WO2016197493A1 - 偏光片及其制造方法、显示装置 - Google Patents

偏光片及其制造方法、显示装置 Download PDF

Info

Publication number
WO2016197493A1
WO2016197493A1 PCT/CN2015/091654 CN2015091654W WO2016197493A1 WO 2016197493 A1 WO2016197493 A1 WO 2016197493A1 CN 2015091654 W CN2015091654 W CN 2015091654W WO 2016197493 A1 WO2016197493 A1 WO 2016197493A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid metal
alignment layer
trench
polarizer
channel
Prior art date
Application number
PCT/CN2015/091654
Other languages
English (en)
French (fr)
Inventor
杨久霞
冯鸿博
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/104,091 priority Critical patent/US10451785B2/en
Publication of WO2016197493A1 publication Critical patent/WO2016197493A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/06Special casting characterised by the nature of the product by its physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • Embodiments of the present invention relate to a polarizer, a method of manufacturing the same, and a display device.
  • LCDs liquid crystal displays
  • the polarizer in the LCD generally includes an upper polarizer disposed on the backlight side of the array substrate, a lower polarizer disposed on the light exit side of the color filter substrate, and a backlight disposed on the upper polarizer away from the array substrate.
  • One side When the light emitted by the backlight passes through the upper polarizer, the light whose vibration direction is the same as the polarization direction of the upper polarizer passes through the upper polarizer, and then sequentially passes through the array substrate, the liquid crystal layer and the color filter substrate to reach the lower polarizer.
  • the conventional polarizer is usually a wire grid polarizer, and the wire grid polarizer is formed by forming a plurality of parallel metal lines on the substrate by an imprint process, and the polarization direction of the wire grid polarizer is perpendicular to the length direction of the metal line.
  • Embodiments of the present invention provide a polarizer, a method of manufacturing the same, and a display device.
  • the technical solution is as follows:
  • a method of manufacturing a polarizer comprising:
  • the polarizer is peeled off from the carrier substrate.
  • a capping layer is formed on a surface of the alignment layer on which the trench is formed, and an opening is formed between the alignment layer and the cap layer.
  • Liquid metal is poured into the channel.
  • the injecting liquid metal into the channel comprises:
  • the evacuated substrate including the alignment layer and the cover layer is placed in a liquid metal bath containing liquid metal such that liquid metal in the liquid metal bath is filled in the channel.
  • the injecting liquid metal into the channel comprises:
  • the number of channels is N, the N is a positive integer greater than or equal to 2, and the N channels are connected.
  • the injecting liquid metal into the channel comprises:
  • Liquid metal is poured into the channel through the first opening by an instillation (ODF) process.
  • ODF instillation
  • the number of channels is N, the N is a positive integer greater than or equal to 2, and the N channels are connected.
  • the injecting liquid metal into the channel comprises:
  • the method further includes:
  • a protective layer is formed on the cover layer.
  • an alignment layer is formed on the carrier substrate such that a trench is formed on the alignment layer prior to,
  • ITO electrode Forming an indium tin oxide ITO electrode on the carrier substrate, the ITO electrode comprising a positive electrode and a negative electrode;
  • Forming an alignment layer on the carrier substrate, and forming a trench on the alignment layer comprising:
  • the negative electrode is on a corresponding region of the alignment layer.
  • a protective layer is formed on a face on which the alignment layer is not formed with the trench.
  • the alignment layer is formed of an inorganic material, and the alignment layer is formed on the carrier substrate, and the trench is formed on the alignment layer, including:
  • the cover layer is a Mylar PET film.
  • the number of the grooves is N, and the N is a positive integer greater than or equal to 2;
  • N of the grooves are arranged in an array on the alignment layer.
  • the liquid metal is an alloy formed using at least two of bismuth, gallium, antimony, potassium, sodium, indium, lithium, tin, antimony, zinc, antimony, magnesium, and aluminum.
  • the display device further includes: a backlight
  • the backlight is disposed on a side of the upper polarizer away from the array substrate.
  • FIG. 4 is a schematic structural diagram of another polarizer according to an embodiment of the present invention.
  • FIG. 6-1 is a plan view showing another embodiment of the embodiment shown in FIG. 6-1 after forming an alignment layer on a substrate on which an ITO electrode is formed;
  • 6-8 is a schematic structural view showing a surface on which a trench is formed on an alignment layer provided in the embodiment shown in FIG. 6-1;
  • 6-10 is a flow chart of a method for injecting liquid metal into a channel provided by the embodiment shown in FIG. 6-1;
  • FIG. 7-5 is a schematic structural view of the embodiment shown in FIG. 7-1 after forming a cover layer on a surface on which a trench is formed on an alignment layer;
  • Liquid metal refers to an amorphous metal that can be thought of as a mixture of positive ion fluids and free electrons.
  • Liquid metal is usually present in liquid state at room temperature (20 to 25 degrees Celsius). When the ambient temperature is below the preset temperature of room temperature (for example, below 20 degrees Celsius), liquid metal can exist in a solid state. At room temperature, liquid metal It has the ability to transform universally between different forms and modes of motion. For example, a liquid metal structure of a liquid metal immersed in water exhibits large-scale deformation capability, spin, directional motion, and self-rotation under a certain voltage, and liquid metal structures can be fused, fractured, refused, etc., This property of liquid metal can be utilized to form a liquid metal pattern or the like.
  • the width of the channel is only about one-third to one-fourth of the wavelength of the incident light, and the movement of the free electron is severely hindered, and it cannot effectively interact with the incident light, and does not generate reflection and refraction, thereby transmitting.
  • the polarization direction of the polarizer is realized by using liquid metal, so that the polarization direction of the polarizer is easy to control, and the yield of the polarizer is better. high.
  • the short-axis direction of the liquid metal 0111 is the polarization direction of the polarizer, that is, the direction perpendicular to the longitudinal direction of the trench is the polarization direction of the polarizer.
  • each of the liquid metal structures 0111 may be formed of a plurality of liquid metal molecules, but the embodiment of the present invention is not limited thereto.
  • FIG. 4 is a schematic structural diagram of another polarizer 01 according to an embodiment of the present invention.
  • the polarizer 01 includes:
  • the alignment layer 010 has a trench formed on the alignment layer 010, and a liquid metal 011 is formed in the trench.
  • the liquid metal includes a plurality of liquid metal structures, each of which has a rod-like structure and a long-axis direction of each liquid metal structure. Parallel to the length direction of the groove.
  • the trenches shown in FIG. 4 are merely schematic, and their sizes and ratios do not represent true sizes and proportions.
  • the structure of the trenches may be microstructures, and the width of the trenches may be on the order of nanometers.
  • a cover layer 012 is formed on the surface on which the alignment layer 010 is formed with a groove; and a protective layer 013 is formed on the surface on which the cover layer 012 and the alignment layer 010 are not formed with grooves.
  • the alignment layer 010 may be formed using a polyimide (PI) material or an inorganic material.
  • PI polyimide
  • the formation process may be: sinking on the carrier substrate by coating, magnetron sputtering, thermal evaporation or plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • a PI material having a certain thickness is laminated, and the PI material is cured to obtain an alignment layer 010, and then the alignment layer 010 is oriented by a rubbing process or a photo-alignment process to form a trench on the alignment layer 010.
  • the formation process may be: depositing a layer of inorganic material having a certain thickness on the carrier substrate by coating, magnetron sputtering, thermal evaporation or PECVD, and performing inorganic material on the inorganic material.
  • the alignment layer 010 is cured, and then the alignment layer 010 is oriented by a micromachining process to form a trench on the alignment layer 010.
  • the micromachining process is, for example, a nanoimprint process, a microelectromechanical system (MEMS), or the like.
  • MEMS microelectromechanical system
  • the cover layer 012 is a polyester film (PET) film, which can be pasted on the surface of the alignment layer 010 formed with a groove by a patch process.
  • PET polyester film
  • the embodiment of the present invention is a cover layer 012.
  • the PET film is exemplified, but the embodiment of the present invention is not limited thereto.
  • the cover layer 012 may be formed of other materials, and is not limited to the PET film.
  • the free electrons in the liquid metal located in the trench are directionally moved along the length direction of the trench by the action of the external electric field, due to the groove
  • the length is long compared to the wavelength of the incident light, which corresponds to the incident light acting on the surface of the metal film, and the polarized light in the longitudinal direction of the groove is reflected.
  • the polarization direction of the incident light is perpendicular to the longitudinal direction of the groove,
  • the width of the track is only about one-third to one-fourth of the wavelength of the incident light. The motion of the free electron is severely hindered, and it cannot effectively interact with the incident light, and does not generate reflection and refraction, thereby transmitting.
  • the polarization direction of the polarizer is realized by the liquid metal, so that the polarization direction of the polarizer is easy to control, and the yield of the polarizer is high.
  • FIG. 5 is a flowchart of a method for manufacturing a polarizer according to an embodiment of the present invention.
  • the manufacturing method of the polarizer can be used to manufacture the polarizer 01 shown in FIG. 1 or FIG. 4.
  • the manufacturing method of the polarizer can include the following steps:
  • Step 501 forming an alignment layer on the carrier substrate, and forming a trench on the alignment layer.
  • Step 502 forming a liquid metal into the trench, the liquid metal comprising a plurality of liquid metal structures.
  • Step 503 applying an electric field parallel to the longitudinal direction of the groove to the liquid metal, and stretching each liquid metal structure along the length direction of the groove to form a rod-like structure, and the long axis direction of each liquid metal structure and the length of the groove The directions are parallel.
  • Step 504 curing the liquid metal to obtain a polarizer.
  • Step 505 peeling off the polarizer from the carrier substrate.
  • the free electrons in the liquid metal located in the trench are directionally moved along the length direction of the trench by the action of the external electric field, due to the groove
  • the length is long compared to the wavelength of the incident light, which corresponds to the incident light acting on the surface of the metal film, and the polarized light in the longitudinal direction of the groove is reflected.
  • the polarization direction of the incident light is perpendicular to the longitudinal direction of the groove,
  • the width of the track is only about one-third to one-fourth of the wavelength of the incident light. The motion of the free electron is severely hindered, and it cannot effectively interact with the incident light, and does not generate reflection and refraction, thereby transmitting.
  • a polarizer in the method for manufacturing a polarizer according to an embodiment of the present invention, by forming an alignment layer on a carrier substrate, a trench is formed on the alignment layer, a liquid metal is formed in the trench, and a liquid metal is applied parallel to the length direction of the trench.
  • the electric field causes the liquid metal structure to be stretched along the length of the groove to form a rod-like structure, and the long axis direction of the liquid metal structure is parallel to the longitudinal direction of the groove, and then the liquid metal is solidified to obtain a polarizer, and the polarizer is removed from the carrier substrate.
  • the upper axis direction of the liquid metal structure is parallel to the longitudinal direction of the groove, and the short axis direction of the liquid metal structure is the polarization direction of the polarizer.
  • the polarization direction of the polarizer is achieved by using the liquid metal, so that the polarizer The polarization direction is easy to control, and the yield of the polarizer is high.
  • a cover layer is formed on the surface of the alignment layer on which the trench is formed, so that a channel opening at both ends is formed between the alignment layer and the cover layer.
  • Step 502 can include:
  • the liquid metal is poured into the channel.
  • step 502 can include:
  • the evacuated substrate including the alignment layer and the cover layer is placed in a liquid metal bath containing liquid metal, and the liquid metal in the liquid metal bath is filled in the channel.
  • step 502 includes:
  • the liquid metal is poured into the channel through an opening at the other end of the channel by an instillation (ODF) process.
  • ODF instillation
  • the number of channels is N, N is a positive integer greater than or equal to 2, and N channels are connected.
  • Step 502 can also include:
  • an opening other than the first opening, and the first opening is an opening of any of the N channels;
  • the liquid metal is poured into the channel through the first opening by an instillation (ODF) process.
  • ODF instillation
  • the number of channels is N, N is a positive integer greater than or equal to 2, and N channels are connected.
  • Step 502 also includes:
  • an opening other than the first opening, and the first opening is an opening of any of the N channels;
  • the evacuated substrate including the alignment layer and the cover layer is placed in a liquid metal bath containing liquid metal such that liquid metal in the liquid metal bath enters the channel from the first opening and is filled in the channel.
  • a protective layer is formed on the cover layer.
  • step 501 After step 501,
  • An indium tin oxide ITO electrode is formed on the carrier substrate, and the ITO electrode includes a positive electrode and a negative electrode.
  • Step 501 includes:
  • An alignment layer is formed on the substrate on which the ITO electrode is formed, and a trench is formed on the alignment layer, and one end of the trench is located on the corresponding region of the positive electrode on the alignment layer, and the other end is located on the corresponding region of the negative electrode on the alignment layer.
  • step 502 includes:
  • the liquid metal is transferred into the grooves of the alignment layer by using a transfer plate adsorbed with a liquid metal.
  • an indium tin oxide ITO electrode is formed on the surface on which the alignment layer is formed with a trench, a liquid metal is formed in the trench, the ITO electrode includes a positive electrode and a negative electrode, and the positive electrode corresponds to one end of the trench, and the negative electrode Corresponds to the other end of the groove.
  • a protective layer is formed on the cover layer.
  • a protective layer is formed on the surface of the alignment layer where the trench is not formed.
  • the alignment layer is formed using a polyimide (PI) material
  • step 501 includes:
  • a trench is formed on the alignment layer by a rubbing process or a photo-alignment process.
  • the alignment layer is formed of an inorganic material, and step 501 includes:
  • a trench is formed on the alignment layer using a micromachining process.
  • the cover layer is a polyester film (PET) film.
  • PET polyester film
  • the number of trenches is N, and N is a positive integer greater than or equal to 2;
  • N grooves are arranged in an array on the alignment layer.
  • the liquid metal is an alloy formed using at least two of lanthanum, gallium, lanthanum, potassium, sodium, indium, lithium, tin, antimony, zinc, antimony, magnesium, and aluminum.
  • the free electrons in the liquid metal located in the trench are directionally moved along the length direction of the trench by the action of the external electric field, due to the groove
  • the length is long compared to the wavelength of the incident light, which corresponds to the incident light acting on the surface of the metal film, and the polarized light in the longitudinal direction of the groove is reflected.
  • the polarization direction of the incident light is perpendicular to the longitudinal direction of the groove,
  • the width of the track is only about one-third to one-fourth of the wavelength of the incident light. The motion of the free electron is severely hindered, and it cannot effectively interact with the incident light, and does not generate reflection and refraction, thereby transmitting.
  • the method for manufacturing a polarizer provided by the embodiment of the present invention is performed on a carrier substrate.
  • the long axis direction of the liquid metal structure is parallel to the longitudinal direction of the groove, and then the liquid metal is solidified to obtain a polarizer, and the polarizer is peeled off from the carrier substrate;
  • the long axis direction of the liquid metal structure is parallel to the length direction of the groove
  • the short-axis direction of the liquid metal structure is the polarization direction of the polarizer.
  • the polarization direction of the polarizer is achieved by using the liquid metal, so that the polarization direction of the polarizer is easily controlled, and the yield of the polarizer is high.
  • FIG. 6-1 is a flowchart of a method for fabricating another polarizer according to an embodiment of the present invention.
  • the method for manufacturing the polarizer can be used to manufacture the polarizer 01 shown in FIG. 1 or FIG. 4.
  • the method for manufacturing the polarizer can include the following steps:
  • Step 601 forming an indium tin oxide (ITO) electrode on the carrier substrate, the ITO electrode comprising a positive electrode and a negative electrode.
  • ITO indium tin oxide
  • the carrier substrate may be a transparent substrate.
  • it may be a substrate made of a light-guided and non-metallic material having a certain firmness such as glass, quartz, or transparent resin, and the upper surface of the carrier substrate is generally rectangular.
  • FIG. 6-2 is a schematic structural view of the indium tin oxide (ITO) electrode 014 formed on the carrier substrate 02.
  • ITO indium tin oxide
  • the embodiment of the present invention is described by taking the upper surface of the carrier substrate 02 as a rectangle as an example. 6-2.
  • the ITO electrode 014 may be formed on the entire upper surface of the carrier substrate 02, or N arrays of strips may be formed on the upper surface of the carrier substrate 02 along the width direction y1 of the carrier substrate 02.
  • the ITO electrode 014 has a longitudinal direction of each elongated ITO electrode 014 parallel to the longitudinal direction of the carrier substrate 02, wherein N is a positive integer greater than or equal to 2, and the value of N can be set according to actual conditions.
  • Embodiments of the invention are not limited thereto.
  • the embodiment of the present invention will be described by taking an ITO electrode 014 formed on the entire upper surface of the carrier substrate 02 as an example.
  • FIG. 6-3 is a top view of the ITO electrode 014 formed on the carrier substrate 02 provided by the embodiment shown in FIG. 6-1.
  • the upper surface of the carrier substrate is rectangular, the width direction is y1, the ITO electrode 014 is formed on the entire upper surface of the carrier substrate, and the upper surface of the ITO electrode 014 is the same rectangular shape as the upper surface of the carrier substrate, and the upper surface of the ITO electrode 014 is The same upper surface of the carrier substrate 02 means that the shape of the upper surface of the ITO electrode 014 is the same as the shape of the upper surface of the carrier substrate 02, and the area of the upper surface of the ITO electrode 014 is the same as the area of the upper surface of the carrier substrate 02.
  • the ITO electrode 014 includes a positive electrode 0141 and a negative electrode 0142. As shown in FIG. 6-3, the positive electrode 0141 is close to one short side of the carrier substrate, and the negative electrode 0142 is adjacent to the other short side of the carrier substrate. Positive electrode Both the 0141 and the negative electrode 0142 may have an elongated structure, and the longitudinal directions of the positive electrode 0141 and the negative electrode 0142 are parallel to the width direction y1 of the carrier substrate. It should be noted that, in the embodiment of the present invention, the positions of the positive electrode 0141 and the negative electrode 0142 may be exchanged, and the embodiment of the present invention is not limited thereto.
  • the formation process of the ITO electrode 014 shown in FIG. 6-3 may include: depositing a layer of ITO film having a certain thickness on the carrier substrate 02 by coating, magnetron sputtering, thermal evaporation or PECVD, and then The ITO film was processed to form an ITO electrode 014.
  • the forming process of the positive electrode 0141 and the negative electrode 0142 can be performed by a conventional technique, and details are not described herein again.
  • the ITO electrode 014 is formed on the entire upper surface of the carrier substrate 02 as an example.
  • N may be formed on the upper surface of the carrier substrate 02 along the width direction y1 of the carrier substrate 02.
  • the elongated ITO electrodes 014 arranged in an array have a longitudinal direction of each elongated ITO electrode 014 parallel to the longitudinal direction of the carrier substrate 02.
  • FIG. 6-4 is a top view of another embodiment of the embodiment shown in FIG. 6-1 after the ITO electrode 014 is formed on the carrier substrate 02.
  • the upper surface of the carrier substrate 02 is rectangular.
  • the length direction is x1
  • N strip-shaped ITO electrodes 014 arranged in the array in the width direction y1 of the carrier substrate 02 are formed on the upper surface of the carrier substrate 02, each strip shape
  • the longitudinal direction of the ITO electrode 014 is parallel to the longitudinal direction x1 of the carrier substrate 02.
  • N is 13, and the 13 is merely exemplary, but the embodiment of the present invention is not limited thereto.
  • the value of N may be other values.
  • the formation process of the ITO electrode 014 shown in FIG. 6-4 may include: depositing a layer of ITO film having a certain thickness on the carrier substrate 02 by coating, magnetron sputtering, thermal evaporation or PECVD, using masking
  • the ITO film is exposed by the template, and the ITO film is formed into a completely exposed area and a non-exposed area, and then processed by a developing process, so that the ITO film in the completely exposed area is completely removed, and the ITO film in the non-exposed area is completely retained, and is formed after the baking treatment.
  • Each of the ITO electrodes 014 includes a positive electrode 0141 and a negative electrode 0142.
  • the forming process of the positive electrode 0141 and the negative electrode 0142 can be performed by a conventional technique, and details are not described herein again.
  • Step 602 forming an alignment layer on the substrate on which the ITO electrode is formed, and forming a trench on the alignment layer, and one end of the trench is located on the corresponding region of the positive electrode on the alignment layer, and the other end is located at the corresponding position of the negative electrode in the alignment layer. On the area.
  • FIG. 6-5 is a schematic structural view after the alignment layer 010 is formed on the substrate on which the ITO electrode 014 is formed.
  • the upper surface of the alignment layer 010 may be the same rectangular shape as the upper surface of the carrier substrate 02.
  • the width direction of the alignment layer 010 may be the y direction, and the alignment layer 010
  • the width direction y is parallel to the width direction y1 of the carrier substrate 02.
  • the upper surface of the alignment layer 010 is the same as the upper surface of the carrier substrate 02, meaning that the shape of the upper surface of the alignment layer 010 is the same as the shape of the upper surface of the carrier substrate 02, and the area of the upper surface of the alignment layer 010 and the carrier substrate 02 The area of the upper surface is the same.
  • FIG. 6-6 there is shown a top view of the embodiment shown in FIG. 6-1 after forming the alignment layer 010 on the substrate on which the ITO electrode 014 is formed.
  • the upper surface of the alignment layer 010 is rectangular, oriented.
  • the layer 010 has a length direction of x and a width direction of y, and N grooves A arranged in the array in the width direction y of the alignment layer 010 are formed on the alignment layer 010.
  • Each of the grooves A is an elongated groove, and the length direction of each of the grooves A is parallel to the longitudinal direction x of the alignment layer 010.
  • N is a positive integer greater than or equal to 2, however, embodiments of the present invention are not limited thereto.
  • the first longitudinal section of each of the grooves A may be V-shaped, however, embodiments of the present invention are not limited thereto.
  • the first longitudinal section of the trench A refers to a section perpendicular to the upper surface of the alignment layer 010 and parallel to the width direction y of the alignment layer 010.
  • One end of the trench A is located on the corresponding region of the alignment layer 010 of the positive electrode 0141 in FIG. 6-3 or FIG. 6-4, and the negative electrode 0142 of the other end is located in the alignment layer 010 in FIG. 6-3 or FIG. 6-4.
  • N grooves A can be connected.
  • Figure 6-6 shows a connection of N trenches A. In FIG.
  • FIG. 6-6 after the N trenches A are connected, the N trenches A include two openings.
  • Figure 6-7 shows another connection of N trenches A. In FIG. 6-7, after the N trenches A are connected, the N trenches A are connected at one end of the N trenches A. After the N trenches A are connected, each trench A includes an opening.
  • the alignment layer 010 may be formed using a PI material or an inorganic material.
  • the formation process of the alignment layer 010 may include: depositing a layer on the substrate on which the ITO electrode 014 is formed by coating, magnetron sputtering, thermal evaporation, or PECVD. A certain thickness of the PI material is cured, and the alignment layer 010 is obtained by curing the PI material, and then the alignment layer 010 is oriented by a rubbing process or a photo-alignment process to form a plurality of width directions along the alignment layer 010 on the alignment layer 010. y Array-arranged trench A.
  • each trench A is located in the corresponding region of the alignment layer 010 of the ITO electrode 014 in FIG. 6-3 or FIG. 6-4, and the ITO electrode 014 is located at the other end in FIG. 6-3 or FIG. 6-4.
  • the negative electrode 0142 is on the corresponding region of the alignment layer 010. Since the uniformity of the grooves formed by the photo-alignment process is high, the embodiment of the present invention preferably orients the alignment layer 010 by a photo-alignment process.
  • the formation process of the alignment layer 010 may include: forming an ITO electrode 014 by coating, magnetron sputtering, thermal evaporation, or PECVD. An inorganic material having a certain thickness is deposited on the substrate, and the inorganic material is cured to obtain an alignment layer 010, and then the alignment layer 010 is oriented by a micromachining process to form a plurality of width directions along the alignment layer 010 on the alignment layer 010. y Array-arranged trench A. Micromachining processes such as nanoimprinting processes, MEMS, etc.
  • a trench may be formed at the same end of the adjacent two trenches A by a micromachining process, and when the trench A is not the closest trench to the side of the longitudinal direction of the parallel alignment layer 010 In the groove, the groove A communicates with the groove adjacent thereto at both ends thereof to form the groove shown in FIG. 6-6; or, a micro-machining process is used to form a groove at the same end of the N grooves A.
  • the grooves are such that the N grooves A are in communication to form the grooves shown in Figures 6-7.
  • the cover layer 012 may be a PET film, and the lower surface of the PET film may be the same rectangular shape as the upper surface of the alignment layer 010, which may be pasted on the grooved surface of the alignment layer 010 by a patch process, for example,
  • the formation of the cover layer 012 may include: coating an optically transparent adhesive (OCA) on the lower surface of the PET film, and then aligning the side of the PET film coated with the OCA with the alignment layer 010 Forming a grooved surface, applying a predetermined strength pressure to the PET film to be adhered to the groove formed on the alignment layer 010, and then baking the PET film at a preset temperature for a predetermined length of time, for the PET film
  • OCA optically transparent adhesive
  • Step 604 injecting liquid metal into the channel.
  • the liquid metal includes a plurality of liquid metal structures.
  • each channel is filled with liquid metal 011.
  • the liquid metal 011 may include a plurality of liquid metal structures 011 which may be formed by using at least two of lanthanum, gallium, lanthanum, potassium, sodium, indium, lithium, tin, antimony, zinc, antimony, magnesium, and aluminum.
  • the alloy of the present invention does not limit the specific forming material and formation manner of the liquid metal 011.
  • Step 6042a placing the evacuated substrate including the alignment layer and the cover layer in a liquid metal bath containing liquid metal, and filling the liquid metal in the liquid metal bath in the channel.
  • placing the vacuumed substrate including the alignment layer and the cover layer in the liquid metal tank containing the liquid metal means that the vacuum-contained layer includes the alignment layer and The substrate of the cover layer is entirely immersed in a liquid metal bath.
  • FIG. 6-11 is a flow chart of another method for injecting liquid metal into the channel provided by the embodiment shown in FIG. 6-1. Referring to FIG. 6-11, the method is shown in FIG. It can include the following steps:
  • Step 6042b evacuating the channel.
  • a vacuum pump can be used to evacuate the channel at an opening at one end of the channel that is not sealed, expelling air within the channel to create a vacuum within the channel.
  • the channel can be evacuated under vacuum conditions.
  • liquid metal can be poured into each of the channels when the N channels are not connected.
  • the following third mode and fourth may be adopted. This method injects liquid metal into the channel.
  • the trenches forming the N channels may be connected by any of the methods of FIG. 6-6 or FIGS. 6-7.
  • Step 6042c vacuuming the N channels.
  • the steps 6042c and 6043c are sequentially performed as an example.
  • the step 6042c and the step 6043c may be simultaneously performed, that is, the channel may be evacuated while being The liquid metal is poured into the channel from the first opening, and embodiments of the invention are not limited thereto.
  • the N channels may be in communication, and therefore, the openings of the N channels may be sealed, and the openings other than the first openings, and the first openings are any one of the openings of the N channels. Opening.
  • the process of sealing the opening of the channel and the surface of the step 603 in which the alignment layer is formed with a groove The process of forming the cover layer is the same or similar, and the sealing process can refer to step 603, which is not described herein again.
  • the N channels may be evacuated at the first openings of the N channels, or the N channels may be pumped at any of the openings of the N channels except the first opening.
  • Vacuum the embodiment of the present invention is not limited thereto, and air in the N channels can be exhausted by evacuation to form a vacuum in the N channels.
  • a positive phase voltage is applied to the positive electrode of the ITO electrode to the ITO electrode.
  • a negative phase voltage is applied to the negative electrode, since there is resistance in the ITO electrode itself, there is a voltage difference between the positive electrode and the negative electrode of the ITO electrode, so that an electric field can be formed between the positive electrode and the negative electrode of the ITO electrode.
  • the direction is parallel to the length direction of the groove.
  • the electric field of predetermined intensity of 30s causes each liquid metal structure to be stretched along the length of the groove in which the liquid metal structure is formed by the electric field formed by the ITO electrode to form a rod-like structure, and finally the long-axis direction of the liquid metal structure of each rod-like structure. Parallel to the length direction of the groove.
  • Step 606 curing the liquid metal.
  • FIG. 6-14 is a schematic structural view after the protective layer 013 is formed on the cover layer 012.
  • a certain thickness of silicide may be deposited as a protective layer 013 on the overcoat layer 012 by coating, magnetron sputtering, thermal evaporation or PECVD.
  • the protective layer 013 may be formed by using an oxide, a nitride or an oxynitride compound, and the corresponding reaction gas may be a mixed gas of SiH 4 , NH 3 , N 2 or a mixed gas of SiH 2 Cl 2 , NH 3 , and N 2 .
  • a polarizer can be obtained.
  • the embodiment of the present invention is described by taking the silicide formation of the protective layer 013 as an example, but the embodiment of the present invention is not limited thereto.
  • the protective layer 013 can also be formed using other materials.
  • FIG. 6-15 is a schematic structural view of a polarizer after peeling off the carrier substrate.
  • the ITO electrode can also be peeled off from the polarizer.
  • the carrier substrate and the ITO electrode may be peeled off by a laser lift-off process.
  • FIG. 6-16 is a schematic structural view after the protective layer 013 is formed on the surface of the alignment layer 010 where the trench is not formed.
  • the process of forming the protective layer 013 on the surface of the alignment layer 010 where the trench is not formed may be referred to the process of forming the protective layer on the cover layer by referring to step 607, which is not described herein again.
  • the protective layer 013 is formed on the side where the ITO electrode is not in contact with the alignment layer, but the embodiment of the present invention is not limited thereto.
  • a film layer such as an anti-reflection film may be formed on the protective layer, so that the polarizer has functions of anti-reflection, scratch resistance, high brightness, and the like.
  • the present embodiment has been described by taking an ITO electrode formed on a carrier substrate as an example, but the embodiment of the present invention is not limited thereto.
  • the ITO electrode may not be formed on the carrier substrate, but the ITO electrode may be formed on the surface on which the alignment layer is formed with the trench, or the ITO electrode may be formed on the carrier substrate and the surface on which the alignment layer is formed with the trench, or The ITO electrode can also be formed at other locations.
  • the ITO electrode in the embodiment of the present invention is mainly used to apply a voltage to the liquid metal, so that the liquid metal structure can be stretched along the length of the trench to form a rod-like structure, and each liquid metal structure
  • the long axis direction is parallel to the length direction of the groove, but the embodiment of the present invention is not limited thereto.
  • N channels when N channels are connected, when a liquid metal is formed in the channel, a liquid metal is formed at a connecting portion of the channel, which affects the polarization direction of the polarizer.
  • the polarizer can be used as needed. The cutting is performed to remove the connected portions of the N channels, but the embodiment of the present invention is not limited thereto.
  • a polarizer in the method for manufacturing a polarizer according to an embodiment of the present invention, by forming an alignment layer on a carrier substrate, a trench is formed on the alignment layer, a liquid metal is formed in the trench, and a liquid metal is applied parallel to the length direction of the trench.
  • the electric field causes the liquid metal structure to be stretched along the length of the groove to form a rod-like structure, and the long axis direction of the liquid metal structure is parallel to the longitudinal direction of the groove, and then the liquid metal is solidified to obtain a polarizer, and the polarizer is removed from the carrier substrate.
  • the upper axis direction of the liquid metal structure is parallel to the longitudinal direction of the groove, and the short axis direction of the liquid metal structure is the polarization direction of the polarizer.
  • the polarization direction of the polarizer is achieved by using the liquid metal, so that the polarizer The polarization direction is easy to control, and the yield of the polarizer is high.
  • FIG. 7 is a flowchart of a method for manufacturing a polarizer according to an embodiment of the present invention.
  • the method for manufacturing the polarizer can be used to manufacture the polarizer 01 shown in FIG. 1 or FIG. 4.
  • the method for manufacturing the polarizer can include the following steps:
  • Step 701 forming an alignment layer on the carrier substrate, and forming a trench on the alignment layer.
  • the carrier substrate may be a transparent substrate, and may be, for example, a substrate made of a light-shielding and non-metallic material having a certain firmness such as glass, quartz, or a transparent resin.
  • the upper surface of the carrier substrate may be rectangular.
  • FIG. 7-2 is a schematic diagram of the structure after the alignment layer 010 is formed on the carrier substrate 02.
  • the embodiment of the present invention is described by taking the upper surface of the carrier substrate 02 as a rectangular shape, wherein the orientation layer 010 is The upper surface may have the same rectangular shape as the upper surface of the carrier substrate 02, the width direction of the alignment layer 010 may be y, and the width direction y of the alignment layer 010 may be parallel to the width direction of the carrier substrate 02.
  • the upper surface of the alignment layer 010 is the same as the upper surface of the carrier substrate 02, meaning that the shape of the upper surface of the alignment layer 010 is the same as the shape of the upper surface of the carrier substrate 02, and the area of the upper surface of the alignment layer 010 and the carrier substrate 02 The area of the upper surface is the same.
  • the alignment layer 010 may be formed using a PI material or an inorganic material.
  • the formation process of the alignment layer 010 may include: depositing a PI material having a certain thickness on the carrier substrate 02 by coating, magnetron sputtering, thermal evaporation, or PECVD. The PI material is cured to obtain an alignment layer 010, and then the alignment layer 010 is oriented by a Rubbing process or a photo-alignment process, and N trenches A arranged in an array pattern along the width direction y of the alignment layer 010 are formed on the alignment layer 010. . It should be noted that, since the uniformity of the trench formed by the photo-alignment process is high, the embodiment of the present invention preferably uses the photo-alignment process to orient the alignment layer 010.
  • the embodiment of the present invention is described by taking the formation of the alignment layer 010 by using a PI material or an inorganic material, but the embodiment of the present invention is not limited thereto.
  • the forming material of the alignment layer 010 may be other materials.
  • the trench shown in FIG. 7-2 is merely illustrative, and embodiments of the present invention are not limited thereto.
  • the structure of the trench may be a microstructure, and the width of the trench may be on the order of nanometers.
  • Step 702 Transfer the liquid metal into the groove of the alignment layer by using a transfer plate adsorbed with liquid metal.
  • FIG. 7-3 is a schematic structural view after the liquid metal 011 is transferred into the trench of the alignment layer 010.
  • a liquid metal 011 is formed in each of the grooves, and the liquid metal 011 may include a plurality of liquid metal structures.
  • the liquid metal 011 may be an alloy formed by using at least two of yttrium, gallium, lanthanum, potassium, sodium, indium, lithium, tin, antimony, zinc, lanthanum, magnesium, and aluminum, and the embodiment of the present invention does not apply to the liquid metal 011.
  • the specific forming materials and the manner of formation are limited.
  • each of the liquid metal structures 0111 may be formed of a plurality of liquid metal molecules, but the embodiment of the present invention is not limited thereto.
  • the liquid metal 011 may be transferred into the groove of the alignment layer 010 by a roll to roll process.
  • a plurality of strip patterns are formed on the transfer plate used in the roll-to-roll process, and the distance between any two adjacent strip patterns may be equal to the distance between any two adjacent grooves.
  • the liquid metal can be adsorbed on the strip pattern, and then the transfer plate is wrapped on the roller. Rolling is performed on the surface of the orientation layer 010 on which the groove is formed by the roller. During the rolling process, the strip pattern on the transfer plate is aligned with the groove, and the liquid metal on the strip pattern can be transferred. Printed into the groove.
  • Step 703 forming an indium tin oxide ITO electrode on the surface on which the alignment layer is formed with a trench, a liquid metal is formed in the trench, the ITO electrode includes a positive electrode and a negative electrode, and the positive electrode corresponds to one end of the trench, and the negative electrode and the trench The other end of the slot corresponds.
  • a schematic structural view of the ITO electrode 014 is formed on the surface on which the alignment layer 010 is formed with a trench.
  • the embodiment of the present invention is described by taking the upper surface of the alignment layer 010 as a rectangle.
  • the ITO electrode 014 may be formed on the entire upper surface of the alignment layer 010, or N arrays may be formed along the width direction y of the alignment layer 010 on the upper surface of the alignment layer 010.
  • the elongated ITO electrode 014 has a longitudinal direction of each elongated ITO electrode 014 parallel to the longitudinal direction of the alignment layer 010.
  • N is a positive integer greater than or equal to 2, but embodiments of the present invention are not limited thereto.
  • the ITO electrode 014 is formed on the entire surface on which the alignment layer 010 is formed with a trench as an example.
  • the ITO electrode may include a positive electrode and a negative electrode (not shown in FIG. 7-4), the positive electrode corresponding to one end of the trench, and the negative electrode corresponding to the other end of the trench.
  • the steps 601, 6-3, and 6-4 in the embodiment shown in FIG. 6-1 which are not described herein again.
  • Step 704 applying an electric field parallel to the longitudinal direction of the trench to the liquid metal, and stretching each liquid metal structure along the length direction of the trench to form a rod-like structure, and the long axis direction of each liquid metal structure and the length of the trench The directions are parallel.
  • Step 705 curing the liquid metal.
  • steps 704 and 705 are the same as or similar to the steps 605 and 606 in the embodiment shown in FIG. 6-1.
  • the implementation process may refer to step 605 and step 606 in the embodiment shown in FIG. 6-1. I will not repeat them here.
  • Step 706 peeling off the ITO electrode.
  • the structure diagram after peeling off the ITO electrode is the same as or similar to that of FIG. 7-3, and the embodiment is no longer here. Narration.
  • the ITO electrode since a stable polarization direction has been formed in step 705, the ITO electrode may be grooved from the alignment layer 010 in order to reduce the absorption of light by the polarizer and improve the light transmittance. Peel off the surface.
  • the ITO electrode may be stripped using a laser lift-off process.
  • the embodiment of the present invention is described by taking an ITO electrode as an example.
  • the ITO electrode may not be peeled off, and the embodiment of the present invention is not limited thereto.
  • Step 707 forming a cover layer on the surface on which the alignment layer is formed with the groove.
  • FIG. 7-5 is a schematic structural view after the cap layer 012 is formed on the surface on which the alignment layer 010 is formed with a trench.
  • the process of forming the overlay layer 012 is the same as or similar to the step 603 in the embodiment shown in FIG. 6-1, and details are not described herein again.
  • the liquid metal 011 is formed in the trench in step 706, in the present embodiment, after the cap layer 012 is formed on the surface on which the alignment layer 010 is formed with the trench, the alignment layer 010 and the cap layer are covered.
  • the channel between layers 012 has been filled with liquid metal 011.
  • Step 708 forming a protective layer on the cover layer to obtain a polarizer.
  • Step 709 peeling off the polarizer from the carrier substrate.
  • Step 710 forming a protective layer on the surface of the alignment layer where the trench is not formed.
  • steps 708 to 710 are the same as or similar to the steps 607 to 609 in the embodiment shown in FIG. 6-1.
  • the implementation process may refer to steps 607 to 609 in the embodiment shown in FIG. I will not repeat them here.
  • the ITO electrode is formed on the surface on which the alignment layer is formed with a groove, but the embodiment of the present invention is not limited thereto.
  • the ITO electrode may not be formed on the surface on which the alignment layer is formed with the trench, and the ITO electrode may be formed on the carrier substrate, or the ITO electrode may be formed on the carrier substrate and the surface on which the alignment layer is formed with the trench, or The ITO electrode can also be formed at other locations.
  • the ITO electrode in the embodiment of the present invention is mainly used to apply a voltage to the liquid metal, so that the liquid metal structure can be stretched along the length of the trench to form a rod-like structure, and each liquid metal structure
  • the long axis direction is parallel to the longitudinal direction of the trench, and the present invention does not limit the formation position of the ITO electrode.
  • N channels when N channels are connected, when a liquid metal is formed in the channel, a liquid metal is formed at a connecting portion of the channel, which affects the polarization direction of the polarizer.
  • the polarizer can be used as needed. The cutting is performed to remove the connecting portions of the N channels, which is not limited in the embodiment of the present invention.
  • step 703 may be deleted, that is, the ITO electrode may not be formed, the alignment layer may be directly formed and a liquid metal is formed in the trench on the alignment layer, and the liquid metal is cured according to the subsequent steps.
  • the polarization direction of the polarizer can also be formed, and the polarization direction of the polarizer is perpendicular to the longitudinal direction of the groove on the alignment layer.
  • the free electrons in the liquid metal located in the trench are directionally moved along the length direction of the trench by the action of the external electric field, due to the groove
  • the length is long compared to the wavelength of the incident light, which corresponds to the incident light acting on the surface of the metal film, and the polarized light in the longitudinal direction of the groove is reflected.
  • the polarization direction of the incident light is perpendicular to the longitudinal direction of the groove,
  • the width of the track is only about one-third to one-fourth of the wavelength of the incident light. The motion of the free electron is severely hindered, and it cannot effectively interact with the incident light, and does not generate reflection and refraction, thereby transmitting.
  • a polarizer in the method for manufacturing a polarizer according to an embodiment of the present invention, by forming an alignment layer on a carrier substrate, a trench is formed on the alignment layer, a liquid metal is formed in the trench, and a liquid metal is applied parallel to the trench.
  • the electric field in the longitudinal direction of the groove causes the liquid metal structure to be stretched along the length of the groove to form a rod-like structure, and the long-axis direction of the liquid metal structure is parallel to the longitudinal direction of the groove, and then the liquid metal is solidified to obtain a polarizer.
  • the polarizer is peeled off from the carrier substrate; the long axis direction of the liquid metal structure is parallel to the longitudinal direction of the trench, and the short axis direction of the liquid metal structure is the polarization direction of the polarizer.
  • the polarization of the polarizer is achieved by using the liquid metal. The direction makes the polarization direction of the polarizer easy to control, and the yield of the polarizer is high.
  • the polarizer provided by the embodiment of the invention uses the liquid metal to realize the polarization direction of the polarizer.
  • the cost of the liquid metal is low, so the cost of the polarizer provided by the embodiment of the invention is low.
  • FIG. 8 is a schematic structural diagram of a display device 03 according to an embodiment of the present invention.
  • the display device 03 includes: a frame-shaped array substrate 031 and a color filter substrate 032 , and a filling A liquid crystal layer 033 between the array substrate 031 and the color filter substrate 032.
  • the liquid crystal layer 033 includes a plurality of liquid crystal molecules 0331 and a spacer 0332.
  • the spacers 0332 are in contact with the array substrate 031 and the color filter substrate 032, respectively, for supporting the array substrate 031 and the color filter substrate.
  • 032 a space is formed between the array substrate 031 and the color filter substrate 032, and the liquid crystal Molecule 0331 is located in this space.
  • the liquid crystal molecules 0331 may be positive liquid crystal molecules or negative liquid crystal molecules, and the array substrate 031 is provided with an ITO electrode (not shown in FIG. 8).
  • the liquid crystal molecules 0331 When a voltage is applied to the ITO electrodes, under the action of an electric field, the liquid crystal molecules 0331 The long axis or the short axis is regularly arranged along the direction of the electric field, exhibiting anisotropy and affecting the polarization direction of the incident light.
  • the upper polarizer 034 is disposed on the backlight side of the array substrate 032, the lower polarizer 035 is disposed on the side of the color filter substrate 032 away from the array substrate 031, and the upper polarizer 034 and/or the lower polarizer 035 are any of FIG. 1 or FIG. The polarizer shown.
  • the display device 03 further includes a backlight 036 .
  • the backlight 036 is disposed on a side of the upper polarizer 034 away from the array substrate 031.
  • the backlight 036 may include a light source 0361 and a light guide plate 0362.
  • the light source 0361 may be disposed on a side of the upper polarizer 034 away from the array substrate 031, and the light guide plate 0362 may be disposed on the light source 0361 and the upper polarized light.
  • the backlight 036 can be referred to as a direct type backlight.
  • the light guide plate 0362 may be disposed on a side of the upper polarizer 034 away from the array substrate 031, and the light source 0361 may be disposed on a side of the light guide plate 0362.
  • the backlight 036 may be referred to as a side entry type. Backlight.
  • the display device includes a polarizer.
  • the polarizer forms an alignment layer on the carrier substrate to form a trench on the alignment layer, and forms a liquid metal into the trench and applies the liquid metal.
  • An electric field parallel to the longitudinal direction of the groove causes the liquid metal structure to be stretched along the length of the groove to form a rod-like structure, and the long axis direction of the liquid metal structure is parallel to the longitudinal direction of the groove, and then the liquid metal is solidified to obtain polarized light.
  • the sheet is detached from the carrier substrate; the long-axis direction of the liquid metal structure is parallel to the length direction of the trench, and the short-axis direction of the liquid metal structure is the polarization direction of the polarizer, and the display device provided by the embodiment of the present invention is used.
  • the liquid metal realizes the polarization direction of the polarizer, so that the polarization direction of the polarizer is easy to control, and the yield of the polarizer is high, which improves the display performance of the display device.
  • the polarizer provided by the embodiment of the invention, the manufacturing method thereof, and the display device, by forming an alignment layer on the carrier substrate, forming a trench on the alignment layer, forming a liquid metal into the trench and applying parallel to the trench to the liquid metal
  • the electric field in the longitudinal direction causes the liquid metal structure to be stretched along the length of the groove to form a rod-like structure, and the long axis direction of the liquid metal structure is parallel to the longitudinal direction of the groove, and then the liquid metal is solidified to obtain a polarizer, which will be polarized.
  • the sheet is peeled off from the carrier substrate; the long axis direction of the liquid metal structure is parallel to the length direction of the trench, and the short axis direction of the liquid metal structure is the polarization direction of the polarizer.
  • the polarizer provided by the embodiment of the present invention uses liquid metal to achieve polarization.
  • the polarization direction of the sheet makes the polarization direction of the polarizer easy to control, and the yield of the polarizer is high.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)

Abstract

一种偏光片(01)及其制造方法、显示装置(03)。该方法包括:在载体基板(02)上形成取向层(010),使取向层(010)上形成有沟槽(A);在沟槽(A)内形成液态金属(011),液态金属(011)包括多个液态金属结构(0111);向液态金属(011)施加平行于沟槽(A)的长度方向x的电场,使每个液态金属结构(0111)沿沟槽(A)的长度方向x拉伸形成棒状结构,且每个液态金属结构(0111)的长轴方向与沟槽(A)的长度方向x平行;对液态金属(011)进行固化,得到偏光片(01);以及将偏光片(01)从载体基板(02)上剥离。

Description

偏光片及其制造方法、显示装置 技术领域
本发明的实施例涉及一种偏光片及其制造方法、显示装置。
背景技术
随着显示技术的不断发展,显示装置广泛应用于显示领域,现有的显示装置通常为液晶显示器(LCD)。
LCD通常采用液晶分子配合偏光片实现图像的显示。LCD中的偏光片通常包括:上偏光片和下偏光片,上偏光片设置在阵列基板的背光侧,下偏光片设置在彩膜基板的出光侧,背光源设置在上偏光片远离阵列基板的一侧。背光源发出的光线在经过上偏光片时,该光线中振动方向与上偏光片的偏振方向相同的光线通过上偏光片,之后依次通过阵列基板、液晶层和彩膜基板,到达下偏光片,到达下偏光片的光线中振动方向与下偏光片的偏振方向相同的光线通过下偏光片,最终从下偏光片射出。现有的偏光片通常为线栅偏光片,线栅偏光片通过采用压印工艺在基板上形成多条平行的金属线条形成,线栅偏光片的偏振方向与金属线条的长度方向垂直。
发明内容
本发明的实施例提供一种偏光片及其制造方法、显示装置。所述技术方案如下:
根据本发明的实施例,提供一种偏光片的制造方法,所述方法包括:
在载体基板上形成取向层,使所述取向层上形成有沟槽;
在所述沟槽内形成液态金属,所述液态金属包括多个液态金属结构;
向所述液态金属施加平行于所述沟槽的长度方向的电场,使每个所述液态金属结构沿所述沟槽的长度方向拉伸形成棒状结构,且每个所述液态金属结构的长轴方向与所述沟槽的长度方向平行;
对所述液态金属进行固化,得到偏光片;以及
将所述偏光片从所述载体基板上剥离。
在一个示例中,在所述沟槽内形成液态金属之前,在所述取向层形成有所述沟槽的面上形成覆盖层,使所述取向层与所述覆盖层之间形成两端开口 的沟道;
所述在所述沟槽内形成液态金属,包括:
向所述沟道内灌注液态金属。
在一个示例中,所述向所述沟道内灌注液态金属,包括:
对所述沟道进行抽真空;以及
将抽真空后的包括所述取向层和所述覆盖层的基板放置在盛放有液态金属的液态金属槽中,使所述液态金属槽中的液态金属充填在所述沟道内。
在一个示例中,所述向所述沟道内灌注液态金属,包括:
密封所述沟道一端的开口;
对所述沟道进行抽真空;
采用滴注工艺通过所述沟道另一端的开口向所述沟道内灌注液态金属。
在一个示例中,所述沟道的个数为N,所述N为大于或者等于2的正整数,N个所述沟道连通。
所述向所述沟道内灌注液态金属,包括:
密封N个所述沟道的开口中,除第一开口以外的开口,所述第一开口为所述N个所述沟道的开口中的任意一个开口;
对N个所述沟道进行抽真空;
采用滴注(ODF)工艺通过所述第一开口向所述沟道内灌注液态金属。
在一个示例中,所述沟道的个数为N,所述N为大于或者等于2的正整数,N个所述沟道连通。
所述向所述沟道内灌注液态金属,包括:
密封N个所述沟道的开口中,除第一开口以外的开口,所述第一开口为所述N个所述沟道的开口中的任意一个开口;
对N个所述沟道进行抽真空;
将抽真空后的包括所述取向层和所述覆盖层的基板放置在盛放有液态金属的液态金属槽中,使所述液态金属槽中的液态金属从所述第一开口进入所述沟道,并充填在所述沟道内。
在一个示例中,在所述向所述沟槽内形成液态金属之后,所述方法还包括:
在所述覆盖层上形成保护层。
在一个示例中,在载体基板上形成取向层,使所述取向层上形成有沟槽 之前,
在所述载体基板上形成氧化铟锡ITO电极,所述ITO电极包括正电极和负电极;
所述在载体基板上形成取向层,使所述取向层上形成有沟槽,包括:
在形成有所述ITO电极的基板上形成取向层,使所述取向层上形成有沟槽,且所述沟槽的一端位于所述正电极在所述取向层的对应区域上,另一端位于所述负电极在所述取向层的对应区域上。
在一个示例中,所述在所述沟槽内形成液态金属,包括:
采用吸附有液态金属的转印版向所述取向层的沟槽内转印液态金属;
在所述沟槽内形成液态金属之后,
在所述取向层形成有所述沟槽的面上形成氧化铟锡ITO电极,所述沟槽内形成有液态金属,所述ITO电极包括正电极和负电极,所述正电极与所述沟槽的一端对应,所述正电极与所述沟槽的另一端对应。
在一个示例中,在对所述液态金属进行固化之后,剥离所述ITO电极;
在所述取向层形成有所述沟槽的面上形成覆盖层;以及
在所述覆盖层上形成保护层。
在一个示例中,在所述将偏光片从所述载体基板上剥离之后,在所述取向层未形成有所述沟槽的面上形成保护层。
在一个示例中,所述取向层采用聚酰亚胺PI材料形成,所述在基板上形成取向层,使所述取向层上形成有沟槽,包括:
采用聚酰亚胺PI材料在所述载体基板上形成取向层;以及
采用摩擦工艺或者光取向工艺在所述取向层上形成所述沟槽。
在一个示例中,所述取向层采用无机材料形成,所述在载体基板上形成取向层,使所述取向层上形成有沟槽,包括:
采用无机材料在所述载体基板上形成取向层;以及
采用微加工工艺在所述取向层上形成所述沟槽。
在一个示例中,所述覆盖层为聚酯薄膜PET膜片。
在一个示例中,所述沟槽的个数为N,所述N为大于或者等于2的正整数;以及
N个所述沟槽以阵列形式排布在所述取向层上。
在一个示例中,所述液态金属为采用铯、镓、铷、钾、钠、铟、锂、锡、 铋、锌、锑、镁、铝中的至少两种形成的合金。
根据本发明的实施例,提供一种偏光片,所述偏光片包括:
取向层,所述取向层上形成有沟槽,所述沟槽内形成有液态金属,所述液态金属包括多个液态金属结构,每个所述液态金属结构为棒状结构,且每个所述液态金属结构的长轴方向与所述沟槽的长度方向平行。
在一个示例中,所述取向层形成有所述沟槽的面上形成有覆盖层;
所述覆盖层和所述取向层未形成有所述沟槽的面上都形成有保护层。
在一个示例中,所述取向层采用聚酰亚胺PI材料或者无机材料形成;
所述覆盖层为聚酯薄膜PET膜片。
在一个示例中,所述沟槽的个数为N,所述N为大于或者等于2的正整数;以及
N个所述沟槽以阵列形式排布在所述取向层上。
在一个示例中,所述液态金属为采用铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种形成的合金。
根据本发明的又一实施例,提供一种显示装置,所述显示装置包括:对盒成型的阵列基板和彩膜基板,以及填充在所述阵列基板和所述彩膜基板之间的液晶层;
所述阵列基板的背光侧设置有上偏光片,所述彩膜基板远离所述阵列基板的一侧设置有所述下偏光片,所述上偏光片和/或所述下偏光片为第二方面或第二方面的任一可选方式所述的偏光片。
在一个示例中,所述显示装置还包括:背光源,
所述背光源设置在所述上偏光片远离所述阵列基板的一侧。
附图说明
以下将结合附图对本公开的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本公开的实施例,在附图中:
图1是本发明实施例提供的一种偏光片的结构示意图;
图2是图1所示实施例提供的偏光片的一种俯视图;
图3是图2所示的沟槽和位于该沟槽中的液态金属的放大图;
图4是本发明实施例提供的另一种偏光片的结构示意图;
图5是本发明实施例提供的一种偏光片的制造方法的方法流程图;
图6-1是本发明实施例提供的另一种偏光片的制造方法的方法流程图;
图6-2是图6-1所示实施例提供的在载体基板上形成ITO电极后的结构示意图;
图6-3是图6-1所示实施例提供的一种在载体基板上形成ITO电极后的俯视图;
图6-4是图6-1所示实施例提供的另一种在载体基板上形成ITO电极后的俯视图;
图6-5是图6-1所示实施例提供的在形成有ITO电极的基板上形成取向层后的结构示意图;
图6-6是图6-1所示实施例提供的一种在形成有ITO电极的基板上形成取向层后的俯视图;
图6-7是图6-1所示实施例提供的另一种在形成有ITO电极的基板上形成取向层后的俯视图;
图6-8是图6-1所示实施例提供的取向层形成有沟槽的面上形成覆盖层后的结构示意图;
图6-9是图6-1所示实施例提供的向沟道内灌注液态金属后的结构示意图;
图6-10是图6-1所示实施例提供的一种向沟道内灌注液态金属的方法的流程图;
图6-11是图6-1所示实施例提供的另一种向沟道内灌注液态金属的方法的流程图;
图6-12是图6-1所示实施例提供的再一种向沟道内灌注液态金属的方法的流程图;
图6-13是图6-1所示实施例提供的又一种向沟道内灌注液态金属的方法的流程图;
图6-14是图6-1所示实施例提供的在覆盖层上形成保护层后的结构示意图;
图6-15是图6-1所示实施例提供的剥离载体基板后的偏光片的结构示意图;
图6-16是图6-1所示实施例提供的在取向层未形成有沟槽的面上形成保护层后的结构示意图;
图7-1是本发明实施例提供的再一种偏光片的制造方法的流程图;
图7-2是图7-1所示实施例提供的在载体基板上形成取向层后的结构示意图;
图7-3是图7-1所示实施例提供的在沟槽内形成液态金属后的结构示意图;
图7-4是图7-1所示实施例提供的在取向层形成有沟槽的面上形成ITO电极后的结构示意图;
图7-5是图7-1所示实施例提供的在取向层形成有沟槽的面上形成覆盖层后的结构示意图;
图8是本发明实施例提供的一种显示装置的结构示意图;
图9是本发明实施例提供的另一种显示装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在无需做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本文使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其它元件或者物件。“上”、“下”、等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
发明人发现,采用压印工艺形成线栅偏光片时,金属线条的平行度难以控制,导致偏光片的偏振方向难以控制,因此,线栅偏光片的良率较低。
下面将结合附图对本发明的示例性实施例作进一步地详细描述。
在对本发明的实施例做详细描述之前,先对本发明的实施例涉及到的液态金属进行简单介绍。
液态金属指的是一种不定型金属,其可以看作是由正离子流体和自由电子组成的混合物。液态金属在室温(20~25摄氏度)下通常以液态存在,当环境温度为低于室温的预设温度(比如,低于20摄氏度)时,液态金属可以以固态存在,在室温下,液态金属具有在不同形态和运动模式之间转换的普适变形能力。例如,浸没于水中的液态金属的液态金属结构可在一定电压作用下呈现出大尺度变形能力、自旋、定向运动及自行旋转,且液态金属结构之间可以融合、断裂、再融合等,因此,可利用液态金属的这种性质形成液态金属图案(pattern)等。较为独特的是,一片很大的液态金属薄膜可在数秒内收缩为单颗液态金属球,其变形过程十分快速。此外,在电场作用下,大量彼此分离的液态金属球可发生相互粘连及合并,直至融合成单一的液态金属球。在预定电场的作用下,液态金属结构极易实现高速的自旋运动,并诱发周围的液态金属结构快速自旋,形成处于快速自旋状态下的漩涡对。若适当调整电场,液态金属结构还可以按照预定方向快速移动。
现请参考图1,其示出的是本发明实施例提供的一种偏光片01的结构示意图。该偏光片01包括:
取向层010,取向层010上形成有沟槽(图1中未标出),沟槽内形成有液态金属011,液态金属包括多个液态金属结构,每个液态金属结构为棒状结构,且每个液态金属结构的长轴方向与沟槽的长度方向平行。图1所示的沟槽只是示意性的,其大小和比例也不代表真实的大小和比例,例如,沟槽的结构可以为微结构,沟槽的宽度的数量级可以为纳米量级。
在本发明的实施例中,如果入射光的偏振方向与沟槽的长度方向平行,位于沟槽内的液态金属中的自由电子受到外电场的作用沿沟槽的长度方向定向移动,由于沟槽的长度与入射光的波长相比很长,相当于入射光作用到金属薄膜表面,沟槽长度方向的偏振光被反射,相反,当入射光的偏振方向与沟槽的长度方向垂直时,由于沟道的宽度只有入射光的波长的三分之一到四分之一左右,自由电子的运动严重受阻,无法与入射光发生有效作用,不产生反射和折射,从而透射。
综上所述,本发明实施例提供的偏光片,由于取向层上形成有沟槽,沟槽内形成有液体金属,液态金属结构的长轴方向与沟槽的长度方向平行,液态金属结构的短轴方向即是偏光片的偏振方向。本发明实施例采用液态金属实现偏光片的偏振方向,使得偏光片的偏振方向容易控制,偏光片的良率较 高。
取向层010的形状可以根据情况设置,示例地,请参考图2,其示出的是图1所示实施例提供的偏光片01的一种俯视图,参见图2,取向层010的上表面可以为矩形,该取向层010的长度方向为x方向,宽度方向为y方向,取向层010上形成有N个沟槽,每个沟槽内都形成有液态金属011,其中,N为大于或者等于2的正整数,且该N个沟槽沿取向层010的宽度方向y方向的阵列排布在取向层010上,每个沟槽的长度方向与取向层010的长度方向x方向平行,每个沟槽的宽度方向与取向层010的宽度方向y方向平行。N的数值可以根据实际情况设置。液态金属011可以是采用铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种形成的合金。
可选地,请参考图3,沟槽A内形成有液态金属011,液态金属011包括多个液态金属结构0111,每个液态金属结构0111为棒状结构,且每个液态金属结构0111的长轴方向与沟槽A的长度方向x2方向平行;棒状结构的液态金属结构0111是具有长轴和短轴的三维立体结构,当棒状结构的液态金属结构0111的长轴与沟槽A的长度方向平行时,其短轴与沟槽A的长度方向垂直。在本发明实施例中,液态金属0111的短轴方向即是偏光片的偏振方向,即,垂直于沟槽的长度方向的方向即是偏光片的偏振方向。需要说明的是,在本发明实施例中,每个液态金属结构0111可以由多个液态金属分子形成,但是,本发明的实施例并不限于此。
请参考图4,其示出的是本发明实施例提供的另一种偏光片01的结构示意图。参见图4,该偏光片01包括:
取向层010,取向层010上形成有沟槽,沟槽内形成有液态金属011,液态金属包括多个液态金属结构,每个液态金属结构为棒状结构,且每个液态金属结构的长轴方向与沟槽的长度方向平行。图4所示的沟槽只是示意性的,其大小和比例也不代表真实的大小和比例,例如,沟槽的结构可以为微结构,沟槽的宽度的数量级可以为纳米量级。
参见图4,取向层010形成有沟槽的面上形成有覆盖层012;覆盖层012和取向层010未形成有沟槽的面上都形成有保护层013。
可选地,取向层010可以采用聚酰亚胺(PI)材料或者无机材料形成。当取向层010采用PI材料形成时,其形成过程可以为:采用涂覆、磁控溅射、热蒸发或者等离子体增强化学气相沉积法(PECVD)等方法在载体基板上沉 积一层具有一定厚度的PI材料,并对PI材料进行固化得到取向层010,之后采用摩擦(Rubbing)工艺或者光取向工艺对取向层010进行取向,使取向层010上形成沟槽。当取向层010采用无机材料形成时,其形成过程可以为:采用涂覆、磁控溅射、热蒸发或者PECVD等方法在载体基板上沉积一层具有一定厚度的无机材料,并对无机材料进行固化得到取向层010,之后采用微加工工艺对取向层010进行取向,使取向层010上形成沟槽。微加工工艺例如为纳米压印工艺、微机电系统(MEMS)等工艺。需要说明的是,本发明实施例以取向层010采用PI材料或无机材料形成为例进行说明,但是本发明的实施例并不限于此,例如,取向层010的形成材料还可以为其他材料。
可选地,覆盖层012为聚酯薄膜(PET)膜片,其可以采用贴片工艺粘贴在取向层010形成有沟槽的面上,需要说明的是,本发明实施例是以覆盖层012为PET膜片为例进行说明的,但是本发明的实施例并不限于此,例如,覆盖层012还可以采用其他的材料形成,并不局限于PET膜片。
可选地,保护层013可以采用硅化物形成,示例地,采用涂覆、磁控溅射、热蒸发或者PECVD的方法在覆盖层012和取向层010未形成有沟槽的面上都沉积一定厚度的硅化物作为保护层013。保护层013可以选用氧化物、氮化物或氧氮化合物生成,对应的反应气体可以为SiH4、NH3、N2的混合气体或SiH2Cl2、NH3、N2的混合气体,需要说明的是,本发明实施例是以保护层013采用硅化物形成为例进行说明的,但是本发明的实施例并不限于此,例如,保护层013还可以采用其他的材料形成。
在本发明实施例中,如果入射光的偏振方向与沟槽的长度方向平行,位于沟槽内的液态金属中的自由电子受到外电场的作用沿沟槽的长度方向定向移动,由于沟槽的长度与入射光的波长相比很长,相当于入射光作用到金属薄膜表面,沟槽长度方向的偏振光被反射,相反,当入射光的偏振方向与沟槽的长度方向垂直时,由于沟道的宽度只有入射光的波长的三分之一到四分之一左右,自由电子的运动严重受阻,无法与入射光发生有效作用,不产生反射和折射,从而透射。
本发明实施例提供的偏光片,由于取向层上形成有沟槽,沟槽内形成有液体金属,液态金属结构的长轴方向与沟槽的长度方向平行,液态金属结构的短轴方向即是偏光片的偏振方向。本发明实施例采用液态金属实现偏光片的偏振方向,使得偏光片的偏振方向容易控制,偏光片的良率较高。
请参考图5,其示出的是本发明实施例提供的一种偏光片的制造方法的方法流程图。该偏光片的制造方法可以用于制造图1或图4所示的偏光片01,参见图5,该偏光片的制造方法可以包括如下几个步骤:
步骤501、在载体基板上形成取向层,使取向层上形成有沟槽。
步骤502、向沟槽内形成液态金属,液态金属包括多个液态金属结构。
步骤503、向液态金属施加平行于沟槽的长度方向的电场,使每个液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且每个液态金属结构的长轴方向与沟槽的长度方向平行。
步骤504、对液态金属进行固化,得到偏光片。
步骤505、将偏光片从载体基板上剥离。
在本发明实施例中,如果入射光的偏振方向与沟槽的长度方向平行,位于沟槽内的液态金属中的自由电子受到外电场的作用沿沟槽的长度方向定向移动,由于沟槽的长度与入射光的波长相比很长,相当于入射光作用到金属薄膜表面,沟槽长度方向的偏振光被反射,相反,当入射光的偏振方向与沟槽的长度方向垂直时,由于沟道的宽度只有入射光的波长的三分之一到四分之一左右,自由电子的运动严重受阻,无法与入射光发生有效作用,不产生反射和折射,从而透射。
本发明实施例提供的偏光片的制造方法,通过在载体基板上形成取向层,使取向层上形成有沟槽,向沟槽内形成液态金属并向液态金属施加平行于沟槽的长度方向的电场,使液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且液态金属结构的长轴方向与沟槽的长度方向平行,之后对液态金属进行固化得到偏光片,将偏光片从载体基板上剥离;液态金属结构的长轴方向与沟槽的长度方向平行,液态金属结构的短轴方向即是偏光片的偏振方向,本发明实施例采用液态金属实现偏光片的偏振方向,使得偏光片的偏振方向容易控制,偏光片的良率较高。
可选地,在步骤502之前,在取向层形成有沟槽的面上形成覆盖层,使取向层与覆盖层之间形成两端开口的沟道。
步骤502可以包括:
向沟道内灌注液态金属。
可选地,步骤502可以包括:
对沟道进行抽真空;
将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中,使液态金属槽中的液态金属充填在沟道内。
可选地,步骤502包括:
密封沟道一端的开口;
对沟道进行抽真空;
采用滴注(ODF)工艺通过沟道另一端的开口向沟道内灌注液态金属。
可选地,沟道的个数为N,N为大于或者等于2的正整数,N个沟道连通。
步骤502还可以包括:
密封N个沟道的开口中,除第一开口以外的开口,第一开口为N个沟道的开口中的任意一个开口;
对N个沟道进行抽真空;以及
采用滴注(ODF)工艺通过第一开口向沟道内灌注液态金属。
可选地,沟道的个数为N,N为大于或者等于2的正整数,N个沟道连通。
步骤502还包括:
密封N个沟道的开口中,除第一开口以外的开口,第一开口为N个沟道的开口中的任意一个开口;
对N个沟道进行抽真空;以及
将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中,使液态金属槽中的液态金属从第一开口进入沟道,并充填在沟道内。
可选地,在步骤502之后,
在覆盖层上形成保护层。
可选地,在步骤501之前,
在载体基板上形成氧化铟锡ITO电极,ITO电极包括正电极和负电极。
步骤501包括:
在形成有ITO电极的基板上形成取向层,使取向层上形成有沟槽,且沟槽的一端位于正电极在取向层的对应区域上,另一端位于负电极在取向层的对应区域上。
可选地,步骤502,包括:
采用吸附有液态金属的转印版向取向层的沟槽内转印液态金属。
在步骤502之后,在取向层形成有沟槽的面上形成氧化铟锡ITO电极,沟槽内形成有液态金属,ITO电极包括正电极和负电极,正电极与沟槽的一端对应,负电极与沟槽的另一端对应。
可选地,在步骤504之后,
剥离ITO电极;
在取向层形成有沟槽的面上形成覆盖层;以及
在覆盖层上形成保护层。
可选地,在步骤505之后,
在取向层未形成有沟槽的面上形成保护层。
可选地,取向层采用聚酰亚胺(PI)材料形成,步骤501包括:
采用聚酰亚胺(PI)材料在载体基板上形成取向层;以及
采用摩擦工艺或者光取向工艺在取向层上形成沟槽。
可选地,取向层采用无机材料形成,步骤501包括:
采用无机材料在载体基板上形成取向层;以及
采用微加工工艺在取向层上形成沟槽。
可选地,覆盖层为聚酯薄膜(PET)膜片。
可选地,沟槽的个数为N,N为大于或者等于2的正整数;以及
N个沟槽以阵列方式排布在取向层上。
可选地,液态金属为采用铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种形成的合金。
上述所有可选的技术方案,可以采用任意组合形式形成本发明的可选实施例,在此不再一一赘述。
在本发明实施例中,如果入射光的偏振方向与沟槽的长度方向平行,位于沟槽内的液态金属中的自由电子受到外电场的作用沿沟槽的长度方向定向移动,由于沟槽的长度与入射光的波长相比很长,相当于入射光作用到金属薄膜表面,沟槽长度方向的偏振光被反射,相反,当入射光的偏振方向与沟槽的长度方向垂直时,由于沟道的宽度只有入射光的波长的三分之一到四分之一左右,自由电子的运动严重受阻,无法与入射光发生有效作用,不产生反射和折射,从而透射。
综上所述,本发明实施例提供的偏光片的制造方法,通过在载体基板上 形成取向层,使取向层上形成有沟槽,在沟槽内形成液态金属并向液态金属施加平行于沟槽的长度方向的电场,使液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且液态金属结构的长轴方向与沟槽的长度方向平行,之后对液态金属进行固化得到偏光片,将偏光片从载体基板上剥离;液态金属结构的长轴方向与沟槽的长度方向平行,液态金属结构的短轴方向即是偏光片的偏振方向,本发明实施例采用液态金属实现偏光片的偏振方向,使得偏光片的偏振方向容易控制,偏光片的良率较高。
请参考图6-1,其示出的是本发明实施例提供的另一种偏光片的制造方法的方法流程图。该偏光片的制造方法可以用于制造图1或图4所示的偏光片01,参见图6-1,该偏光片的制造方法可以包括如下几个步骤:
步骤601、在载体基板上形成氧化铟锡(ITO)电极,ITO电极包括正电极和负电极。
载体基板可以为透明基板,例如,可以是采用玻璃、石英、透明树脂等具有一定坚固性的导光且非金属材料制成的基板,且载体基板的上表面通常为矩形。
请参考图6-2,其示出的是在载体基板02上形成氧化铟锡(ITO)电极014后的结构示意图,本发明实施例以载体基板02的上表面为矩形为例说明,参见图6-2,可选地,可以在载体基板02的整个上表面上形成ITO电极014,也可以在载体基板02的上表面上沿载体基板02的宽度方向y1形成N个阵列排布的长条状的ITO电极014,使每个长条状的ITO电极014的长度方向与载体基板02的长度方向平行,其中,N为大于或者等于2的正整数,N的数值可以根据实际情况设置,本发明实施例并不局限于此。本发明实施例以在载体基板02的整个上表面上形成ITO电极014为例进行说明。
请参考图6-3,其示出的是图6-1所示实施例提供的一种在载体基板02上形成ITO电极014后的俯视图。载体基板的上表面为矩形,宽度方向为y1,ITO电极014形成在载体基板的整个上表面上,ITO电极014的上表面为与载体基板的上表面相同的矩形,ITO电极014的上表面与载体基板02的上表面相同指的是:ITO电极014的上表面的形状与载体基板02的上表面的形状相同,且ITO电极014的上表面的面积与载体基板02的上表面的面积相同。ITO电极014包括:正电极0141和负电极0142。如图6-3所示,正电极0141靠近载体基板的一条短边,负电极0142靠近载体基板的另一条短边。正电极 0141和负电极0142可以都为长条状结构,且正电极0141和负电极0142的长度方向与载体基板的宽度方向y1平行。需要说明的是,在本发明实施例中,正电极0141和负电极0142的位置可以调换,本发明实施例不限于此。
例如,图6-3所示的ITO电极014的形成过程可以包括:采用涂覆、磁控溅射、热蒸发或者PECVD等方法在载体基板02上沉积一层具有一定厚度的ITO薄膜,之后对ITO薄膜进行处理形成ITO电极014。正电极0141和负电极0142的形成过程可以采用常规技术,本发明实施例在此不再赘述。
需要说明的是,本发明实施例以在载体基板02的整个上表面上形成ITO电极014为例进行说明,例如,还可以在载体基板02的上表面上沿载体基板02的宽度方向y1形成N个以阵列方式排布的长条状的ITO电极014,使每个长条状的ITO电极014的长度方向与载体基板02的长度方向平行。示例地,请参考图6-4,其示出的是图6-1所示实施例提供的另一种在载体基板02上形成ITO电极014后的俯视图,载体基板02的上表面为矩形,载体基板02的宽度方向y1,长度方向为x1,载体基板02的上表面上沿载体基板02的宽度方向y1形成有N个阵列式排布的长条状的ITO电极014,每个长条状的ITO电极014的长度方向与载体基板02的长度方向x1平行。在图6-4中,N为13,该13只是示例性的,但是本发明的实施例并不限于此,例如,N的取值可以为其他数值。
例如,图6-4所示的ITO电极014的形成过程可以包括:采用涂覆、磁控溅射、热蒸发或者PECVD等方法在载体基板02上沉积一层具有一定厚度的ITO薄膜,采用掩模板对ITO薄膜进行曝光、使ITO薄膜形成完全曝光区和非曝光区,之后采用显影工艺处理,使完全曝光区的ITO薄膜被完全去除,非曝光区域的ITO薄膜全部保留,烘烤处理后形成ITO电极014。每个ITO电极014包括:正电极0141和负电极0142。正电极0141和负电极0142形成过程可以采用常规技术,本发明实施例在此不再赘述。
步骤602、在形成有ITO电极的基板上形成取向层,使取向层上形成有沟槽,且沟槽的一端位于正电极在取向层的对应区域上,另一端位于负电极在取向层的对应区域上。
请参考图6-5,其示出的是在形成有ITO电极014的基板上形成取向层010后的结构示意图。取向层010的上表面可以为与载体基板02的上表面相同的矩形。参见图6-5,取向层010的宽度方向可以为y方向,取向层010 的宽度方向y与载体基板02的宽度方向y1方向平行。取向层010的上表面与载体基板02的上表面相同指的是:取向层010的上表面的形状与载体基板02的上表面的形状相同,且取向层010的上表面的面积与载体基板02的上表面的面积相同。
参见图6-6,其示出的是图6-1所示实施例提供的一种在形成有ITO电极014的基板上形成取向层010后的俯视图,取向层010的上表面为矩形,取向层010的长度方向为x,宽度方向为y,取向层010上形成有N个沿取向层010的宽度方向y阵列排布的沟槽A。每个沟槽A为长条形沟槽,且每个沟槽A的长度方向与取向层010的长度方向x平行。N为大于或者等于2的正整数,但是,本发明的实施例并不限于此。例如,N的数值可以根据实际情况设置。每个沟槽A的第一纵截面可以为V字形,但是,本发明的实施例并不限于此。沟槽A的第一纵截面指的是垂直于取向层010的上表面,且平行于取向层010的宽度方向y的截面。沟槽A的一端位于图6-3或图6-4中的正电极0141在取向层010的对应区域上,另一端位于图6-3或图6-4中的负电极0142在取向层010的对应区域上。N个沟槽A可以连通。图6-6所示的是N个沟槽A的一种连通情况。该图6-6中,N个沟槽A连通后,N个沟槽A中包括两个开口。图6-7所示的是N个沟槽A的另一种连通情况。该图6-7中,N个沟槽A连通后,N个沟槽A在该N个沟槽A的一端连通,N个沟槽A连通后,每个沟槽A包括一个开口。
可选地,取向层010可以采用PI材料或者无机材料形成。例如,当取向层010采用PI材料形成时,取向层010的形成过程可以包括:可以采用涂覆、磁控溅射、热蒸发或者PECVD等方法在形成有ITO电极014的基板上沉积一层具有一定厚度的PI材料,并对PI材料进行固化得到取向层010,之后采用摩擦(Rubbing)工艺或者光取向工艺对取向层010进行取向,使取向层010上形成多个沿取向层010的宽度方向y阵列式排布的沟槽A。每个沟槽A的一端位于图6-3或图6-4中ITO电极014的正电极0141在取向层010的对应区域上,另一端位于图6-3或图6-4中ITO电极014的负电极0142在取向层010的对应区域上。由于采用光取向工艺形成的沟槽的一致性较高,因此,本发明实施例优选采用光取向工艺对取向层010进行取向。
当取向层010采用无机材料形成时,取向层010的形成过程可以包括:采用涂覆、磁控溅射、热蒸发或者PECVD等方法在形成有ITO电极014的 基板上沉积一层具有一定厚度的无机材料,并对无机材料进行固化得到取向层010,之后采用微加工工艺对取向层010进行取向,使取向层010上形成多个沿取向层010的宽度方向y阵列式排布的沟槽A。微加工工艺如纳米压印工艺、MEMS等工艺。
需要说明的是,本发明实施例以取向层010采用PI材料或无机材料形成为例进行说明,例如,取向层010的形成材料还可以为其他材料,。图6-5所示的沟槽只是示意性的,本发明的实施例并不限于此,例如,沟槽的结构可以为微结构,沟槽的宽度的数量级可以为纳米量级。
在本发明实施例中,当取向层010采用PI材料形成时,可以采用摩擦(Rubbing)工艺或者光取向工艺在相邻的两个沟槽A的同一端形成沟槽,且当沟槽A不是距平行取向层010的长度方向的边最近的沟槽时,该沟槽A在其两端分别和与其相邻的沟槽连通,形成图6-6所示的沟槽;或者,采用Rubbing工艺或者光取向工艺在N个沟槽A的同一端形成一个沟槽,使得N个沟槽A连通,形成图6-7所示的沟槽。当取向层010采用无机材料形成时,可以采用微加工工艺在相邻的两个沟槽A的同一端形成沟槽,且当沟槽A不是距平行取向层010的长度方向的边最近的沟槽时,该沟槽A在其两端分别和与其相邻的沟槽连通,形成图6-6所示的沟槽;或者,采用微加工工艺在N个沟槽A的同一端形成一个沟槽,使得N个沟槽A连通,形成图6-7所示的沟槽。
步骤603、在取向层形成有沟槽的面上形成覆盖层,使取向层与覆盖层之间形成两端开口的沟道。
请参考图6-8,其示出的是在取向层010形成有沟槽的面上形成覆盖层012后的结构示意图。覆盖层012可以为PET膜片,该PET膜片的下表面可以为与取向层010的上表面相同的矩形,其可以采用贴片工艺粘贴在取向层010形成有沟槽的面上,示例地,覆盖层012的形成可以包括:在PET膜片的下表面涂覆一层光学透明粘合剂(Optically Clear Adhesive,OCA),之后将PET膜片涂覆有OCA的一面对准取向层010形成有沟槽的面,向PET膜片施加预设强度的压力使其粘贴在取向层010形成有沟槽的面上,然后采用预设温度烘烤PET膜片预设时长,对PET膜片进行固化,使其固定在取向层010形成有沟槽的面。预设强度、预设温度和预设时长都可以根据实际需要设置,示例地,预设强度为5Pa(帕),预设温度为90℃(摄氏度),预设 时长为10min(分钟),也即,例如,将PET膜片涂覆有OCA的一面对准取向层010形成有沟槽的面之后,向PET膜片施加5Pa的压力使其粘贴在取向层010形成有沟槽的面上,然后采用90℃的温度烘烤PET膜片10min,对PET膜片进行固化,使其固定在取向层010形成有沟槽的面,但是,本发明的实施例并不限于此。
需要说明的是,如图6-8所示,在取向层010形成有沟槽的面上形成覆盖层012后,由于覆盖层012只与取向层010形成有沟槽的面接触,与沟槽的槽面不接触,因此,取向层010与覆盖层012之间可以形成两端开口的沟道。
还需要说明的是,当N个沟槽如图6-6所示连通时,取向层010与覆盖层012之间形成的沟道可以包括两个开口,该两个开口分别位于N个沟道中与取向层010上的平行取向层010的长度方向x的边距离最近的两个沟道上。当N个沟槽如图6-7所示连通时,取向层010与覆盖层012之间形成的沟道可以包括N个开口,每个沟道上包括一个开口,且每个沟道上的开口靠近取向层010的同一边设置。
还需要说明的是,本发明实施例以覆盖层012为PET膜片为例进行说明,但是,本发明的实施例并不限于此,例如,覆盖层012还可以采用其他的材料形成。
步骤604、向沟道内灌注液态金属。液态金属包括多个液态金属结构。
请参考图6-9,其示出的是向沟道内灌注液态金属011后的结构示意图。参见图6-9,每个沟道内都灌注了液态金属011。该液态金属011可以包括多个液态金属结构,该液态金属011可以是采用铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种形成的合金,本发明实施例不对液态金属011的具体形成材料以及形成方式做限定。
在本发明实施例中,向沟道内灌注液态金属可以包括以下四种方式:
第一种方式,请参考图6-10,其示出的是图6-1所示实施例提供的一种向沟道内灌注液态金属的方法的流程图,参见图6-10,该方法流程可以包括如下几个步骤:
步骤6041a、对沟道进行抽真空。
示例地,可以采用真空泵在沟道的一端的开口处对沟道进行抽真空,排出沟道内的空气,使沟道内形成真空。抽真空的过程可以采用常规技术,本 发明实施例在此不再赘述。但是需要说明的是,在本发明实施例中,可以在真空条件下对沟道进行抽真空。
还需要说明的是,在本发明实施例中,由于沟道的个数为N,因此,可以分别对每个沟道进行抽真空,使每个沟道内形成真空。当每个沟道都为两端开口的沟道时,可以分别在每个沟道的两端对沟道进行抽真空,但是,本发明的实施例并不限于此。
步骤6042a、将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中,使液态金属槽中的液态金属充填在沟道内。
由于对沟道抽真空后,沟道内的气压小于外界气压,将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中后,液态金属槽中的液态金属可以在外界气压的作用下,从沟道的开口进入沟道内。
需要说明的是,当液态金属槽处于非真空环境下时,在将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中之前,可以先对沟道的开口进行密封,然后,在将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中之后,打开沟道的开口,以便于液态金属槽中的液态金属可以在外界气压的作用下,从沟道的开口进入沟道内;当液态金属槽处于真空环境下时,将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中之后,可以在液态金属槽中的液态金属的表面对液态金属施加压力,使得液态金属槽中的液态金属可以从沟道的开口进入沟道内。
还需要说明的是,在本发明实施例中,在将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中指的是将抽真空后的包括取向层和覆盖层的基板整体浸泡在液态金属槽中。
还需要说明的是,例如,步骤6041a和步骤6042a可以同时进行,即,将包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中之后,在沟道的一端的开口处对沟道进行抽真空,在抽真空的过程中,液态金属槽中的液态金属可以在外界气压的作用下,从沟道的另一端的开口进入沟道内。
第二种方式,请参考图6-11,其示出的是图6-1所示实施例提供的另一种向沟道内灌注液态金属的方法的流程图,参见图6-11,该方法可以包括如下几个步骤:
步骤6041b、密封沟道一端的开口。
示例地,可以采用PET膜片密封沟道一端的开口。密封沟道一端的开口的过程与步骤603中在取向层形成有沟槽的面上形成覆盖层的过程相同或者类似,其密封过程可以参考步骤603,本实施例在此不再赘述。
步骤6042b、对沟道进行抽真空。
示例地,可以采用真空泵在沟道未密封的一端的开口对沟道进行抽真空,排出沟道内的空气,使沟道内形成真空。需要说明的是,在本发明实施例中,可以在真空条件下对沟道进行抽真空。
还需要说明的是,本发明实施例是以在沟道未密封的一端的开口对沟道进行抽真空为例进行说明的,例如,还可以在密封的一端对沟道进行抽真空,本发明实施例并不限于此。
步骤6043b、采用滴注(ODF)工艺通过沟道另一端的开口向沟道内灌注液态金属。
例如,采用滴注(ODF)工艺从沟道未密封的一端的开口向沟道内滴注液态金属。为了保证液态金属均匀的充填在沟道内,在滴注液态金属的同时,可以通过电荷耦合元件(CCD)检查滴注的液态金属,以保证充填的液态金属的均匀性。CCD检查的过程可参考常规技术,本发明实施例在此不再赘述。
还需要说明的是,例如,步骤6042b和步骤6043b可以同时进行,即,在沟道的密封的一端处对沟道进行抽真空,在抽真空的过程中,采用ODF工艺从沟道未密封的一端的开口向沟道内滴注液态金属,但是,本发明的实施例并不限于此。
以上两种方式可以在N个沟道未连通时,向每个沟道内灌注液态金属,在本发明实施例中,当N个沟道连通时,还可以采用下述第三种方式和第四种方式向沟道内灌注液态金属。N个沟道连通时,形成该N个沟道的沟槽可以采用图6-6或者图6-7中的任意一种方式连通。
第三种方式,请参考图6-12,其示出的是图6-1所示实施例提供的再一种向沟道内灌注液态金属的方法的流程图,参见图6-12,该方法可以包括如下几个步骤:
步骤6041c、密封N个沟道的开口中,除第一开口以外的开口,第一开口为N个沟道的开口中的任意一个开口。
在本发明实施例中,N个沟道可以是连通的,因此,可以密封N个沟道的开口中,除第一开口以外的开口,第一开口为N个沟道的开口中的任意一 个开口,其中,密封沟道的开口的过程与步骤603中在取向层形成有沟槽的面上形成覆盖层的过程相同或者类似,其密封过程可以参考步骤603,本实施例在此不再赘述。
需要说明的是,当N个沟道连通时,形成该N个沟道的沟槽可以采用图6-6或者图6-7中的任意一种方式连通,若形成该N个沟道的沟槽采用图6-6所示的方式连通,则可以密封该连通的N个沟道的两个开口中的任意一个开口,若形成该N个沟道的沟槽采用图6-7所示的方式连通,则可以密封该连通的N个沟道的N个开口中的任意N-1个开口,本发明的实施例并不限于此。
步骤6042c、对N个沟道进行抽真空。
示例地,可以在N个沟道的第一开口处对N个沟道进行抽真空,也可以在N个沟道的开口中除第一开口以外的任意一个开口处对N个沟道进行抽真空,本发明的实施例并不限于此,通过抽真空可以排出N个沟道内的空气,使N个沟道内形成真空。
步骤6043c、采用滴注(ODF)工艺通过第一开口向沟道内灌注液态金属。
在对N个沟道进行抽真空之后,可以采用ODF工艺通过第一开口向沟道内灌注液态金属。在滴注液态金属的同时,可以通过CCD检查滴注的液态金属,以保证充填的液态金属的均匀性。
需要说明的是,本发明实施例是以步骤6042c和步骤6043c按照先后顺序进行为例进行说明,例如,该步骤6042c和步骤6043c还可以同时进行,即,可以一边对沟道进行抽真空,一边从第一开口向沟道内灌注液态金属,本发明的实施例并不限于此。
第四种方式,请参考图6-13,其示出的是图6-1所示实施例提供的又一种向沟道内灌注液态金属的方法的流程图,参见图6-13,该方法可以包括如下几个步骤:
步骤6041d、密封N个沟道的开口中,除第一开口以外的开口,第一开口为N个沟道的开口中的任意一个开口。
在本发明实施例中,N个沟道可以是连通的,因此,可以密封N个沟道的开口中,除第一开口以外的开口,第一开口为N个沟道的开口中的任意一个开口。密封沟道的开口的过程与步骤603中在取向层形成有沟槽的面上形 成覆盖层的过程相同或者类似,其密封过程可以参考步骤603,本实施例在此不再赘述。
需要说明的是,当N个沟道连通时,形成该N个沟道的沟槽可以采用图6-6或者图6-7中的任意一种方式连通,若形成该N个沟道的沟槽采用图6-6所示的方式连通,则可以密封该连通的N个沟道的两个开口中的任意一个开口,若形成该N个沟道的沟槽采用图6-7所示的方式连通,则可以密封该连通的N个沟道的N个开口中的任意N-1个开口,本发明的实施例并不限于此。
步骤6042d、对N个沟道进行抽真空。
示例地,可以在N个沟道的第一开口处对N个沟道进行抽真空,也可以在N个沟道的开口中除第一开口以外的任意一个开口处对N个沟道进行抽真空,本发明的实施例并不限于此,通过抽真空可以排出N个沟道内的空气,使N个沟道内形成真空。
步骤6043d、将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中,使液态金属槽中的液态金属从第一开口进入沟道,并充填在沟道内。
由于对沟道抽真空后,沟道内的气压小于外界气压,将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中后,液态金属槽中的液态金属可以在外界气压的作用下,从沟道的第一开口进入沟道,并充填在沟道内。
需要说明的是,当液态金属槽处于非真空环境下时,在将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中之前,可以先对沟道的第一开口进行密封,然后,在将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中之后,打开沟道的第一开口,以便于液态金属槽中的液态金属可以在外界气压的作用下,从沟道的第一开口进入沟道,并充填在沟道内;当液态金属槽处于真空环境下时,在将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中之后,可以在液态金属槽中的液态金属的表面对液态金属施加压力,使得液态金属槽中的液态金属可以从沟道的第一开口进入沟道,并充填在沟道内。
还需要说明的是,在本发明实施例中,在将抽真空后的包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中指的是:将抽真空后的包 括取向层和覆盖层的基板整体浸泡在液态金属槽中。
还需要说明的是,例如,步骤6042d和步骤6043d可以同时进行,即,将包括取向层和覆盖层的基板放置在盛放有液态金属的液态金属槽中之后,对N个沟道进行抽真空,在抽真空的过程中,液态金属槽中的液态金属可以在外界气压的作用下,从沟道的第一开口进入沟道内。
步骤605、向液态金属施加平行于沟槽的长度方向的电场,使每个液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且每个液态金属结构的长轴方向与沟槽的长度方向平行。
由于沟槽的一端位于ITO电极的正电极在取向层的对应区域上,另一端位于ITO电极的负电极在取向层的对应区域上,在向ITO电极的正电极施加正相电压,向ITO电极的负电极施加负相电压时,由于ITO电极本身存在电阻,因此,ITO电极的正电极和负电极之间存在电压差,使得ITO电极的正电极和负电极之间可以形成电场,该电场的方向与沟槽的长度方向平行。
液态金属的流动性较高,且在不同的电场或者磁场的作用下,液态金属结构可以以不同的形态存在,在本发明实施例中,可以向ITO电极施加预设强度的电压预定时长,以使得每个液态金属结构在ITO电极形成的电场的作用下,沿自身所在沟槽的长度方向拉伸形成棒状结构,最终每个棒状结构的液态金属结构的长轴方向与沟槽的长度方向平行。预设强度和预定时长都可以根据实际需要设置,本发明的实施例并不限于此,示例地,可以将ITO电极的正电极与电源的正电极连接,ITO电极的负电极与电源的负电极连接。将电源的电压调节至2~10V(伏特),使得电源可以向ITO电极施加2~10V的电压,由于ITO电极本身存在电阻,因此,ITO电极的正电极和负电极之间存在电压差,使得ITO电极的正电极和负电极之间可以形成电场,该电场的方向与沟槽的长度方向平行,向ITO电极施加10~30s(秒)的电压,以使得通过ITO电极向液态金属施加10~30s的预定强度的电场,使每个液态金属结构在ITO电极形成的电场的作用下,沿自身所在沟槽的长度方向拉伸形成棒状结构,最终每个棒状结构的液态金属结构的长轴方向与沟槽的长度方向平行。
示例地,请参考图3,沟槽A内形成有液态金属011,液态金属011包括多个液态金属结构0111,每个液态金属结构0111为棒状结构,且每个液态金属结构0111的长轴方向与沟槽A的长度方向x2平行。棒状结构的液态 金属结构0111是具有长轴和短轴的三维立体结构,当棒状结构的液态金属结构0111的长轴与沟槽A的长度方向平行时,其短轴与沟槽A的长度方向垂直。在本发明实施例中,液态金属0111的短轴方向即是偏光片的偏振方向,液态金属0111的长轴方向与偏光片的偏振垂直。需要说明的是,在本发明实施例中,每个液态金属结构0111可以由多个液态金属分子形成,本发明的实施例并不限于此。
步骤606、对液态金属进行固化。
当每个液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且每个液态金属结构的长轴方向与沟槽的长度方向平行时,可以对液态金属进行固化,使得在取消电场后,每个液态金属结构依然呈棒状结构,且每个液态金属结构的长轴方向与沟槽的长度方向平行,形成偏光片的稳定的偏振方向。
室温下的液态金属在低于室温的预设温度下,可以以固态存在,因此,在本发明实施例中,可以采用降温的方式对液态金属进行固化。
步骤607、在覆盖层上形成保护层,得到偏光片。
请参考图6-14,其示出的是在覆盖层012上形成保护层013后的结构示意图。可以采用涂覆、磁控溅射、热蒸发或者PECVD的方法在覆盖层012上沉积一定厚度的硅化物作为保护层013。保护层013可以选用氧化物、氮化物或氧氮化合物生成,对应的反应气体可以为SiH4、NH3、N2的混合气体或SiH2Cl2、NH3、N2的混合气体。在覆盖层012上形成保护层013后,可以得到偏光片。
需要说明的是,本发明实施例以保护层013采用硅化物形成为例进行说明,但是,本发明的实施例并不限于此。例如,保护层013还可以采用其他的材料形成。
步骤608、将偏光片从载体基板上剥离。
请参考图6-15,其示出的是剥离载体基板后的偏光片的结构示意图,在本发明实施例中,由于在步骤606中已经形成了稳定的偏振方向,因此,在剥离载体基板时,可以将ITO电极也从偏光片上剥离。在本发明实施例中,可以采用激光剥离的工艺剥离载体基板和ITO电极。
需要说明的是,本发明实施例是以剥离ITO电极为例进行说明的,例如,为了节省制作工艺,也可以不剥离ITO电极,本发明的实施例并不限于此。
步骤609、在取向层未形成有沟槽的面上形成保护层。
请参考图6-16,其示出的是在取向层010未形成有沟槽的面上形成保护层013后的结构示意图。在取向层010未形成有沟槽的面上形成保护层013的过程可以参考步骤607在覆盖层上形成保护层的过程,本实施例在此不再赘述。
需要说明的是,若步骤608中没有剥离ITO电极,则保护层013形成在ITO电极未与取向层接触的一面上,但是,本发明的实施例并不限于此。
还需要说明的是,在本发明实施例中,还可以在保护层上形成防反射膜等膜层,以使得偏光片具有防反射、耐刮伤、高亮度等功能。
还需要说明的是,本实施例是以在载体基板上形成ITO电极为例进行说明的,但是本发明的实施例并不限于此。例如,还可以不在载体基板上形成ITO电极,而在取向层形成有沟槽的面上形成ITO电极,或者还可以在载体基板上和取向层形成有沟槽的面上都形成ITO电极,或者还可以在其他位置形成ITO电极,本发明实施例中的ITO电极主要用于对液态金属施加电压,以使得液态金属结构能够沿沟槽的长度方向拉伸形成棒状结构,且每个液态金属结构的长轴方向与沟槽的长度方向平行,但是,本发明的实施例并不限于此。
还需要说明的是,当N个沟道连通时,在向沟道内形成液态金属的时候,沟道的连通部位也会形成液态金属,影响偏光片的偏振方向,例如,可以根据需要对偏光片进行裁剪,以去除N个沟道的连通部位,但是,本发明的实施例并不限于此。
还需要说明的是,本发明实施例提供的偏光片的制造方法步骤的先后顺序可以进行适当调整,也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。示例地,在本发明实施例中,步骤601可以删除,也即,可以不形成ITO电极,直接形成取向层并在取向层上的沟槽内形成液态金属,并按照后续步骤对液态金属进行固化,这样也可以形成偏光片的偏振方向,偏光片的偏振方向垂直取向层上的沟槽的长度方向。
在本发明实施例中,如果入射光的偏振方向与沟槽的长度方向平行,位于沟槽内的液态金属中的自由电子受到外电场的作用沿沟槽的长度方向定向移动,由于沟槽的长度与入射光的波长相比很长,相当于入射光作用到金属 薄膜表面,沟槽长度方向的偏振光被反射,相反,当入射光的偏振方向与沟槽的长度方向垂直时,由于沟道的宽度只有入射光的波长的三分之一到四分之一左右,自由电子的运动严重受阻,无法与入射光发生有效作用,不产生反射和折射,从而透射。
本发明实施例提供的偏光片的制造方法,通过在载体基板上形成取向层,使取向层上形成有沟槽,向沟槽内形成液态金属并向液态金属施加平行于沟槽的长度方向的电场,使液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且液态金属结构的长轴方向与沟槽的长度方向平行,之后对液态金属进行固化得到偏光片,将偏光片从载体基板上剥离;液态金属结构的长轴方向与沟槽的长度方向平行,液态金属结构的短轴方向即是偏光片的偏振方向,本发明实施例采用液态金属实现偏光片的偏振方向,使得偏光片的偏振方向容易控制,偏光片的良率较高。
本发明实施例提供的偏光片采用液态金属实现偏光片的偏振方向,由于液态金属的成本较低,因此,本发明实施例提供的偏光片的成本较低。
请参考图7,其示出的是本发明实施例提供的再一种偏光片的制造方法的流程图。该偏光片的制造方法可以用于制造图1或图4所示的偏光片01,参见图7,该偏光片的制造方法可以包括如下几个步骤:
步骤701、在载体基板上形成取向层,使取向层上形成有沟槽。
载体基板可以为透明基板,例如,可以是采用玻璃、石英、透明树脂等具有一定坚固性的导光且非金属材料制成的基板。载体基板的上表面可以为矩形。
请参考图7-2,其示出的是在载体基板02上形成取向层010后的结构示意图,本发明实施例以载体基板02的上表面为矩形为例进行说明,其中,取向层010的上表面可以为与载体基板02的上表面相同的矩形,取向层010的宽度方向可以为y,取向层010的宽度方向y与载体基板02的宽度方向平行。取向层010的上表面与载体基板02的上表面相同指的是:取向层010的上表面的形状与载体基板02的上表面的形状相同,且取向层010的上表面的面积与载体基板02的上表面的面积相同。
参见图7-2,取向层010上形成有N个沿取向层010的宽度方向y阵列式排布的沟槽A,每个沟槽A为长条形沟槽,且每个沟槽A的长度方向与取向层010的宽度方向y垂直。N为大于或者等于2的正整数,但是,本发明 的实施例并不限于此,N还可以是其他数值。每个沟槽A的第一纵截面可以为V字形,但是,本发明的实施例并不限于此。沟槽A的第一纵截面指的是垂直于取向层010的上表面,且平行于取向层010的宽度方向y的截面。
可选地,取向层010可以采用PI材料或者无机材料形成。当取向层010采用PI材料形成时,取向层010的形成过程可以包括:可以采用涂覆、磁控溅射、热蒸发或者PECVD等方法在载体基板02上沉积一层具有一定厚度的PI材料,并对PI材料进行固化得到取向层010,之后采用Rubbing工艺或者光取向工艺对取向层010进行取向,使取向层010上形成N个沿取向层010的宽度方向y阵列式排布的沟槽A。需要说明的是,由于采用光取向工艺形成的沟槽的一致性较高,因此,本发明实施例优选采用光取向工艺对取向层010进行取向。
当取向层010采用无机材料形成时,取向层010的形成过程可以包括:采用涂覆、磁控溅射、热蒸发或者PECVD等方法在载体基板02上沉积一层具有一定厚度的无机材料,并对无机材料进行固化得到取向层010,之后采用微加工工艺对取向层010进行取向,使取向层010上形成多个沿取向层010的宽度方向y阵列式排布的沟槽A。微加工工艺可以为如纳米压印工艺、MEMS等工艺。
需要说明的是,本发明实施例以取向层010采用PI材料或无机材料形成为例进行说明,但是,本发明的实施例并不限于此。例如,取向层010的形成材料也可以为其他材料。图7-2所示的沟槽只是示意性的,本发明的实施例并不限于此,例如,沟槽的结构可以为微结构,沟槽的宽度的数量级可以为纳米量级。
步骤702、采用吸附有液态金属的转印版向取向层的沟槽内转印液态金属。
请参考图7-3,其示出的是向取向层010的沟槽内转印液态金属011后的结构示意图。参见图7-3,每个沟槽内都形成了液态金属011,液态金属011可以包括多个液态金属结构。该液态金属011可以是采用铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种形成的合金,本发明实施例不对液态金属011的具体形成材料以及形成方式做限定。需要说明的是,在本发明实施例中,每个液态金属结构0111可以由多个液态金属分子形成,但是,本发明的实施例并不限于此。
在本发明实施例中,可以采用卷对卷(roll to roll)工艺向取向层010的沟槽内转印液态金属011。卷对卷工艺中采用的转印版上形成有多个条状图案(pattern),任意两个相邻的条状图案之间的距离可以等于任意相邻的两个沟槽之间的距离,可以在条状图案上吸附液态金属,之后将转印版包裹在辊轮上。采用辊轮在取向层010形成有沟槽的面上滚动,辊轮在滚动的过程中,使转印版上的条状图案对准沟槽,该条状图案上的液态金属即可被转印至沟槽内。
步骤703、在取向层形成有沟槽的面上形成氧化铟锡ITO电极,沟槽内形成有液态金属,ITO电极包括正电极和负电极,正电极与沟槽的一端对应,负电极与沟槽的另一端对应。
请参考图7-4,其示出的是在取向层010形成有沟槽的面上形成ITO电极014后的结构示意图,本发明实施例以取向层010的上表面是矩形为例进行说明的,参见图7-4,可选地,可以在取向层010的整个上表面上形成ITO电极014,也可以在取向层010的上表面上沿取向层010的宽度方向y形成N个阵列排布的长条状的ITO电极014,使每个长条状的ITO电极014的长度方向与取向层010的长度方向平行。N为大于或者等于2的正整数,但是,本发明的实施例不限于此。N也可以采用其他数值。本发明实施例以在取向层010形成有沟槽的整个面上形成ITO电极014为例进行说明。ITO电极可以包括正电极和负电极(图7-4中未示出),正电极与沟槽的一端对应,负电极与沟槽的另一端对应。ITO电极014的形成过程以及ITO电极014的俯视图可以参考图6-1所示实施例中的步骤601、图6-3以及图6-4,本实施例在此不再赘述。
步骤704、向液态金属施加平行于沟槽的长度方向的电场,使每个液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且每个液态金属结构的长轴方向与沟槽的长度方向平行。
步骤705、对液态金属进行固化。
以上步骤704和步骤705与图6-1所示实施例中的步骤605和步骤606相同或类似,其实现过程可以参考图6-1所示实施例中的步骤605和步骤606,本实施例在此不再赘述。
步骤706、剥离ITO电极。
剥离ITO电极后的结构示意图与图7-3相同或类似,本实施例在此不再 赘述。在本发明实施例中,由于在步骤705中已经形成了稳定的偏振方向,因此,为了减小偏光片对光线的吸收,提高透光率,可以将ITO电极从取向层010形成有沟槽的面上剥离。在本发明实施例中,可以采用激光剥离的工艺剥离ITO电极。
需要说明的是,本发明实施例是以剥离ITO电极为例进行说明的,例如,为了节省制作工艺,也可以不剥离ITO电极,本发明实施例并不限于此。
步骤707、在取向层形成有沟槽的面上形成覆盖层。
请参考图7-5,其示出的是在取向层010形成有沟槽的面上形成覆盖层012后的结构示意图。覆盖层012的形成过程与图6-1所示实施例中的步骤603相同或类似,本实施例在此不再赘述。但是需要说明的是,由于步骤706中在沟槽内形成了液态金属011,因此,在本实施例中,在取向层010形成有沟槽的面上形成覆盖层012后,取向层010与覆盖层012之间的沟道已被液态金属011充填。
步骤708、在覆盖层上形成保护层,得到偏光片。
步骤709、将偏光片从载体基板上剥离。
步骤710、在取向层未形成有沟槽的面上形成保护层。
以上步骤708至步骤710与图6-1所示实施例中的步骤607至步骤609相同或类似,其实现过程可以参考图6-1所示实施例中的步骤607至步骤609,本实施例在此不再赘述。
需要说明的是,本实施例是以在取向层形成有沟槽的面上形成ITO电极为例进行说明的,但是,本发明的实施例并不限于此。例如,还可以不在取向层形成有沟槽的面上形成ITO电极,而在载体基板上形成ITO电极,或者还可以在载体基板上和取向层形成有沟槽的面上都形成ITO电极,或者还可以在其他位置形成ITO电极,本发明实施例中的ITO电极主要用于对液态金属施加电压,以使得液态金属结构能够沿沟槽的长度方向拉伸形成棒状结构,且每个液态金属结构的长轴方向与沟槽的长度方向平行,本发明不对ITO电极的形成位置做限定。
还需要说明的是,当N个沟道连通时,在向沟道内形成液态金属的时候,沟道的连通部位也会形成液态金属,影响偏光片的偏振方向,例如,可以根据需要对偏光片进行裁剪,以去除N个沟道的连通部位,本发明实施例对此不做限定。
还需要说明的是,本发明实施例提供的偏光片的制造方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。示例地,在本发明实施例中,步骤703可以删除,也即,可以不形成ITO电极,直接形成取向层并在取向层上的沟槽内形成液态金属,并按照后续步骤对液态金属进行固化,这样也可以形成偏光片的偏振方向,偏光片的偏振方向垂直取向层上的沟槽的长度方向。
在本发明实施例中,如果入射光的偏振方向与沟槽的长度方向平行,位于沟槽内的液态金属中的自由电子受到外电场的作用沿沟槽的长度方向定向移动,由于沟槽的长度与入射光的波长相比很长,相当于入射光作用到金属薄膜表面,沟槽长度方向的偏振光被反射,相反,当入射光的偏振方向与沟槽的长度方向垂直时,由于沟道的宽度只有入射光的波长的三分之一到四分之一左右,自由电子的运动严重受阻,无法与入射光发生有效作用,不产生反射和折射,从而透射。
综上所述,本发明实施例提供的偏光片的制造方法,通过在载体基板上形成取向层,使取向层上形成有沟槽,向沟槽内形成液态金属并向液态金属施加平行于沟槽的长度方向的电场,使液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且液态金属结构的长轴方向与沟槽的长度方向平行,之后对液态金属进行固化得到偏光片,将偏光片从载体基板上剥离;液态金属结构的长轴方向与沟槽的长度方向平行,液态金属结构的短轴方向即是偏光片的偏振方向,本发明实施例采用液态金属实现偏光片的偏振方向,使得偏光片的偏振方向容易控制,偏光片的良率较高。
本发明实施例提供的偏光片采用液态金属实现偏光片的偏振方向,由于液态金属的成本较低,因此,本发明实施例提供的偏光片的成本较低。
请参考图8,其示出的是本发明实施例提供的一种显示装置03的结构示意图,参见图8,该显示装置03包括:对盒成型的阵列基板031和彩膜基板032,以及填充在阵列基板031和彩膜基板032之间的液晶层033。
如图8所示,该液晶层033包括多个液晶分子0331和隔垫物0332,该隔垫物0332分别与阵列基板031和彩膜基板032相接触,用于支撑阵列基板031和彩膜基板032,使得阵列基板031和彩膜基板032之间形成空间,液晶 分子0331位于该空间内。液晶分子0331可以为正向液晶分子或者负向液晶分子,阵列基板031设置有ITO电极(图8中未示出),当向该ITO电极施加电压时,在电场的作用下,液晶分子0331的长轴或短轴沿着电场方向规则排列,显示出各向异性,影响入射光的偏振方向。
阵列基板032的背光侧设置有上偏光片034,彩膜基板032远离阵列基板031的一侧设置有下偏光片035,上偏光片034和/或下偏光片035为图1或图4任一所示的偏光片。
进一步地,请继续参考图8,该显示装置03还包括:背光源036。背光源036设置在上偏光片034远离阵列基板031的一侧。可选地,背光源036可以包括光源0361和导光板0362,如图8所示,光源0361可以设置在上偏光片034远离阵列基板031的一侧,导光板0362可以设置在光源0361与上偏光片034之间,此时,该背光源036可以称为直下式背光源。或者,如图9所示,导光板0362可以设置在上偏光片034远离阵列基板031的一侧,光源0361可以设置在导光板0362的侧面,此时,该背光源036可以称为侧入式背光源。
综上所述,本发明实施例提供的显示装置,包括偏光片,偏光片通过在载体基板上形成取向层,使取向层上形成有沟槽,向沟槽内形成液态金属并向液态金属施加平行于沟槽的长度方向的电场,使液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且液态金属结构的长轴方向与沟槽的长度方向平行,之后对液态金属进行固化得到偏光片,将偏光片从载体基板上剥离;液态金属结构的长轴方向与沟槽的长度方向平行,液态金属结构的短轴方向即是偏光片的偏振方向,本发明实施例提供的显示装置采用液态金属实现偏光片的偏振方向,使得偏光片的偏振方向容易控制,偏光片的良率较高,提高了显示装置的显示性能。
本发明中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以理解,实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
本发明实施例提供的偏光片及其制造方法、显示装置,通过在载体基板上形成取向层,使取向层上形成有沟槽,向沟槽内形成液态金属并向液态金属施加平行于沟槽的长度方向的电场,使液态金属结构沿沟槽的长度方向拉伸形成棒状结构,且液态金属结构的长轴方向与沟槽的长度方向平行,之后对液态金属进行固化得到偏光片,将偏光片从载体基板上剥离;液态金属结构的长轴方向与沟槽的长度方向平行,液态金属结构的短轴方向即是偏光片的偏振方向,本发明实施例提供的偏光片采用液态金属实现偏光片的偏振方向,使得偏光片的偏振方向容易控制,偏光片的良率较高。
可以理解的是,以上实施方式仅仅是为了说明本发明的实施例的原理而采用的示例性实施方式,然而本发明的实施例并不局限于此。,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本申请要求于2015年06月11日提交的名称为“偏光片及其制造方法、显示装置”的中国专利申请No.201510320735.7的优先权,其全文通过引用合并于本文。

Claims (23)

  1. 一种偏光片的制造方法,包括:
    在载体基板上形成取向层,使所述取向层上形成有沟槽;
    在所述沟槽内形成液态金属,所述液态金属包括多个液态金属结构;
    向所述液态金属施加平行于所述沟槽的长度方向的电场,使每个所述液态金属结构沿所述沟槽的长度方向拉伸形成棒状结构,且每个所述液态金属结构的长轴方向与所述沟槽的长度方向平行;
    对所述液态金属进行固化,得到偏光片;以及
    将所述偏光片从所述载体基板上剥离。
  2. 根据权利要求1所述的方法,还包括:
    在所述沟槽内形成液态金属之前,
    在所述取向层形成有所述沟槽的面上形成覆盖层,使所述取向层与所述覆盖层之间形成两端开口的沟道;
    所述在所述沟槽内形成液态金属包括:
    向所述沟道内灌注液态金属。
  3. 根据权利要求2所述的方法,其中,
    所述向所述沟道内灌注液态金属包括:
    对所述沟道进行抽真空;以及
    将抽真空后的包括所述取向层和所述覆盖层的基板放置在盛放有液态金属的液态金属槽中,使所述液态金属槽中的液态金属充填在所述沟道内。
  4. 根据权利要求2所述的方法,其中,
    所述向所述沟道内灌注液态金属包括:
    密封所述沟道一端的开口;
    对所述沟道进行抽真空;以及
    采用滴注(ODF)工艺通过所述沟道另一端的开口向所述沟道内灌注液态金属。
  5. 根据权利要求2所述的方法,其中,
    所述沟道的个数为N,所述N为大于或者等于2的正整数,N个所述沟道连通,
    所述向所述沟道内灌注液态金属包括:
    密封N个所述沟道的开口中,除第一开口以外的开口,所述第一开口为所述N个所述沟道的开口中的任意一个开口;
    对N个所述沟道进行抽真空;以及
    采用滴注工艺通过所述第一开口向所述沟道内灌注液态金属。
  6. 根据权利要求2所述的方法,其中,
    所述沟道的个数为N,所述N为大于或者等于2的正整数,N个所述沟道连通,
    所述向所述沟道内灌注液态金属包括:
    密封N个所述沟道的开口中,除第一开口以外的开口,所述第一开口为所述N个所述沟道的开口中的任意一个开口;
    对N个所述沟道进行抽真空;以及
    将抽真空后的包括所述取向层和所述覆盖层的基板放置在盛放有液态金属的液态金属槽中,使所述液态金属槽中的液态金属从所述第一开口进入所述沟道,并充填在所述沟道内。
  7. 根据权利要求2所述的方法,还包括:
    在所述沟槽内形成液态金属之后,
    在所述覆盖层上形成保护层。
  8. 根据权利要求1至7任一所述的方法,还包括:
    在载体基板上形成取向层,使所述取向层上形成有沟槽之前,在所述载体基板上形成氧化铟锡ITO电极,所述ITO电极包括正电极和负电极;
    所述在载体基板上形成取向层,使所述取向层上形成有沟槽,包括:
    在形成有所述ITO电极的基板上形成取向层,使所述取向层上形成有沟槽,且所述沟槽的一端位于所述正电极在所述取向层的对应区域上,另一端位于所述负电极在所述取向层的对应区域上。
  9. 根据权利要求1所述的方法,其中,
    所述在所述沟槽内形成液态金属包括:
    采用吸附有液态金属的转印版向所述取向层的沟槽内转印液态金属;
    所述方法还包括:在所述沟槽内形成液态金属之后,
    在所述取向层形成有所述沟槽的面上形成氧化铟锡ITO电极,所述沟槽内形成有液态金属,所述ITO电极包括正电极和负电极,所述正电极与所述沟槽的一端对应,所述负电极与所述沟槽的另一端对应。
  10. 根据权利要求9所述的方法,还包括:在对所述液态金属进行固化之后,
    剥离所述ITO电极;
    在所述取向层形成有所述沟槽的面上形成覆盖层;以及
    在所述覆盖层上形成保护层。
  11. 根据权利要求1所述的方法,还包括:
    在所述将偏光片从所述载体基板上剥离之后,
    在所述取向层未形成有所述沟槽的面上形成保护层。
  12. 根据权利要求1所述的方法,其中,
    所述取向层采用聚酰亚胺PI材料形成,所述在载体基板上形成取向层,使所述取向层上形成有沟槽,包括:
    采用聚酰亚胺PI材料在所述载体基板上形成取向层;以及
    采用摩擦工艺或者光取向工艺在所述取向层上形成所述沟槽。
  13. 根据权利要求1所述的方法,其中,
    所述取向层采用无机材料形成,所述在载体基板上形成取向层,使所述取向层上形成有沟槽,包括:
    采用无机材料在所述载体基板上形成取向层;以及
    采用微加工工艺在所述取向层上形成所述沟槽。
  14. 根据权利要求2或10所述的方法,其中,
    所述覆盖层为聚酯薄膜PET膜片。
  15. 根据权利要求1所述的方法,其中,
    所述沟槽的个数为N,所述N为大于或者等于2的正整数;以及
    N个所述沟槽阵列排布在所述取向层上。
  16. 根据权利要求1所述的方法,其中,
    所述液态金属为采用铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种形成的合金。
  17. 一种偏光片,包括:
    取向层,所述取向层上形成有沟槽,所述沟槽内形成有液态金属,所述液态金属包括多个液态金属结构,每个所述液态金属结构为棒状结构,且每个所述液态金属结构的长轴方向与所述沟槽的长度方向平行。
  18. 根据权利要求17所述的偏光片,其中,
    所述取向层形成有所述沟槽的面上形成有覆盖层;以及
    所述覆盖层和所述取向层未形成有所述沟槽的面上都形成有保护层。
  19. 根据权利要求18所述的偏光片,其中,
    所述取向层采用聚酰亚胺(PI)材料或者无机材料形成;
    所述覆盖层为聚酯薄膜(PET)膜片。
  20. 根据权利要求17所述的偏光片,其中,
    所述沟槽的个数为N,所述N为大于或者等于2的正整数;以及
    N个所述沟槽阵列式排布在所述取向层上。
  21. 根据权利要求17所述的偏光片,其中,
    所述液态金属为采用铯、镓、铷、钾、钠、铟、锂、锡、铋、锌、锑、镁、铝中的至少两种形成的合金。
  22. 一种显示装置,包括:对盒成型的阵列基板和彩膜基板,以及填充在所述阵列基板和所述彩膜基板之间的液晶层;
    所述阵列基板的背光侧设置有上偏光片,所述彩膜基板远离所述阵列基板的一侧设置有下偏光片,所述上偏光片和/或所述下偏光片为权利要求17至21任一项所述的偏光片。
  23. 根据权利要求22所述的显示装置,还包括:背光源,
    所述背光源设置在所述上偏光片远离所述阵列基板的一侧。
PCT/CN2015/091654 2015-06-11 2015-10-10 偏光片及其制造方法、显示装置 WO2016197493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/104,091 US10451785B2 (en) 2015-06-11 2015-10-10 Polarizer, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510320735.7 2015-06-11
CN201510320735.7A CN104849906B (zh) 2015-06-11 2015-06-11 偏光片及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2016197493A1 true WO2016197493A1 (zh) 2016-12-15

Family

ID=53849666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091654 WO2016197493A1 (zh) 2015-06-11 2015-10-10 偏光片及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US10451785B2 (zh)
CN (1) CN104849906B (zh)
WO (1) WO2016197493A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849906B (zh) * 2015-06-11 2018-01-26 京东方科技集团股份有限公司 偏光片及其制造方法、显示装置
CN106564057B (zh) * 2015-10-09 2018-11-16 中国科学院理化技术研究所 一种软体机器人
CN105425329B (zh) 2016-01-04 2019-01-22 京东方科技集团股份有限公司 一种偏光片及其制备方法、显示面板和显示装置
CN105629584A (zh) * 2016-01-07 2016-06-01 京东方科技集团股份有限公司 一种取向层的制作方法及显示基板的制作方法
CN105511006B (zh) * 2016-02-03 2018-09-07 京东方科技集团股份有限公司 偏光片、显示基板、液晶显示面板及其制备方法
KR102581143B1 (ko) * 2016-08-18 2023-09-21 삼성디스플레이 주식회사 표시 장치
CN106405947A (zh) * 2016-10-27 2017-02-15 宁波视睿迪光电有限公司 液晶透镜膜及液晶透镜膜制造方法
CN107622818B (zh) * 2017-01-12 2023-07-04 中国科学院宁波材料技术与工程研究所 一种弹性导线及其制备方法
CN107643619A (zh) * 2017-08-30 2018-01-30 广东深越光电技术有限公司 一种能避免残像的触控液晶显示装置
CN110510889B (zh) * 2019-09-12 2021-11-16 上海理工大学 一种氮氧化钛薄膜及其基于激光剥离技术的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080158501A1 (en) * 2006-12-27 2008-07-03 Fujifilm Corporation Polarizing plate and method for producing the same
JP2010204297A (ja) * 2009-03-02 2010-09-16 Teijin Ltd ワイヤーグリッド偏光子及びその製造方法
CN102565909A (zh) * 2010-12-20 2012-07-11 财团法人工业技术研究院 偏振片
US20120287507A1 (en) * 2011-05-13 2012-11-15 Samsung Electronics Co., Ltd. Wire grid polarizers, methods of fabricating a wire grid polarizer, and display panels including a wire grid polarizer
CN102854736A (zh) * 2011-07-01 2013-01-02 精工爱普生株式会社 屏幕
CN104416159A (zh) * 2013-08-20 2015-03-18 中国科学院理化技术研究所 一种低熔点金属多维结构的液相打印系统及打印方法
CN104849906A (zh) * 2015-06-11 2015-08-19 京东方科技集团股份有限公司 偏光片及其制造方法、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330521A (ja) * 2005-05-27 2006-12-07 Nippon Zeon Co Ltd グリッド偏光フィルム、グリッド偏光フィルムの製造方法、光学積層体、光学積層体の製造方法、および液晶表示装置
US7957062B2 (en) * 2007-02-06 2011-06-07 Sony Corporation Polarizing element and liquid crystal projector
JP4380714B2 (ja) * 2007-03-07 2009-12-09 セイコーエプソン株式会社 偏光素子の製造方法
JP2009031392A (ja) * 2007-07-25 2009-02-12 Seiko Epson Corp ワイヤーグリッド型偏光素子、その製造方法、液晶装置および投射型表示装置
US8724040B2 (en) * 2011-11-02 2014-05-13 Chimei Innolux Corporation Pixel structures of 3D display devices
CN103984055A (zh) * 2014-05-09 2014-08-13 京东方科技集团股份有限公司 一种偏光结构及其制作方法、显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080158501A1 (en) * 2006-12-27 2008-07-03 Fujifilm Corporation Polarizing plate and method for producing the same
JP2010204297A (ja) * 2009-03-02 2010-09-16 Teijin Ltd ワイヤーグリッド偏光子及びその製造方法
CN102565909A (zh) * 2010-12-20 2012-07-11 财团法人工业技术研究院 偏振片
US20120287507A1 (en) * 2011-05-13 2012-11-15 Samsung Electronics Co., Ltd. Wire grid polarizers, methods of fabricating a wire grid polarizer, and display panels including a wire grid polarizer
CN102854736A (zh) * 2011-07-01 2013-01-02 精工爱普生株式会社 屏幕
CN104416159A (zh) * 2013-08-20 2015-03-18 中国科学院理化技术研究所 一种低熔点金属多维结构的液相打印系统及打印方法
CN104849906A (zh) * 2015-06-11 2015-08-19 京东方科技集团股份有限公司 偏光片及其制造方法、显示装置

Also Published As

Publication number Publication date
US10451785B2 (en) 2019-10-22
US20170123126A1 (en) 2017-05-04
CN104849906B (zh) 2018-01-26
CN104849906A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2016197493A1 (zh) 偏光片及其制造方法、显示装置
KR100912261B1 (ko) 와이어 그리드 편광자 및 그 제조 방법
TWI723438B (zh) 用於光學部件的藉由旋塗高折射率材料的壓印結構之間隙填充
JP5071563B2 (ja) 透明導電性素子、入力装置、および表示装置
JP5782719B2 (ja) 透明導電性素子、入力装置、および表示装置
US10976616B2 (en) Display panel, manufacturing method thereof and display device
WO2016058314A1 (zh) 线栅偏振片及其制作方法、显示装置
WO2023179436A1 (zh) 基于阵列基板结构的光学显示器件制作方法
CN103698894B (zh) 一种被动偏光式三维显示装置及其制作方法
US20120164317A1 (en) Method for fabricating polarizer
US20150346418A1 (en) Backlight module and lcd using the same
US10527904B2 (en) Display device and apparatus, liquid metal material, related fabricating molds, methods, and apparatus
US10503003B2 (en) Polarizer and method for producing the same, display panel and display apparatus
CN103105704A (zh) 液晶显示器及其制作方法
JP6304952B2 (ja) 液晶ディスプレイパネル及びその製造方法、並びに液晶表示装置
TW200925746A (en) Method of fabricating a display panel having dielectric arranging structure
US9971204B2 (en) Method for manufacturing liquid crystal display panel
TW202202920A (zh) 製造包含間質基板之液晶裝置的方法
WO2015043027A1 (zh) 一种psva液晶面板制造方法和psva液晶面板
KR20160099451A (ko) 매크로 프리패턴을 이용한 투명전극 및 수직 배향형 액정표시소자의 제조방법
JPH08248368A (ja) 液晶光学素子の製造方法と光導波路用薄型液晶光学素子および導波型光デバイス
WO2018039989A1 (zh) 光学元件与光学装置
JPH08227062A (ja) 光導波路用薄型液晶光学素子および光導波路素子
JP2006106087A (ja) 半透過型表示素子の製造方法
JP2011064759A (ja) 光学装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15104091

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894757

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06-07-2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15894757

Country of ref document: EP

Kind code of ref document: A1