WO2016201894A1 - 一种基于寄生补偿的j类功率放大电路及射频功率放大器 - Google Patents

一种基于寄生补偿的j类功率放大电路及射频功率放大器 Download PDF

Info

Publication number
WO2016201894A1
WO2016201894A1 PCT/CN2015/095530 CN2015095530W WO2016201894A1 WO 2016201894 A1 WO2016201894 A1 WO 2016201894A1 CN 2015095530 W CN2015095530 W CN 2015095530W WO 2016201894 A1 WO2016201894 A1 WO 2016201894A1
Authority
WO
WIPO (PCT)
Prior art keywords
harmonic
microstrip line
unit
parasitic
control unit
Prior art date
Application number
PCT/CN2015/095530
Other languages
English (en)
French (fr)
Inventor
吴光胜
马建国
邬海峰
成千福
朱守奎
Original Assignee
深圳市华讯方舟微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华讯方舟微电子科技有限公司 filed Critical 深圳市华讯方舟微电子科技有限公司
Publication of WO2016201894A1 publication Critical patent/WO2016201894A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation

Definitions

  • the invention belongs to the field of radio frequency communication, and particularly relates to a class J power amplifying circuit and a radio frequency power amplifier based on parasitic compensation.
  • Class J power amplifiers a new high-efficiency, wideband power amplifier first introduced in 2006, utilize waveform shaping control technology to achieve the same efficiency and linearity as Class AB or Class B amplifiers over a wide frequency band. Because it does not require a resonant impedance such as an open or short circuit like a Class F or Class E amplifier.
  • the output load impedance of a class J power amplifier transistor is ideal.
  • the drain voltage and current waveform of the transistor are both half sine waves, and the phase difference between them is 45°, and the voltage waveform and the current waveform overlap less to achieve higher Efficiency power transmission,
  • Figure 1 shows the waveform of the transistor's drain output current I ds and voltage V ds in the class J power amplifier circuit.
  • the purpose of the embodiments of the present invention is to provide a class J power amplifying circuit based on parasitic compensation, which aims to solve the impedance matching of the amplifier caused by the parasitic parameters generated by the transistor package of the existing class J power amplifying circuit, thereby affecting the efficiency and linearity index.
  • the problem is to provide a class J power amplifying circuit based on parasitic compensation, which aims to solve the impedance matching of the amplifier caused by the parasitic parameters generated by the transistor package of the existing class J power amplifying circuit, thereby affecting the efficiency and linearity index.
  • a class J power amplifying circuit based on parasitic compensation the circuit comprising:
  • a harmonic parasitic compensation unit configured to implement parasitic compensation for the transistor and the parasitic circuit, wherein an input end of the harmonic parasitic compensation unit is connected to a power signal output end of the transistor, and a power signal input end of the transistor is An input terminal of a class J power amplifier circuit based on parasitic compensation;
  • a harmonic impedance control unit configured to independently control a second harmonic impedance and a third harmonic impedance of the power amplifying circuit, an input end of the harmonic impedance control unit and the harmonic parasitic compensation unit Output connection;
  • a fundamental impedance control unit configured to independently control a fundamental impedance of the power amplifier circuit, an input end of the fundamental impedance control unit being coupled to an output of the harmonic impedance control unit, the fundamental impedance
  • the output of the control unit is connected to one end of a capacitor C1, and the other end of the capacitor C1 is connected to a load.
  • Another object of embodiments of the present invention is to provide a radio frequency power amplifier using the above-described parasitic compensation based class J power amplifying circuit.
  • the embodiment of the invention utilizes a harmonic parasitic compensation network to compensate and control the harmonic impedance of the power amplifier transistor to achieve precise control of the fundamental wave, the second harmonic and the third harmonic impedance, thereby reducing the energy loss of the transistor. Therefore, the purpose of improving the working efficiency and linearity of the power amplifier is achieved. Moreover, the design method independently designes the secondary and third harmonic impedances of the class J power amplifier, and the harmonic impedance control circuits realized do not affect each other, and do not require post-optimization debugging work, which greatly reduces the complexity of the design and reduces The tedious work of post debugging.
  • 1 is a schematic diagram showing current and voltage waveforms of a drain output terminal of a transistor in a class J power amplifier circuit
  • FIG. 2 is a structural diagram of a class J power amplifying circuit based on parasitic compensation according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a class J power amplifying circuit based on parasitic compensation according to an embodiment of the present invention.
  • the embodiment of the invention compensates and controls the harmonic impedance of the power amplifier transistor by using the harmonic parasitic compensation network, realizes precise control of the fundamental wave, the second harmonic and the third harmonic impedance, reduces the energy loss of the transistor, and improves the power amplifier.
  • the efficiency and linearity, and the independent design of the second and third harmonic impedances realizes that each harmonic impedance control circuit does not affect each other, no need for later optimization and debugging, which reduces the complexity of the design and reduces the tedious work of later debugging.
  • FIG. 2 shows the structure of a class J power amplifying circuit based on parasitic compensation according to an embodiment of the present invention. For the convenience of description, only parts related to the present invention are shown.
  • the parasitic compensation-based class J power amplifier circuit can be applied to any radio frequency power amplifier, including:
  • the harmonic parasitic compensation unit 12 is configured to implement parasitic compensation for the transistor and the parasitic circuit.
  • the input end of the harmonic parasitic compensation unit 12 is connected to the power signal output end of the transistor, and the power signal input end of the transistor is a class J power based on parasitic compensation.
  • the N-type MOS transistor amplifies the small power signal input from the gate to the high-power signal of the drain output, and the harmonic parasitic compensation unit 12
  • the processed signal contains both an AC voltage signal and an AC current signal.
  • the harmonic impedance control unit 13 is configured to implement independent control impedance for the second harmonic impedance and the third harmonic impedance of the power amplifying circuit, and the input end of the harmonic impedance control unit 13 is connected to the output end of the harmonic parasitic compensation unit 12;
  • the fundamental impedance control unit 14 is configured to independently control the fundamental impedance of the power amplifying circuit, and the input end of the fundamental impedance control unit 14 is connected to the output of the harmonic impedance control unit 13, and the output of the fundamental impedance control unit 14 The terminal is connected to one end of the capacitor C1, and the other end of the capacitor C1 is connected to the load.
  • the harmonic parasitic compensation unit 12 may be constructed of an L-shaped microstrip line structure.
  • the parasitic parametric model (parasitic circuit) of the transistor includes: a parasitic capacitance C ds between the drain and the source of the transistor, a parasitic inductance L d , a package parasitic capacitance C p , and the like.
  • a harmonic parasitic compensation unit (network) 12 is located between the power signal output end of the transistor and the harmonic control unit, and is formed by the first transmission line TL1 in the L-type microstrip line having the characteristic impedance Z 0 . It is composed of a second transmission line TL2.
  • the electrical length of the first transmission line TL1 is ⁇ 1
  • the electrical length of the second transmission line TL2 is ⁇ 2 .
  • n is an integer
  • Z 0 is the characteristic impedance of the microstrip
  • the unit is ⁇
  • ⁇ 0 is the fundamental wave angular frequency
  • the unit is rad/s
  • C ds is the parasitic capacitance
  • the unit is pF
  • L d is the parasitic inductance
  • the unit is nH
  • C p is the package parasitic capacitance
  • the unit is pF
  • the electrical length of the first transmission line TL1 is ⁇ 1 and the electrical length of the second transmission line TL2 takes a minimum value greater than zero.
  • the parasitic compensation for the harmonic impedance is realized by reasonably selecting the specific value of the electrical length of the first transmission line TL1 as ⁇ 1 and the electrical length ⁇ 2 of the second transmission line TL2, and simultaneously adjusting the output circuit independently.
  • the fundamental impedance control unit can separately control the fundamental impedance matching to meet the corresponding fundamental, second harmonic and third harmonic impedance requirements of the class J power amplifier at the transistor's intrinsic drain (or current input).
  • the harmonic impedance control unit (network) 13 may be constructed of a three-segment microstrip line structure.
  • the characteristic impedance of the three-segment microstrip line is Z 0 , specifically: a series microstrip line, an open microstrip line, and a short-circuit microstrip line;
  • One end of the series microstrip line is the input end of the harmonic impedance control unit 13, and its electrical length is ⁇ 0 /4, and the other end of the series microstrip line is the output end of the harmonic impedance control unit 13 and the open microstrip line and One end of the short-circuited microstrip line is connected, the electrical length of the open microstrip line is ⁇ 0 /12, the other end of the short-circuited microstrip line is grounded, and the electrical length of the short-circuited microstrip line is ⁇ 0 /4, and the series is micro-connected
  • the characteristic impedances of the strip line, the open microstrip line and the short-circuit microstrip line are both Z 0 .
  • the harmonic control unit can simultaneously realize the second harmonic short circuit and the third harmonic open circuit at the input port.
  • ⁇ 0 is the wavelength of the fundamental frequency.
  • S represents a harmonic impedance short circuit
  • O represents a harmonic impedance open circuit. That is, 1S indicates a fundamental wave (primary wave) short circuit, 2S indicates a second harmonic short circuit, 3S indicates a third harmonic short circuit, 3O indicates a third harmonic open circuit, and 1O indicates a fundamental wave (primary wave) open circuit.
  • the equivalent impedance from the inherent drain of the transistor to the load direction can be obtained.
  • the load impedance at the intrinsic drain of the transistor is obtained as:
  • ⁇ 0 is the fundamental wave frequency
  • ⁇ 0 is the fundamental wave frequency
  • n is an integer
  • Z 0 is the characteristic impedance of the microstrip
  • the unit is ⁇
  • ⁇ 0 is the fundamental wave angular frequency
  • the unit is rad/s
  • C ds is the parasitic capacitance
  • the unit is pF
  • L d is Parasitic inductance in nH
  • C p is the package parasitic capacitance in pF.
  • the fundamental impedance control unit (network) 14 may be composed of an L-type microstrip line structure, including a third microstrip line TL3 and a fourth microstrip line TL4;
  • One end of the third microstrip line TL3 is an input end of the fundamental impedance control unit 14, and the other end of the third microstrip line TL3 is an output end of the fundamental impedance control unit 14 connected to one end of the fourth microstrip line TL4.
  • the third microstrip line TL3 and the fourth microstrip line TL4 need to convert the output load impedance of the power amplifier into an optimal fundamental matching load matching impedance according to the basic L-branch matching method.
  • FIG. 3 shows a preferred structure of a class J power amplifying circuit based on parasitic compensation according to an embodiment of the present invention. For the convenience of description, only parts related to the present invention are shown.
  • the parasitic compensation-based class J power amplifying circuit may further include a circuit of the power amplifier input portion:
  • the input terminal of the input stabilization unit 15 is connected to one end of the capacitor C5, and the other end of the capacitor C5 is the input terminal of the class J power amplifier circuit based on the parasitic compensation, and the input is stable.
  • the output of unit 15 and the input of input fundamental matching unit 16 The terminal is connected, and the output of the input fundamental matching unit 16 is connected to the power signal input terminal (gate) of the transistor.
  • the input stabilization unit 15 includes:
  • One end of the resistor R2 is an input end of the input stabilizing unit 15 and is connected to one end of the capacitor C2 and one end of the resistor R1, the other end of the resistor R1 is grounded, and the other end of the resistor R2 is connected to the other end of the capacitor C2, and is an input stabilizing unit.
  • the input fundamental matching unit 16 includes:
  • the fifth microstrip line TL5, the sixth microstrip line TL6, and the seventh microstrip line TL7 form an L-type microstrip line structure, and one end of the sixth microstrip line TL6 and the seventh microstrip line TL7 are connected, and is an input fundamental wave.
  • the other end of the sixth microstrip line TL6 is simultaneously connected to one end of the fifth microstrip line TL5 and the DC bias line, and the other end of the fifth microstrip line TL5 is the input fundamental wave matching unit 16.
  • the other end of the DC bias line is the DC feed end of the input fundamental matching unit 16.
  • the DC bias line has an electrical length of ⁇ 0 /4, and the fifth microstrip line TL5, the sixth microstrip line TL6, and the seventh microstrip line TL7 are input load impedances of the power amplifier by using a basic L-branch matching method (source)
  • the load impedance is matched to the optimum fundamental wave matching load impedance (source input impedance) required for the fundamental wave matching of the transistor.
  • the parasitic compensation-based class J power amplifier circuit may further include:
  • the feed end of the gate DC bias unit 17 is connected to the DC feed end of the input fundamental matching unit 16, and the bias end of the gate DC bias unit 17 is connected to the gate bias voltage Vg;
  • the feed terminal of the drain DC bias unit 18 is connected to the DC feed terminal of the harmonic impedance control unit 13, and the bias terminal of the drain DC bias unit 18 is connected to the drain bias voltage Vd.
  • the gate DC bias unit 17 includes:
  • One end of the eighth microstrip line TL8 is a feed end of the gate DC bias unit 17 and one end of the capacitor C3. Connected, the other end of the eighth microstrip line TL8 is the bias end of the gate DC bias unit 17, and the other end of the capacitor C3 is grounded.
  • the drain DC bias unit 18 includes:
  • One end of the ninth microstrip line TL9 is a feed end of the drain DC bias unit 18 connected to one end of the capacitor C4, and the other end of the ninth microstrip line TL9 is a bias end of the drain DC bias unit 18, the capacitor The other end of C4 is grounded.
  • the eighth microstrip line TL8 has an electrical length of ⁇ 0 /4
  • the ninth microstrip line TL9 has an electrical length of ⁇ 0 /4.
  • the transistor can be selected from a 6W GaN HEMT transistor of the Cree CGH40006P or a 10W GaN HEMT of the CGH40010F. It can also be implemented with other types and types of transistors.
  • Another object of embodiments of the present invention is to provide a radio frequency power amplifier using the above-described parasitic compensation based class J power amplifying circuit.
  • the embodiment of the invention utilizes a harmonic parasitic compensation network to compensate and control the harmonic impedance of the power amplifier transistor to achieve precise control of the fundamental wave, the second harmonic and the third harmonic impedance, thereby reducing the energy loss of the transistor. Therefore, the purpose of improving the working efficiency and linearity of the power amplifier is achieved. Moreover, the design method independently designes the secondary and third harmonic impedances of the class J power amplifier, and the harmonic impedance control circuits realized do not affect each other, and do not require post-optimization debugging work, which greatly reduces the complexity of the design and reduces The tedious work of post debugging.

Abstract

本发明适用于射频通信领域,提供了一种基于寄生补偿的J类功率放大电路及射频功率放大器,该电路包括:晶体管及寄生电路;谐波寄生补偿单元,其输入端与晶体管的功率信号输出端连接;谐波阻抗控制单元,其输入端与谐波寄生补偿单元的输出端连接;基波阻抗控制单元,其输入端与谐波阻抗控制单元的输出端连接,其输出端通过电容C1与负载连接。本发明利用谐波寄生补偿网络对功率放大器晶体管的谐波阻抗进行补偿,实现对基波、二次谐波和三次谐波阻抗的精确控制,降低晶体管的能量损耗,提升功率放大器的效率和线性度,并且对二次和三次谐波阻抗独立设计,实现各次谐波阻抗控制电路互不影响,无需后期优化调试,降低了设计的复杂度。

Description

一种基于寄生补偿的J类功率放大电路及射频功率放大器 技术领域
本发明属于射频通信领域,尤其涉及一种基于寄生补偿的J类功率放大电路及射频功率放大器。
背景技术
如今,“绿色通信”的推广以及无线电频谱资源的日益匮乏,给传统无线通信系统带来了巨大的挑战,导致通信系统中效率、线性度的指标要求越来越严苛。随着通信系统指标要求的提升,通信系统中子模块的设计指标也越来越高,而无线通信系统中发射机末级的射频功率放大器正是影响整个通信系统效率和线性度的关键模块。与此同时,由于无线通信业的快速发展,低成本、超宽带的射频功率放大器也越来越受到消费者的广泛关注。因此,高效率、高线性度、宽频带的射频功率放大器成为了学术界和产业界的研究热点。
J类功率放大器是在2006年首次提出的一种新型的高效率、宽带功率放大器,它利用波形整形控制技术,可以在很宽的频带内实现同AB类或B类功放一样的效率和线性度,因为它不需要像F类或者E类功放一样采用诸如开路或者短路的谐振阻抗形式。J类功率放大器晶体管的输出负载阻抗在理想情况下,晶体管的漏极电压和电流波形均为半正弦波,且两者相位相差45°,且电压波形与电流波形重叠较少,以实现较高效率的功率传输,图1示出了J类功率放大电路中晶体管漏极输出端电流Ids和电压Vds的波形,为实现该理想波形,在设计J类功率放大电路时,基波阻抗必须满足实、虚部相等的最佳负载阻抗(Zfo=Ropt+j*Ropt),二次谐波阻抗仅包含虚部
Figure PCTCN2015095530-appb-000001
为基波最佳负载阻抗虚部的-3π/8倍,三次及三次以上的谐波阻抗短路(Z3fo=0),从而使 晶体管的功率消耗较低,由此可实现近78.5%的工作效率。同时,由于J类功率放大器偏置在深度AB类接近B类放大器的状态,其输出电流波形中不包含高次谐波分量,因此具有类似于AB类或B类的线性度指标。
但是,在实际电路设计中,当功率放大器的工作频率很高时,功放晶体管在功率信号输出端(漏极)和内部芯片的实际漏极之间存在许多寄生参量,例如:晶体管漏极和源极之间的寄生电容Cds、寄生电感Ld和封装寄生电容Cp等。由于这些寄生分量的存在,在晶体管功率信号输出端处所观察到的电压电流波形与实际内部晶体芯片漏极电压电流波形不完全一致。导致将理想的谐波控制电路直接加载在晶体管的功率信号输出端时,不能实现对漏极节点处J类功率放大器的基波、二次谐波、三次谐波阻抗所需条件。从而导致,晶体管的能量损耗增加,恶化放大器的工作效率和线性度指标。
技术问题
本发明实施例的目的在于提供一种基于寄生补偿的J类功率放大电路,旨在解决现有J类功率放大电路由于晶体管封装产生的寄生参量影响放大器的阻抗匹配,从而影响效率和线性度指标的问题。
技术解决方案
本发明实施例是这样实现的,一种基于寄生补偿的J类功率放大电路,所述电路包括:
晶体管及寄生电路;
谐波寄生补偿单元,用于对所述晶体管及寄生电路实现寄生补偿,所述谐波寄生补偿单元的输入端与所述晶体管的功率信号输出端连接,所述晶体管的功率信号输入端为所述基于寄生补偿的J类功率放大电路的输入端;
谐波阻抗控制单元,用于对所述功率放大电路的二次谐波阻抗和三次谐波阻抗实现独立控制,所述谐波阻抗控制单元的输入端与所述谐波寄生补偿单元 的输出端连接;
基波阻抗控制单元,用于对所述功率放大电路的基波阻抗实现独立控制,所述基波阻抗控制单元的输入端与所述谐波阻抗控制单元的输出端连接,所述基波阻抗控制单元的输出端与电容C1的一端连接,所述电容C1的另一端与负载连接。
本发明实施例的另一目的在于,提供一种采用上述基于寄生补偿的J类功率放大电路的射频功率放大器。
有益效果
本发明实施例利用谐波寄生补偿网络对功率放大器晶体管的谐波阻抗进行补偿和控制,来实现对基波、二次谐波和三次谐波阻抗的精确控制,从而使得晶体管的能量损耗降低,从而达到提升功率放大器的工作效率和线性度指标的目的。并且,该设计方法对J类功率放大器二次和三次谐波阻抗独立设计,实现的各次谐波阻抗控制电路不会相互影响,不需要后期优化调试工作,大大降低了设计的复杂度,减少了后期调试的繁冗工作。
附图说明
图1为理想情况下J类功率放大电路中晶体管漏极输出端电流与电压波形示意图图;
图2为本发明实施例提供的基于寄生补偿的J类功率放大电路的结构图;
图3为本发明实施例提供的基于寄生补偿的J类功率放大电路的优选结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明实施例利用谐波寄生补偿网络对功率放大器晶体管的谐波阻抗进行补偿和控制,实现对基波、二次谐波和三次谐波阻抗的精确控制,降低晶体管的能量损耗,提升功率放大器的效率和线性度,并且对二次和三次谐波阻抗独立设计,实现各次谐波阻抗控制电路互不影响,无需后期优化调试,降低了设计的复杂度,减少了后期调试的繁冗工作。
以下结合具体实施例对本发明的实现进行详细描述:
图2示出了本发明实施例提供的基于寄生补偿的J类功率放大电路的结构,为了便于说明,仅示出了与本发明相关的部分。
作为本发明一实施例,该基于寄生补偿的J类功率放大电路可以应用于任何射频功率放大器中,包括:
晶体管及寄生电路11;
谐波寄生补偿单元12,用于对晶体管及寄生电路实现寄生补偿,谐波寄生补偿单元12的输入端与晶体管的功率信号输出端连接,晶体管的功率信号输入端为基于寄生补偿的J类功率放大电路的输入端;
在本发明实施例中,对于N型MOS管,从功率信号流图的角度讲,N型MOS管将栅极输入的小功率信号放大为漏极输出的大功率信号,谐波寄生补偿单元12处理的信号,既包含交流电压信号也包含交流电流信号。
谐波阻抗控制单元13,用于对功率放大电路的二次谐波阻抗和三次谐波阻抗实现独立控制阻抗,谐波阻抗控制单元13的输入端与谐波寄生补偿单元12的输出端连接;
基波阻抗控制单元14,用于对功率放大电路的基波阻抗实现独立控制,基波阻抗控制单元14的输入端与谐波阻抗控制单元13的输出端连接,基波阻抗控制单元14的输出端与电容C1的一端连接,电容C1的另一端与负载连接。
作为本发明一实施例,谐波寄生补偿单元12可以由L型微带线结构构成。
在本发明实施例中,晶体管的寄生参量模型(寄生电路)包括:晶体管漏极和源极间的寄生电容Cds、寄生电感Ld和封装寄生电容Cp等。
作为本发明一优选实施例,谐波寄生补偿单元(网络)12位于晶体管的功率信号输出端和谐波控制单元之间,由特征阻抗为Z0的L型微带线中的第一传输线TL1和第二传输线TL2构成。其中第一传输线TL1的电长度为θ1,第二传输线TL2的电长度为θ2
对基于寄生补偿的J类功率放大电路,谐波寄生补偿网络的L型微带中的传输线TL1的电长度θ1和传输线TL2的电长度θ2利用以下公式求解得到:
Figure PCTCN2015095530-appb-000002
Figure PCTCN2015095530-appb-000003
上述公式中,n为整数,Z0为微带的特征阻抗,单位为Ω;ω0为基波角频率,单位为rad/s;Cds为寄生电容,单位为pF;Ld为寄生电感,单位为nH;Cp为封装寄生电容,单位为pF,Ropt最佳负载阻抗。
在实际设计时,第一传输线TL1的电长度为θ1和第二传输线TL2的电长度取大于零的最小值。
在本发明实施例中,通过合理的选择第一传输线TL1的电长度为θ1和第二传输线TL2的电长度θ2的具体值,实现对谐波阻抗的寄生补偿,同时,独立调整输出电路的基波阻抗控制单元可以单独控制基波阻抗匹配,从而分别满足J类功率放大器在晶体管固有漏极(或电流输入端)相应的基波、二次谐波和三次谐波阻抗要求。
作为本发明一实施例,谐波阻抗控制单元(网络)13可以由三段微带线结构构成。
参见图2,其中三段微带线特征阻抗为Z0,具体为:串联微带线、开路微 带线和短路微带线;
串联微带线的一端为谐波阻抗控制单元13的输入端,其电长度为λ0/4,串联微带线的另一端为谐波阻抗控制单元13的输出端同时与开路微带线和短路微带线的一端连接,开路微带线的电长度为λ0/12,所述短路微带线的另一端接地,短路微带线的电长度为λ0/4,该结构中串联微带线、开路微带线和短路微带线的特征阻抗均为Z0,对于固定工作频率,该谐波控制单元可同时实现输入端口处的二次谐波短路、三次谐波开路。其中,λ0为基波频率的波长。
在图2中,S表示谐波阻抗短路,O表示谐波阻抗开路。也就是说,1S表示基波(一次波)短路,2S表示二次谐波短路,3S表示三次谐波短路,3O表示三次谐波开路,1O表示基波(一次波)开路。
二次谐波和三次谐波阻抗控制的具体原理阐述如下:
根据谐波控制电路输入端实现的二次谐波短路、三次谐波开路的阻抗条件,能够得到从晶体管固有漏极处向负载方向的等效阻抗。对二次谐波,得到晶体管固有漏极处的负载阻抗为:
Figure PCTCN2015095530-appb-000004
其中,ZTL=jZ0tan(2θ1),ω0是基波角频率,晶体管漏极和源极之间的寄生电容Cds、寄生电感Ld和封装寄生电容Cp
同样地,对三次谐波,由对应的等效电路,得到晶体管固有漏极处的负载阻抗为:
Figure PCTCN2015095530-appb-000005
其中,Z′TL=-jZ0/tan(3θ1+3θ2),ω0是基波角频率,晶体管漏极和源极之间的寄生电容Cds、寄生电感Ld和封装寄生电容Cp
为了满足基于寄生补偿的J类功率放大电路的谐波阻抗条件:
Figure PCTCN2015095530-appb-000006
对固定的晶体管漏极和源极之间的寄生电容Cds、寄生电感Ld和封装寄生电容Cp,联立方程组解得:
Figure PCTCN2015095530-appb-000007
Figure PCTCN2015095530-appb-000008
上述四个公式中,n为整数,Z0为微带的特征阻抗,单位为Ω;ω0为基波角频率,单位为rad/s;Cds为寄生电容,单位为pF;Ld为寄生电感,单位为nH;Cp为封装寄生电容,单位为pF。
作为本发明一实施例,基波阻抗控制单元(网络)14可以由L型微带线结构构成,包括第三微带线TL3和第四微带线TL4;
第三微带线TL3的一端为基波阻抗控制单元14的输入端,第三微带线TL3的另一端为基波阻抗控制单元14的输出端与第四微带线TL4的一端连接。
第三微带线TL3、第四微带线TL4需要根据基本L枝节匹配方法将功率放大器的输出负载阻抗变换为最佳基波匹配负载匹配阻抗。
图3示出了本发明实施例提供的基于寄生补偿的J类功率放大电路的优选结构,为了便于说明,仅示出了与本发明相关的部分。
作为本发明一优选实施例,该基于寄生补偿的J类功率放大电路还可以包括功率放大器输入部分的电路:
输入稳定单元(网络)15,输入基波匹配单元(网络)16以及电容C5;
在功率放大电路输入端到晶体管栅极输入端的方向上,输入稳定单元15的输入端与电容C5的一端连接,电容C5的另一端为基于寄生补偿的J类功率放大电路的输入端,输入稳定单元15的输出端与输入基波匹配单元16的输入 端连接,输入基波匹配单元16的输出端与晶体管的功率信号输入端(栅极)连接。
作为本发明一实施例,输入稳定单元15包括:
电阻R1、电阻R2、电容C2;
电阻R2的一端为输入稳定单元15的输入端同时与电容C2的一端和电阻R1的一端连接,电阻R1的另一端接地,电阻R2的另一端与电容C2的另一端连接,同时为输入稳定单元15的输出端。
输入基波匹配单元16包括:
第五微带线TL5、第六微带线TL6、第七微带线TL7和直流偏置线;
第五微带线TL5、第六微带线TL6、第七微带线TL7构成L型微带线结构,第六微带线TL6和第七微带线TL7的一端连接,同时为输入基波匹配单元16的输入端,第六微带线TL6的另一端同时与第五微带线TL5和直流偏置线的一端连接,第五微带线TL5的另一端为输入基波匹配单元16的输出端,直流偏置线的另一端为输入基波匹配单元16的直流馈电端。
该直流偏置线的电长度为λ0/4,第五微带线TL5、第六微带线TL6、第七微带线TL7是利用基本L枝节匹配方法将功率放大器的输入负载阻抗(源负载阻抗)匹配到晶体管所需的最佳基波匹配负载阻抗(源输入阻抗)基波匹配。
作为本发明一实施例,该基于寄生补偿的J类功率放大电路还可以包括:
栅极直流偏置单元(网络)17和漏极直流偏置单元(网络)18;
栅极直流偏置单元17的馈电端与输入基波匹配单元16的直流馈电端连接,栅极直流偏置单元17的偏置端与栅极偏置电压Vg相连;
漏极直流偏置单元18的馈电端与谐波阻抗控制单元13的直流馈电端连接,漏极直流偏置单元18的偏置端与漏极偏置电压Vd相连。
作为本发明一优选实施例,该栅极直流偏置单元17包括:
第八微带线TL8和电容C3;
第八微带线TL8的一端为栅极直流偏置单元17的馈电端与电容C3的一端 连接,第八微带线TL8的另一端为栅极直流偏置单元17的偏置端,电容C3的另一端接地。
该漏极直流偏置单元18包括:
第九微带线TL9和电容C4;
第九微带线TL9的一端为漏极直流偏置单元18的馈电端与电容C4的一端连接,第九微带线TL9的另一端为漏极直流偏置单元18的偏置端,电容C4的另一端接地。
作为本发明一实施例,第八微带线TL8的电长度为λ0/4,第九微带线TL9的电长度为λ0/4。
在实际设计中,晶体管可选用型号为Cree CGH40006P的6W GaN HEMT晶体管或者CGH40010F的10W GaN HEMT,也可以采用其他类型和型号的晶体管实现。
本发明实施例的另一目的在于,提供一种采用上述基于寄生补偿的J类功率放大电路的射频功率放大器。
本发明实施例利用谐波寄生补偿网络对功率放大器晶体管的谐波阻抗进行补偿和控制,来实现对基波、二次谐波和三次谐波阻抗的精确控制,从而使得晶体管的能量损耗降低,从而达到提升功率放大器的工作效率和线性度指标的目的。并且,该设计方法对J类功率放大器二次和三次谐波阻抗独立设计,实现的各次谐波阻抗控制电路不会相互影响,不需要后期优化调试工作,大大降低了设计的复杂度,减少了后期调试的繁冗工作。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于寄生补偿的J类功率放大电路,其特征在于,所述功率放大电路包括:
    晶体管及寄生电路;
    谐波寄生补偿单元,用于对所述晶体管及寄生电路实现寄生补偿,所述谐波寄生补偿单元的输入端与所述晶体管的功率信号输出端连接,所述晶体管的功率信号输入端为所述基于寄生补偿的J类功率放大电路的输入端;
    谐波阻抗控制单元,用于对所述功率放大电路的二次谐波阻抗和三次谐波阻抗实现独立控制,所述谐波阻抗控制单元的输入端与所述谐波寄生补偿单元的输出端连接;
    基波阻抗控制单元,用于对所述功率放大电路的基波阻抗实现独立控制,所述基波阻抗控制单元的输入端与所述谐波阻抗控制单元的输出端连接,所述基波阻抗控制单元的输出端与电容C1的一端连接,所述电容C1的另一端与负载连接。
  2. 如权利要求1所述的功率放大电路,其特征在于,所述谐波寄生补偿单元为L型微带线结构。
  3. 如权利要求2所述的功率放大电路,其特征在于,所述谐波寄生补偿单元包括第一传输线和第二传输线,所述第一传输线的电长度(θ1)和所述第二传输线的电长度(θ2)分别为:
    Figure PCTCN2015095530-appb-100001
    Figure PCTCN2015095530-appb-100002
    其中,n为整数,Z0为微带的特征阻抗,ω0为基波角频率,Cds为寄生电容,Ld为寄生电感,Cp为封装寄生电容,Ropt为最佳负载阻抗。
  4. 如权利要求1所述的功率放大电路,其特征在于,所述谐波阻抗控制单 元为三段微带线结构。
  5. 如权利要求4所述的功率放大电路,其特征在于,所述谐波阻抗控制单元包括:
    串联微带线、开路微带线和短路微带线;
    所述串联微带线的一端为所述谐波阻抗控制单元的输入端,所述串联微带线的另一端为所述谐波阻抗控制单元的输出端同时与所述开路微带线和所述短路微带线的一端连接,所述短路微带线的另一端接地;
    所述串联微带线、所述开路微带线和所述短路微带线的特征阻抗相同。
  6. 如权利要求5所述的功率放大电路,其特征在于,所述串联微带线的电长度为λ0/4,所述开路微带线的电长度为λ0/12,短路微带线的电长度为λ0/4,其中,λ0为基波频率的波长。
  7. 如权利要求1所述的功率放大电路,其特征在于,所述基波阻抗控制单元为L型微带线结构,包括:
    第三微带线和第四微带线;
    所述第三微带线的一端为所述基波阻抗控制单元的输入端,所述第三微带线的另一端为所述基波阻抗控制单元的输出端与所述第四微带线的一端连接。
  8. 如权利要求1所述的功率放大电路,其特征在于,所述功率放大电路还包括:
    输入稳定单元、输入基波匹配单元以及电容C5;
    所述输入稳定单元的输入端与所述电容C5的一端连接,所述电容C5的另一端为所述基于寄生补偿的J类功率放大电路的输入端,所述稳定单元的输出端与所述输入基波匹配单元的输入端连接,所述输入基波匹配单元的输出端与所述晶体管的功率信号输入端连接。
  9. 如权利要求1所述的功率放大电路,其特征在于,所述功率放大电路还包括:
    栅极直流偏置单元和漏极直流偏置单元;
    所述栅极直流偏置单元的馈电端与所述输入基波匹配单元的直流馈电端连接,所述栅极直流偏置单元的偏置端与栅极偏置电压相连;
    所述漏极直流偏置单元的馈电端与所述谐波阻抗控制单元的直流馈电端连接,所述漏极直流偏置单元的偏置端与漏极偏置电压相连。
  10. 一种射频功率放大器,其特征在于,所述射频功率放大器包括如权利要求1至9任一项所述的基于寄生补偿的J类功率放大电路。
PCT/CN2015/095530 2015-06-17 2015-11-25 一种基于寄生补偿的j类功率放大电路及射频功率放大器 WO2016201894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510337601.6 2015-06-17
CN201510337601.6A CN104953960A (zh) 2015-06-17 2015-06-17 一种基于寄生补偿的j类功率放大电路及射频功率放大器

Publications (1)

Publication Number Publication Date
WO2016201894A1 true WO2016201894A1 (zh) 2016-12-22

Family

ID=54168365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095530 WO2016201894A1 (zh) 2015-06-17 2015-11-25 一种基于寄生补偿的j类功率放大电路及射频功率放大器

Country Status (2)

Country Link
CN (1) CN104953960A (zh)
WO (1) WO2016201894A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017849A (zh) * 2017-03-07 2017-08-04 京信通信技术(广州)有限公司 一种功率放大管带宽扩展方法和装置
CN108988792A (zh) * 2017-06-02 2018-12-11 中兴通讯股份有限公司 一种放大器电路
CN109245735A (zh) * 2018-10-18 2019-01-18 成都嘉纳海威科技有限责任公司 一种基于二次谐波注入技术的高效率j类堆叠功率放大器
CN109525208A (zh) * 2018-10-18 2019-03-26 天津大学 一种基于谐波控制的新型双频带高效率功率放大器
CN109639243A (zh) * 2019-01-10 2019-04-16 杭州电子科技大学 一种基于耦合环路谐振网络的f类功率放大器
CN111600554A (zh) * 2020-06-10 2020-08-28 河源广工大协同创新研究院 一种带宽可调式f类功率放大器
CN111711424A (zh) * 2020-05-28 2020-09-25 上海萍生微电子科技有限公司 一种cmos功率放大器及其射频模块
CN112491372A (zh) * 2020-11-18 2021-03-12 西安交通大学 一种基于人工非线性匹配网络的射频功率放大电路
CN112838831A (zh) * 2021-02-19 2021-05-25 大连海事大学 一种新型后匹配结构Doherty功率放大器
CN112928997A (zh) * 2021-01-29 2021-06-08 重庆邮电大学 基于可调有源带通滤波器的GaN后失真高线性度功率放大器
CN113114132A (zh) * 2021-03-12 2021-07-13 华南理工大学 一种适用于5g基站的功率放大器及通信设备
CN113746433A (zh) * 2021-07-21 2021-12-03 中山市华南理工大学现代产业技术研究院 高效率宽频多模式Doherty功率放大器及构建方法
CN113746435A (zh) * 2021-09-01 2021-12-03 北京顿思集成电路设计有限责任公司 Doherty功率放大器及包括其的基站和通信系统
CN114050837A (zh) * 2022-01-17 2022-02-15 唯捷创芯(天津)电子技术股份有限公司 自动控制谐波阻抗的射频模块、电子设备和阻抗调节方法
CN114866037A (zh) * 2021-12-03 2022-08-05 杭州地芯科技有限公司 一种宽带功率放大器装置和发射机

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953960A (zh) * 2015-06-17 2015-09-30 深圳市华讯方舟微电子科技有限公司 一种基于寄生补偿的j类功率放大电路及射频功率放大器
CN105262446A (zh) * 2015-10-23 2016-01-20 锐迪科创微电子(北京)有限公司 一种多级射频功率放大电路
CN105897194B (zh) * 2016-05-11 2019-03-05 杭州电子科技大学 一种连续ef类高效率宽带功率放大器及其实现方法
CN107453713B (zh) * 2017-07-12 2021-01-26 杭州电子科技大学 一种改善栅源寄生效应的功率放大器
CN107659277B (zh) * 2017-09-28 2021-02-26 天津大学 一种用于GaN功率器件的双频宽带功率放大器匹配电路
CN108574465A (zh) * 2018-06-27 2018-09-25 成都嘉纳海威科技有限责任公司 一种基于左右手传输线的高效率f类堆叠功率放大器
CN108768321A (zh) * 2018-06-27 2018-11-06 成都嘉纳海威科技有限责任公司 一种基于精确谐波控制的高效率ef类堆叠功率放大器
CN110048682A (zh) * 2019-04-17 2019-07-23 杭州电子科技大学富阳电子信息研究院有限公司 一种基于多级二次谐波控制的宽带连续型功率放大器及设计方法
CN111371420B (zh) * 2019-12-10 2023-06-09 南京理工大学 一种siw滤波集成的f类功率放大器
CN111181506A (zh) * 2020-01-20 2020-05-19 电子科技大学 一种具有新型输出匹配方法的宽带高效j类功率放大器
CN113395043B (zh) * 2021-05-25 2024-03-29 杭州电子科技大学 一种基于精确谐波控制的高效率双频功率放大器及其设计方法
CN116317987B (zh) * 2023-05-11 2023-09-08 南方科技大学 毫米波氮化镓功放输出匹配网络及其设计方法和芯片电路
CN117240235B (zh) * 2023-11-16 2024-03-12 南京诺源医疗器械有限公司 功率放大电路和电子系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1959563A2 (en) * 2007-02-14 2008-08-20 Postech Academy-Industry Foundation Doherty amplifying apparatus using a harmonic control circuit
JP2009094805A (ja) * 2007-10-09 2009-04-30 Sumitomo Electric Ind Ltd 増幅器
US20150008980A1 (en) * 2013-07-05 2015-01-08 Samsung Electronics Co., Ltd. Apparatus and method for matching harmonics
CN104300925A (zh) * 2014-10-24 2015-01-21 天津大学 一种高效率f类/逆f类功率放大器
CN104953960A (zh) * 2015-06-17 2015-09-30 深圳市华讯方舟微电子科技有限公司 一种基于寄生补偿的j类功率放大电路及射频功率放大器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474567B1 (ko) * 2002-12-18 2005-03-10 한국전자통신연구원 초고주파 전력 증폭기
CN102291092B (zh) * 2011-06-14 2014-04-30 中国科学技术大学 一种逆f类功率放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1959563A2 (en) * 2007-02-14 2008-08-20 Postech Academy-Industry Foundation Doherty amplifying apparatus using a harmonic control circuit
JP2009094805A (ja) * 2007-10-09 2009-04-30 Sumitomo Electric Ind Ltd 増幅器
US20150008980A1 (en) * 2013-07-05 2015-01-08 Samsung Electronics Co., Ltd. Apparatus and method for matching harmonics
CN104300925A (zh) * 2014-10-24 2015-01-21 天津大学 一种高效率f类/逆f类功率放大器
CN104953960A (zh) * 2015-06-17 2015-09-30 深圳市华讯方舟微电子科技有限公司 一种基于寄生补偿的j类功率放大电路及射频功率放大器

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017849A (zh) * 2017-03-07 2017-08-04 京信通信技术(广州)有限公司 一种功率放大管带宽扩展方法和装置
CN108988792A (zh) * 2017-06-02 2018-12-11 中兴通讯股份有限公司 一种放大器电路
CN109245735A (zh) * 2018-10-18 2019-01-18 成都嘉纳海威科技有限责任公司 一种基于二次谐波注入技术的高效率j类堆叠功率放大器
CN109525208A (zh) * 2018-10-18 2019-03-26 天津大学 一种基于谐波控制的新型双频带高效率功率放大器
CN109245735B (zh) * 2018-10-18 2023-10-27 成都嘉纳海威科技有限责任公司 一种基于二次谐波注入技术的高效率j类堆叠功率放大器
CN109639243A (zh) * 2019-01-10 2019-04-16 杭州电子科技大学 一种基于耦合环路谐振网络的f类功率放大器
CN111711424A (zh) * 2020-05-28 2020-09-25 上海萍生微电子科技有限公司 一种cmos功率放大器及其射频模块
CN111711424B (zh) * 2020-05-28 2024-01-30 上海萍生微电子科技有限公司 一种cmos功率放大器及其射频模块
CN111600554A (zh) * 2020-06-10 2020-08-28 河源广工大协同创新研究院 一种带宽可调式f类功率放大器
CN112491372B (zh) * 2020-11-18 2023-08-15 西安交通大学 一种基于人工非线性匹配网络的射频功率放大电路
CN112491372A (zh) * 2020-11-18 2021-03-12 西安交通大学 一种基于人工非线性匹配网络的射频功率放大电路
CN112928997A (zh) * 2021-01-29 2021-06-08 重庆邮电大学 基于可调有源带通滤波器的GaN后失真高线性度功率放大器
CN112838831A (zh) * 2021-02-19 2021-05-25 大连海事大学 一种新型后匹配结构Doherty功率放大器
CN112838831B (zh) * 2021-02-19 2024-03-26 大连海事大学 一种新型后匹配结构Doherty功率放大器
CN113114132A (zh) * 2021-03-12 2021-07-13 华南理工大学 一种适用于5g基站的功率放大器及通信设备
CN113746433A (zh) * 2021-07-21 2021-12-03 中山市华南理工大学现代产业技术研究院 高效率宽频多模式Doherty功率放大器及构建方法
CN113746433B (zh) * 2021-07-21 2023-12-08 中山市华南理工大学现代产业技术研究院 高效率宽频多模式Doherty功率放大器及构建方法
CN113746435A (zh) * 2021-09-01 2021-12-03 北京顿思集成电路设计有限责任公司 Doherty功率放大器及包括其的基站和通信系统
CN114866037A (zh) * 2021-12-03 2022-08-05 杭州地芯科技有限公司 一种宽带功率放大器装置和发射机
CN114050837A (zh) * 2022-01-17 2022-02-15 唯捷创芯(天津)电子技术股份有限公司 自动控制谐波阻抗的射频模块、电子设备和阻抗调节方法

Also Published As

Publication number Publication date
CN104953960A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2016201894A1 (zh) 一种基于寄生补偿的j类功率放大电路及射频功率放大器
WO2016201895A1 (zh) 一种高阶f类功率放大电路及射频功率放大器
WO2016201897A1 (zh) 一种双级逆d类功率放大电路及射频功率放大器
CN104300925B (zh) 一种高效率f类/逆f类功率放大器
CN104518742B (zh) 一种高效率双频带f类功率放大器
Ding et al. High-efficiency concurrent dual-band class-F and inverse class-F power amplifier
CN107483025B (zh) 一种基于新型谐波控制网络的f类功率放大器
CN204119176U (zh) 一种高效率f类/逆f类功率放大器
CN204794917U (zh) 一种五阶f类功率放大电路及开关功率放大器
CN204794915U (zh) 基于谐波整形的逆d类功率放大电路及射频功率放大器
WO2018035689A1 (zh) 一种高效率高宽带的谐波功率放大电路及射频功率放大器
CN106487338B (zh) 一种考虑密勒效应的分布式三堆叠结构的功率放大器
CN110708701B (zh) 一种宽带射频功放设计方法及5g低频段射频功放
US20190131940A1 (en) Inverse class-f power amplifier
CN204794910U (zh) 一种基于寄生补偿的j类功率放大电路及宽带功率放大器
Komatsuzaki et al. 3.0–3.6 GHz wideband, over 46% average efficiency GaN Doherty power amplifier with frequency dependency compensating circuits
CN109546977A (zh) 一种双频带高效逆f类功率放大器
Mortazavi et al. A 38 GHz inverse class-F power amplifier with 38.5% peak PAE, 16.5 dB gain, and 50 mW P sat in 0.13-µm SiGe BiCMOS
Sardin et al. Decade bandwidth high-efficiency GaN VHF/UHF power amplifier
JP2695395B2 (ja) 高周波電力増幅器
JP2009130472A (ja) 逆f級増幅回路
CN109936338B (zh) 一种高效率五阶逆f类功率放大器
CN103840772A (zh) 一种使用CRLH-TL补偿线提高Doherty功放线性的电路
WO2021208391A1 (zh) 一种功率放大器的电路
JP2009094805A (ja) 増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895461

Country of ref document: EP

Kind code of ref document: A1