WO2016194977A1 - 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 - Google Patents
酸化物単結晶薄膜を備えた複合ウェーハの製造方法 Download PDFInfo
- Publication number
- WO2016194977A1 WO2016194977A1 PCT/JP2016/066283 JP2016066283W WO2016194977A1 WO 2016194977 A1 WO2016194977 A1 WO 2016194977A1 JP 2016066283 W JP2016066283 W JP 2016066283W WO 2016194977 A1 WO2016194977 A1 WO 2016194977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- oxide single
- single crystal
- temperature
- thin film
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 99
- 239000002131 composite material Substances 0.000 title claims abstract description 55
- 239000010409 thin film Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 55
- -1 hydrogen atom ions Chemical class 0.000 claims abstract description 32
- 230000004913 activation Effects 0.000 claims abstract description 21
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims abstract description 18
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical group CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 79
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 52
- 229910052710 silicon Inorganic materials 0.000 claims description 52
- 239000010703 silicon Substances 0.000 claims description 52
- 238000005468 ion implantation Methods 0.000 claims description 49
- 125000004429 atom Chemical group 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 239000010408 film Substances 0.000 claims description 23
- 238000002513 implantation Methods 0.000 claims description 21
- 229910052594 sapphire Inorganic materials 0.000 claims description 21
- 239000010980 sapphire Substances 0.000 claims description 21
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical group [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 17
- 239000011521 glass Substances 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 238000010884 ion-beam technique Methods 0.000 claims description 10
- 238000009832 plasma treatment Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 238000005336 cracking Methods 0.000 abstract description 14
- 150000002500 ions Chemical class 0.000 abstract description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052744 lithium Inorganic materials 0.000 abstract description 3
- 238000002347 injection Methods 0.000 abstract 2
- 239000007924 injection Substances 0.000 abstract 2
- 235000012431 wafers Nutrition 0.000 description 309
- 238000007689 inspection Methods 0.000 description 31
- 238000000034 method Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 21
- 238000001994 activation Methods 0.000 description 17
- 230000003746 surface roughness Effects 0.000 description 17
- 238000002474 experimental method Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- 230000001133 acceleration Effects 0.000 description 10
- 238000012546 transfer Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004506 ultrasonic cleaning Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 238000010897 surface acoustic wave method Methods 0.000 description 3
- 238000011179 visual inspection Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910012463 LiTaO3 Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/024—Group 12/16 materials
- H01L21/02403—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/08—Shaping or machining of piezoelectric or electrostrictive bodies
- H10N30/085—Shaping or machining of piezoelectric or electrostrictive bodies by machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/16—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
- B32B37/18—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0036—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/10—Removing layers, or parts of layers, mechanically or chemically
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5826—Treatment with charged particles
- C23C14/5833—Ion beam bombardment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02422—Non-crystalline insulating materials, e.g. glass, polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02694—Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/185—Joining of semiconductor bodies for junction formation
- H01L21/187—Joining of semiconductor bodies for junction formation by direct bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/072—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8542—Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/30—Niobates; Vanadates; Tantalates
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02559—Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
Definitions
- the present invention relates to the manufacture of composite wafers. More specifically, the present invention relates to a method for manufacturing a composite wafer having an oxide single crystal thin film on a support wafer.
- Oxide single crystals such as lithium tantalate (LT) and lithium niobate (LN) are general piezoelectric materials and widely used as materials for surface acoustic wave (SAW) devices. It is used.
- SAW surface acoustic wave
- Oxide single crystals such as lithium tantalate (LT) and lithium niobate (LN) are general piezoelectric materials and widely used as materials for surface acoustic wave (SAW) devices. It is used.
- SAW surface acoustic wave
- an oxide single crystal wafer is made of a material having a thermal expansion coefficient smaller than that of the oxide single crystal, specifically, a sapphire wafer. It has been proposed to suppress the influence of thermal expansion of the oxide single crystal by bonding and thinning the oxide single crystal wafer side to several ⁇ m to several tens of ⁇ m by grinding or the like (Non-patent Document 1). . However, since this method cuts the oxide single crystal wafer after bonding, most of the oxide single crystal wafer is thrown away, and the use efficiency of the material is poor. In addition, since lithium tantalate and lithium niobate used as oxide single crystals are expensive materials, a method with high use efficiency for products and a small amount of disposal is desired in order to reduce production costs.
- the manufacturing method of SOI wafers thermally bonds the ion-implanted layer by applying a heat treatment at around 500 ° C. after bonding the support wafer to the silicon wafer on which the hydrogen ion layer is formed.
- Patent Document 1 In order to increase the use efficiency of oxide single crystal wafers in products, an oxide single crystal wafer is applied in place of a smart-cut silicon wafer to form an oxide single crystal thin film on a support wafer. Has been attempted (Non-Patent Documents 2 and 3).
- Non-Patent Document 2 forms a 121-nm-thick Cr metal layer on the surface of a lithium tantalate wafer on which an ion-implanted layer is formed, and bonds it to a SiO 2 substrate with a thickness of several hundred nm via the metal layer.
- 200 treated at ⁇ 500 ° C. was peeled at the ion implanted layer, after transferring the lithium tantalate thin film on a SiO 2 substrate via a metal layer, on the opposite side of the surface where the transfer of the lithium tantalate thin films of SiO 2 substrate It has been reported that a lithium-tantalate-metal-on-insulator (LTMOI) structure is fabricated by bonding lithium tantalate wafers.
- LTMOI lithium-tantalate-metal-on-insulator
- Non-Patent Document 3 a silicon wafer is bonded to a lithium tantalate wafer on which an ion-implanted layer is formed, heat-treated at 200 ° C. and peeled off by the ion-implanted layer, and a lithium tantalate thin film is heated on the silicon wafer. Have been transcribed.
- Oxide single crystals such as lithium tantalate (LT) and lithium niobate (LN) are hard and very brittle, and as shown in FIG. 3, their coefficients of thermal expansion are higher than those of silicon, glass and sapphire. Is extremely large. For this reason, when oxide single crystals are bonded to dissimilar wafers such as silicon, glass and sapphire and then heat-treated at a high temperature, peeling and cracking occur between the bonded wafers due to the difference in thermal expansion coefficient of both wafers. There is a problem that it occurs.
- LT lithium tantalate
- LN lithium niobate
- Non-Patent Document 2 describes a structure in which a metal layer and a SiO 2 substrate are sandwiched between a lithium tantalate wafer and a thin film, thereby suppressing peeling and cracking of the wafer due to a difference in thermal expansion during heat treatment. It is a report that enables transfer of thin films.
- the underlying substrate is the same lithium tantalate as the thin film, the temperature stability, which is a problem as the piezoelectric material described above, cannot be solved.
- the thin film cannot be transferred unless the heat treatment is performed at 200 ° C. or higher.
- the metal layer is sandwiched, applicable applications are limited.
- expensive lithium tantalate must be used more than necessary to suppress cracking of the wafer, and the manufacturing cost increases.
- Non-Patent Document 3 describes that heat treatment was attempted at 200 to 800 ° C., but as an example of transferring a lithium tantalate thin film onto a silicon wafer using the Smart-Cut method, only 200 ° C. is used. In this example, there is no description as to whether or not the lithium tantalate thin film could be transferred to the entire surface of the silicon wafer.
- the inventors conducted a verification experiment on peeling by heat treatment at 200 ° C. using the same method as in Non-Patent Document 3, and the lithium tantalate thin film was not transferred to the entire surface of the silicon wafer, Only a small portion of the transcript was observed. In particular, the lithium tantalate thin film was not transferred at all on the outer peripheral portion of the silicon wafer.
- the inventors of the present invention dare to increase the thermal expansion coefficient of the oxide single crystal unlike conventional approaches that suppress the generation of stress by combining materials with similar thermal expansion coefficients.
- the supporting wafer By selecting different materials (specifically, having a coefficient of thermal expansion of 7 ppm / K or more smaller than that of oxide single crystals) as the supporting wafer, the supporting wafer can be manufactured at low cost and is less prone to peeling or cracking at the bonding interface.
- the manufacturing method of the composite wafer provided with the oxide single crystal thin film on it was discovered.
- an oxide single crystal wafer in which an ion implantation layer is formed using a predetermined hydrogen ion implantation amount and a support wafer having a smaller thermal expansion coefficient than that of the oxide single crystal are bonded between the wafers by surface activation treatment or the like. Bonding with bonding force applied, and applying heat treatment at a low temperature that does not cause thermal separation, and then applying ultrasonic vibration to the ion-implanted layer of the bonded structure, maintaining bonding at the bonding interface The present inventors have found that the ion implantation layer can be exfoliated at a stroke.
- the present invention Injecting hydrogen atom ions or hydrogen molecular ions from the surface of an oxide single crystal wafer that is a lithium tantalate wafer or a lithium niobate wafer, and forming an ion implantation layer inside the oxide single crystal wafer; A step of performing a surface activation treatment on at least one of the surface of the oxide single crystal wafer ion-implanted and the surface of the support wafer to be bonded to the oxide single crystal wafer; After performing the surface activation treatment, bonding the ion-implanted surface of the oxide single crystal wafer and the surface of the support wafer to obtain a joined body, Heat-treating the joined body at a temperature of 90 ° C.
- the implantation amount of the hydrogen atom ions is 5.0 ⁇ 10 16 atoms / cm 2 to 2.75 ⁇ 10 17 atoms / cm 2
- the implantation amount of the hydrogen molecular ions is 2.5 ⁇ 10 16 atoms / cm 2. cm 2 to 1.37 ⁇ 10 17 atoms / cm 2
- a method for manufacturing a composite wafer including an oxide single crystal thin film on a supporting wafer can be provided.
- the adhesion at the bonding interface between the supporting wafer and the oxide single crystal thin film is high, and the oxide on the entire surface on the supporting wafer is less likely to be peeled off or cracked.
- a composite wafer to which the single crystal thin film is transferred can be obtained.
- the oxide single crystal wafer after the oxide single crystal thin film is transferred and separated onto the support wafer can be used again for the production of the composite wafer, and the cost can be reduced.
- the present invention relates to a method for manufacturing a composite wafer having an oxide single crystal thin film on a support wafer.
- the support wafer may be, for example, a wafer made of a material smaller than the thermal expansion coefficient of the oxide single crystal wafer to be bonded by 7 ppm / K or more.
- the support wafer include a sapphire wafer, a silicon wafer, a silicon wafer with an oxide film, and a glass wafer.
- the size of the support wafer is not particularly limited, but may be, for example, a wafer having a diameter of 75 to 150 mm and a thickness of 0.2 to 0.8 mm. Although what is marketed may be used for a support wafer, it is not specifically limited.
- a silicon wafer with an oxide film is a silicon wafer having an oxide film on at least a surface to be bonded, and the silicon wafer is heat-treated at 700 to 1200 ° C. in an air atmosphere to produce an oxide film on the surface of the silicon wafer. May be.
- the thickness of the oxide film of the silicon wafer with an oxide film is not particularly limited, but is preferably 10 to 500 nm.
- the oxide single crystal is a compound composed of lithium, a metal element such as tantalum or niobium, and oxygen, and examples thereof include lithium tantalate (LiTaO 3 ) and lithium niobate (LiNbO 3 ).
- the oxide single crystal is preferably a lithium tantalate single crystal or a lithium niobate single crystal, particularly in applications such as laser elements, piezoelectric elements, and surface acoustic wave elements.
- the oxide single crystal is usually used in the shape of a wafer.
- the size of the oxide single crystal wafer is not particularly limited, but may be, for example, a wafer having a diameter of 75 to 150 mm and a thickness of 0.2 to 0.8 mm.
- a commercially available oxide single crystal wafer may be used, but a known manufacturing method using the Czochralski method or the like (for example, Japanese Patent Application Laid-Open No. 2003-165895, republished 2004-079061) is used as it is. Or a combination of the processes described therein.
- the support wafer and the oxide single crystal wafer preferably have a surface roughness RMS of 1.0 nm or less on the surfaces to be bonded.
- a desired surface roughness may be obtained by chemical mechanical polishing (CMP).
- CMP chemical mechanical polishing
- the surface roughness RMS can be evaluated by, for example, an atomic force microscope (AFM).
- An oxide single crystal wafer is implanted with hydrogen ions from the surface thereof to form an ion implantation layer inside the oxide single crystal wafer.
- the ion implantation layer has an implantation energy that can form the ion implantation layer at a desired depth from the surface of the oxide single crystal wafer, and a predetermined dose of hydrogen atom ions (H + ) or hydrogen molecular ions (H 2 + ). It is formed by injecting.
- the implantation energy can be set to 50 to 200 keV.
- the implantation amount is 5.0 ⁇ 10 16 atoms / cm 2 to 2.75 ⁇ 10 17 atoms / cm 2 .
- the implantation amount is 2.5 ⁇ 10 16 atoms / cm 2 to 1.37 ⁇ 10 17 atoms / cm 2 .
- the implantation amount of hydrogen atom ions may be twice the implantation amount of hydrogen molecular ions.
- surface activation treatment is performed on at least one of the ion-implanted surface of the oxide single crystal wafer and the surface of the support wafer to be bonded to the oxide single crystal wafer.
- the surface on which the surface activation treatment is performed may be at least one of the ion-implanted surface of the oxide single crystal wafer and the surface of the support wafer to be bonded to the oxide single crystal wafer.
- Examples of the surface activation treatment include ozone water treatment, UV ozone treatment, ion beam treatment, and plasma treatment.
- the surface can be activated with active ozone by introducing ozone gas into pure water to form ozone water and immersing the wafer in ozone water, for example.
- UV ozone treatment for example, by holding the wafer in an atmosphere in which active ozone is generated by irradiating the atmosphere or oxygen gas with UV light having a short wavelength (for example, a wavelength of about 195 nm), Can be activated.
- an ion beam of Ar or the like is applied to the wafer surface in a high vacuum (for example, less than 1 ⁇ 10 ⁇ 5 Pa) to expose dangling bonds having high activity. it can.
- a high vacuum for example, less than 1 ⁇ 10 ⁇ 5 Pa
- the wafer is placed in a vacuum chamber, and the plasma gas is exposed to the plasma gas under reduced pressure (for example, 0.2 to 1.0 mTorr) for about 5 to 60 seconds.
- oxygen gas can be used when the surface is oxidized, and hydrogen gas, nitrogen gas, argon gas, or a mixed gas thereof can be used when the surface is not oxidized.
- organic substances on the wafer surface are oxidized and removed, and OH groups on the surface are increased and activated.
- the temperature at the time of bonding the oxide single crystal wafer and the support wafer is preferably around room temperature (including room temperature), for example, 10 to 50 ° C.
- the final product, the composite wafer is often used at around room temperature, and it is desirable that the bonded wafer conform to this temperature range when bonded.
- the temperature at the time of bonding may be the temperature at the position where the bonding is performed, that is, the ambient temperature in the apparatus or the apparatus.
- the temperature at the time of bonding can be controlled, for example, by setting the atmospheric temperature in the bonding apparatus.
- the room temperature is an ambient temperature at which the object is neither heated nor cooled, and is not particularly limited, but is, for example, 10 to 30 ° C., preferably around 25 ° C.
- the bonded body is heat-treated at a temperature of 90 ° C. or higher, for example, at a temperature at which the bonded interface does not crack.
- the temperature is lower than 90 ° C., the bonding strength at the bonding interface between the oxide single crystal wafer and the support wafer becomes insufficient, and peeling may occur at the bonding interface.
- the temperature of the heat treatment may be changed according to the support wafer to be used. For example, when the support wafer is a sapphire wafer, the temperature in the heat treatment step is preferably 90 to 225 ° C., more preferably 90 to 200 ° C.
- the temperature is preferably 90 to 200 ° C., more preferably 90 to 175 ° C.
- the temperature is preferably 90 to 110 ° C., more preferably 90 to 100 ° C.
- the temperature of the joined body may be a temperature obtained by measuring the atmospheric temperature in a furnace or oven using a thermocouple or the like attached to the heat treatment apparatus, for example.
- the time of the heat treatment at the above temperature is not particularly limited as long as no cracking or peeling occurs, and may be from 10 minutes to several tens of hours, for example, up to 100 hours.
- the heat treatment temperature is 90 ° C. or more and less than 110 ° C., it is preferably 10 minutes to 100 hours, and when the heat treatment temperature is 110 ° C. or more and less than 175 ° C., preferably 10 minutes to 60 hours, When the heat treatment temperature is 175 ° C.
- the process can be further simplified.
- the heat-treated bonded body is left at a temperature near room temperature (including room temperature), for example, 10 to 50 ° C., or cooled and adjusted using a cooler such as a blower.
- the heat-treated joined body may be allowed to stand in a room adjusted to 25 ° C. to obtain a desired temperature.
- ultrasonic vibration is applied to the heat-treated bonded body, peeling along the ion implantation layer, and an oxide single crystal thin film transferred onto the support wafer is obtained.
- Ultrasound is an elastic vibration wave (sound wave) having a high frequency.
- the method of applying ultrasonic vibration to the bonded body is not particularly limited, and a wedge-shaped blade to which ultrasonic waves are applied, such as a vibrator, for example, an ultrasonic cutter, is used as a side surface of the bonded body, for example, an end of an ion implantation layer. You may give by making it contact.
- the frequency of the ultrasonic wave is not particularly limited as long as the ion-implanted layer can be embrittled without affecting the bonding interface, but is preferably 20 to 40 kHz.
- the joined body is immersed in a water tank to which ultrasonic waves are applied, and then given through a liquid. Also good.
- the ion implantation layer can be more reliably peeled by immersing in a water bath to which ultrasonic vibration is applied for 1 to 60 minutes.
- the frequency is preferably 26 kHz to 1.6 MHz.
- a reinforcing material such as a vacuum chuck or an electrostatic chuck on the surface of one side or both sides of the joined body.
- the reinforcing material is added to the side surface of the bonded body on the side of the supporting wafer, the side surface of the bonded body on the side of the oxide single crystal wafer, or the surface of the side surface of the bonded body on both the supporting wafer side and the side of the oxide single crystal wafer.
- the vacuum chuck is not particularly limited, and examples thereof include porous polyethylene and alumina vacuum chucks.
- the electrostatic chuck is not particularly limited, and examples thereof include electrostatic chucks made of ceramics such as silicon carbide and aluminum nitride.
- the shapes of the vacuum chuck and the electrostatic chuck are not particularly limited, but are preferably larger than the diameter of the joined body.
- the temperature of the joined body when applying ultrasonic vibration is preferably set to a temperature around room temperature (including room temperature), for example, 10 to 50 ° C. without heating or cooling, or by heating or cooling. 25 to 30 ° C. is more preferable.
- the temperature of the joined body when applying ultrasonic vibration may be the ambient atmosphere temperature, for example, the temperature measured in the furnace or oven using a thermocouple attached in the heat treatment apparatus, It may be the temperature inside the workplace or the temperature of the water in the water tank.
- the temperature of the joined body when the ultrasonic vibration is applied has a predetermined preferable temperature range between the temperature at the time of bonding in the step of obtaining the joined body described above.
- the difference between the temperature at the time of bonding for obtaining a bonded body and the temperature of the bonded body at the time of applying ultrasonic vibration is preferably within 0 to 40 ° C., and the difference is desirably closer to 0 ° C.
- peeling or cracking may occur at the bonded interface of the joined body.
- the process of obtaining the joined body is generally performed in an environment such as a clean room (25 to 30 ° C.). In this case, the same atmospheric temperature, that is, 25 to 30 ° C. is applied to the process of applying ultrasonic vibration. It is desirable to carry out at a degree.
- a composite wafer including a support wafer and an oxide single crystal thin film that is a lithium tantalate thin film or a lithium niobate thin film on the support wafer is obtained.
- the thickness of the oxide single crystal thin film of the obtained composite wafer corresponds to the hydrogen ion implantation depth at the time of hydrogen ion implantation, and is preferably 100 to 1000 nm, and the surface is polished if necessary. Also good.
- the manufacturing process of the composite wafer according to the present invention is not particularly limited, but one mode thereof is shown in FIG.
- Hydrogen ions 12 are implanted from the surface of the oxide single crystal wafer 11 to form an ion implantation layer 13 inside the oxide single crystal wafer 11 (step a).
- Both the surface 11s into which the oxide single crystal wafer 11 is ion-implanted and the surface 14s of the support wafer 14 to be bonded to the oxide single crystal wafer are irradiated with an ion beam 15 to perform surface activation treatment (step b).
- the ion-implanted surface 11s of the oxide single crystal wafer and the support wafer surface 14s to be bonded to the oxide single crystal wafer are bonded together to obtain a bonded body 16 (step c).
- the obtained bonded body 16 is heat-treated at a temperature of 90 ° C. or higher (step d).
- a wedge-shaped blade 19 of an ultrasonic cutter is brought into contact with the side surface of the heat-treated bonded body 16, that is, the end of the ion-implanted layer 13, and ultrasonic vibration is applied to the bonded body 16.
- the composite wafer 18 can be obtained by peeling the part 11b of the crystal wafer and transferring the oxide single crystal thin film 11a onto the support wafer 14 (step e).
- FIG. 2 shows another aspect of the step e.
- the heat-treated joined body 16 is immersed in a water tank 31 provided with the vibrator 33, ultrasonic waves are applied to the water tank 31, and the liquid 32.
- the ultrasonic wave is applied to the bonded body 16 via the electrode, the oxide single crystal wafer 11b is peeled off along the ion implantation layer 13, and the oxide single crystal thin film 11a is transferred onto the support wafer 14.
- a composite wafer 18 may be obtained.
- a sapphire wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the support wafer.
- a lithium tantalate wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the oxide single crystal wafer.
- the surface roughness RMS of the surfaces used for bonding the sapphire wafer and the lithium tantalate wafer to each other was evaluated with an atomic force microscope, it was 1.0 nm or less.
- the surfaces used for bonding the sapphire wafer and the lithium tantalate wafer to each other were subjected to a plasma treatment using a plasma activation device in a nitrogen atmosphere to perform surface activation.
- the surfaces of the surface activated sapphire wafer and lithium tantalate wafer were bonded together at room temperature (25 ° C.) to obtain a joined body.
- the joined body was heated to 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, or 275 ° C., and heat treatment was performed at each temperature for 24 hours.
- a heat treatment oven was used as the heating means, and the temperature of the atmosphere in the oven was measured with a thermocouple to obtain the temperature of the joined body.
- Table 1 shows the results of the appearance inspection of the obtained joined body.
- the appearance inspection was performed by visual inspection, and the case where there was no crack or chipping was evaluated as “ ⁇ ”, the case where there was a minute crack as “ ⁇ ”, and the case where the wafer was damaged as “X”.
- the support wafer was sapphire, it was confirmed that the sample with a heat treatment temperature of 70 to 225 ° C. was bonded without cracking or chipping.
- Example 2 A silicon wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the support wafer, and each of the bonded bodies was heated to 70, 80, 90, 100, 110, 125, 150, 175, 200, or 225 ° C. The experiment was performed in the same manner as in Experiment 1 except that the heat treatment was performed at each temperature for 24 hours. The surface roughness RMS of the surfaces used for bonding the silicon wafer and the lithium tantalate wafer to each other was 1.0 nm or less. Table 1 shows the results of the appearance inspection of the obtained joined body. When the supporting wafer was made of silicon, it was confirmed that the sample having a heat treatment temperature of 70 to 200 ° C. was bonded without cracking or chipping.
- a silicon wafer having a diameter of 100 mm and a thickness of 0.35 mm on a silicon wafer with a 100 nm oxide film was used, and the joined bodies were 70, 80, 90, 100, 110, 125, 150, 175, 200.
- each experiment was performed in the same manner as in Experiment 1 except that each was heated to 225 ° C. and heat-treated at each temperature for 24 hours.
- surface roughness RMS of the surface used for mutually bonding a silicon wafer with an oxide film and a lithium tantalate wafer was 1.0 nm or less. Table 1 shows the results of the appearance inspection of the obtained joined body.
- the silicon wafer with an oxide film was a silicon wafer in which a 100 nm thermal oxide film was grown on the silicon wafer by heating the silicon wafer at 1100 ° C. for about 1 hour in advance.
- the support wafer was made of silicon with an oxide film, it was confirmed that the sample with a heat treatment temperature of 70 to 200 ° C. was bonded without cracking or chipping.
- Example 4 A glass wafer having a diameter of 100 mm and a thickness of 0.35 mm is used as a support wafer, and each bonded body is heated to 70, 80, 90, 100, 110, or 125 ° C., and is heated at each temperature for 24 hours.
- the experiment was performed in the same manner as in Experiment 1 except that.
- the surface roughness RMS of the surfaces used for bonding the glass wafer and the lithium tantalate wafer to each other was 1.0 nm or less.
- Table 1 shows the results of the appearance inspection of the obtained joined body. When the supporting wafer was made of glass, it was confirmed that the sample having a heat treatment temperature of 70 to 110 ° C. was bonded without cracking or chipping.
- Experiments 1 to 4 used lithium tantalate wafers, but the same results as in Table 1 were obtained even when experiments similar to Experiments 1 to 4 were performed using lithium niobate wafers as oxide single crystal wafers. The same results were obtained even when the surface activation treatment was replaced by ozone water treatment, UV ozone treatment, or vacuum ion beam treatment instead of plasma treatment. From these results, it was found that any of the above activation methods is effective and that there is no difference between lithium tantalate and lithium niobate.
- Example 1 A sapphire wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the support wafer.
- a lithium tantalate wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the oxide single crystal wafer.
- the surface roughness RMS of the surfaces used for bonding the sapphire wafer and the lithium tantalate wafer to each other was 1.0 nm or less.
- ion implantation is performed from the surface of a lithium tantalate wafer using hydrogen atom ions under the conditions of an implantation amount of 7.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
- a heat treatment oven was used as a heating means, and the temperature of the atmosphere in the oven was measured with a thermocouple to obtain the temperature of the joined body.
- the heat-treated joined body was allowed to stand until it fell to room temperature, and then the cutter blade was brought into contact with the end of the ion-implanted layer of the joined body at room temperature (25 ° C.) using an ultrasonic cutter equipped with a wedge-shaped blade.
- an ultrasonic wave (30 kHz) was applied and peeled along the ion implantation layer to obtain a composite wafer in which a lithium tantalate thin film was transferred onto a sapphire wafer.
- Table 2 shows the results of the appearance inspection of the obtained composite wafer. The appearance inspection was carried out by visual inspection. The thin film transfer was made on the entire surface of the wafer. The thin film transfer was partially defective. The thin film transfer was made poor.
- Example 2 A silicon wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as a support wafer, and the joined body was heated to 90, 100, 110, 125, 150, 175, or 200 ° C., and each temperature was maintained for 24 hours. It carried out similarly to Example 1 except having performed heat processing. The surface roughness RMS of the surfaces used for bonding the silicon wafer and the lithium tantalate wafer to each other was 1.0 nm or less. Table 2 shows the results of the appearance inspection of the obtained composite wafer.
- Example 3 As a support wafer, a silicon wafer with a 100 nm oxide film on a silicon wafer having a diameter of 100 mm and a thickness of 0.35 mm is used, and the bonded body becomes 90, 100, 110, 125, 150, 175, or 200 ° C. In the same manner as in Example 1 except that each was heated and heat-treated at each temperature for 24 hours. In addition, surface roughness RMS of the surface used for mutually bonding a silicon wafer with an oxide film and a lithium tantalate wafer was 1.0 nm or less. Table 2 shows the results of the appearance inspection of the obtained composite wafer.
- the silicon wafer with an oxide film was a silicon wafer in which a 100 nm thermal oxide film was grown on the silicon wafer by heating the silicon wafer at 1100 ° C. for about 1 hour in advance.
- Example 4 A glass wafer with a diameter of 100 mm and a thickness of 0.35 mm was used as a support wafer, and each bonded body was heated to 90, 100, or 110 ° C., and was subjected to heat treatment at each temperature for 24 hours. Performed as in Example 1. The surface roughness RMS of the surfaces used for bonding the glass wafer and the lithium tantalate wafer to each other was 1.0 nm or less. Table 2 shows the results of the appearance inspection of the obtained composite wafer.
- the support wafer is sapphire
- the heat treatment temperature is 90 to 225 ° C.
- the support wafer is silicon
- the heat treatment temperature is 90 to 200 ° C.
- the support wafer is silicon with an oxide film
- the heat treatment temperature was 80 ° C.
- a portion where the lithium tantalate thin film was transferred and a portion where the portion was not transferred were generated on the support wafer.
- the embrittlement at the ion implantation interface was not sufficient, and the bonding force between the two wafers was insufficient, and it was considered that the entire surface was not transferred.
- the implantation amount is 5.0 ⁇ 10 16 , 7.5 ⁇ 10 16 , 10 ⁇ 10 16 , 12.5 ⁇ 10 16 , 15 ⁇ 10 16 , 17 using hydrogen atom ions.
- Ion implantation is performed under the conditions of 5 ⁇ 10 16 , 20 ⁇ 10 16 , 22.5 ⁇ 10 16 , 25 ⁇ 10 16 , or 27.5 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and a lithium tantalate wafer Example 1 was carried out in the same manner as in Example 1 except that an ion-implanted layer was formed inside and that the bonded body was heat-treated at 90 ° C. for 24 hours.
- ion implantation is performed using hydrogen atom ions under the conditions of an implantation amount of 4.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
- the same operation as in Example 5 was carried out except that it was formed.
- a lithium tantalate wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the oxide single crystal wafer.
- the surface roughness RMS of the surfaces used for bonding the lithium tantalate wafers to each other was 1.0 nm or less.
- ion implantation was performed using hydrogen atom ions under the conditions of an implantation amount of 30 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV to form an ion implantation layer inside the lithium tantalate wafer.
- the implantation amount is 5.0 ⁇ 10 16 , 7.5 ⁇ 10 16 , 10 ⁇ 10 16 , 12.5 ⁇ 10 16 , 15 ⁇ 10 16 , 17 using hydrogen atom ions.
- Ion implantation is performed under the conditions of 5 ⁇ 10 16 , 20 ⁇ 10 16 , 22.5 ⁇ 10 16 , 25 ⁇ 10 16 , or 27.5 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and a lithium tantalate wafer Example 2 was carried out in the same manner as in Example 2 except that an ion-implanted layer was formed inside and that the bonded body was subjected to heat treatment at 90 ° C. for 24 hours.
- ion implantation is performed using hydrogen atom ions under the conditions of an implantation amount of 4.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
- the same operation as in Example 6 was carried out except that it was formed.
- the implantation amount is 5.0 ⁇ 10 16 , 7.5 ⁇ 10 16 , 10 ⁇ 10 16 , 12.5 ⁇ 10 16 , 15 ⁇ 10 16 , 17 using hydrogen atom ions.
- Ion implantation is performed under the conditions of 5 ⁇ 10 16 , 20 ⁇ 10 16 , 22.5 ⁇ 10 16 , 25 ⁇ 10 16 , or 27.5 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and a lithium tantalate wafer Example 3 was performed in the same manner as in Example 3 except that an ion-implanted layer was formed inside and that the bonded body was subjected to heat treatment at 90 ° C. for 24 hours.
- ion implantation is performed using hydrogen atom ions under the conditions of an implantation amount of 4.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
- the same operation as in Example 7 was performed except for formation.
- the implantation amount is 5.0 ⁇ 10 16 , 7.5 ⁇ 10 16 , 10 ⁇ 10 16 , 12.5 ⁇ 10 16 , 15 ⁇ 10 16 , 17 using hydrogen atom ions.
- Ion implantation is performed under the conditions of 5 ⁇ 10 16 , 20 ⁇ 10 16 , 22.5 ⁇ 10 16 , 25 ⁇ 10 16 , or 27.5 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and a lithium tantalate wafer Example 4 was performed in the same manner as in Example 4 except that an ion-implanted layer was formed inside and that the bonded body was heat-treated at 90 ° C. for 24 hours.
- ion implantation is performed using hydrogen atom ions under the conditions of an implantation amount of 4.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
- the same operation as in Example 8 was carried out except that it was formed.
- Example 9 The heat-treated joined body is allowed to stand until it falls to room temperature, and then the joined body is immersed in a water bath at 25 ° C. using an ultrasonic cleaning machine, and ultrasonic waves (26 kHz) are applied to the water bath for 120 seconds.
- a ultrasonic wave was applied to the bonded body to peel off the bonded body along the ion implantation layer to obtain a composite wafer in which a lithium tantalate thin film was transferred onto a sapphire wafer.
- Table 3 shows the results of the appearance inspection of the obtained composite wafer. The appearance inspection was carried out by visual inspection. The thin film transfer was made on the entire surface of the wafer. The thin film transfer was partially defective. The thin film transfer was made poor.
- Example 10 The heat-treated joined body is allowed to stand until it falls to room temperature, and then the joined body is immersed in a water bath at 25 ° C. using an ultrasonic cleaning machine, and ultrasonic waves (26 kHz) are applied to the water bath for 120 seconds. This was carried out in the same manner as in Example 2 except that a ultrasonic wave was applied to the joined body to peel off the bonded body along the ion implantation layer to obtain a composite wafer having a lithium tantalate thin film transferred onto the silicon wafer. Table 3 shows the results of the appearance inspection of the obtained composite wafer.
- Example 11 The heat-treated joined body is allowed to stand until it falls to room temperature, and then the joined body is immersed in a water bath at 25 ° C. using an ultrasonic cleaning machine, and ultrasonic waves (26 kHz) are applied to the water bath for 120 seconds.
- a ultrasonic wave was applied to the bonded body to peel off the bonded body along the ion-implanted layer to obtain a composite wafer in which a lithium tantalate thin film was transferred onto a silicon wafer with an oxide film. Carried out.
- Table 3 shows the results of the appearance inspection of the obtained composite wafer.
- Example 12 The heat-treated joined body is allowed to stand until it falls to room temperature, and then the joined body is immersed in a water bath at 25 ° C. using an ultrasonic cleaning machine, and ultrasonic waves (26 kHz) are applied to the water bath for 120 seconds. This was carried out in the same manner as in Example 4 except that a ultrasonic wave was applied to the bonded body to peel off the bonded body along the ion implantation layer to obtain a composite wafer having a lithium tantalate thin film transferred onto a glass wafer. Table 3 shows the results of the appearance inspection of the obtained composite wafer.
- the support wafer is sapphire
- the heat treatment temperature is 90 to 225 ° C.
- the support wafer is silicon
- the heat treatment temperature is 90 to 200 ° C.
- the support wafer is silicon with an oxide film
- the heat treatment temperature was 80 ° C.
- a portion where the lithium tantalate thin film was transferred and a portion where the portion was not transferred were generated on the support wafer.
- the embrittlement at the ion implantation interface was not sufficient, and the bonding force between the two wafers was insufficient, and it was considered that the entire surface was not transferred.
- oxide single crystal wafer 11s surface of oxide single crystal wafer 11a: oxide single crystal thin film 11b: part of oxide single crystal wafer after peeling 12: hydrogen ion 13: ion implantation layer 14: support wafer 14s: Surface of supporting wafer 15: Ion beam irradiation 16: Bonded body 18: Composite wafer 19: Wedge blade of ultrasonic cutter 31: Water tank 32: Liquid in water tank 33: Vibrator
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- High Energy & Nuclear Physics (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Thermal Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
タンタル酸リチウムウェーハまたはニオブ酸リチウムウェーハである酸化物単結晶ウェーハの表面から水素原子イオンまたは水素分子イオンを注入し、前記酸化物単結晶ウェーハの内部にイオン注入層を形成する工程と、
前記酸化物単結晶ウェーハのイオン注入した表面と、前記酸化物単結晶ウェーハと貼り合わせようとする支持ウェーハの表面の少なくとも一方に、表面活性化処理を施す工程と、
前記表面活性化処理を施した後、前記酸化物単結晶ウェーハのイオン注入した表面と、前記支持ウェーハの表面とを貼り合わせて接合体を得る工程と、
前記接合体を90℃以上であって割れを生じない温度で熱処理する工程と、
前記熱処理した接合体に超音波振動を与える工程であって、前記イオン注入層に沿って剥離し、前記支持ウェーハ上に転写された酸化物単結晶薄膜を得る、工程と
を少なくとも含み、
前記水素原子イオンの注入量が、5.0×1016atom/cm2~2.75×1017atom/cm2であり、前記水素分子イオンの注入量が、2.5×1016atoms/cm2~1.37×1017atoms/cm2である、
支持ウェーハ上に酸化物単結晶薄膜を備えた複合ウェーハの製造方法を提供することができる。
支持ウェーハとして、直径100mm、厚さ0.35mmのサファイアウェーハを用いた。酸化物単結晶ウェーハとして、直径100mm、厚さ0.35mmのタンタル酸リチウムウェーハを用いた。サファイアウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSを原子間力顕微鏡で評価したところ、1.0nm以下であった。
まず、サファイアウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面に、窒素雰囲気下でプラズマ活性化装置を用いてプラズマ処理を施し、表面活性化を行った。次に、表面活性化したサファイアウェーハおよびタンタル酸リチウムウェーハの表面を室温(25℃)で貼り合わせて接合体を得た。次に、接合体が70、80、90、100、110、125、150、175、200、225、250、または275℃となるように各々加熱し、各温度において24時間加熱処理を行った。加熱手段には、熱処理オーブンを用い、熱電対でオーブン内の雰囲気温度を測定して接合体の温度とした。得られた接合体の外観検査の結果を表1に示す。なお、外観検査は目視で行い、割れや欠けがないものを○、微小なクラックが有るものを△、ウェーハが破損したものを×とした。支持ウェーハをサファイアとすると、熱処理温度を70~225℃としたサンプルについては、割れや欠けが発生せず、接合していることが確認できた。
支持ウェーハとして、直径100mm、厚さ0.35mmのシリコンウェーハを用いて、接合体が70、80、90、100、110、125、150、175、200、または225℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実験1と同様に行った。なお、シリコンウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた接合体の外観検査の結果を表1に示す。支持ウェーハをシリコンとすると、熱処理温度を70~200℃としたサンプルについては、割れや欠けが発生せず、接合していることが確認できた。
支持ウェーハとして、直径100mm、厚さ0.35mmのシリコンウェーハ上に100nmの酸化膜を付したシリコンウェーハを用いて、接合体が70、80、90、100、110、125、150、175、200、または225℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実験1と同様に行った。なお、酸化膜付きシリコンウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた接合体の外観検査の結果を表1に示す。なお、酸化膜付きシリコンウェーハは、予めシリコンウェーハを1100℃で1時間程度加熱することにより、シリコンウェーハ上に100nmの熱酸化膜を成長させたシリコンウェーハとした。支持ウェーハを酸化膜付きシリコンとすると、熱処理温度を70~200℃としたサンプルについては、割れや欠けが発生せず、接合していることが確認できた。
支持ウェーハとして、直径100mm、厚さ0.35mmのガラスウェーハを用いて、接合体が70、80、90、100、110、または125℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実験1と同様に行った。なお、ガラスウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた接合体の外観検査の結果を表1に示す。支持ウェーハをガラスとすると、熱処理温度を70~110℃としたサンプルについては、割れや欠けが発生せず、接合していることが確認できた。
支持ウェーハとして、直径100mm、厚さ0.35mmのサファイアウェーハを用いた。酸化物単結晶ウェーハとして、直径100mm、厚さ0.35mmのタンタル酸リチウムウェーハを用いた。サファイアウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。
まず、タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量7.0×1016atom/cm2、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した。次に、イオン注入したタンタル酸リチウムウェーハの表面と、タンタル酸リチウムウェーハと貼り合わせるサファイアウェーハの表面に、7×10-6Pa下で真空イオンビーム装置を用いてArをイオン源とし、真空イオンビーム処理を施し、表面活性化を行った。次に、表面活性化したサファイアウェーハおよびタンタル酸リチウムウェーハの表面を室温(25℃)で貼り合わせて接合体を得た。次に、接合体が90、100、110、125、150、175、200、または225℃となるように各々加熱し、各温度において24時間加熱処理を行った。なお、加熱手段として、熱処理オーブンを用い、熱電対でオーブン内の雰囲気温度を測定して接合体の温度とした。熱処理した接合体を室温に下がるまで静置し、その後、室温(25℃)で、楔状の刃を備えた超音波カッターを用いて、接合体のイオン注入層の端部にカッター刃を接触した状態で超音波(30kHz)を印加して、イオン注入層に沿って剥離し、サファイアウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た。得られた複合ウェーハの外観検査の結果を表2に示す。なお、外観検査は、目視で行い、薄膜の転写がウェーハ全面において出来ているものを○、薄膜の転写が一部不良であるものを△、薄膜の転写ができなかったものを×とした。
接合体を70℃で24時間加熱処理した以外は実施例1と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
接合体を80℃で24時間加熱処理した以外は実施例1と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
支持ウェーハとして、直径100mm、厚さ0.35mmのシリコンウェーハを用いて、接合体が90、100、110、125、150、175、または200℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実施例1と同様に行った。なお、シリコンウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた複合ウェーハの外観検査の結果を表2に示す。
接合体を70℃で24時間加熱処理した以外は実施例2と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
接合体を80℃で24時間加熱処理した以外は実施例2と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
支持ウェーハとして、直径100mm、厚さ0.35mmのシリコンウェーハ上に100nmの酸化膜を付したシリコンウェーハを用いて、接合体が90、100、110、125、150、175、または200℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実施例1と同様に行った。なお、酸化膜付きシリコンウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた複合ウェーハの外観検査の結果を表2に示す。なお、酸化膜付きシリコンウェーハは、予めシリコンウェーハを1100℃で1時間程度加熱することにより、シリコンウェーハ上に100nmの熱酸化膜を成長させたシリコンウェーハとした。
接合体を70℃で24時間加熱処理した以外は実施例3と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
接合体を80℃で24時間加熱処理した以外は実施例3と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
支持ウェーハとして、直径100mm、厚さ0.35mmのガラスウェーハを用いて、接合体が90、100、または110℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実施例1と同様に行った。なお、ガラスウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた複合ウェーハの外観検査の結果を表2に示す。
接合体を70℃で24時間加熱処理した以外は実施例4と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
接合体を80℃で24時間加熱処理した以外は実施例4と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
いずれの支持ウェーハにおいても、熱処理温度を70℃とした場合に、イオン注入層での剥離は生じず、貼り合わせた両ウェーハの界面で剥がれが生じた。また、熱処理温度を80℃とした場合には、支持ウェーハ上にタンタル酸リチウム薄膜が転写できた部分と一部未転写の部分が発生した。70℃および80℃ではイオン注入界面での脆化が十分でなく、また、両ウェーハの貼り合わせの接合力が不足し、全面転写に至らなかったものと思われる。
タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を5.0×1016、7.5×1016、10×1016、12.5×1016、15×1016、17.5×1016、20×1016、22.5×1016、25×1016、または27.5×1016atom/cm2、加速電圧100KeVの条件で各々イオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成したことと、接合体を90℃で24時間加熱処理を行った以外は実施例1と同様に実施した。
タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を4.0×1016atom/cm2、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した以外は実施例5と同様に実施した。
酸化物単結晶ウェーハとして、直径100mm、厚さ0.35mmのタンタル酸リチウムウェーハを用いた。タンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量30×1016atom/cm2、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した。結果、貼り合わせる前のタンタル酸リチウムウェーハの表面上に凹凸が観察され、貼り合わせ時の所望の表面粗さとならないため貼り合わせを行わなかった。タンタル酸リチウムウェーハの表面上の凹凸は、注入した水素が固溶しきれずに内部で発泡したため生じたと思われる。
タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を5.0×1016、7.5×1016、10×1016、12.5×1016、15×1016、17.5×1016、20×1016、22.5×1016、25×1016、または27.5×1016atom/cm2、加速電圧100KeVの条件で各々イオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成したことと、接合体を90℃で24時間加熱処理を行った以外は実施例2と同様に実施した。
タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を4.0×1016atom/cm2、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した以外は実施例6と同様に実施した。
タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を5.0×1016、7.5×1016、10×1016、12.5×1016、15×1016、17.5×1016、20×1016、22.5×1016、25×1016、または27.5×1016atom/cm2、加速電圧100KeVの条件で各々イオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成したことと、接合体を90℃で24時間加熱処理を行った以外は実施例3と同様に実施した。
タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を4.0×1016atom/cm2、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した以外は実施例7と同様に実施した。
タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を5.0×1016、7.5×1016、10×1016、12.5×1016、15×1016、17.5×1016、20×1016、22.5×1016、25×1016、または27.5×1016atom/cm2、加速電圧100KeVの条件で各々イオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成したことと、接合体を90℃で24時間加熱処理を行った以外は実施例4と同様に実施した。
タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を4.0×1016atom/cm2、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した以外は実施例8と同様に実施した。
なお、実施例5~8では水素原子イオンを用いたが、水素分子イオンを用いてその注入量を水素原子イオンの注入量の半分とすることでも、同様の結果を得ることができた。また、酸化物単結晶ウェーハとしてニオブ酸リチウムウェーハを用いても実施例5~8と同じ結果を得ることができた。
熱処理した接合体を室温に下がるまで静置し、その後、超音波洗浄機を用いて、25℃の水槽中に接合体を浸漬させ、水槽に超音波(26kHz)を120秒間印加して、水を介して接合体に超音波振動を与えてイオン注入層に沿って剥離し、サファイアウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た以外は、実施例1と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。なお、外観検査は、目視で行い、薄膜の転写がウェーハ全面において出来ているものを○、薄膜の転写が一部不良であるものを△、薄膜の転写ができなかったものを×とした。
接合体を70℃で24時間加熱処理した以外は実施例9と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
接合体を80℃で24時間加熱処理した以外は実施例9と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
熱処理した接合体を室温に下がるまで静置し、その後、超音波洗浄機を用いて、25℃の水槽中に接合体を浸漬させ、水槽に超音波(26kHz)を120秒間印加して、水を介して接合体に超音波振動を与えてイオン注入層に沿って剥離し、シリコンウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た以外は、実施例2と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
接合体を70℃で24時間加熱処理した以外は実施例10と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
接合体を80℃で24時間加熱処理した以外は実施例10と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
熱処理した接合体を室温に下がるまで静置し、その後、超音波洗浄機を用いて、25℃の水槽中に接合体を浸漬させ、水槽に超音波(26kHz)を120秒間印加して、水を介して接合体に超音波振動を与えてイオン注入層に沿って剥離し、酸化膜付きシリコンウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た以外は、実施例3と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
接合体を70℃で24時間加熱処理した以外は実施例11と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
接合体を80℃で24時間加熱処理した以外は実施例11と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
熱処理した接合体を室温に下がるまで静置し、その後、超音波洗浄機を用いて、25℃の水槽中に接合体を浸漬させ、水槽に超音波(26kHz)を120秒間印加して、水を介して接合体に超音波振動を与えてイオン注入層に沿って剥離し、ガラスウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た以外は、実施例4と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
接合体を70℃で24時間加熱処理した以外は実施例12と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
接合体を80℃で24時間加熱処理した以外は実施例12と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
いずれの支持ウェーハにおいても、熱処理温度を70℃とした場合に、イオン注入層での剥離は生じず、貼り合わせた両ウェーハの界面で剥がれが生じた。また、熱処理温度を80℃とした場合には、支持ウェーハ上にタンタル酸リチウム薄膜が転写できた部分と一部未転写の部分が発生した。70℃および80℃ではイオン注入界面での脆化が十分でなく、また、両ウェーハの貼り合わせの接合力が不足し、全面転写に至らなかったものと思われる。
11s :酸化物単結晶ウェーハの表面
11a :酸化物単結晶薄膜
11b :剥離した後の酸化物単結晶ウェーハの一部
12 :水素イオン
13 :イオン注入層
14 :支持ウェーハ
14s :支持ウェーハの表面
15 :イオンビーム照射
16 :接合体
18 :複合ウェーハ
19 :超音波カッターの楔状の刃
31 :水槽
32 :水槽中の液体
33 :振動子
Claims (7)
- タンタル酸リチウムウェーハまたはニオブ酸リチウムウェーハである酸化物単結晶ウェーハの表面から水素原子イオンまたは水素分子イオンを注入し、前記酸化物単結晶ウェーハの内部にイオン注入層を形成する工程と、
前記酸化物単結晶ウェーハのイオン注入した表面と、前記酸化物単結晶ウェーハと貼り合わせようとする支持ウェーハの表面の少なくとも一方に、表面活性化処理を施す工程と、
前記表面活性化処理を施した後、前記酸化物単結晶ウェーハのイオン注入した表面と、前記支持ウェーハの表面とを貼り合わせて接合体を得る工程と、
前記接合体を90℃以上であって割れを生じない温度で熱処理する工程と、
前記熱処理した接合体に超音波振動を与える工程であって、前記イオン注入層に沿って剥離し、前記支持ウェーハ上に転写された酸化物単結晶薄膜を得る、工程と
を少なくとも含み、
前記水素原子イオンの注入量が、5.0×1016atom/cm2~2.75×1017atom/cm2であり、前記水素分子イオンの注入量が、2.5×1016atoms/cm2~1.37×1017atoms/cm2である、
支持ウェーハ上に酸化物単結晶薄膜を備えた複合ウェーハの製造方法。 - 前記支持ウェーハがサファイア、シリコン、酸化膜付きシリコン、およびガラスからなる群から選ばれるウェーハであり、
前記熱処理する工程における前記温度が、前記支持ウェーハがサファイアウェーハであるときは90~225℃であり、前記支持ウェーハがシリコンウェーハまたは酸化膜付きシリコンウェーハであるときは90~200℃であり、前記支持ウェーハがガラスウェーハであるときは90~110℃である、請求項1に記載の複合ウェーハの製造方法。 - 前記接合体を得るための前記貼り合わせ時の温度と、前記超音波振動を与える時の前記接合体の温度との差が、0~40℃以内である、請求項1または2に記載の複合ウェーハの製造方法。
- 前記表面活性化処理が、オゾン水処理、UVオゾン処理、イオンビーム処理、およびプラズマ処理から選ばれる、請求項1~3のいずれか1項に記載の複合ウェーハの製造方法。
- 前記超音波振動を与える工程が、振動子を前記接合体の側面に接触させることを含む、請求項1~4のいずれか1項に記載の複合ウェーハの製造方法。
- 前記超音波振動を与える工程が、液体を介して前記接合体に前記超音波振動を与えることを含む、請求項1~4のいずれか1項に記載の複合ウェーハの製造方法。
- 請求項1~6のいずれか1項に記載の複合ウェーハの製造方法によって得られる、支持ウェーハと、前記支持ウェーハ上のタンタル酸リチウム薄膜またはニオブ酸リチウム薄膜である酸化物単結晶薄膜とを備えた複合ウェーハ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680032041.6A CN107615448B (zh) | 2015-06-02 | 2016-06-01 | 具备氧化物单晶薄膜的复合晶片的制造方法 |
EP16803411.4A EP3306644B1 (en) | 2015-06-02 | 2016-06-01 | Method for producing composite wafer provided with oxide single-crystal thin film |
US15/577,456 US10770648B2 (en) | 2015-06-02 | 2016-06-01 | Method for producing composite wafer having oxide single-crystal film |
KR1020177033744A KR102554056B1 (ko) | 2015-06-02 | 2016-06-01 | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015112333A JP6396853B2 (ja) | 2015-06-02 | 2015-06-02 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
JP2015-112333 | 2015-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016194977A1 true WO2016194977A1 (ja) | 2016-12-08 |
Family
ID=57442047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066283 WO2016194977A1 (ja) | 2015-06-02 | 2016-06-01 | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10770648B2 (ja) |
EP (1) | EP3306644B1 (ja) |
JP (1) | JP6396853B2 (ja) |
KR (1) | KR102554056B1 (ja) |
CN (1) | CN107615448B (ja) |
TW (1) | TWI713123B (ja) |
WO (1) | WO2016194977A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6858586B2 (ja) * | 2017-02-16 | 2021-04-14 | 株式会社ディスコ | ウエーハ生成方法 |
JP6858587B2 (ja) * | 2017-02-16 | 2021-04-14 | 株式会社ディスコ | ウエーハ生成方法 |
FR3078822B1 (fr) * | 2018-03-12 | 2020-02-28 | Soitec | Procede de preparation d’une couche mince de materiau ferroelectrique a base d’alcalin |
DE112019002430B4 (de) * | 2018-06-22 | 2022-07-28 | Ngk Insulators, Ltd. | Verbundener Körper und Akustikwellenelement |
CN109166793B (zh) * | 2018-08-30 | 2021-11-09 | 哈尔滨工业大学 | 一种利用先真空紫外光再氮等离子体两步活化直接键合铌酸锂和硅晶片的方法 |
FR3093715B1 (fr) * | 2019-03-15 | 2021-03-05 | Soitec Silicon On Insulator | Dispositif de maintien pour un ensemble à fracturer |
CN110296578B (zh) * | 2019-06-28 | 2021-08-24 | 京东方科技集团股份有限公司 | 一种干燥方法及干燥设备 |
CN113714649B (zh) * | 2021-08-25 | 2023-07-14 | 深圳市大族半导体装备科技有限公司 | 晶片的制造方法 |
FR3131980B1 (fr) * | 2022-01-17 | 2024-01-12 | Soitec Silicon On Insulator | Procédé de fabrication d’un substrat donneur pour le transfert d’une couche piézoélectrique et procédé de transfert d’une couche piézoélectrique sur un substrat support |
CN117438293B (zh) * | 2023-12-20 | 2024-03-12 | 青禾晶元(晋城)半导体材料有限公司 | 一种注入剥离方法以及其中氢离子注入的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231912A (ja) * | 2001-01-31 | 2002-08-16 | Canon Inc | 薄膜半導体装置の製造方法 |
JP2003095798A (ja) * | 2001-09-27 | 2003-04-03 | Hoya Corp | 単結晶基板の製造方法 |
JP2010109949A (ja) * | 2008-10-31 | 2010-05-13 | Murata Mfg Co Ltd | 電子デバイスの製造方法および圧電デバイスの製造方法 |
JP2013149853A (ja) * | 2012-01-20 | 2013-08-01 | Shin Etsu Chem Co Ltd | 薄膜付き基板の製造方法 |
WO2014017369A1 (ja) * | 2012-07-25 | 2014-01-30 | 信越化学工業株式会社 | ハイブリッド基板の製造方法及びハイブリッド基板 |
JP2015046486A (ja) * | 2013-08-28 | 2015-03-12 | 信越化学工業株式会社 | 窒化物半導体薄膜を備えた複合基板の製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS604599B2 (ja) * | 1976-03-17 | 1985-02-05 | 株式会社東芝 | タンタル酸リチウム単結晶の製造方法 |
US5668057A (en) * | 1991-03-13 | 1997-09-16 | Matsushita Electric Industrial Co., Ltd. | Methods of manufacture for electronic components having high-frequency elements |
FR2681472B1 (fr) | 1991-09-18 | 1993-10-29 | Commissariat Energie Atomique | Procede de fabrication de films minces de materiau semiconducteur. |
CA2133300C (en) * | 1993-11-01 | 1999-04-27 | Hirotoshi Nagata | Optical waveguide device |
EP0742598B1 (en) * | 1995-05-08 | 2000-08-02 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing a composite substrate and a piezoelectric device using the substrate |
US6319430B1 (en) * | 1997-07-25 | 2001-11-20 | Crystal Technology, Inc. | Preconditioned crystals of lithium niobate and lithium tantalate and method of preparing the same |
JPH11163363A (ja) | 1997-11-22 | 1999-06-18 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
US6540827B1 (en) | 1998-02-17 | 2003-04-01 | Trustees Of Columbia University In The City Of New York | Slicing of single-crystal films using ion implantation |
JP2000269779A (ja) * | 1999-03-18 | 2000-09-29 | Shin Etsu Chem Co Ltd | 弾性表面波又は疑似弾性表面波デバイス用圧電性単結晶ウェーハ及びその製造方法 |
JP2002353082A (ja) | 2001-05-28 | 2002-12-06 | Shin Etsu Handotai Co Ltd | 貼り合わせウェーハの製造方法 |
US6803028B2 (en) * | 2002-04-08 | 2004-10-12 | Corning Incorporated | Method of making stoichiometric lithium niobate |
TWI300448B (en) * | 2003-03-06 | 2008-09-01 | Shinetsu Chemical Co | Method for manufacturing litheum tantalate crystal |
US7374612B2 (en) * | 2003-09-26 | 2008-05-20 | Shin-Etsu Chemical Co., Ltd. | Method of producing single-polarized lithium tantalate crystal and single-polarized lithium tantalate crystal |
JP5064695B2 (ja) | 2006-02-16 | 2012-10-31 | 信越化学工業株式会社 | Soi基板の製造方法 |
US7763502B2 (en) | 2007-06-22 | 2010-07-27 | Semiconductor Energy Laboratory Co., Ltd | Semiconductor substrate, method for manufacturing semiconductor substrate, semiconductor device, and electronic device |
KR101484296B1 (ko) | 2007-06-26 | 2015-01-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 기판의 제작방법 |
JP5110092B2 (ja) | 2007-12-25 | 2012-12-26 | 株式会社村田製作所 | 複合圧電基板の製造方法 |
JP5389627B2 (ja) | 2008-12-11 | 2014-01-15 | 信越化学工業株式会社 | ワイドバンドギャップ半導体を積層した複合基板の製造方法 |
JP5455595B2 (ja) | 2008-12-11 | 2014-03-26 | 信越化学工業株式会社 | 貼り合わせウェーハの製造方法 |
JP5643509B2 (ja) * | 2009-12-28 | 2014-12-17 | 信越化学工業株式会社 | 応力を低減したsos基板の製造方法 |
FR2961719B1 (fr) | 2010-06-24 | 2013-09-27 | Soitec Silicon On Insulator | Procede de traitement d'une piece en un materiau compose |
US20120247686A1 (en) | 2011-03-28 | 2012-10-04 | Memc Electronic Materials, Inc. | Systems and Methods For Ultrasonically Cleaving A Bonded Wafer Pair |
CN104078407B (zh) | 2013-03-29 | 2018-12-04 | 济南晶正电子科技有限公司 | 薄膜和制造薄膜的方法 |
US10095057B2 (en) * | 2013-10-23 | 2018-10-09 | Honeywell International Inc. | Treatment and/or stabilizing gases in an optical gyro based on an inorganic waveguide |
-
2015
- 2015-06-02 JP JP2015112333A patent/JP6396853B2/ja active Active
-
2016
- 2016-06-01 US US15/577,456 patent/US10770648B2/en active Active
- 2016-06-01 TW TW105117210A patent/TWI713123B/zh active
- 2016-06-01 EP EP16803411.4A patent/EP3306644B1/en active Active
- 2016-06-01 KR KR1020177033744A patent/KR102554056B1/ko active IP Right Grant
- 2016-06-01 WO PCT/JP2016/066283 patent/WO2016194977A1/ja active Application Filing
- 2016-06-01 CN CN201680032041.6A patent/CN107615448B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231912A (ja) * | 2001-01-31 | 2002-08-16 | Canon Inc | 薄膜半導体装置の製造方法 |
JP2003095798A (ja) * | 2001-09-27 | 2003-04-03 | Hoya Corp | 単結晶基板の製造方法 |
JP2010109949A (ja) * | 2008-10-31 | 2010-05-13 | Murata Mfg Co Ltd | 電子デバイスの製造方法および圧電デバイスの製造方法 |
JP2013149853A (ja) * | 2012-01-20 | 2013-08-01 | Shin Etsu Chem Co Ltd | 薄膜付き基板の製造方法 |
WO2014017369A1 (ja) * | 2012-07-25 | 2014-01-30 | 信越化学工業株式会社 | ハイブリッド基板の製造方法及びハイブリッド基板 |
JP2015046486A (ja) * | 2013-08-28 | 2015-03-12 | 信越化学工業株式会社 | 窒化物半導体薄膜を備えた複合基板の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3306644A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3306644A1 (en) | 2018-04-11 |
EP3306644B1 (en) | 2022-03-16 |
JP2016225539A (ja) | 2016-12-28 |
TWI713123B (zh) | 2020-12-11 |
JP6396853B2 (ja) | 2018-09-26 |
CN107615448B (zh) | 2021-07-20 |
US10770648B2 (en) | 2020-09-08 |
KR20180014701A (ko) | 2018-02-09 |
US20180151797A1 (en) | 2018-05-31 |
TW201717289A (zh) | 2017-05-16 |
CN107615448A (zh) | 2018-01-19 |
EP3306644A4 (en) | 2019-01-23 |
KR102554056B1 (ko) | 2023-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6454606B2 (ja) | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 | |
JP6396853B2 (ja) | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 | |
WO2016194976A1 (ja) | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 | |
JP6396854B2 (ja) | 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 | |
KR102371887B1 (ko) | 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법 | |
TW202213942A (zh) | 具備壓電性單結晶膜之複合基板的製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16803411 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177033744 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15577456 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016803411 Country of ref document: EP |