WO2018039989A1 - 光学元件与光学装置 - Google Patents
光学元件与光学装置 Download PDFInfo
- Publication number
- WO2018039989A1 WO2018039989A1 PCT/CN2016/097578 CN2016097578W WO2018039989A1 WO 2018039989 A1 WO2018039989 A1 WO 2018039989A1 CN 2016097578 W CN2016097578 W CN 2016097578W WO 2018039989 A1 WO2018039989 A1 WO 2018039989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- lenticular lens
- lens array
- optical
- birefringent material
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Definitions
- the present application relates to the field of display technology, and in particular to an optical component and an optical device.
- a lenticular lens array element mainly includes a birefringent material layer and a lenticular lens array layer, and the birefringent material layer and the lenticular lens array layer are structurally matched.
- the lenticular lens array element can be switched in mode, the principle of which is to control the refractive index of the birefringent material by an electro-optic switch.
- the most commonly used birefringent material is a liquid crystal material. Under the control of the electric switch, the alignment direction of the liquid crystal molecules changes, so that the refractive index of the liquid crystal material changes, and the refractive index change of the liquid crystal material realizes the recovery of the refractive effect of the lens unit. Elimination, combined with 3D and 2D display images to achieve 3D display and 2D display.
- the light In the 2D display mode, there is no refractive index difference between the lenticular lens in the lenticular lens array and the liquid crystal material adjacent to its optical path, the light is in a "pass" mode, and the entire lenticular lens array is in the same manner as a flat sheet of transparent material. The light is not guided, and the 2D display is realized.
- an alignment layer is disposed on a surface of the lenticular lens array layer in direct contact with the birefringent material layer, and a surface in which the conductive layer and the birefringence material layer are in direct contact.
- the alignment layer is made of polyimide. to make.
- an aligning layer is disposed on a surface of the lenticular lens array layer in direct contact with the birefringent material layer.
- a process such as spin coating, dip coating, letterpress printing or jet printing is required to coat the alignment liquid.
- Preparation of the alignment layer requires an expensive polyimide coating apparatus, a baking apparatus, a rubbing apparatus, and a rubbing cleaning apparatus.
- the main object of the present application is to provide an optical component and an optical device to solve the problem of complicated manufacturing process of the alignment layer in the prior art.
- an optical element comprising an optical structural layer and a birefringent material layer, wherein the birefringent material layer is in contact with one surface of the optical structural layer
- the birefringent material layer includes a birefringent material, and a surface of the optical structural layer that is in contact with the birefringent material layer has a plurality of trenches, and the plurality of the trenches are used for molecules of the birefringent material The orientation is aligned.
- the optical element is a lenticular lens array element
- the optical structural layer is a lenticular lens array layer
- the lenticular lens array layer has a lens surface
- the lens surface is in contact with the birefringent material layer
- the lens surface is sequentially Arranged microstructures, each of the microstructures having a plurality of spaced apart grooves.
- grooves extend in the axial direction of the microstructure and are sequentially arranged along the circumferential direction of the microstructure.
- the surfaces of the above grooves are connected by planes and/or curved surfaces.
- the diameter of the molecules of the birefringent material is R
- the direction of the grooves perpendicular to the axial direction of the microstructure is the width direction
- the maximum width of each of the grooves is L
- the lenticular lens array element further includes: a first conductive layer disposed on a surface of the lenticular lens array layer away from the birefringent material layer; and a second conductive layer disposed at a distance of the birefringent material layer On the surface of the above lenticular lens array layer.
- first conductive layer and the second conductive layer are both transparent conductive layers.
- the lenticular lens array layer is formed of a polymer, and the refractive index of the lenticular lens array layer is n.
- the birefringent material is a liquid crystal material, and the refractive index of the liquid crystal material in the 2D mode is equal to the above n; and the refractive index of the liquid crystal material in the 3D mode is not equal to the above n.
- the lenticular lens in the lenticular lens array layer is a convex lens.
- the lenticular lens in the lenticular lens array layer is a concave lens.
- an optical device comprising an optical component, wherein the optical component is the optical component described above.
- a plurality of grooves are provided on the contact surface of the optical structure layer and the birefringence layer, and these grooves serve as an alignment structure, which can well target the birefringent material molecules in the birefringent material layer.
- the orientation is aligned. It is only necessary to prepare a plurality of trench structures as an alignment structure in the process step of fabricating the column optical structure layer, so that the orientation of the birefringent material molecules can be well aligned.
- the cylindrical micro-structure and the alignment structure can be simultaneously formed by the ultraviolet light transfer technology, thereby avoiding the use of a complicated preparation process to form an alignment structure in the prior art, so that the liquid crystal alignment on the lenticular lens array component of the present application is made.
- the preparation process of the structure is relatively simple, requiring less preparation equipment, thereby reducing the cost of manufacturing the alignment structure.
- FIG. 1 is a schematic structural view of a lenticular lens array element provided by an embodiment of the present application.
- Figure 2 is a schematic view showing the structure of the partial lenticular lens array element of Figure 1;
- Figure 3 is a schematic view showing the structure of the partial lenticular lens array element of Figure 1;
- Figure 4 is a schematic view showing the structure of a groove in an embodiment
- Figure 5 is a block diagram showing the structure of a partial lenticular lens array element in another embodiment
- FIG. 6 is a schematic structural view showing a partial lenticular lens array element in still another embodiment
- FIG. 7 is a schematic structural view showing a 2D display mode of the lenticular lens array element of Embodiment 1;
- FIG. 8 is a schematic structural view showing a lenticular lens array element of Embodiment 1 in a 3D display mode
- FIG. 9 is a schematic structural view showing a lenticular lens array element of Embodiment 2 in a 3D display mode
- FIG. 10 is a schematic structural view showing a 2D display mode of the lenticular lens array element of Embodiment 2;
- Figure 11 is a partial schematic view showing the lenticular lens array element of an embodiment.
- 01 a light source; 1, a first conductive layer; 2, an optical structural layer; 3, a birefringent material layer; 4, a second conductive layer; 20, a microstructure;
- the matching layer preparation process in the prior art is complicated and the preparation cost is high.
- the present application proposes an optical element and an optical device.
- a typical embodiment of the present application proposes an optical structure, as shown in FIG. 1, the optical structure includes an optical structural layer 2 and a birefringent material layer 3, and the birefringent material layer 3 is disposed in contact with the optical structural layer.
- the birefringent material layer 3 includes a birefringent material, and a surface of the optical structural layer 2 in contact with the birefringent material layer 3 has a plurality of trenches 21, and the plurality of trenches 21 The orientation of the molecules of the birefringent material forming the birefringent material layer is aligned.
- optical elements in the present application may be laser beam control elements, zoom lens elements, switchable lens elements and flexible display elements, but are not limited to the optical elements described above, and the optical elements in the present application may be any desired birefringence
- the orientation of the molecules of the material is aligned to the optical element.
- a plurality of grooves are provided on the contact surface of the optical structure layer and the birefringence layer, and these grooves serve as an alignment structure, which can well target the birefringent material molecules in the birefringent material layer.
- the orientation is aligned.
- the cylindrical mirror microstructure and the alignment structure can be formed at one time by using the ultraviolet light transfer technology, or the microstructure having the plurality of grooves can be formed at one time by the etching process, thereby avoiding the adoption in the prior art.
- the complex preparation process forms an alignment structure, so that the preparation process of the liquid crystal alignment structure on the lenticular lens array element of the present application is relatively simple, requiring less preparation equipment, thereby reducing the cost of manufacturing the alignment structure.
- the optical element is a lenticular lens array element.
- the optical structure layer 2 is a lenticular lens array layer, and the lenticular lens array layer has a lens surface, and the lens surface and the birefringence are
- the material layer 3 is in contact with the surface of the lens, and the surface of the lens is composed of a plurality of microstructures 20 arranged in series, and each of the microstructures 20 has a plurality of grooves 21 spaced apart from each other.
- the microstructure of the lenticular lens array element is also columnar, so it has an axial direction and a circumferential direction.
- the surface of the birefringent material layer 3 away from the lenticular lens array layer is flat.
- the above-mentioned microstructure having a plurality of trenches may be formed at one time by an ultraviolet light transfer technique or an etching process, or may be formed in steps, a plurality of microstructures are formed first, and then a plurality of trenches are formed on each of the microstructures.
- the step-by-step process is more cumbersome than the one-time process, and therefore, in the actual operation, a one-time process is preferred.
- the above lenticular lens array element only needs to add the groove 21 as an alignment structure in the process step of manufacturing the lenticular microstructure 20, so that the orientation of the birefringent material molecules can be well aligned.
- a plurality of microstructures having a plurality of trenches may be formed at one time by using an ultraviolet light transfer technique or an etching process, thereby avoiding the formation of an alignment layer by using a complicated preparation process in the prior art.
- the lenticular lens of the present application The preparation process of the alignment structure on the array element is relatively simple and required There are fewer preparation equipment, which reduces the cost of manufacturing the alignment layer. Further, the alignment structure does not accumulate at the interface of adjacent microstructures, and does not cause crosstalk in the 3D mode; in addition, the preparation of the alignment structure does not require friction and does not pollute the plant and the optical device. Make the product more reliable.
- the shapes of the plurality of grooves in the present application may be the same or different.
- the cross-sectional shape of the groove 21 may be a part of a square wave (as shown in FIG. 2), or may be other shapes, for example.
- the shape of the cross section is part of the sine cosine wave (as shown in Figure 5 or Figure 6).
- the spacing between adjacent trenches may be the same or different, that is, the number of trenches on each microstructure may be the same or different.
- a person skilled in the art can select a suitable shape of the groove, a groove of a suitable spacing, depending on the specific situation.
- the plurality of trenches on each of the microstructures may be arranged in the circumferential direction of the microstructures or may not be arranged along the circumferential direction of the microstructures. Those skilled in the art may arrange the trenches in a certain direction according to actual conditions.
- the figure shows a partial structure in the lenticular lens array element, and this partial structure includes one having a plurality of The microstructure 20 of the trench 21, the plurality of trenches 21 are arranged along the axial direction of the microstructure 20, that is, when the alignment direction of the trench 21 is perpendicular to the circumferential direction of the microstructure 20, and is constrained by the alignment of the trench, birefringence
- the rate of material molecules will be oriented along the groove, but subject to the lenticular surface, the optical axis of the birefringent material will form a certain angle with respect to the polarization direction of the polarized incident light, thereby degrading the quality of the 2D or 3D display mode.
- the present application preferably includes a plurality of the above trenches. Arranged in the circumferential direction of the above-mentioned lenticular microstructure, and preferably each groove extends in the axial direction of the microstructure, the length of which is equal to the length of the microstructure of the lenticular lens, as shown in FIG.
- the arrangement direction of the grooves 21 on each of the microstructures 20 is the same as the direction in which the curved surfaces extend (ie, the circumferential direction of the above-mentioned microstructures);
- the grooves 21 on each surface of each of the microstructures 20 are arranged in the same direction as the surface in which they are located.
- extension direction herein means the broad extending direction of the arcuate microstructure (the long extending direction is the axial direction), that is to say the arc corresponding to the microstructure 20 in FIG. 1 (not a strict arc, above)
- the extending direction of the groove), the above-mentioned “perpendicular to the extending direction of the lenticular lens” means the long extending direction of the microstructure (corresponding to the axial direction of the microstructure), and the lenticular lens array element is not shown in FIG. Structure in the length direction.
- the surface of the groove in the present application is composed of a plane. As shown in FIG. 1 to FIG. 3, the surface of the groove 21 is composed of three planes. Similarly, the groove 21 may also be formed by a plane and a curved surface, as shown in the figure. As shown in Fig. 4, the surface of the groove 21 is formed by two arc faces and one plane. In addition, the surface of the groove 21 may also be formed by a curved surface. As shown in FIGS. 5 and 6, the surface of the groove 21 is formed by a curved surface having a section similar to a portion of a sine-cosine curve.
- the shape of the groove in the present application is not limited to the above-mentioned several types, and any shape of the groove can achieve the alignment effect, and those skilled in the art can select a suitable groove shape according to the actual situation.
- the width direction of the groove 21 arranged in the circumferential direction of the microstructure is perpendicular to the axial direction of the microstructure 20, and the maximum width L of the groove (see FIG. 2 and FIG. 4) affects the birefringence material.
- the alignment effect and the optical effect of an optical device such as a display device.
- the maximum width of the trench is large, the alignment effect on the birefringence material is not achieved, and some negative optical effects such as blurring or crosstalk caused by scattering or diffraction in the 3D display mode are also generated.
- the groove width is smaller than the diameter R of the birefringent material molecule, the groove does not achieve an alignment effect on the birefringent material molecules.
- the width directions of the grooves in different alignment directions are different.
- the width direction of the grooves means parallel to the axial direction of the microstructure.
- the length direction of the groove is parallel to the circumferential direction of the microstructure.
- the lenticular lens array element can perform 2D and 3D display better, and the present application preferably has R ⁇ L ⁇ 5 ⁇ m, wherein R represents double The diameter of the molecule of the refractive index material (ie, the birefringent material molecule).
- R ⁇ L ⁇ 400 nm in the display device using RGB three primary colors, setting the width L of the trench to be smaller than the blue light wavelength (about 400 nm) is larger than the diameter of the birefringent material molecule.
- the display quality of the display device is better.
- the lenticular lens array element further includes a first conductive layer 1 and a second conductive layer 4, wherein the first conductive layer 1 and the second conductive layer 4 are included in the embodiment.
- a conductive layer 1 is disposed on a surface of the lenticular lens array layer remote from the birefringent material layer 3, and a second conductive layer 4 is disposed on a surface of the birefringent material layer 3 remote from the lenticular lens array layer.
- the first conductive layer 1 and the second conductive layer 4 are both ITO conductive layers.
- the lenticular lens array layer is formed of a polymer, and the lenticular lens array layer has a refractive index n.
- the specific polymer described above may be a UV resin or other material having the same refractive index as the birefringent material layer in the 2D display mode.
- the above birefringent material is a liquid crystal material, and the liquid crystal material is The refractive index in the 2D mode is equal to the above n; the refractive index of the liquid crystal material in the 3D mode is not equal to the above n.
- the lenticular lens in the lenticular lens array layer is a convex lens.
- the lenticular lens array layer has a convex lens surface, and the birefringent material contact is disposed on the surface of the convex lens to form a birefringence.
- the material layer 3, which is disposed in contact with the convex lens, is a concave lens surface.
- the lenticular lens in the lenticular lens array layer is a concave lens.
- the lenticular lens array layer has a concave lens surface, and the birefringent material contact is disposed on the surface of the concave lens to form birefringence.
- the material layer 3 is provided, and the surface of the layer in contact with the concave lens is a convex lens surface.
- the grooves are provided on the microstructure of the lens surface of the lenticular lens array layer, the "convex lens”, “concave lens”, “lens surface”, “convex lens surface” and “concave lens surface” mentioned in the present application are both It is a non-strict lens surface that has either a groove on the lens or a structure that matches the groove.
- the preparation method of the lenticular lens array layer in the lenticular lens array element in the present application mainly includes an ultraviolet light hardening transfer processing method and a laser etching method.
- the ultraviolet light hardening transfer processing method comprises: in step S1, manufacturing a lens processing roller mold matched with a lens surface structure having a groove, coating a liquid polymer on the substrate; and step S2, passing the lens processing roller mold to emboss Curing by ultraviolet light irradiation to obtain a lenticular lens array layer having grooves.
- the method of providing the grooves on the microstructure of the lenticular lens array layer is not limited to the two methods mentioned above, and those skilled in the art can select any achievable method according to the actual situation.
- Another exemplary embodiment of the present application provides an optical device that includes an optical component and that is the optical component described above.
- the optical device it is only necessary to form a plurality of grooves as an alignment structure in the process step of fabricating the optical structural layer, so that the alignment of the liquid crystal molecules can be well aligned.
- the UV-transfer technology can be used to simultaneously form the cylindrical microstructure and the alignment structure, or the etching process can be used to form the microstructure with a plurality of grooves, thereby avoiding the complicated preparation in the prior art.
- the process forms an alignment structure, so that the preparation process of the optical device of the present application is simple, the preparation cost is low, and the invention can be widely applied in various fields.
- the optical device is a 2D/3D automatic switching display device.
- the display device includes a lenticular lens array element including a lenticular lens array layer and a birefringent material layer, the lenticular lens array layer having a flat surface and a lens surface, the lens surface being in contact with the birefringent material layer 3
- the surface of the lens is composed of a plurality of microstructures 20 arranged in series, and each of the microstructures 20 has a plurality of grooves 21 spaced apart from each other.
- the surface of the birefringent material layer 3 is far from the surface of the lenticular lens array layer.
- the lens surface of the microstructure lens 20 of the lenticular lens array element in the 2D/3D automatic switching display device has a plurality of trenches 21, and the plurality of trenches 21 align the birefringent material layer 3 as an alignment structure, thereby realizing The 2D/3D automatic switching of the display device.
- the structure of the lenticular lens array element is as shown in FIG. 7.
- the lenticular lens array element includes a first conductive layer 1, a lenticular lens array layer (optical structural layer 2), a birefringent material layer 3, and a second conductive layer in this order from bottom to top. 4, wherein the lenticular lens in the lenticular lens array layer is a convex lens, the layer has a convex lens surface and a flat surface, and the convex lens surface comprises a plurality of sequentially arranged microstructures 20, each of which has a plurality of strips arranged at intervals
- the groove 21, the surface of the groove 21 is formed by three planes, and as shown in FIG.
- the cross section thereof is rectangular (as shown in the figure, the cross-sectional profile of the surface of the convex lens is similar to a square wave shape).
- the birefringent material layer 3 is disposed on the surface of the convex lens, and the surface disposed in contact with the surface of the convex lens is a concave lens surface.
- the alignment direction of the liquid crystal molecules changes, and the long axis direction thereof
- the direction of the electric field is the same, which is also consistent with the direction of light propagation.
- the refractive index of the liquid crystal material is equal to no.
- the light source 01 is disposed on a side of the first conductive layer 1 away from the lenticular lens array layer, and the specific working process of the lenticular lens array component is:
- 3D display mode As shown in FIG. 9, Vo is applied between the first conductive layer 1 and the second conductive layer 4, the alignment direction of the liquid crystal molecules changes, the long axis direction is consistent with the electric field direction, and the long axis direction of the liquid crystal molecules is The direction of light propagation is uniform, the refractive index of the liquid crystal material is no, the light passes through the surface of the convex lens (ie, the interface between the lenticular lens array layer and the birefringent material layer 3), due to the refractive index of the lenticular lens array layer and the birefringent material layer 3. Differently, refraction occurs, and the entire lenticular lens array element guides the light.
- the structure of the lenticular lens array element is as shown in FIG. 8.
- the lenticular lens array element includes a second conductive layer 4, a birefringent material layer 3, a lenticular lens array layer (optical structure layer 2) and a first conductive layer in this order from bottom to top.
- the lenticular lens in the lenticular lens array layer is a concave lens having a concave lens surface and a flat surface, the concave lens surface comprising a plurality of sequentially arranged microstructures 20, each of the microstructures 20 having a plurality of spaced apart strips
- the groove 21 the surface of which is formed by three planes, and as shown in Fig.
- the birefringent material layer 3 is disposed on the surface of the concave lens, and the surface disposed in contact with the surface of the concave lens is a convex lens surface.
- the alignment direction of the liquid crystal molecules changes, and the long axis direction thereof
- the direction of the electric field is uniform, so the long-axis direction of the liquid crystal molecules is consistent with the direction of light propagation, and the refractive index of the liquid crystal material is equal to no.
- the light source 01 is disposed on a side of the second conductive layer 4 away from the above-mentioned birefringent material layer 3.
- the specific working process of the lenticular lens array component is:
- 2D display mode As shown in FIG. 10, Vo is applied between the first conductive layer 1 and the second conductive layer 4, the alignment direction of the liquid crystal molecules changes, the long axis direction is consistent with the electric field direction, and the long axis direction of the liquid crystal molecules is The direction of light propagation is uniform, the refractive index of the liquid crystal material is no, and the light passes through the concave lens surface of the lenticular lens array layer (ie, the interface between the lenticular lens array layer and the birefringent material layer 3), due to the lenticular lens array layer and the birefringent material.
- the refractive index of layer 3 is the same, both are no, so that light does not refract when passing through the surface of the convex lens of the lenticular lens array element, and the entire lenticular lens array element is similar to a transparent flat plate.
- the concave lens surface of the lenticular lens array element i.e., the interface between the lenticular lens array layer and the birefringent material layer 3
- refraction occurs, and the entire lenticular lens array element guides the light.
- a plurality of grooves are provided on the contact surface of the optical structure layer and the birefringence layer, and these grooves serve as an alignment structure, which can well perform double on the birefringent material layer.
- the orientation of the refractive index material molecules is aligned.
- the preparation process of the alignment structure in the present application is relatively simple, requires less preparation equipment, and reduces the cost of manufacturing the alignment structure.
- a plurality of grooves are prepared as an alignment layer in the process step of fabricating the lenticular microstructure, so that the alignment of the liquid crystal molecules can be well aligned.
- the preparation process of the optical device is simple, the preparation cost is low, and it can be widely applied in various fields.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Liquid Crystal (AREA)
Abstract
一种光学元件与光学装置。该光学元件包括光学结构层(2)与双折射率材料层(3),其中,双折射率材料层(3)接触设置在光学结构层(2)的一个表面上,双折射率材料层(3)包括双折射率材料,光学结构层(2)的与双折射率材料层(3)接触的表面具有多个沟槽(21),多个沟槽(21)用于对双折射率材料的分子的取向进行配向。在实际制备过程中,可以一次性形成具有多个沟槽(21)的微结构(20),使得柱状透镜阵列元件上的液晶配向结构的制备工艺较简单,需要的制备设备较少,从而降低了制造配向结构的成本。
Description
本申请涉及显示技术领域,具体而言,涉及一种光学元件与光学装置。
目前,在2D/3D自动切换立体显示装置中,柱状透镜阵列元件主要包括双折射率材料层与柱状透镜阵列层,双折射率材料层与柱状透镜阵列层在结构上相匹配。柱状透镜阵列元件可进行模式切换,其原理是通过电光开关控制双折射率材料的折射率。
最常用的双折射率材料为液晶材料,在电开关控制下,液晶分子的排列方向发生变化,使得液晶材料的折射率发生变化,液晶材料的折射率变化实现了对透镜单元折射效应的恢复和消除,进而结合3D与2D的显示影像实现3D显示与2D显示。
在2D显示模式下,柱状透镜阵列中的柱状透镜与其光路上相邻的液晶材料之间不存在折射率差,光线处于“通过”模式,整个柱状透镜阵列以类似于透明材料的平片一样对光线不做导向,进而实现2D显示。
在3D显示模式下,柱状透镜阵列中的柱状透镜与其光路上相邻的液晶材料之间存在折射率差,光线处于“导向”模式,进而实现3D显示。
为了能够对液晶材料进行有效地电光控制,需要对液晶分子的取向进行配向,使得液晶分子在不施加任何电场的情况下,长轴方向与柱状透镜的排列方向相同。
现有技术中,需要在柱状透镜阵列层与双折射率材料层直接接触的表面、导电层与双折射率材料层直接接触的表面上均设置配向层,一般该配向层由聚酰亚胺制成。
以在柱状透镜阵列层与双折射率材料层直接接触的表面上设置配向层为例,现有的工艺中需要通过旋转涂布、浸渍涂布、凸版印刷或喷印等制程,将配向液涂布到每个柱状透镜的表面;其次,通过热烘烤制程,形成配向膜;然后,通过摩擦制程(Rubbing)形成对液晶分子起到有效配向的配向层;最后,对配向膜经摩擦后产生的碎屑进行清洁。
上述制造对液晶材料起配向作用的配向层的方法具有很多缺点:
(1)配向层的制备需要昂贵的聚酰亚胺涂布设备、烘烤设备、摩擦设备和摩擦后的清洁设备。
(2)由于毛细管效应,柱状透镜表面的聚酰亚胺涂布溶液经常会聚集在透镜凹陷处,增加了显示装置在3D模式下的串扰。
(3)聚酰亚胺的涂布和摩擦是很难控制的,例如:由于柱状透镜层的表面起伏不平,容易形成厚度不均匀的聚酰亚胺层;在聚酰亚胺溶液覆盖到柱状透镜层表面时,聚酰亚胺的有
机溶液(如GBL,BC,等)容易被高分子柱镜材料吸收,从而可能导致柱状透镜的膨胀;由于烘烤步骤的温度较高(一般在150度以上),柱状透镜可能收缩,从而可能导致柱镜膜从下面的导电层上剥落,还可能造成柱镜高分子材料裂解导致柱镜收缩变形;在覆盖在柱状透镜表面较薄的聚酰亚胺层进行摩擦时,很容易对聚酰亚胺膜造成破坏,进而导致局部液晶分子的配向不佳;摩擦过程中产生的聚酰亚胺碎片散步到空气中可能造成对厂房设备和显示装置的污染。
发明内容
本申请的主要目的在于提供一种光学元件与光学装置,以解决现有技术中的配向层制造工艺复杂的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种光学元件,该光学元件包括光学结构层与双折射率材料层,其中,双折射率材料层接触设置在上述光学结构层的一个表面上,上述双折射率材料层包括双折射率材料,上述光学结构层的与上述双折射率材料层接触的表面具有多个沟槽,多个上述沟槽用于对上述双折射率材料的分子的取向进行配向。
进一步地,上述光学元件为柱状透镜阵列元件,上述光学结构层为柱状透镜阵列层,上述柱状透镜阵列层具有透镜表面,上述透镜表面与上述双折射率材料层接触,上述透镜表面由多个依次排列的微结构构成,各上述微结构具有多个间隔设置的上述沟槽。
进一步地,上述沟槽沿上述微结构的轴向延伸且沿上述微结构的周向依次排列。
进一步地,各上述沟槽的表面由平面和/或曲面连接而成。
进一步地,上述双折射率材料的分子的直径为R,上述沟槽垂直于上述微结构的轴向的方向为宽度方向,各上述沟槽的最大宽度为L,R<L<5μm。
进一步地,其特征在于,R<L<400nm。
进一步地,上述柱状透镜阵列元件还包括:第一导电层,设置在上述柱状透镜阵列层的远离上述双折射率材料层的表面上;第二导电层,设置在上述双折射率材料层的远离上述柱状透镜阵列层的表面上。
进一步地,上述第一导电层与上述第二导电层均为透明导电层。
进一步地,上述柱状透镜阵列层由聚合物形成,上述柱状透镜阵列层的折射率为n。
进一步地,上述双折射率材料为液晶材料,上述液晶材料在2D模式下的折射率等于上述n;上述液晶材料在的3D模式下的折射率不等于上述n。
进一步地,上述柱状透镜阵列层中的柱状透镜为凸透镜。
进一步地,上述柱状透镜阵列层中的柱状透镜为凹透镜。
根据本申请的另一方面,提供了一种光学装置,该光学装置中包括光学元件,其中,该光学元件为上述的光学元件。
上述的光学元件中,在光学结构层与双折射率层的接触表面上设置多个沟槽,这些沟槽作为配向结构,可以很好地对双折射率材料层中的双折射率材料分子的取向进行配向。只需要在制造柱光学结构层的工艺步骤中制备多个沟槽结构的作为配向结构,就可以很好地对双折射率材料分子的取向进行配向。在实际制备过程中,可以采用紫外光转印技术同时形成柱镜微结构与配向结构,进而避免了现有技术中采用复杂制备工艺形成配向结构,使得本申请的柱状透镜阵列元件上的液晶配向结构的制备工艺较简单,需要的制备设备较少,从而降低了制造配向结构的成本。
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了本申请的一种实施例提供的柱状透镜整阵列元件的结构示意图;
图2示出了图1中的局部柱状透镜整阵列元件的结构示意图;
图3示出了图1中的局部柱状透镜整阵列元件的结构示意图;
图4示出了一个实施例中的一种沟槽的结构示意图;
图5示出了另一个实施例中的局部柱状透镜整阵列元件的结构示意图;
图6示出了又一个实施例中的局部柱状透镜整阵列元件的结构示意图;
图7示出了实施例1的柱状透镜整阵列元件的2D显示模式下的结构示意图;
图8示出了实施例1的柱状透镜整阵列元件的3D显示模式下的结构示意图;
图9示出了实施例2的柱状透镜整阵列元件的3D显示模式下的结构示意图;
图10示出了实施例2的柱状透镜整阵列元件的2D显示模式下的结构示意图;以及
图11示出了一种实施例的柱状透镜整阵列元件的局部结构示意图。
其中,上述附图包括以下附图标记:
01、光源;1、第一导电层;2、光学结构层;3、双折射率材料层;4、第二导电层;20、微结构;21、沟槽。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指
明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中的匹配层制备工艺复杂,制备成本较高,为了解决如上的技术问题,本申请提出了一种光学元件与光学装置。
本申请一种典型的实施方式提出了一种光学结构,如图1所示,该光学结构包括光学结构层2与双折射率材料层3,双折射率材料层3接触设置在上述光学结构层2的一个表面上,所述双折射率材料层3包括双折射率材料,上述光学结构层2的与上述双折射率材料层3接触的表面具有多个沟槽21,多个上述沟槽21用于对形成上述双折射率材料层的双折射率材料的分子的取向进行配向。
本申请中的光学元件可以是激光束控制元件、变焦透镜元件、可切换征服透镜元件与柔性显示元件,但是并不限于上述的光学元件,本申请中的光学元件可以是任何需要对双折射率材料的分子的取向进行配向的光学元件。
上述的光学元件中,在光学结构层与双折射率层的接触表面上设置多个沟槽,这些沟槽作为配向结构,可以很好地对双折射率材料层中的双折射率材料分子的取向进行配向。在实际制备过程中,可以采用紫外光转印技术一次性形成柱镜微结构与配向结构,也可以采用刻蚀工艺一次性形成具有多个沟槽的微结构,进而避免了现有技术中采用复杂制备工艺形成配向结构,使得本申请的柱状透镜阵列元件上的液晶配向结构的制备工艺较简单,需要的制备设备较少,从而降低了制造配向结构的成本。
本申请一种实施例中,上述光学元件为柱状透镜阵列元件,如图2所示,上述光学结构层2为柱状透镜阵列层,上述柱状透镜阵列层具有透镜表面,上述透镜表面与上述双折射率材料层3接触,上述透镜表面由多个依次排列的微结构20构成,各上述微结构20具有多个间隔设置的沟槽21。其中,柱状透镜阵列元件的微结构也为柱状,因此其具有轴向和周向。
一种优选的实施例中,上述双折射率材料层3的远离上述柱状透镜阵列层的表面平整。
上述的具有多个沟槽的微结构可以采用紫外光转印技术或刻蚀工艺一次性形成,也可以分步形成,先形成多个微结构,然后在各微结构上形成多个沟槽。分步工艺相比一次性工艺较繁琐,因此,在实际操作过程中,优选一次性工艺。
上述柱状透镜阵列元件只需要在制造柱镜微结构20的工艺步骤中加入沟槽21作为配向结构,就可以很好地对双折射率材料分子的取向进行配向。在制备过程中,可以采用紫外光转印技术或刻蚀工艺一次性形成具有多个沟槽的多个微结构,进而避免了现有技术中采用复杂制备工艺形成配向层,本申请的柱状透镜阵列元件上的配向结构的制备工艺较简单,需要的
制备设备较少,从而降低了制造配向层的成本。进一步地,该配向结构不会在相邻微结构的交界处堆积,不会造成3D模式中的串扰现象;另外,该配向结构的制备不需要进行摩擦,不会对厂房和光学装置造成污染,使得产品的可靠性较高。
本申请中可采用的对双折射率材料起配向作用的沟槽的形状与相邻沟槽之间的间距范围较广而且配向效应可以是统计意义上的。因此,本申请中的多个沟槽的形状可以相同,也可以不相同,例如,沟槽21的截面形状可以是方波的一部分(如图2所示),也可以是其他的形状,例如截面的形状是正余弦波的一部分(如图5或图6所示)。相邻的沟槽之间的间距可以相同,也可以不相同,即每个微结构上的沟槽的数量可以是相同的,也可以是不同的。本领域技术人员可以根据具体情况选择合适性形状的沟槽,合适间距的沟槽。
每个微结构上的多个沟槽可以沿微结构的周向依次排列,也可以不沿微结构的周向排列,本领域技术人员可以根据实际情况将沟槽按照一定的方向排列。
当多个沟槽不沿微结构的周向排列时(例如图11示出的沟槽21的排列方向,该图示出了柱状透镜阵列元件中的部分结构,这部分结构包括一个具有多个沟槽21的微结构20,多个沟槽21沿该微结构20的轴向排列,即沟槽21的排列方向与微结构20的周向垂直)时,受沟槽配向的约束,双折射率材料分子会沿着沟槽取向,但又受柱镜曲面的约束,双折射率材料分子光轴就会相对偏振入射光的偏振方向形成一定角度,进而使得2D或3D显示模式的质量下降。
为了避免双折射率材料分子的折射率沿着透镜的弧面的延伸方向而变化,进而影响2D或者3D显示模式的显示质量,如图1至图3所示,本申请优选多个上述沟槽沿上述柱镜微结构的周向依次排列,且优选各沟槽沿微结构的轴向延伸,其长度与柱状透镜的微结构的长度相等,如图3所示。
当微结构20由弧面形成时,如图1所示,每个微结构20上的沟槽21的排列方向与弧面的延伸方向(即上述提到的微结构的周向)相同;当微结构20由多个平面和/或弧面依次连接形成时,每个微结构20的每个表面上的沟槽21的排列方向与其所在的表面的延伸方向相同。
本文中的“延伸方向”表示弧面状的微结构的宽的延伸方向(长的延伸方向就是轴向),也就是说图1中微结构20对应的弧线(不是严格的弧线,上面有沟槽)的延伸方向,上文提到的“与柱状透镜的延伸方向垂直”是指微结构的长的延伸方向(对应微结构的轴向),图1中未示出柱状透镜阵列元件在长度方向的结构。
本申请中的沟槽的表面由平面构成,如图1至图3所示,该沟槽21的表面由三个平面构成,同样地,该沟槽21也可以由平面与曲面形成,如图4所示,该沟槽21的表面由两个弧面与一个平面形成。另外,该沟槽21的表面也可以由曲面形成,如图5与图6所示,该沟槽21的表面是由一个曲面形成的,该曲面的截面类似于正余弦曲线的一部分。
本申请中的沟槽的形状不限于上述提到的几种,任何形状的沟槽均能够实现配向作用,本领域技术人员可以根据实际情况选择合适的沟槽形状。
上述沿微结构的周向依次排列的沟槽21的宽度方向垂直于上述微结构20的轴向,沟槽的最大宽度L(见图2与图4所示)的大小影响对双折射率材料的配向效果和光学装置(例如显示装置)的光学效应。当沟槽的最大宽度较大时,达不到对双折射率材料的配向效果,同时也会产生一些负面的光学效应,比如散射或衍射造成3D显示模式的模糊或串扰。当沟槽宽度小于双折射率材料分子的直径R时,沟槽达不到对双折射率材料分子的配向效果。
需要指出的是,对于不同排列方向的沟槽,其的宽度方向是不同的,当多个沟槽沿微结构的周向排列时,沟槽的宽度方向就是指与微结构的轴向平行的方向,并且,此时,沟槽的长度方向与微结构的周向平行。
为了优化对双折射率材料的配向效果和避免上述提到的负面光学效应,进一步保证柱状透镜阵列元件能够较好地进行2D与3D显示,本申请优选R<L<5μm,其中,R表示双折射率材料的分子(即双折射率材料分子)的直径。
本申请中的一种实施例中,R<L<400nm,采用RGB三原色的显示装置中,将上述沟槽的宽度L设定在小于蓝光波长(约400nm)大于双折射率材料分子的直径时,显示装置的显示质量更好。
为了更加方便地对双折射率材料施加电场,如图7所示,本申请的一种实施例中,上述柱状透镜阵列元件中还包括第一导电层1与第二导电层4,其中,第一导电层1设置在上述柱状透镜阵列层的远离上述双折射率材料层3的表面上,第二导电层4设置在上述双折射率材料层3的远离上述柱状透镜阵列层的表面上。
本申请的又一种实施例中,上述第一导电层1与上述第二导电层4均为ITO导电层。
本申请的再一种实施例中,上述柱状透镜阵列层由聚合物形成,上述柱状透镜阵列层的折射率为n。
具体的上述聚合物可以为UV树脂或其他与双折射率材料层在2D显示模式下的折射率相同的材料。
为了进一步保证双折射率材料的折射率可以在不同的状态下灵活变化,进一步保证显示装置可以在2D与3D显示模式下自由切换,本申请优选上述双折射率材料为液晶材料,上述液晶材料在2D模式下的折射率等于上述n;上述液晶材料在的3D模式下的折射率不等于上述n。
一种实施例中,如图7所示,上述柱状透镜阵列层中的柱状透镜为凸透镜,这时,柱状透镜阵列层具有凸透镜表面,双折射率材料接触设置在凸透镜表面上,形成双折射率材料层3,该层与凸透镜接触设置的表面为凹透镜表面。
另一种实施例中,如图8所示,上述柱状透镜阵列层中的柱状透镜为凹透镜,这时,柱状透镜阵列层具有凹透镜表面,双折射率材料接触设置在凹透镜表面上,形成双折射率材料层3,该层与凹透镜接触设置的表面为凸透镜表面。
由于在柱状透镜阵列层的透镜表面的微结构上设置有沟槽,因此,本申请中提到的“凸透镜”、“凹透镜”、“透镜表面”、“凸透镜表面”与“凹透镜表面”,都是非严格意义上的透镜表面,这些表面与透镜上或是具有沟槽,或是具有与沟槽相匹配的结构。
本申请中的柱状透镜阵列元件中的柱状透镜阵列层的制备方法主要有:紫外光硬化转印加工法与激光蚀刻法。
紫外光硬化转印加工法包括:步骤S1,制造与具有沟槽的透镜表面结构相匹配的透镜加工滚轮模具,在基材上涂布液态聚合物;步骤S2,通过透镜加工滚轮模具压印后经过紫外光照射固化,得到具有沟槽的柱状透镜阵列层。
在柱状透镜阵列层的微结构上设置沟槽的方法并不限于上述提到的两种方法,本领域技术人员可以根据实际情况选择任何可以实现的方法。
本申请的另一种典型的实施方式提供了一种光学装置,该光学装置包括光学元件,且该光学元件为上述的光学元件。
该光学装置中,只需要在制造光学结构层的工艺步骤中形成多个沟槽作为配向结构,就可以很好地对液晶分子的取向进行配向。在实际的制备过程中,可以采用紫外光转印技术同时形成柱镜微结构与配向结构,也可以采用刻蚀工艺形成具有多个沟槽的微结构,进而避免了现有技术中采用复杂制备工艺形成配向结构,使得本申请的光学装置的制备工艺较简单,制备成本较低,能够广泛地应用在各个领域。
本申请的一种实施例中,上述光学装置为2D/3D自动切换的显示装置。该显示装置包括柱状透镜阵列元件,该柱状透镜阵列元件包括柱状透镜阵列层与双折射率材料层,上述柱状透镜阵列层具有平整表面与透镜表面,上述透镜表面与上述双折射率材料层3接触,上述透镜表面由多个依次排列的微结构20构成,各上述微结构20具有多个间隔设置的沟槽21上述双折射率材料层3的远离上述柱状透镜阵列层的表面平整。
该2D/3D自动切换的显示装置中的柱状透镜阵列元件的微结构20的透镜表面具有多个沟槽21,多个沟槽21作为配向结构对述双折射率材料层3进行配向,进而实现显示装置的2D/3D自动切换。
为了使得本领域技术人员能够清楚地了解本申请的技术方案,以下将结合具体的实施例对本申请的技术方案进行详细说明。
实施例1
柱状透镜阵列元件的结构如图7所示,该柱状透镜阵列元件由下至上依次包括第一导电层1、柱状透镜阵列层(光学结构层2)、双折射率材料层3与第二导电层4,其中,柱状透镜阵列层中的柱状透镜为凸透镜,该层具有凸透镜表面与平整表面,凸透镜表面包括多个依次排列的微结构20,每个微结构上具有多个间隔设置的长条状沟槽21,该沟槽21的表面由三个平面形成,并且,如图5所示,其截面为矩形(如图中,凸透镜表面的截面轮廓成类似方波
形状)。双折射率材料层3设置在凸透镜表面上,且与凸透镜表面接触设置的表面为凹透镜表面。
第一导电层1与第二导电层4均为ITO层,柱状透镜阵列层由UV树脂形成,其折射率n=ne。双折射率材料层3由液晶材料形成,在未对液晶材料施加电场时(V=0),微结构20上的多个沟槽21对液晶分子的排列方向进行配向,使得各个液晶分子的长轴方向平行于沟槽21的宽度方向,垂直于光线的传播方向,其折射率为ne,当对液晶材料施加合适的电场后(Vo),液晶分子的排列方向发生变化,其长轴方向与电场方向一致,也与光线传播方向一致,这时液晶材料的折射率等于no。
光源01设置在第一导电层1的远离上述柱状透镜阵列层的一侧,该柱状透镜阵列元件的具体工作过程为:
2D显示模式:如图7所示,不在第一导电层1与第二导电层4之间施加电压,即未对液晶材料施加电场时(V=0),微结构20上的多个沟槽21对液晶分子的排列方向进行配向,使得各个液晶分子的长轴方向平行于沟槽的宽度方向,且垂直于光线的传播方向,其折射率与柱状透镜阵列层的折射率相同,均为ne,因此,光线通过柱状透镜阵列元件的凸透镜表面(即柱状透镜阵列层与双折射率材料层3的界面)时,不会发生折射,整个柱状透镜阵列元件类似于一块透明平板。
3D显示模式:如图9所示,在第一导电层1与第二导电层4之间施加Vo,液晶分子的排列方向发生变化,长轴方向与电场方向一致,液晶分子的长轴方向与光线传播方向一致,液晶材料的折射率为no,光线通过凸透镜表面时(即柱状透镜阵列层与双折射率材料层3的界面),由于柱状透镜阵列层与双折射率材料层3的折射率不同,发生折射,整个柱状透镜阵列元件对光线起到导向作用。
实施例2
柱状透镜阵列元件的结构如图8所示,该柱状透镜阵列元件由下至上依次包括第二导电层4、双折射率材料层3、柱状透镜阵列层(光学结构层2)与第一导电层1,其中,柱状透镜阵列层中的柱状透镜为凹透镜,该层具有凹透镜表面与平整表面,凹透镜表面包括多个依次排列的微结构20,每个微结构20上具有多个间隔设置的长条状沟槽21,该沟槽21的表面由三个平面形成,并且,如图5所示,其截面为矩形(如图中,凹透镜表面的截面轮廓成类似方波形状)。双折射率材料层3设置在凹透镜表面上,且与凹透镜表面接触设置的表面为凸透镜表面。
第一导电层1与第二导电层4均为ITO层,柱状透镜阵列层由UV树脂形成,其折射率n=no。双折射率材料层3由液晶材料形成,在未对液晶材料施加电场时(V=0),微结构20上的多个沟槽21对液晶分子的排列方向进行配向,使得各个液晶分子的长轴方向平行于沟槽21的宽度方向,垂直于光线的传播方向,其折射率为ne,当对液晶材料施加合适的电场后(Vo),液晶分子的排列方向发生变化,其长轴方向与电场方向一致,所以液晶分子的长轴方向与光线传播方向一致,液晶材料的折射率等于no。
光源01设置在第二导电层4的远离上述双折射率材料层3的一侧,该柱状透镜阵列元件的具体工作过程为:
2D显示模式:如图10所示,在第一导电层1与第二导电层4之间施加Vo,液晶分子的排列方向发生变化,长轴方向与电场方向一致,液晶分子的长轴方向与光线传播方向一致,液晶材料的折射率为no,光线通过柱状透镜阵列层的凹透镜表面时(即柱状透镜阵列层与双折射率材料层3的界面),由于柱状透镜阵列层与双折射率材料层3的折射率相同,均为no,因此光线通过柱状透镜阵列元件的凸透镜表面时不会发生折射,整个柱状透镜阵列元件类似于一块透明平板。
3D显示模式:如图8所示,不在第一导电层1与第二导电层4之间施加电压,即未对液晶材料施加电场时(V=0),微结构20上的多个沟槽21对液晶分子的排列方向进行配向,使得各个液晶分子的长轴方向垂直于沟槽的宽度方向,且垂直于光线的传播方向,其折射率ne与柱状透镜阵列层的折射率no不相同,因此,光线通过柱状透镜阵列元件的凹透镜表面(即柱状透镜阵列层与双折射率材料层3的界面)时,发生折射,整个柱状透镜阵列元件对光线起到导向作用。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1)、本申请中的光学元件中,在光学结构层与双折射率层的接触表面上设置多个沟槽,这些沟槽作为配向结构,可以很好地对双折射率材料层中的双折射率材料分子的取向进行配向。且本申请中的配向结构的制备工艺较简单,需要的制备设备较少,降低了制造配向结构的成本。
2)、本申请中光学装置中,在制造柱镜微结构的工艺步骤中制备多个沟槽作为配向层,就可以很好地对液晶分子的取向进行配向。光学装置的制备工艺较简单,制备成本较低,能够广泛地应用在各个领域。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (13)
- 一种光学元件,其特征在于,所述光学元件包括:光学结构层(2);以及双折射率材料层(3),接触设置在所述光学结构层(2)的一个表面上,所述双折射率材料层(3)包括双折射率材料,所述光学结构层(2)的与所述双折射率材料层(3)接触的表面具有多个沟槽(21),多个所述沟槽(21)用于对所述双折射率材料的分子的取向进行配向。
- 根据权利要求1所述的光学元件,其特征在于,所述光学元件为柱状透镜阵列元件,所述光学结构层(2)为柱状透镜阵列层,所述柱状透镜阵列层具有透镜表面,所述透镜表面与所述双折射率材料层(3)接触,所述透镜表面由多个依次排列的微结构(20)构成,各所述微结构(20)具有多个间隔设置的所述沟槽(21)。
- 根据权利要求2所述的光学元件,其特征在于,所述沟槽(21)沿所述微结构(20)的轴向延伸且沿所述微结构(20)的周向依次排列。
- 根据权利要求2所述的光学元件,其特征在于,各所述沟槽(21)的表面由平面和/或曲面连接而成。
- 根据权利要求3所述的光学元件,其特征在于,所述双折射率材料的分子的直径为R,所述沟槽(21)垂直于所述微结构的轴向的方向为宽度方向,各所述沟槽(21)的最大宽度为L,R<L<5μm。
- 根据权利要求5所述的光学元件,其特征在于,R<L<400nm。
- 根据权利要求2所述的光学元件,其特征在于,所述柱状透镜阵列元件还包括:第一导电层(1),设置在所述柱状透镜阵列层的远离所述双折射率材料层(3)的表面上;以及第二导电层(4),设置在所述双折射率材料层(3)的远离所述柱状透镜阵列层的表面上。
- 根据权利要求7所述的光学元件,其特征在于,所述第一导电层(1)与所述第二导电层(4)均为透明导电层。
- 根据权利要求2所述的光学元件,其特征在于,所述柱状透镜阵列层由聚合物形成,所述柱状透镜阵列层的折射率为n。
- 根据权利要求9所述的光学元件,其特征在于,所述双折射率材料为液晶材料,所述液晶材料在2D模式下的折射率等于所述n;所述液晶材料在的3D模式下的折射率不等于所述n。
- 根据权利要求7所述的光学元件,其特征在于,所述柱状透镜阵列层中的柱状透镜为凸透镜。
- 根据权利要求7所述的光学元件,其特征在于,所述柱状透镜阵列层中的柱状透镜为凹透镜。
- 一种光学装置,包括光学元件,其特征在于,所述光学元件为权利要求1至12中任一项所述的光学元件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/097578 WO2018039989A1 (zh) | 2016-08-31 | 2016-08-31 | 光学元件与光学装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/097578 WO2018039989A1 (zh) | 2016-08-31 | 2016-08-31 | 光学元件与光学装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018039989A1 true WO2018039989A1 (zh) | 2018-03-08 |
Family
ID=61299885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/097578 WO2018039989A1 (zh) | 2016-08-31 | 2016-08-31 | 光学元件与光学装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018039989A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493427A (en) * | 1993-05-25 | 1996-02-20 | Sharp Kabushiki Kaisha | Three-dimensional display unit with a variable lens |
JP2014016421A (ja) * | 2012-07-06 | 2014-01-30 | Toshiba Corp | 液晶光学素子および画像表示装置 |
CN104977772A (zh) * | 2015-07-13 | 2015-10-14 | 张家港康得新光电材料有限公司 | 表面起浮型液晶柱状透镜阵列装置、制造方法及显示装置 |
CN105068354A (zh) * | 2015-08-11 | 2015-11-18 | 重庆卓美华视光电有限公司 | 裸眼3d显示装置 |
CN106199780A (zh) * | 2016-08-31 | 2016-12-07 | 张家港康得新光电材料有限公司 | 光学元件与光学装置 |
CN206020702U (zh) * | 2016-08-31 | 2017-03-15 | 张家港康得新光电材料有限公司 | 光学元件与光学装置 |
-
2016
- 2016-08-31 WO PCT/CN2016/097578 patent/WO2018039989A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493427A (en) * | 1993-05-25 | 1996-02-20 | Sharp Kabushiki Kaisha | Three-dimensional display unit with a variable lens |
JP2014016421A (ja) * | 2012-07-06 | 2014-01-30 | Toshiba Corp | 液晶光学素子および画像表示装置 |
CN104977772A (zh) * | 2015-07-13 | 2015-10-14 | 张家港康得新光电材料有限公司 | 表面起浮型液晶柱状透镜阵列装置、制造方法及显示装置 |
CN105068354A (zh) * | 2015-08-11 | 2015-11-18 | 重庆卓美华视光电有限公司 | 裸眼3d显示装置 |
CN106199780A (zh) * | 2016-08-31 | 2016-12-07 | 张家港康得新光电材料有限公司 | 光学元件与光学装置 |
CN206020702U (zh) * | 2016-08-31 | 2017-03-15 | 张家港康得新光电材料有限公司 | 光学元件与光学装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3463846B2 (ja) | 偏光素子およびその製造方法、並びに映像表示装置 | |
JP3512596B2 (ja) | 旋光光学素子およびその製造方法と、それを用いた画像表示装置 | |
WO2017008432A1 (zh) | 表面起浮型液晶柱状透镜阵列装置、制造方法及显示装置 | |
CN106199780A (zh) | 光学元件与光学装置 | |
EP2064590B1 (en) | Curvature reduction for switchable liquid crystal lens array | |
WO2017008433A1 (zh) | 表面起浮型液晶柱状透镜阵列装置、制造方法及显示装置 | |
JP5698328B2 (ja) | 液晶レンズ | |
US10120239B2 (en) | Vertical photo alignment method with maintaining position of mask unchanged and manufacture method of liquid crystal display panel utilizing the same | |
KR20140026291A (ko) | 컬러 필터 기판, 어레이 기판, 액정 표시 장치, 및 컬러 필터 기판 및 어레이 기판의 제조 방법들 | |
CN206020702U (zh) | 光学元件与光学装置 | |
KR101886793B1 (ko) | 능동형 프리즘 구조체 | |
WO2015103870A1 (zh) | 显示基板和显示装置 | |
WO2021082371A1 (zh) | 液晶波导光调节器件以及液晶波导光调节系统 | |
US8704987B2 (en) | Graded index birefringent component and manufacturing method thereof | |
US20090284827A1 (en) | Optical element | |
WO2012031424A1 (zh) | 形成液晶显示面板以及其配向膜的方法 | |
CN107357110B (zh) | 一种采用复合介电层的大口径液晶透镜阵列 | |
WO2018039989A1 (zh) | 光学元件与光学装置 | |
CN109709739B (zh) | 一种短焦距液晶透镜 | |
CN104252081A (zh) | 一种液晶微透镜阵列及其制备方法 | |
US20100085640A1 (en) | Polarizing plate and polarizing device comprising the same | |
WO2018041273A1 (zh) | 光学元件、光学装置以及光学元件的制作方法 | |
WO2015074292A1 (zh) | 一种液晶透镜、液晶显示装置及液晶透镜的制造方法 | |
JP2010044260A (ja) | 液晶レンズの製造方法 | |
KR101661234B1 (ko) | 액정 표시 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16914555 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16914555 Country of ref document: EP Kind code of ref document: A1 |