuel cell electrode The object is to provide a mold for producing a structure.
- the present inventor has a sealing member of a fuel cell electrode structure having an extending part extending to the membrane electrode assembly and a lip part thicker than the extending part.
- the inventors have found that the above object can be achieved by bringing the end face of the extending portion into contact with the end face of the gas diffusion layer of the membrane electrode assembly, and have completed the present invention.
- the fuel cell electrode structure of the present invention is formed integrally with a membrane electrode assembly in which an electrolyte membrane is disposed between a pair of electrodes and the membrane electrode assembly, and supports the membrane electrode assembly from the periphery.
- the membrane electrode assembly comprises a gas diffusion layer on the surface, A seal member for sealing the outer edge of the membrane electrode assembly is provided on the frame;
- the seal member has an extending portion extending at least partially to the membrane electrode assembly, the extending portion is thinner than a lip portion of the seal member, and an end surface is in contact with an end surface of the gas diffusion layer. It is characterized by that.
- the metal separator of the present invention is characterized in that it has a flat portion for sandwiching an abutting portion where the extending portion of the seal member of the fuel cell electrode structure and the gas diffusion layer abut.
- the fuel cell according to the present invention includes the fuel cell electrode structure and a pair of metal separators sandwiching the fuel cell electrode from both sides, and the metal separator includes an extending portion of the seal member. It has a flat surface portion that compresses the abutting portion where the end surface of the extending portion abuts the gas diffusion layer, and the fuel cell electrode structure is sandwiched from both sides by a pair of the metal separators. It is characterized by being.
- the mold for molding an electrode structure for a fuel cell provides the sealing member to a frame integrally formed with the membrane electrode assembly, and a portion that contacts the frame of the membrane electrode assembly; A portion that contacts the gas diffusion layer, and compresses the gas diffusion layer with the membrane electrode assembly interposed therebetween, thereby forming a cavity in the shape of the sealing member that is sealed with the frame and the gas diffusion layer. It is characterized by that.
- the method for producing an electrode structure for a fuel cell includes the step of injecting a seal member into a cavity formed by sandwiching the membrane electrode assembly with the mold for forming an electrode structure for a fuel cell.
- the seal member is applied to a frame formed integrally with the frame.
- the seal member for sealing the outer edge of the membrane electrode assembly has the extending portion extending from the lip portion to the membrane electrode assembly, and the extending portion is thinner than the lip portion.
- the end face is in contact with the end face of the gas diffusion layer of the membrane electrode assembly, the flow path of the reactive gas flowing around the membrane electrode assembly can be closed.
- the fuel cell electrode structure has the flat portion that compresses the contact portion between the extending portion of the seal member of the fuel cell electrode structure and the gas diffusion layer, and therefore flows around the membrane electrode assembly.
- the flow path of the reaction gas can be closed.
- the fuel cell electrode comprises a metal separator having a flat portion for compressing the contact portion between the extending portion of the seal member of the fuel cell electrode structure and the gas diffusion layer. Since the structure is compressed and sandwiched from both sides, the flow path of the reaction gas flowing around the membrane electrode assembly is closed. Therefore, even if the gas flow path is made thin, the reaction gas flows on the reaction surface of the membrane electrode assembly, so that the fuel consumption can be improved and the leakage of the gas from the fuel cell can be prevented.
- the gas electrode layer is compressed by sandwiching the membrane electrode assembly, and sealed with the frame and the gas diffusion layer to form the cavity of the seal member shape. Therefore, the sealing member can be reliably brought into contact with the end surface of the gas diffusion layer.
- the cavity is formed with the membrane electrode assembly interposed therebetween, and the sealing member is injected, so that the sealing member is reliably brought into contact with the end surface of the gas diffusion layer. In addition, the seal member does not flow out to the reaction part.
- FIG. 2A is a plan view
- FIG. 2B is a cross-sectional view taken along the line X-X ′.
- It is sectional drawing which shows an example of the metal mold
- It is a top view which shows a fuel battery cell in an exploded state. It is principal part sectional drawing of a fuel battery cell.
- FIG. 2A is a plan view of the electrode structure for a fuel cell
- FIG. 2B is a cross-sectional view taken along the line XX ′ of FIG. 2A.
- a membrane electrode assembly 2 and a frame 1 that supports the membrane electrode assembly 2 from the periphery are integrally formed, and the membrane electrode assembly 2 is formed on the outer frame 1 of the membrane electrode assembly 2.
- a seal member 3 is provided.
- the frame 1 is formed of a film such as a polyester resin.
- the membrane electrode assembly 2 is a so-called MEA (Membrane Electrode Assembly), and as shown in FIG. 2B, a solid high electrode is interposed between a pair of electrodes having the anode side electrode layer 22 and the cathode side electrode layer 22.
- An electrolyte membrane 21 made of molecules is disposed.
- the electrode layer 22 has a gas diffusion layer 24 provided on the surface of the catalyst layer 23.
- the gas diffusion layer 24 is preferably set larger than the electrolyte membrane 21 and the catalyst layer 23, and preferably has an extended portion 241 that extends to the frame 1. By having the extending portion 241, the reaction surface is prevented from being reduced by the seal member, as will be described later.
- the seal member 3 provided on the outer edge of the membrane electrode assembly 2 is provided on the frame, and includes a lip portion 31 and a flat extending portion 32 extending from the lip portion 31 to the membrane electrode assembly 2. Prepare.
- the extending portion 32 is thinner than the lip portion 31, and the end surface 321 of the extending portion 32 is in contact with the end surface 242 of the gas diffusion layer on the frame 1. Therefore, the flow path of the reaction gas between the outer edge of the membrane electrode assembly 2 and the seal member 3 is closed, and the reaction gas does not blow around the membrane electrode assembly 2.
- the sealing member 3 has the extending part 32 in a part, it is possible to prevent the reaction gas from being blown out, and it is not always necessary to have the extending part 32 as a whole.
- the sealing member 3 is improved in sealing performance and can prevent gas leakage outside the fuel cell. In other words, the sealing member 3 prevents the gas flow path around the membrane electrode assembly and the gas leakage outside the fuel cell. Note that the left seal member shown in FIG. 2B is provided in a preliminary manner in order to more completely prevent gas leakage from the fuel cell.
- sealing member 3 examples include ethylene-propylene-diene rubber (EPDM), nitrile rubber (NBR), fluorine rubber, silicon rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene rubber, and acrylic rubber.
- EPDM ethylene-propylene-diene rubber
- NBR nitrile rubber
- fluorine rubber silicon rubber
- fluorosilicone rubber butyl rubber
- natural rubber styrene rubber
- chloroprene rubber chloroprene rubber
- acrylic rubber acrylic rubber
- the fuel cell electrode structure can be produced by applying a seal member 3 to the frame 1 integrally formed with the membrane electrode assembly 2, and the application of the seal member 3 is preferably by injection molding.
- FIG. 3 shows a cross-sectional view of an example of a mold for forming an electrode structure for a fuel cell used for injection molding.
- the mold 4 provides the seal member to a frame integrally formed with the membrane electrode assembly, and is formed so as to be divided into two or more.
- the mold 4 includes a portion that contacts the frame of the membrane electrode assembly and a portion that contacts the gas diffusion layer. By compressing the end portion of the membrane electrode assembly while sandwiching the end portion of the membrane electrode assembly from the direction orthogonal to the surface of the membrane electrode assembly, as shown in FIG.
- the sealing member-shaped cavity 41 having an L-shaped cross section is formed by abutting and sealing with a frame and a membrane electrode assembly.
- the sealing member is provided by injecting and molding the rubber material to be the sealing member into the cavity 41, and the end surface of the extending portion of the sealing member and the end surface of the gas diffusion layer are in contact with each other. Is produced.
- the portion in contact with the gas diffusion layer sandwiches the extended portion 241 in which the gas diffusion layer of the membrane electrode assembly 2 extends to the frame. Since the extending part 241 is a reaction part of the membrane electrode assembly 2, that is, a part not having the electrolyte membrane 21 and the electrode layer 22, the reaction region may be reduced even if the sealing member is immersed in the gas diffusion layer. And does not affect the power generation performance.
- Compressive stress sandwiching the membrane electrode assembly 2 with the mold 4 is preferably 0.3 Mpa to 5.0 Mpa, although it depends on the thickness of the gas diffusion layer and the like.
- the pressure is within the above range, the gas diffusion layer is sufficiently compressed. Therefore, even when injection pressure is applied, the sealing member stops at the end face of the gas diffusion layer, and the sealing member may penetrate into the reaction part of the membrane electrode assembly 2. This can prevent the reaction area from decreasing.
- the fuel cell C of the present invention includes the fuel cell electrode structure 100 and a pair of metal separators 5A and 5B that sandwich the fuel cell electrode structure from both sides.
- the pair of metal separators 5A and 5B are, for example, metal plates made of stainless steel or the like formed by pressing, and are provided with corrugated plates having an inverted shape. Therefore, the convex portion and the concave portion on the inner surface side of the fuel battery cell are conversely the concave portion and the convex portion.
- the pair of metal separators 5A and 5B are in contact with the membrane electrode assembly 2 by the convex portion and gas by the concave portion on the inner side of the fuel cell that is the membrane electrode assembly 2 side of the reaction portion.
- a flow path G is formed, and a cooling medium flow path is formed on the outer surface side of the fuel cell.
- a seal groove S in which the seal member 3 of the fuel cell electrode structure is disposed is formed at the outer edge of the membrane electrode assembly 2 by a recess, and the gap between the gas flow path G and the seal groove S is formed.
- the convex portion forms a plane portion F.
- the flat portion F sandwiches the contact portion between the extending portion of the seal member and the gas diffusion layer from both sides, compresses the gas diffusion layer, and the height of the extending portion and the gas diffusion layer is the same.
- the extending portion of the sealing member and the gas diffusion layer are in contact with each other, and the corresponding contact portion is sandwiched between the frame and the metal separator, so that the reaction gas blows around the electrode membrane structure.
- SR characteristic stoichiometric ratio-voltage characteristic
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Fuel Cell (AREA)
Abstract
Description
図1に、電極膜構造体とシール部材間の距離と、発電に寄与せずに電極膜構造体の周囲を吹き抜ける反応ガスの流量との関係の一例を示す。
上記膜電極接合体が、表面にガス拡散層を備え、
上記フレーム上に上記膜電極接合体の外縁をシールするシール部材が設けられ、
上記シール部材が、少なくとも一部に上記膜電極接合体に延びる延伸部を有し、上記延伸部がシール部材のリップ部よりも薄く、かつ端面が上記ガス拡散層の端面に当接するものであることを特徴とする。
本発明の燃料電池用電極構造体について詳細に説明する。
本発明の燃料電池用電極構造体100の一例を図2に示す。図2(a)は、燃料電池用電極構造体の平面図であり、図2(b)は、図2(a)のX-X’断面図である。
本発明の燃料電池用電極構造体100は、膜電極接合体2と該膜電極接合体2を周囲から支持するフレーム1とが一体形成され、該膜電極接合体2の外縁のフレーム1上にシール部材3が設けられる。
上記ガス拡散層24は電解質膜21及び触媒層23よりも大きく設定され、フレーム1上まで延伸した延伸部241を有することが好ましい。延伸部241を有することで後述するように、シール部材によって反応面が減少することが防止される。
したがって、膜電極接合体2の外縁とシール部材3との間の反応ガスの流路が閉塞され、膜電極接合体2の周囲を反応ガスが吹き抜けることがない。
なお、シール部材3は一部に延伸部32を有すれば反応ガスの吹き抜けを防止でき、必ずしも全体に延伸部32を有する必要はない。
なお、図2(b)に示す左側のシール部材は、燃料電池からのガスの漏洩をより完全に防止するために予備的に設けられるものである。
上記燃料電池用電極構造体は、膜電極接合体2と一体形成されたフレーム1に、シール部材3を付与することで作製でき、上記シール部材3の付与は射出成型によることが好ましい。
上記金型4は、上記膜電極接合体のフレームに当接する部位と、上記ガス拡散層に当接する部位とを備える。上記膜電極接合体の端部を膜電極接合体の面と直交する方向から挟んで膜電極接合体の端部を圧縮することで、図3に示すように、金型4とフレーム1とが当接し、フレーム及び膜電極接合体で封口されて、断面がL字型をした上記シール部材形状のキャビティ41が形成される。
本発明の燃料電池セルCは、図4に示すように、上記燃料電池用電極構造体100と、該燃料電池用電極構造体を両面側から挟持する一対の金属セパレータ5A、5Bを備える。
そして、上記膜電極接合体2の外縁には、凹部によって上記燃料電池用電極構造体のシール部材3が配設されるシール溝Sが形成され、上記ガス流路Gとシール溝Sとの間の凸部が平面部Fを形成する。
該平面部Fが、上記シール部材の延伸部と上記ガス拡散層との当接部を両側から挟み、上記ガス拡散層を圧縮して、上記延伸部と上記ガス拡散層との高さを同じにする。
2 膜電極接合体
21 電解質膜
22 電極層
23 触媒層
24 ガス拡散層
241 延伸部
242 端面
3 シール部材
31 リップ部
32 延伸部
321 端面
4 金型
41 キャビティ
5A,5B 金属セパレータ
C 燃料電池セル
G ガス流路
S シール溝
F 平面部
100 燃料電池用電極構造体
Claims (7)
- 一対の電極間に電解質膜を配設した膜電極接合体と、該膜電極接合体と一体形成され、上記膜電極接合体を周囲から支持するフレームとを備える燃料電池用電極構造体であって、
上記膜電極接合体が表面にガス拡散層を備え、
上記フレーム上に上記膜電極接合体の外縁をシールするシール部材を有し、
上記シール部材が、リップ部と上記膜電極接合体に延びる延伸部を有し、
上記延伸部がリップ部よりも薄いものであり、少なくとも一部が上記ガス拡散層の端面に当接するものであることを特徴とする燃料電池用電極構造体。 - 上記ガス拡散層が上記フレーム上まで延伸して設けられたものであることを特徴とする請求項1に記載の燃料電池用電極構造体。
- 燃料電池用電極構造体を挟持する金属セパレータであって、
上記燃料電池用電極構造体が、請求項1又は2に記載の燃料電池用電極構造体であり、
上記シール部材の延伸部と上記ガス拡散層とが当接する当接部を挟持する平面部を備えることを特徴とする金属セパレータ。 - 燃料電池用電極構造体と、該燃料電池用電極を両面側から挟持する一対の金属セパレータとを備える燃料電池セルであって、
上記燃料電池用電極構造体が、請求項1又は2に記載の燃料電池用電極構造体であり、
上記金属セパレータが上記延伸部と上記ガス拡散層との当接部を挟持する平面部を備えるものであり、
上記金属セパレータの平面部で上記当接部を両面側から挟持したものであることを特徴とする燃料電池セル。 - 上記請求項1又は2に記載の燃料電池用電極構造体成形用金型であって、
上記膜電極接合体と一体形成されたフレームに上記シール部材を付与するものであり、
上記膜電極接合体のフレームに当接する部位と、上記ガス拡散層に当接する部位とを備え、
上記膜電極接合体を挟みガス拡散層を圧縮することで、フレーム及びガス拡散層で封口されて上記シール部材形状のキャビティを形成するものであることを特徴とする燃料電池用電極構造体成形用金型。 - 上記膜電極接合体を挟む圧縮応力が、0.3Mpa~5.0Mpaであることを特徴とする請求項4に記載の燃料電池用電極構造体成形用金型。
- 上記請求項1又は2に記載の燃料電池用電極構造体の製造方法であって、
上記請求項5又は6に記載の燃料電池用電極構造体成形用金型で上記膜電極接合体を挟み、形成されたキャビティにシール部材を射出して上記膜電極接合体と一体形成されたフレームに上記シール部材を付与するものであることを特徴とする燃料電池用電極構造体の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/736,105 US10256476B2 (en) | 2015-06-15 | 2016-05-26 | Fuel cell electrode structure, metal separator, fuel cell employing said fuel cell electrode structure and said metal separator, and die for fabricating said fuel cell electrode structure |
CN201680035424.9A CN107710483B (zh) | 2015-06-15 | 2016-05-26 | 燃料电池用电极构造体、金属隔板、燃料电池单元及燃料电池用电极构造体制作用模具 |
KR1020177034661A KR101913058B1 (ko) | 2015-06-15 | 2016-05-26 | 연료 전지용 전극 구조체, 금속 세퍼레이터, 상기 연료 전지용 전극 구조체와 금속 세퍼레이터를 사용한 연료 전지 셀 및 상기 연료 전지용 전극 구조체 제작 용 금형 |
EP16811401.5A EP3309885B1 (en) | 2015-06-15 | 2016-05-26 | Fuel cell electrode structure, metal separator, fuel cell employing said fuel cell electrode structure and said metal separator, and die for fabricating said fuel cell electrode structure |
CA2989526A CA2989526C (en) | 2015-06-15 | 2016-05-26 | Fuel cell electrode structure, metal separator, fuel cell single cell using the fuel cell electrode structure and the metal separator, and mold for producing the fuel cell electrode structure |
JP2017524775A JP6414638B2 (ja) | 2015-06-15 | 2016-05-26 | 燃料電池用電極構造体、金属セパレータ、上記燃料電池用電極構造体と金属セパレータとを用いた燃料電池セル、及び上記燃料電池用電極構造体作製用金型 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015120347 | 2015-06-15 | ||
JP2015-120347 | 2015-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016203926A1 true WO2016203926A1 (ja) | 2016-12-22 |
Family
ID=57545491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065616 WO2016203926A1 (ja) | 2015-06-15 | 2016-05-26 | 燃料電池用電極構造体、金属セパレータ、上記燃料電池用電極構造体と金属セパレータとを用いた燃料電池セル、及び上記燃料電池用電極構造体作製用金型 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10256476B2 (ja) |
EP (1) | EP3309885B1 (ja) |
JP (1) | JP6414638B2 (ja) |
KR (1) | KR101913058B1 (ja) |
CN (1) | CN107710483B (ja) |
CA (1) | CA2989526C (ja) |
WO (1) | WO2016203926A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018190536A (ja) * | 2017-04-28 | 2018-11-29 | 本田技研工業株式会社 | 樹脂枠付き電解質膜・電極構造体の製造方法 |
US11043685B2 (en) | 2017-04-28 | 2021-06-22 | Honda Motor Co., Ltd. | Method and apparatus for producing resin frame equipped membrane electrode assembly |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7052593B2 (ja) * | 2018-06-21 | 2022-04-12 | トヨタ自動車株式会社 | 燃料電池単セルの製造方法 |
US20210336279A1 (en) * | 2018-12-11 | 2021-10-28 | Panasonic Intellectual Property Management Co., Ltd. | Fuel cell module, fuel cell stack, and manufacturing method of fuel cell module |
WO2021122159A1 (de) * | 2019-12-19 | 2021-06-24 | Elringklinger Ag | Elektrochemische vorrichtung und verfahren zum herstellen einer elektrochemischen vorrichtung |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003007328A (ja) * | 2001-06-20 | 2003-01-10 | Nok Corp | 燃料電池用構成部品 |
JP2007250249A (ja) * | 2006-03-14 | 2007-09-27 | Toyota Motor Corp | シール一体型膜電極接合体 |
JP2007250248A (ja) * | 2006-03-14 | 2007-09-27 | Toyota Motor Corp | シール一体型膜電極接合体製造技術 |
WO2007145291A1 (ja) * | 2006-06-16 | 2007-12-21 | Panasonic Corporation | 燃料電池用膜電極接合体、高分子電解質型燃料電池用セル、高分子電解質型燃料電池及び膜電極接合体の製造方法 |
JP2008146955A (ja) * | 2006-12-08 | 2008-06-26 | Toyota Motor Corp | シール部材、燃料電池セル、燃料電池 |
JP2012238556A (ja) * | 2011-05-13 | 2012-12-06 | Nissan Motor Co Ltd | 燃料電池 |
JP2014099316A (ja) * | 2012-11-14 | 2014-05-29 | Honda Motor Co Ltd | 燃料電池用組立体及びその製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3648128B2 (ja) | 2000-05-02 | 2005-05-18 | 本田技研工業株式会社 | 燃料電池 |
JP2003163015A (ja) | 2001-09-11 | 2003-06-06 | Matsushita Electric Ind Co Ltd | 高分子電解質型燃料電池およびその導電性セパレータ板 |
US8084165B2 (en) | 2005-04-01 | 2011-12-27 | Panasonic Corporation | MEA, MEA manufacturing method, and polymer electrolyte fuel cell |
CN101553943B (zh) | 2006-01-17 | 2016-12-21 | 汉高美国知识产权有限责任公司 | 密封剂一体化的燃料电池部件和生产它的方法与体系 |
US8382565B2 (en) * | 2008-06-09 | 2013-02-26 | International Business Machines Corporation | System and method to redirect and/or reduce airflow using actuators |
JP5321801B2 (ja) * | 2008-10-31 | 2013-10-23 | Nok株式会社 | 燃料電池 |
EP2405516B1 (en) * | 2009-03-04 | 2014-04-30 | Panasonic Corporation | Polymer electrolyte type fuel cell gasket |
JP5736948B2 (ja) | 2011-05-13 | 2015-06-17 | 日産自動車株式会社 | タイヤ空気圧モニタシステム |
JP5928979B2 (ja) | 2012-01-27 | 2016-06-01 | 日産自動車株式会社 | 燃料電池 |
JP6107425B2 (ja) * | 2012-06-01 | 2017-04-05 | 日産自動車株式会社 | 燃料電池 |
JP5641528B2 (ja) * | 2013-03-28 | 2014-12-17 | 住友理工株式会社 | 燃料電池用シール部材およびそれを用いた燃料電池シール体 |
KR102107768B1 (ko) * | 2013-07-24 | 2020-05-07 | 엘지이노텍 주식회사 | 보조 전원을 내장한 무선 충전 장치와 보조 전원 장치 |
JP6082715B2 (ja) * | 2014-06-26 | 2017-02-15 | 住友理工株式会社 | 燃料電池用ゴムガスケット |
-
2016
- 2016-05-26 EP EP16811401.5A patent/EP3309885B1/en active Active
- 2016-05-26 KR KR1020177034661A patent/KR101913058B1/ko active IP Right Grant
- 2016-05-26 US US15/736,105 patent/US10256476B2/en active Active
- 2016-05-26 WO PCT/JP2016/065616 patent/WO2016203926A1/ja active Application Filing
- 2016-05-26 JP JP2017524775A patent/JP6414638B2/ja active Active
- 2016-05-26 CA CA2989526A patent/CA2989526C/en active Active
- 2016-05-26 CN CN201680035424.9A patent/CN107710483B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003007328A (ja) * | 2001-06-20 | 2003-01-10 | Nok Corp | 燃料電池用構成部品 |
JP2007250249A (ja) * | 2006-03-14 | 2007-09-27 | Toyota Motor Corp | シール一体型膜電極接合体 |
JP2007250248A (ja) * | 2006-03-14 | 2007-09-27 | Toyota Motor Corp | シール一体型膜電極接合体製造技術 |
WO2007145291A1 (ja) * | 2006-06-16 | 2007-12-21 | Panasonic Corporation | 燃料電池用膜電極接合体、高分子電解質型燃料電池用セル、高分子電解質型燃料電池及び膜電極接合体の製造方法 |
JP2008146955A (ja) * | 2006-12-08 | 2008-06-26 | Toyota Motor Corp | シール部材、燃料電池セル、燃料電池 |
JP2012238556A (ja) * | 2011-05-13 | 2012-12-06 | Nissan Motor Co Ltd | 燃料電池 |
JP2014099316A (ja) * | 2012-11-14 | 2014-05-29 | Honda Motor Co Ltd | 燃料電池用組立体及びその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018190536A (ja) * | 2017-04-28 | 2018-11-29 | 本田技研工業株式会社 | 樹脂枠付き電解質膜・電極構造体の製造方法 |
US11043685B2 (en) | 2017-04-28 | 2021-06-22 | Honda Motor Co., Ltd. | Method and apparatus for producing resin frame equipped membrane electrode assembly |
US11962050B2 (en) | 2017-04-28 | 2024-04-16 | Honda Motor Co., Ltd. | Method for producing resin frame equipped membrane electrode assembly |
Also Published As
Publication number | Publication date |
---|---|
US20180183073A1 (en) | 2018-06-28 |
EP3309885A1 (en) | 2018-04-18 |
KR20180002749A (ko) | 2018-01-08 |
CA2989526C (en) | 2020-11-10 |
JP6414638B2 (ja) | 2018-11-07 |
CN107710483B (zh) | 2019-04-09 |
EP3309885A4 (en) | 2018-12-05 |
US10256476B2 (en) | 2019-04-09 |
JPWO2016203926A1 (ja) | 2018-03-29 |
CA2989526A1 (en) | 2016-12-22 |
CN107710483A (zh) | 2018-02-16 |
KR101913058B1 (ko) | 2018-10-29 |
EP3309885B1 (en) | 2021-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6414638B2 (ja) | 燃料電池用電極構造体、金属セパレータ、上記燃料電池用電極構造体と金属セパレータとを用いた燃料電池セル、及び上記燃料電池用電極構造体作製用金型 | |
JP5321801B2 (ja) | 燃料電池 | |
CN113036175B (zh) | 隔板的制造方法 | |
US9673458B2 (en) | Fuel cell | |
CA2760979C (en) | Sealing structure of fuel cell | |
CN113097527B (zh) | 燃料电池用接合隔板的制造方法 | |
JP2003220664A (ja) | シール用樹脂−金属接合体 | |
US10347922B2 (en) | Separator assembly for fuel cell and method of manufacturing the same | |
RU2414773C2 (ru) | Уплотнение для топливных элементов | |
JP2010182591A (ja) | 燃料電池及びその製造方法 | |
JP7309596B2 (ja) | 燃料電池用接合セパレータ | |
WO2016195045A1 (ja) | 燃料電池用金属セパレータ構造体、該セパレータ構造体を用いた燃料電池及び燃料電池スタック | |
US20110159398A1 (en) | Low compressive load seal design for solid polymer electrolyte fuel cell | |
JP6150528B2 (ja) | 燃料電池スタック | |
WO2016181523A1 (ja) | 燃料電池スタック | |
JP5734823B2 (ja) | 燃料電池スタック | |
KR101822246B1 (ko) | 연료전지 스택 | |
JP7390936B2 (ja) | ガスケットの製造方法 | |
JP5729682B2 (ja) | 燃料電池用セパレータ | |
WO2021019974A1 (ja) | 燃料電池セル及び燃料電池セルの製造方法 | |
JP5781860B2 (ja) | 燃料電池の製造方法 | |
JP7178882B2 (ja) | 燃料電池用ガスケット | |
KR20240114924A (ko) | 압축시 가스켓 반력을 낮춘 연료전지 가스켓 단면구조 | |
JP2014165040A (ja) | 高分子電解質型燃料電池用の電極―膜―枠接合体の構造およびその製造方法、並びに高分子電解質型燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16811401 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2017524775 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177034661 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15736105 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2989526 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |