WO2016194635A1 - シールド体、及び超伝導加速器 - Google Patents

シールド体、及び超伝導加速器 Download PDF

Info

Publication number
WO2016194635A1
WO2016194635A1 PCT/JP2016/064913 JP2016064913W WO2016194635A1 WO 2016194635 A1 WO2016194635 A1 WO 2016194635A1 JP 2016064913 W JP2016064913 W JP 2016064913W WO 2016194635 A1 WO2016194635 A1 WO 2016194635A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield part
shield
magnetic
magnetic shield
radiation
Prior art date
Application number
PCT/JP2016/064913
Other languages
English (en)
French (fr)
Inventor
博史 原
仙入 克也
Original Assignee
三菱重工メカトロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to KR1020177033949A priority Critical patent/KR102012117B1/ko
Priority to US15/576,595 priority patent/US10314158B2/en
Priority to EP16803070.8A priority patent/EP3307032B1/en
Priority to CN201680029899.7A priority patent/CN107710882B/zh
Publication of WO2016194635A1 publication Critical patent/WO2016194635A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • H05H7/20Cavities; Resonators with superconductive walls
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B17/00Screening
    • G12B17/02Screening from electric or magnetic fields, e.g. radio waves
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B17/00Screening
    • G12B17/04Screening from visible, ultraviolet, or infrared light
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B17/00Screening
    • G12B17/06Screening from heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a shield body that shields radiant heat and geomagnetism, and a superconducting accelerator including the shield body.
  • Such a superconducting accelerator is disclosed in Patent Document 1, for example.
  • a superconducting accelerator a superconducting acceleration cavity formed of a superconducting material is cooled with a refrigerant such as liquid helium and converted to superconductivity, so that the electric resistance becomes almost zero, and charged particles can be accelerated efficiently with small electric power. Done.
  • the superconducting accelerator has a magnetic shield for shielding the geomagnetism that adversely affects the superconducting characteristics in the superconducting acceleration cavity, and radiation for suppressing the radiation heat from the outside from entering the superconducting acceleration cavity.
  • a shield is provided to cover the superconducting acceleration cavity.
  • the magnetic shield is usually made of a magnetic material, and shields by detouring and absorbing the magnetism in the shield space.
  • the radiation shield is cooled by a refrigerant (liquid helium, liquid nitrogen, etc.) and absorbs radiation heat before the superconducting accelerator.
  • the present invention provides a shield body capable of obtaining sufficient shielding characteristics while saving space and simplifying handling, and a superconducting accelerator including the shield body.
  • the shield body according to the first aspect of the present invention is formed on at least one of a plate-like magnetic shield portion formed of a magnetic body and an inner and outer surface of the magnetic shield portion, And a radiation shield portion formed of a material having a high thermal conductivity.
  • the magnetic shield portion can reduce the influence of geomagnetism on the object. Furthermore, by providing the radiation shield part on the surface of the magnetic shield part, it is possible to suppress the radiation heat from entering the object covered with the shield body. And since a radiation shield part is formed into a film in a magnetic shield part, this radiation shield part can be very thin and can be provided easily. Therefore, the thickness dimension of the whole shield body can be suppressed and handling is easy compared with the case where the magnetic shield part and the radiation shield part are provided separately.
  • the shield body is formed by separately manufacturing and bonding the magnetic shield part and the radiation shield part of different materials, when the shield body is cooled, due to the difference in heat shrinkage, Thermal stress is generated in the magnetic shield part and the radiation shield part. As a result, problems such as the shield body warping occur.
  • the radiation shield part is formed into a film shape, even if the amount of thermal deformation differs between the magnetic shield part and the radiation shield part, the radiation shield part is easily deformed, and the magnetic shield part is deformed. The radiation shield can follow easily.
  • the thermal shrinkage of the inner and outer surfaces of the magnetic shield can be balanced, and the effect of suppressing deformation such as warping of the shield body can be further enhanced.
  • the radiation shield part it is possible to reduce the time and effort for attaching the magnetic shield part and the radiation shield part, eliminating the need for fasteners and the like required for attachment, and reducing the number of parts of the shield body. be able to. Further, by forming the radiation shield part, the adhesion between the radiation shield part and the magnetic shield part is improved, and the shield body can be cooled efficiently and uniformly. Furthermore, by forming the radiation shield part, the radiation shield part can be easily provided in an arbitrary range on the inner and outer surfaces of the magnetic shield part.
  • the magnetic shield part may have a thickness dimension larger than that of the radiation shield part.
  • the radiation shield part can sufficiently follow the thermal deformation of the magnetic shield part, and the shield body. It is possible to suppress deformation such as warping.
  • the magnetic shield portion may be formed with a thickness dimension three times or more that of the radiation shield portion.
  • the radiation shield portion can sufficiently follow the thermal deformation of the magnetic shield portion, and deformation such as warping of the shield body can be suppressed.
  • the radiation shield portion may be formed into a plurality of films separated at intervals in one direction along the inner and outer surfaces of the magnetic shield portion.
  • the radiation shield part is deformed compared to the case where the radiation shield part is formed on the entire inner and outer surfaces of the magnetic shield. It becomes easy to follow the thermal deformation of the magnetic shield part. Therefore, deformation such as warping of the shield body can be further suppressed.
  • the magnetic shield part and the radiation shield part formed on the magnetic shield are provided separately in a plurality of sets in one direction along the inner and outer surfaces.
  • the adjacent groups may be provided so that a part thereof overlaps when viewed from the direction of geomagnetism.
  • the magnetic shield part and the radiation shield separately in a plurality of sets, when the shield body is thermally deformed, the overlapping amount of the separated sets changes. That is, the thermal deformation can be absorbed by moving the groups so as to slide. Therefore, deformation such as warping of the shield body when the shield body is thermally deformed can be further suppressed.
  • the radiation shield portion is formed on at least one of the inner and outer surfaces so as to form a plurality of layers, and is separated from the inner and outer surfaces.
  • the difference in the amount of thermal deformation between each of the layers and the magnetic shield portion may be increased stepwise.
  • the difference in the amount of thermal deformation with the magnetic shield part becomes larger, so that the magnetic shield part is farthest from the magnetic shield part.
  • Thermal deformation between the magnetic shield part and the radiation shield part layer closest to the magnetic shield part the layer of the radiation shield part in contact with the inner and outer surfaces of the magnetic shield part
  • the amount difference can be reduced. Therefore, the thermal stress at the radiation shield portion and the magnetic shield portion can be suppressed, and deformation such as warping of the shield body can be further suppressed.
  • a superconducting accelerator according to a seventh aspect of the present invention is provided between a superconducting acceleration cavity that forms a space for accelerating a charged particle beam, and the superconducting acceleration cavity that is disposed on the outer peripheral side of the superconducting acceleration cavity. And a refrigerant tank that forms a refrigerant space filled with a refrigerant that cools the superconducting acceleration cavity, and the first to fifth elements disposed on the outer peripheral side of the refrigerant tank and covering the refrigerant tank and the superconducting acceleration cavity.
  • a shield body according to any one of the above.
  • the shield body since the shield body is provided, the influence of geomagnetism on the superconducting acceleration cavity can be reduced by the magnetic shield portion.
  • the radiation shield portion can suppress the temperature rise of the superconducting acceleration cavity and the refrigerant tank due to external radiant heat, and the superconducting acceleration cavity can be maintained in a cooled state.
  • the radiation shield part since the radiation shield part is formed into a film on the magnetic shield part, this radiation shield part can be provided very thinly and easily, and the thickness dimension of the whole shield body can be suppressed.
  • the radiation shield portion since the radiation shield portion is formed into a film shape, the radiation shield portion can easily follow the deformation of the magnetic shield portion even if the amount of thermal deformation differs between the magnetic shield portion and the radiation shield portion.
  • the radiation shield part is formed on both the inner and outer surfaces of the magnetic shield part, the thermal contraction of the inner and outer surfaces of the magnetic shield can be balanced, and deformation such as warping of the shield body can be further suppressed.
  • the radiation shield part it is possible to reduce the time and effort for attaching the magnetic shield part and the radiation shield part, and it is possible to reduce the number of parts of the shield body. Further, by forming the radiation shield part, the adhesion between the radiation shield part and the magnetic shield part is improved, and the shield body can be cooled efficiently and uniformly. Furthermore, by forming the radiation shield part, the radiation shield part can be easily provided in an arbitrary range on the inner and outer surfaces of the magnetic shield part.
  • the shield body of the present invention it is possible to obtain sufficient shielding characteristics while saving space and simplifying the handling by forming a radiation shield part on the magnetic shield part.
  • FIG. 1 is a schematic overall view of a superconducting accelerator in a first embodiment of the present invention. It is a principal part enlarged view of the shield body in the superconducting accelerator in 1st embodiment of this invention. It is a graph which shows the relationship between the thickness dimension ratio of the magnetic shield part with respect to the radiation shield part in the superconducting accelerator in 1st embodiment of this invention, and the thermal stress which arises in a magnetic shield part. It is a whole perspective view of the shield body in the superconducting accelerator in a second embodiment of the present invention. It is a whole perspective view of the shield body in the superconducting accelerator in the modification of the second embodiment of the present invention. It is a principal part enlarged view of the shield body in the superconducting accelerator in 3rd embodiment of this invention. It is a principal part enlarged view of the shield body in the superconducting accelerator in 4th embodiment of this invention.
  • the superconducting accelerator 1 in the first embodiment of the present invention covers a superconducting acceleration cavity 2 that accelerates the charged particle beam B, a refrigerant tank 3 that covers the superconducting acceleration cavity 2, and a superconducting acceleration cavity 2 and the refrigerant tank 3.
  • a shield body 4, a superconducting acceleration cavity 2, a refrigerant tank 3, and a vacuum container 5 that houses the shield body 4 are provided.
  • the superconducting accelerating cavity 2 has a substantially cylindrical shape centered on the axis O, and extends in the direction of the axis O in such a shape that the outer surface repeatedly expands and contracts. Inside the superconducting acceleration cavity 2, a space S is formed that repeats the expansion and contraction so as to correspond to the shape of the outer surface of the superconducting acceleration cavity 2.
  • the charged particle beam B passes through the space S.
  • this superconducting acceleration cavity 2 is formed of a superconducting material.
  • Niobium can be illustrated as an example of the superconducting material.
  • other superconducting materials can be used.
  • a high-temperature superconductor or the like may be used.
  • a beam pipe 6 is connected to the superconducting acceleration cavity 2 so that the charged particle beam B can pass through the space S at both ends of the axis O.
  • the beam pipe 6 is made of a superconducting material such as niobium, like the superconducting acceleration cavity 2.
  • the refrigerant tank 3 has a cylindrical shape with the axis O as the center, and is arranged on the outer peripheral side of the superconducting acceleration cavity 2 and defines a refrigerant space RS filled with the refrigerant RF between the outer surface of the superconducting acceleration cavity 2. is doing.
  • the refrigerant RF is, for example, liquid helium, and can cool the superconducting acceleration cavity 2 to a cryogenic temperature.
  • the refrigerant tank 3 is provided with an opening (not shown) that can supply the refrigerant RF into the refrigerant space RS and discharge the refrigerant RF from the refrigerant space RS.
  • the type of the refrigerant RF is not limited to liquid helium, and can be appropriately selected according to the material of the superconducting acceleration cavity 2.
  • An input coupler 7 is attached to the outside of the refrigerant tank 3 at the end of one side in the direction of the axis O of the superconducting acceleration cavity 2 inside the refrigerant tank 3 (left side as viewed in FIG. 1). . Power is supplied from the input coupler 7 to the superconducting acceleration cavity 2. An electric field for accelerating the charged particle beam B is generated in the space S in the superconducting acceleration cavity 2 by the electric power from the input coupler 7.
  • the vacuum vessel 5 has a cylindrical shape with the axis O as the center.
  • the vacuum vessel 5 keeps the inside of the vacuum vessel 5 in a vacuum state so as to penetrate the beam pipe 6 in the direction of the axis O at both ends in the direction of the axis O and to insulate the superconducting acceleration cavity 2 and the refrigerant tank 3. I'm leaning.
  • the shield body 4 has a cylindrical shape centered on the axis O, and is disposed between the outer surface of the refrigerant tank 3 and the inner surface of the vacuum vessel 5.
  • An input coupler 7 extending from the superconducting acceleration cavity 2 passes through the shield body 4.
  • the shield body 4 includes a plate-shaped magnetic shield portion 11 formed of a magnetic material (so-called ferromagnetic material), and a radiation shield portion 15 formed on the inner and outer surfaces 11a of the magnetic shield portion 11.
  • the magnetic shield part 11 is made of a material such as Permalloy (registered trademark), for example.
  • the magnetic shield part 11 includes a cylindrical part 12 having a cylindrical shape centered on the axis O, and a flange-like part 13 protruding radially inward at both ends of the cylindrical part 12 in the direction of the axis O.
  • the magnetic shield part 11 surrounds a part of the refrigerant tank 3 from the direction of the axis O by the flange-like part 13.
  • the magnetic shield part 11 reduces the influence of the geomagnetism M exerted on the superconducting acceleration cavity 2 from the outside of the superconducting accelerator 1.
  • the thickness d1 of the magnetic shield part 11 is preferably, for example, 1 mm or more and 2 mm or less. By setting the thickness dimension d1 of the magnetic shield part 11 within such a range, the shielding effect of the geomagnetism M can be sufficiently obtained.
  • the radiation shield part 15 is made of a material having a higher thermal conductivity than the magnetic body constituting the magnetic shield part 11.
  • the radiation shield portion 15 is formed by depositing a metal material such as copper, gold, silver, or aluminum on the inner and outer surfaces 11 a by sputtering or the like so as to cover the entire cylindrical portion 12 and flange-like portion 13 of the magnetic shield portion 11. By doing so, it is provided as a film integrally with the magnetic shield part 11.
  • a metal material such as copper, gold, silver, or aluminum
  • the thermal conductivity of Permalloy (registered trademark) is about 30 [W / (m ⁇ K)], whereas the thermal conductivity of copper (pure copper) is 332 [W / (m ⁇ K)].
  • the thermal conductivity of gold is 254 [W / (m ⁇ K)]
  • the thermal conductivity of silver (pure silver) is 360 [W / (m ⁇ K)]
  • the thermal conductivity of aluminum is 175 [W / (m ⁇ K)]. That is, the thermal conductivity of the radiation shield part 15 is about 10 times larger than the thermal conductivity of the magnetic shield part 11.
  • the value of the thermal conductivity described above is a value at a temperature of 20 ° C., but the same is true under the condition of about ⁇ 269 ° C. to ⁇ 196 ° C. where the superconducting accelerator 1 of the first embodiment is operated. Furthermore, the thermal conductivity of the radiation shield part 15 is larger than the thermal conductivity of the magnetic shield part 11.
  • the radiation shield part 15 suppresses incidence of radiation heat from the outside of the superconducting accelerator 1 to the superconducting acceleration cavity 2 and the refrigerant tank 3. From the viewpoint of sufficient heat insulation, the thickness dimension d2 of the radiation shield portion 15 is preferably about 100 ⁇ m or more and 200 ⁇ m or less.
  • the influence of the geomagnetism M exerted on the superconducting acceleration cavity 2 by the magnetic shield part 11 is reduced by covering the superconducting acceleration cavity 2 and the refrigerant tank 3 with the shield body 4. can do.
  • the radiation shield portion 15 can suppress the temperature rise of the superconducting acceleration cavity 2 and the refrigerant tank 3, can sufficiently cool the superconducting acceleration cavity 2, and the superconducting acceleration cavity 2 is cooled at a predetermined temperature. The state can be maintained.
  • this radiation shield part 15 is formed into a film in the magnetic shield part 11, this radiation shield part 15 can be provided very thinly and easily. Therefore, as compared with the case where the magnetic shield part 11 and the radiation shield part 15 are provided separately, the thickness dimension of the entire shield body 4 can be suppressed, and handling is facilitated.
  • the shield body 4 it is possible to save the space of the shield body 4 and simplify the handling. Further, when the shield body 4 is provided in the vacuum vessel 5, it is possible to suppress deformation when the shield body 4 is installed in a narrow installation space. Therefore, when the superconducting accelerator 1 is in operation, the shield characteristics of the shield body 4 can be sufficiently obtained.
  • the refrigerant RF is filled in the refrigerant tank 3 and the cooling of the superconducting acceleration cavity 2 is started, or at the end of the operation of the superconducting accelerator 1, the refrigerant RF is stored in the refrigerant tank.
  • the cooling of the superconducting accelerating cavity 2 is finished after being discharged from 3
  • the temperature of the shield body 4 changes.
  • the magnetic shield part 11 and the radiation shield part 15 are made of different materials, the magnetic shield part 11 and the radiation shield part 15 have different thermal deformation amounts (thermal expansion amounts or thermal shrinkage amounts).
  • the shield 4 is formed by separately manufacturing the magnetic shield part 11 and the radiation shield part 15 and laminating them using, for example, bolts, the magnetic shield part 11 and the radiation shield There is a possibility that problems such as thermal stress is generated in the portion 15 and the shield body 4 is warped.
  • the radiation shield part 15 is formed into a thin film, the radiation shield part 15 is easily deformed. Therefore, even if the amount of thermal deformation differs between the magnetic shield part 11 and the radiation shield part 15, the radiation shield part 15 can easily follow the deformation of the magnetic shield part 11. As a result, as the temperature of the shield body 4 changes, it becomes difficult for the shield body 4 to be deformed such as warping, and sufficient shield characteristics in the shield body 4 can be maintained.
  • the radiation shield part 15 made of the same material is disposed on the inner and outer surfaces 11a of the magnetic shield part 11, the inner and outer sides of the magnetic shield part 11 are changed when the temperature of the shield body 4 changes.
  • the surface 11a received by the radiation shield 15 from the surface 11a becomes uniform. That is, the thermal stress caused by the force acting on the one surface 11a of the magnetic shield part 11 and the thermal stress caused by the force acting on the other surface 11a of the magnetic shield part 11 are balanced. As a result, it is possible to further suppress the warping of the shield body 4 due to the difference in the amount of thermal deformation between the magnetic shield part 11 and the radiation shield part 15.
  • the thermal stress: ⁇ [MPa] generated in the magnetic shield part 11 was calculated by the following formula (1). It is assumed that the radiation shield part 15 is formed on the entire surface 11 a of the magnetic shield part 11.
  • the ratio of the thickness dimension of the magnetic shield part 11 to the thickness dimension of the radiation shield part 15: any material except gold is within a range where t 1 / t 2 is three times or more.
  • the thermal stress ⁇ generated in the magnetic shield part 11 is rapidly reduced. Specifically, it is lower than 60 [MPa] in the range where t 1 / t 2 is 3 times or more, and the ratio of thickness dimension: the magnetic shield part in the range where t 1 / t 2 is 5 times or more. 11 is lower than 40 [MPa].
  • the thermal stress ⁇ generated in the magnetic shield portion 11 is lower than 10 [MPa] regardless of the numerical value of t 1 / t 2 .
  • the first embodiment is limited to the case where the thickness dimension d1 of the magnetic shield part 11 is 1 mm or more and 2 mm or less and the thickness dimension d2 of the radiation shield part 15 is 100 ⁇ m or more and 200 ⁇ m or less.
  • the thickness dimension of the magnetic shield part 11 and the radiation shield part 15 is set so that at least the thickness dimension ratio t 1 / t 2 is at least 3 times or more, more preferably 5 times or more. If it does, it becomes possible to fully suppress the thermal deformation of the shield body 4.
  • FIG. it is not limited to these numerical values, and considering the heat deformability, the magnetic shield part 11 has a thickness dimension larger than that of the radiation shield part 15, that is, the radiation shield part 15 is thinner. It is good to have.
  • the labor for attaching the magnetic shield part 11 and the radiation shield part 15 can be reduced, and fasteners and the like (bolts, etc.) required for the attachment can be reduced. Since it becomes unnecessary, the number of parts of the shield body 4 can be reduced.
  • the radiation shield part 15 by film formation, the adhesion between the radiation shield part 15 and the magnetic shield part 11 is improved, and the shield body 4 can be cooled efficiently and uniformly. Furthermore, by forming the radiation shield part 15 by film formation, the radiation shield part 15 can be easily provided in an arbitrary range on the surface 11a of the magnetic shield part 11, and the degree of design freedom can be increased.
  • the superconducting accelerator 21 in the second embodiment of the present invention will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the shield body 24 is different from that of the first embodiment.
  • the radiation shield part 25 in the shield body 24 is formed into a plurality of films with a space in one direction along the surface 11 a of the magnetic shield part 11.
  • a plurality of radiation shield portions 25 are provided in an annular shape centering on the axis O with a space in the direction of the axis O.
  • the radiation shield 25 is separated into a plurality at intervals, so that when the temperature of the shield body 24 changes, the radiation shield 25 becomes a magnetic shield.
  • the radiation shield part 25 follows the deformation of the magnetic shield part 11 and is easily deformed. For this reason, even when the radiation shield portion 25 and the magnetic shield portion 11 are made of different materials and thus have different amounts of thermal deformation, deformation such as warping of the shield body 24 can be suppressed.
  • the radiation shield portion 25 ⁇ / b> A may be formed into a plurality of films with a gap in the circumferential direction of the magnetic shield portion 11. Even in such a case, the radiation shield portion 25 ⁇ / b> A easily follows the magnetic shield portion 11 to be deformed, and deformation such as warping of the shield body 24 can be suppressed.
  • the shield body 34 is different from the first embodiment and the second embodiment. That is, the magnetic shield part 36 and the radiation shield part 37 formed on the magnetic shield part 36 are provided separately in a plurality of sets 38 in the direction along the surface 36a of the magnetic shield part 36, that is, in the direction of the axis O. ing.
  • the sets 38 adjacent to each other in the direction of the axis O are provided so that a part thereof overlaps in the radial direction.
  • the direction of the geomagnetism M is along the radial direction.
  • the shield body 34 having the magnetic shield part 36 and the radiation shield part 37 is provided separately in a plurality of sets 38, so that when the shield body 34 changes in temperature, the set The amount of overlap between 38 changes.
  • the thermal deformation of the shield body 34 can be absorbed by moving the pairs 38 in the direction of the axis O so as to slide with each other (see the arrow in FIG. 6). Accordingly, it is possible to further suppress deformation such as warping of the shield body 34 when the shield body 34 is thermally deformed.
  • the superconducting accelerator 41 in 4th embodiment of this invention is demonstrated.
  • the same components as those in the first embodiment to the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the shield body 44 is different from the first embodiment, the second embodiment, and the third embodiment.
  • the radiation shield portion 47 of the shield body 44 is formed on the surface 11a of the magnetic shield portion 11 so as to form a plurality of layers 48, and the magnetic shield portion 11 and the layers are separated from the surface 11a toward the layer 48.
  • the material of each layer 48 is determined so that the difference in the amount of thermal deformation from 48 increases stepwise.
  • the material of each layer 48 of the radiation shield part 47 is selected in the order of gold, copper, and aluminum from the magnetic shield part 11 toward the separated side.
  • the difference in the amount of thermal deformation from the magnetic shield part 11 increases as the layers 48 of the radiation shield part 47 are separated from the surface 11a of the magnetic shield part 11. Even when there is a large difference in the amount of thermal deformation between the magnetic shield part 11 and the layer 48 of the radiation shield part 47 farthest from the magnetic shield part 11, the magnetic shield part 11 and the most magnetic shield can be obtained. The difference in the amount of thermal deformation between the layer 48 of the radiation shield part 47 close to the part 11 (the layer 48 in contact with the surface 11a of the magnetic shield part 11) can be reduced. Accordingly, it is possible to further suppress the warping of the shield body 44 when the shield body 44 undergoes temperature deformation.
  • the radiation shield portions 15, 25, 25A, 37, and 47 are formed on the inner and outer surfaces 11a and 36a of the magnetic shield portions 11 and 36, but either one of the surfaces 11a,
  • the film may be formed only on 36a.
  • shield bodies 4, 24, 34, 44 may be attached to the inner surface of the vacuum vessel 5, or are separated from the vacuum vessel 5 and the refrigerant vessel 3 between the vacuum vessel 5 and the refrigerant vessel 3. May be provided.
  • the shape of the shield bodies 4, 24, 34, 44 may be a cylindrical shape, or may be a rectangular tube shape obtained by bonding a plurality of plate-like members. When a plurality of plate-like members are bonded together, the shield bodies 4, 24, 34, 44 can be formed more easily.
  • the present invention can be applied to a shield body that shields radiant heat and geomagnetism, and a superconducting accelerator including the shield body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Particle Accelerators (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

 地磁気と輻射熱のシールドを行うシールド体(4)であって、磁性体によって形成された板状をなす磁気シールド部(11)と、磁気シールド部(11)における内外の表面(11a)のうちの少なくとも一方に成膜されて、磁性体よりも熱伝導率の大きい材料によって形成された輻射シールド部(15)と、を備える。

Description

シールド体、及び超伝導加速器
 本発明は、輻射熱及び地磁気をシールドするシールド体、及びこれを備える超伝導加速器に関する。
 本願は、2015年5月29日に、日本に出願された特願2015-110877号に基づき優先権を主張し、その内容をここに援用する。
 従来から超伝導加速空洞を用いて電子や陽子等の荷電粒子を加速する超伝導加速器が知られている。
 このような超伝導加速器は例えば特許文献1に開示されている。超伝導加速器では、超伝導材料で形成された超伝導加速空洞を液体ヘリウム等の冷媒によって冷却し、超伝導化することで電気抵抗がほぼゼロとなり、小さな電力で効率的に荷電粒子の加速が行われる。
 ところで、超伝導加速器には、超伝導加速空洞内の超伝導特性に悪影響を及ぼす地磁気を遮蔽するための磁気シールドと、外部からの輻射熱が超伝導加速空洞に入射することを抑制するための輻射シールドと、が超伝導加速空洞を覆うように設けられている。
 磁気シールドは、通常、磁性体で構成されており、シールド空間内の磁気を迂回、吸収することでシールドを行う。輻射シールドは、冷媒(液体ヘリウム、液体窒素等)で冷却され、超伝導加速器の手前で輻射熱を吸収する。
特開平7-245426号公報
 ところで、現在、超伝導加速器の利用拡大、製造費用及び建設費用の観点から、真空容器さらには加速器の小型化が望まれている。
 しかしながら、真空容器を小型化すると非常に狭いスペース(もしくは限られたスペース)に磁気シールド及び輻射シールドを設置しなければならない。この際、磁気シールドに負荷がかかって変形が生じると、シールド特性が変化してしまうことがある。このため、磁気シールド及び輻射シールドを設置する際には、取扱いに十分な注意が必要となり、簡便に設置できることが望ましい。
 そこで、本発明は、省スペース化及び取扱いの簡便化を図りつつ、十分なシールド特性を得ることのできるシールド体、及びシールド体を備えた超伝導加速器を提供する。
 本発明の第一の態様に係るシールド体は、磁性体によって形成された板状をなす磁気シールド部と、前記磁気シールド部における内外表面のうちの少なくとも一方に成膜されて、前記磁性体よりも熱伝導率の大きい材料によって形成された輻射シールド部と、を備えている。
 このようなシールド体によって物体を覆うことで、磁気シールド部によってこの物体への地磁気の影響の低減が可能となる。さらに、この磁気シールド部の表面に輻射シールド部を設けることで、シールド体で覆われた物体への外部からの輻射熱の入射を抑制できる。
 そして、輻射シールド部が磁気シールド部に成膜されていることで、この輻射シールド部を非常に薄く、容易に設けることができる。従って、仮に磁気シールド部と輻射シールド部とを別体で設ける場合に比べて、シールド体全体の厚さ寸法を抑えることができ、取扱いも容易となる。
 仮に材料の異なる磁気シールド部と輻射シールド部とが別個に製造されて張り合わされることで、シールド体が形成されている場合には、シールド体が冷却されると、熱収縮量の違いによって、磁気シールド部及び輻射シールド部に熱応力が生じる。この結果、シールド体が反り返ってしまう等の問題が生じてしまう。
 一方、本発明では輻射シールド部が成膜されて膜状をなすため、磁気シールド部と輻射シールド部とで熱変形量が異なっても、輻射シールド部が変形し易くなり、磁気シールド部の変形に輻射シールド部が容易に追従できる。
 また、磁気シールド部の内外表面に同じ材料の輻射シールド部を形成すれば、磁気シールドの内外表面の熱収縮の均衡がとれ、シールド体の反り返り等の変形を抑制する効果をさらに高めることができる。
 また、輻射シールド部を成膜することで、磁気シールド部と輻射シールド部とを貼り合わせる手間を低減でき、貼り合わせの際に必要となる締結具等が不要とり、シールド体の部品点数を減らすことができる。
 また、輻射シールド部を成膜することで、輻射シールド部と磁気シールド部との密着性が向上し、シールド体を効率よく均一に冷却することができる。
 さらに、輻射シールド部を成膜することで、磁気シールド部の内外表面上の任意の範囲に容易に輻射シールド部を設けることができる。
 また、本発明の第二の態様に係るシールド体では、前記磁気シールド部は、前記輻射シールド部よりも厚さ寸法を大きくしてもよい。
 このように、磁気シールド部の方が輻射シールド部よりも厚くなるように、即ち、輻射シールド部を薄く形成することで、輻射シールド部が磁気シールド部の熱変形に十分に追従でき、シールド体の反り返り等の変形を抑制することができる。
 また、本発明の第三の態様に係るシールド体では、前記磁気シールド部は、前記輻射シールド部に対して3倍以上の厚さ寸法で形成してもよい。
 このような厚さ寸法に磁気シールド部を形成することで、即ち、十分に薄く、輻射シールド部を形成することで、仮に輻射シールド部にアルミニウム、銀、金、銅を使用する場合には、輻射シールド部が磁気シールド部の熱変形に十分に追従でき、シールド体の反り返り等の変形を抑制することができる。
 また、本発明の第四の態様に係るシールド体では、前記輻射シールド部は、前記磁気シールド部における前記内外表面に沿う一方向に間隔をあけて複数に分離されて成膜されていてもよい。
 このように、輻射シールド部を磁気シールド部の内外表面に間隔をあけて形成することで、輻射シールド部が磁気シールドの内外表面全体に形成されている場合に比べて、輻射シールド部が変形し易くなり、磁気シールド部の熱変形に追従し易くなる。よって、シールド体の反り返り等の変形をさらに抑制できる。
 また、本発明の第五の態様に係るシールド体では、前記磁気シールド部及び該磁気シールドに成膜された前記輻射シールド部は、前記内外表面に沿う一方向に複数の組に分離して設けられ、かつ、隣接する前記組同士は、地磁気の方向から見て一部が重なり合うように設けてもよい。
 このように、磁気シールド部と輻射シールドとを複数組に分離して設けることで、シールド体が熱変形した際には、分離された組同士の重なり量が変化する。
 即ち、各組同士がスライドするようにして移動することで熱変形分を吸収できる。従って、シールド体が熱変形した際のシールド体の反り返り等の変形をさらに抑制できる。
 また、本発明の第六の態様に係るシールド体では、前記輻射シールド部は、複数の層をなすように前記内外表面のうちの少なくとも一方に成膜され、かつ、前記内外表面から離間するにつれて、各々の前記層と前記磁気シールド部との熱変形量の差が段階的に大きくしてもよい。
 このように、輻射シールド部の層が磁気シールド部の内外表面から離間するにつれて、磁気シールド部との熱変形量の差が大きくなっていくことで、磁気シールド部と最も磁気シールド部から離れた輻射シールド部の層との熱変形量の差が大きくとも、磁気シールド部と最も磁気シールド部に近い輻射シールド部の層(磁気シールド部の内外表面に接する輻射シールド部の層)との熱変形量の差を小さくすることができる。
 従って、輻射シールド部と磁気シールド部での熱応力を抑えることができ、シールド体の反り返り等の変形をさらに抑制することができる。
 本発明の第七の態様に係る超伝導加速器は、荷電粒子ビームを加速する空間を形成する超伝導加速空洞と、前記超伝導加速空洞の外周側に配置されて前記超伝導加速空洞との間に該超伝導加速空洞を冷却する冷媒が充填される冷媒空間を形成する冷媒槽と、前記冷媒槽の外周側に配置され、前記冷媒槽及び前記超伝導加速空洞を覆う上記第一から第五のいずれかの態様におけるシールド体と、を備える。
 このような超伝導加速器によれば、上記のシールド体を備えていることで、磁気シールド部によって超伝導加速空洞への地磁気の影響を低減することができる。
 また、輻射シールド部によって、外部からの輻射熱による超伝導加速空洞及び冷媒槽の昇温を抑制でき、超伝導加速空洞が冷却された状態を維持できる。
 そして、輻射シールド部が磁気シールド部に成膜されていることで、この輻射シールド部を非常に薄く、容易に設けることができ、シールド体全体の厚さ寸法を抑えることができる。
 さらに、本発明では輻射シールド部が膜状をなすため、磁気シールド部と輻射シールド部とで熱変形量が異なっても、輻射シールド部が磁気シールド部の変形に容易に追従できる。
 また、磁気シールド部の内外表面両方に輻射シールド部を形成すれば、磁気シールドの内外表面の熱収縮の均衡がとれ、シールド体の反り返り等の変形をさらに抑制できる。
 さらに、輻射シールド部を成膜することで、磁気シールド部と輻射シールド部とを貼り合わせる手間を低減できることや、シールド体の部品点数を減らすことができる。
 また、輻射シールド部を成膜することで、輻射シールド部と磁気シールド部との密着性が向上し、シールド体を効率よく均一に冷却することができる。さらに、輻射シールド部を成膜することで、磁気シールド部の内外表面上の任意の範囲に容易に輻射シールド部を設けることができる。
 本発明のシールド体によれば、磁気シールド部に輻射シールド部を成膜することで、省スペース化及び取扱いの簡便化を図りつつ、十分なシールド特性を得ることが可能である。
本発明の第一実施形態における超伝導加速器の概略全体図である。 本発明の第一実施形態における超伝導加速器におけるシールド体の要部拡大図である。 本発明の第一実施形態における超伝導加速器における輻射シールド部に対する磁気シールド部の厚さ寸法比と、磁気シールド部に生じる熱応力の関係を示すグラフである。 本発明の第二実施形態における超伝導加速器におけるシールド体の全体斜視図である。 本発明の第二実施形態の変形例における超伝導加速器におけるシールド体の全体斜視図である。 本発明の第三実施形態における超伝導加速器におけるシールド体の要部拡大図である。 本発明の第四実施形態における超伝導加速器におけるシールド体の要部拡大図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。
〔第一実施形態〕
 以下、本発明の第一実施形態における超伝導加速器1について説明する。
 図1に示すように、超伝導加速器1は、荷電粒子ビームBを加速する超伝導加速空洞2と、超伝導加速空洞2を覆う冷媒槽3と、超伝導加速空洞2及び冷媒槽3を覆うシールド体4と、超伝導加速空洞2、冷媒槽3、及びシールド体4を収容する真空容器5とを備える。
 超伝導加速空洞2は、軸線Oを中心とした略筒状をなすとともに、外面が拡径と縮径を繰り返すような形状をなして軸線Oの方向に延びている。超伝導加速空洞2の内部には、超伝導加速空洞2の外面の形状に対応するように拡径と縮径とを繰り返す空間Sが形成されている。この空間Sを荷電粒子ビームBが通過する。
 さらに、この超伝導加速空洞2は超伝導材料によって形成されている。超伝導材料の一例としては、ニオブを例示できる。超伝導加速空洞2には、その他の超伝導材料を用いることも可能であり、例えば、高温超電導体等を用いてもよい。
 超伝導加速空洞2には、軸線Oの両端で、荷電粒子ビームBが上記空間Sを通過可能とするように、ビームパイプ6が接続されている。ビームパイプ6は、超伝導加速空洞2と同様にニオブ等の超伝導材料によって構成されている。
 冷媒槽3は、軸線Oを中心とした筒状をなし、超伝導加速空洞2の外周側に配置されて超伝導加速空洞2の外面との間に冷媒RFが充填される冷媒空間RSを区画している。
 冷媒RFは、例えば、液体ヘリウム等であって、超伝導加速空洞2を極低温に冷却可能となっている。冷媒槽3には、冷媒RFを冷媒空間RS内に供給可能とし、冷媒RFを冷媒空間RSから排出可能とする開口部(不図示)が設けられている。
 なお、冷媒RFの種類は、液体ヘリウムに限定されず、超伝導加速空洞2の材料に応じて適宜選択可能である。
 そして、冷媒槽3の内部で超伝導加速空洞2の軸線Oの方向の一方(図1の紙面に向かって左側)の端部で、冷媒槽3の外部で入力結合器7が取付けられている。
 電力は、入力結合器7から超伝導加速空洞2に供給される。入力結合器7からの電力によって超伝導加速空洞2内の空間Sには、荷電粒子ビームBを加速する電界が発生する。
 真空容器5は、軸線Oを中心とした筒状をなしている。真空容器5は、軸線Oの方向の両端でビームパイプ6を軸線Oの方向に貫通させるとともに、超伝導加速空洞2及び冷媒槽3の断熱を行うよう、真空容器5の内部が真空状態に保たれている。
 次に、シールド体4について詳細を説明する。
 シールド体4は、軸線Oを中心とした筒状をなし、冷媒槽3の外面と真空容器5の内面との間に配置されている。また、シールド体4を超伝導加速空洞2から延びる入力結合器7が貫通している。
 また、シールド体4は、磁性体(いわゆる強磁性体)によって形成された板状をなす磁気シールド部11と、磁気シールド部11の内外の表面11aに成膜された輻射シールド部15と、を備える。
 磁気シールド部11は、例えば、パーマロイ(登録商標)等の材料によって構成されている。磁気シールド部11は、軸線Oを中心とした筒状をなす筒状部12と、筒状部12における軸線Oの方向の両端で径方向内側に突出するフランジ状部13と、を有する。磁気シールド部11は、フランジ状部13によって冷媒槽3の一部を軸線Oの方向からも囲む。
 磁気シールド部11は、超伝導加速器1の外部から超伝導加速空洞2へ及ぼされる地磁気Mの影響を低減する。
 磁気シールド部11の厚さ寸法d1は、例えば、1mm以上2mm以下が好ましい。磁気シールド部11の厚さ寸法d1をこのような範囲内とすることで、地磁気Mのシールド効果を十分に得ることができる。
 輻射シールド部15は、磁気シールド部11を構成する磁性体よりも熱伝導率の大きい材料によって構成されている。
 輻射シールド部15は、磁気シールド部11の筒状部12及びフランジ状部13の全体を覆うように、内外の表面11a上にスパッタリング等によって銅、金、銀、アルミニウム等の金属材料が成膜されることで、磁気シールド部11と一体に被膜として設けられている。
 第一実施形態では、一例として、内外の表面11aに同じ材料の輻射シールド部15を設けた場合を例示したが、例えば、内外の表面11a同士で異なる材料の輻射シールド部15を設けてもよい。
 ここで、パーマロイ(登録商標)の熱伝導率が約30〔W/(m・K)〕であるのに対して、銅(純銅)の熱伝導率は332〔W/(m・K)〕、金の熱伝導率は254〔W/(m・K)〕、銀(純銀)の熱伝導率は360〔W/(m・K)〕、アルミニウムの熱伝導率は175〔W/(m・K)〕である。
 即ち、輻射シールド部15の熱伝導率は、磁気シールド部11の熱伝導率に対して10倍程度大きい。上述した熱伝導率の値は、温度が20〔℃〕での値となっているが、第一実施形態の超伝導加速器1が運転される-269℃~-196℃程度の条件においても同様に、上記の輻射シールド部15の熱伝導率の方が磁気シールド部11の熱伝導率よりも大きい。
 輻射シールド部15は、超伝導加速空洞2及び冷媒槽3に対する超伝導加速器1の外部からの輻射熱の入射を抑制する。遮熱を十分に行う観点から、輻射シールド部15の厚さ寸法d2は、100μm以上200μm以下程度が好ましい。
 第一実施形態の超伝導加速器1によれば、シールド体4によって超伝導加速空洞2及び冷媒槽3を覆うことで、磁気シールド部11によって超伝導加速空洞2に及ぼされる地磁気Mの影響を低減することができる。
 また、輻射シールド部15によって超伝導加速空洞2及び冷媒槽3の昇温を抑制でき、超伝導加速空洞2を十分に冷却することができ、超伝導加速空洞2が所定の温度で冷却された状態を維持できる。
 そして、輻射シールド部15が磁気シールド部11に成膜されていることで、この輻射シールド部15を非常に薄く、かつ、容易に設けることができる。
 従って、仮に磁気シールド部11と輻射シールド部15とを別体で設ける場合に比べて、シールド体4全体の厚さ寸法を抑えることができ、取扱いも容易となる。
 つまり、シールド体4の省スペース化及び取扱いの簡便化を図ることができる。また、真空容器5内にシールド体4を設ける際に、狭い設置スペースにシールド体4を設置する際の変形を抑制することができる。よって、超伝導加速器1の運転時に、シールド体4でのシールド特性を十分に得ることができる。
 ここで、超伝導加速器1の運転開始時に、冷媒RFが冷媒槽3に充填されて超伝導加速空洞2の冷却が開始される際や、超伝導加速器1の運転終了時に、冷媒RFが冷媒槽3から排出されて超伝導加速空洞2の冷却が終了する際には、シールド体4の温度が変化する。
 この際、磁気シールド部11と輻射シールド部15との材料が異なることで、磁気シールド部11と輻射シールド部15とで熱変形量(熱膨張量、又は熱収縮量)が異なってしまう。
 このような場合、仮に、磁気シールド部11と輻射シールド部15とを別個に製造して、例えばボルト等を用いて積層するように張り合わせてシールド体4を形成すると、磁気シールド部11及び輻射シールド部15に熱応力が生じて、シールド体4が反り返ってしまう等の問題が生じる可能性がある。
 一方、第一実施形態の超伝導加速器1では、輻射シールド部15が成膜されることで薄い膜状をなしているため輻射シールド部15は変形し易い。よって磁気シールド部11と輻射シールド部15とで熱変形量が異なっても、輻射シールド部15が磁気シールド部11の変形に容易に追従できる。
 この結果、シールド体4の温度変化に伴って、シールド体4が反り返る等の変形をしにくくなり、シールド体4での十分なシールド特性を維持することができる。
 また、第一実施形態では、磁気シールド部11の内外の表面11aに同じ材料で構成された輻射シールド部15が配置されているので、シールド体4の温度変化時において、磁気シールド部11の内外の表面11aが輻射シールド部15から受ける力(熱応力を生じさせる力)が均等になる。
 即ち、磁気シールド部11の一方の表面11aに作用する力によって生じる熱応力と、磁気シールド部11の他方の表面11aに作用する力によって生じる熱応力と、の均衡がとれる。この結果、磁気シールド部11と輻射シールド部15との熱変形量の差によるシールド体4の反り返り等をさらに抑制できる。
 ここで、図3には、輻射シールド部15の厚さ寸法に対する磁気シールド部11の厚さ寸法の比と、磁気シールド部11に生じる熱応力との関係を輻射シールド部15の材料毎に算出した結果を示す。
 この計算では、下記のようにパラメータを設定した。
 ΔT〔℃〕:磁気シールド部11及び輻射シールド部15の温度変化(図3に示す結果を算出した際には、ΔT=295〔℃〕とした。)
 w〔mm〕:磁気シールド部11及び輻射シールド部15の幅寸法(軸線Oに交差する方向の長さ寸法)
 t〔mm〕:磁気シールド部11の厚さ寸法
 A〔mm〕:磁気シールド部11の断面積(A=w×t
 E〔N/mm〕:磁気シールド部11の材料の縦弾性係数
 α〔1/℃〕:磁気シールド部11の材料の線膨張係数
 t〔mm〕:輻射シールド部15の厚さ寸法
 A〔mm〕:輻射シールド部15の断面積(A=w×t
 E〔N/mm〕:輻射シールド部15の材料の縦弾性係数
 α〔1/℃〕:輻射シールド部15の材料の線膨張係数
 このようなパラメータを用いて、磁気シールド部11に生じる熱応力:σ〔MPa〕を以下の数式(1)によって算出した。輻射シールド部15は磁気シールド部11の表面11a全体に成膜されていることを前提としている。
Figure JPOXMLDOC01-appb-M000001
 この結果、図3に示すように輻射シールド部15の厚さ寸法に対する磁気シールド部11の厚さ寸法の比:t/tが3倍以上となる範囲で、金を除くいずれの材料を輻射シールド部15に用いた場合であっても、磁気シールド部11に生じる熱応力σが急激に低くなっていることが確認できる。具体的には、t/tが3倍以上となる範囲で60〔MPa〕より低くなっており、厚さ寸法の比:t/tが5倍以上となる範囲で磁気シールド部11に生じる熱応力σは40〔MPa〕より低くなっている。
 また、輻射シールド部15に金を用いた場合は、t/tの数値によらず、磁気シールド部11に生じる熱応力σは10〔MPa〕よりも低い。
 従って、上述したように、第一実施形態では、磁気シールド部11の厚さ寸法d1が1mm以上2mm以下であって、輻射シールド部15の厚さ寸法d2が100μm以上200μm以下である場合に限定されず、少なくとも厚さ寸法の比t/tが少なくとも3倍以上となる範囲で、より好ましくは5倍以上となる範囲で、磁気シールド部11及び輻射シールド部15の厚さ寸法を設定すれば、シールド体4の熱変形を十分に抑制することが可能となる。
 なお、これら数値に限定されることなく、熱変形性を考慮して、磁気シールド部11が輻射シールド部15よりも厚さ寸法が大きくなっている、即ち、輻射シールド部15の方が薄くなっているとよい。
 さらに、輻射シールド部15を成膜により形成することで、磁気シールド部11と輻射シールド部15とを貼り合わせる手間を低減できるとともに、貼り合わせの際に必要となる締結具等(ボルト等)が不要となるので、シールド体4の部品点数を減らすことができる。
 また、輻射シールド部15を成膜により形成することで、輻射シールド部15と磁気シールド部11との密着性が向上し、シールド体4を効率よく均一に冷却することができる。
 さらに、輻射シールド部15を成膜により形成することで、磁気シールド部11の表面11a上の任意の範囲に容易に輻射シールド部15を設けることができ、設計の自由度を高めることができる。
〔第二実施形態〕
 次に、図4を参照して、本発明の第二実施形態における超伝導加速器21について説明する。
 第一実施形態と同様の構成要素には同一の符号を付して詳細説明を省略する。
 第二実施形態の超伝導加速器21では、シールド体24が第一実施形態とは異なっている。
 即ち、シールド体24における輻射シールド部25は、磁気シールド部11における表面11aに沿う一方向に間隔をあけて複数に分離されて成膜されている。
 具体的には第二実施形態では、軸線Oの方向に間隔をあけて、軸線Oを中心とした環状をなして複数の輻射シールド部25が設けられている。
 第二実施形態の超伝導加速器21によれば、輻射シールド部25を、間隔をあけて複数に分離して形成することで、シールド体24が温度変化した際に、輻射シールド部25が磁気シールド部11の表面11aの全体に形成されている場合に比べて、磁気シールド部11の変形に輻射シールド部25が追従して変形し易くなる。
 このため、輻射シールド部25と磁気シールド部11との材料が異なることでこれらの熱変形量が異なる場合でも、シールド体24の反り返り等の変形を抑制することができる。
 なお、図5に示すように、輻射シールド部25Aは磁気シールド部11の周方向に間隔をあけて複数に分離して成膜されていてもよい。
 このような場合であっても、磁気シールド部11に輻射シールド部25Aが追従して変形し易くなり、シールド体24の反り返り等の変形を抑制できる。
〔第三実施形態〕
 次に、図6を参照して、本発明の第三実施形態における超伝導加速器31について説明する。図6において、第一実施形態及び第二実施形態と同様の構成要素には同一の符号を付して詳細説明を省略する。
 第三実施形態の超伝導加速器31では、第一実施形態及び第二実施形態とはシールド体34が異なる。
 即ち、磁気シールド部36、及び磁気シールド部36に成膜された輻射シールド部37は、磁気シールド部36の表面36aに沿う方向、即ち軸線Oの方向に複数の組38に分離して設けられている。
 そして、軸線Oの方向に隣接する組38同士は、一部が径方向に重なるようにして設けられている。本実施形態では地磁気Mの方向は、径方向に沿っている。
 第三実施形態の超伝導加速器31では、磁気シールド部36と輻射シールド部37とを有するシールド体34を複数の組38に分離して設けることで、シールド体34が温度変化した際に、組38同士の重なり量が変化する。
 即ち、各組38同士がスライドするようにして軸線Oの方向に移動する(図6の矢印を参照)ことで、シールド体34の熱変形分を吸収できる。
 従って、シールド体34が熱変形した際のシールド体34の反り返り等の変形をさらに抑制することができる。
〔第四実施形態〕
 次に、図7を参照して、本発明の第四実施形態における超伝導加速器41について説明する。図7において、第一実施形態から第三実施形態と同様の構成要素には同一の符号を付して詳細説明を省略する。
 第四実施形態の超伝導加速器41では、第一実施形態、第二実施形態、及び第三実施形態とはシールド体44が異なる。
 即ち、シールド体44の輻射シールド部47は、複数の層48をなすように磁気シールド部11の表面11aに成膜され、かつ、表面11aから離間する層48に向かって磁気シールド部11と層48との熱変形量の差が段階的に大きくなるように、各層48の材料が決定されている。
 具体的には、例えば、輻射シールド部47の各層48は、磁気シールド部11から離間側に向かって金、銅、アルミニウムの順に、材料が選択される。
 第四実施形態の超伝導加速器41によれば、輻射シールド部47の各層48が、磁気シールド部11の表面11aから離間する層48である程、磁気シールド部11との熱変形量の差が大きくなっていることで、磁気シールド部11と、最も磁気シールド部11から離れた輻射シールド部47の層48と、の熱変形量の差が大きい場合でも、磁気シールド部11と、最も磁気シールド部11に近い輻射シールド部47の層48(磁気シールド部11の表面11aに接する層48)と、の熱変形量の差を小さくすることができる。
 従って、シールド体44が温度変形した際のシールド体44の反り返り等をさらに抑制することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能であり、本発明は、上述した実施形態によって限定されない。
 例えば、上述の実施形態では、輻射シールド部15、25、25A、37、47は、磁気シールド部11、36の内外の表面11a、36aに成膜されていたが、いずれか一方の表面11a、36aのみに成膜されていてもよい。
 また、シールド体4、24、34、44は、真空容器5の内面に張り付けて設けてもよいし、真空容器5と冷媒槽3との間で、これら真空容器5と冷媒槽3と離間して設けてもよい。
 さらに、シールド体4、24、34、44、の形状は、円筒形状であってもよいし、複数の板状部材を貼り合わせて角筒状にしたものであってもよい。複数の板状部材を貼り合わせる場合には、シールド体4、24、34、44をより容易に形成できる。
 本発明は、輻射熱及び地磁気をシールドするシールド体、及びこれを備える超伝導加速器に適用可能である。
 1、21、31、41 超伝導加速器
 2 超伝導加速空洞
 3 冷媒槽
 4、24、34、44 シールド体
 5 真空容器
 6 ビームパイプ
 7 入力結合器
 11、36 磁気シールド部
 11a、36a 表面
 12 筒状部
 13 フランジ状部
 15、25、25A、37、47 輻射シールド部
 38 組
 48 層
 RF 冷媒
 RS 冷媒空間
 O 軸線
  S 空間
  B 荷電粒子ビーム
  M 地磁気

Claims (7)

  1.  磁性体によって形成された板状をなす磁気シールド部と、
     前記磁気シールド部における内外表面のうちの少なくとも一方に成膜されて、前記磁性体よりも熱伝導率の大きい材料によって形成された輻射シールド部と、
     を備えるシールド体。
  2.  前記磁気シールド部は、前記輻射シールド部よりも厚さ寸法が大きくなっている請求項1に記載のシールド体。
  3.  前記磁気シールド部は、前記輻射シールド部に対して3倍以上の厚さ寸法で形成されている請求項2に記載のシールド体。
  4.  前記輻射シールド部は、前記磁気シールド部における前記内外表面に沿う一方向に間隔をあけて複数に分離されて成膜されている請求項1に記載のシールド体。
  5.  前記磁気シールド部及び該磁気シールドに成膜された前記輻射シールド部は、前記内外表面に沿う一方向に複数の組に分離して設けられ、かつ、隣接する前記組同士は、地磁気の方向から見て一部が重なり合うように設けられている請求項1に記載のシールド体。
  6.  前記輻射シールド部は、複数の層をなすように前記内外表面のうちの少なくとも一方に成膜され、かつ、前記内外表面から離間するにつれて、前記層と前記磁気シールド部との熱変形量の差が段階的に大きくなっていく請求項1から5のいずれか一項に記載のシールド体。
  7.  荷電粒子ビームを加速する空間を形成する超伝導加速空洞と、
     前記超伝導加速空洞の外周側に配置されて前記超伝導加速空洞との間に該超伝導加速空洞を冷却する冷媒が充填される冷媒空間を形成する冷媒槽と、
     前記冷媒槽の外周側に配置され、前記冷媒槽及び前記超伝導加速空洞を覆う請求項1から6のいずれか一項に記載のシールド体と、
     を備える超伝導加速器。
PCT/JP2016/064913 2015-05-29 2016-05-19 シールド体、及び超伝導加速器 WO2016194635A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177033949A KR102012117B1 (ko) 2015-05-29 2016-05-19 실드체, 및 초전도 가속기
US15/576,595 US10314158B2 (en) 2015-05-29 2016-05-19 Shielding body, and superconducting accelerator
EP16803070.8A EP3307032B1 (en) 2015-05-29 2016-05-19 Shielding body, and superconducting accelerator
CN201680029899.7A CN107710882B (zh) 2015-05-29 2016-05-19 屏蔽体及超导加速器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015110877A JP6523047B2 (ja) 2015-05-29 2015-05-29 シールド体、及び超伝導加速器
JP2015-110877 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194635A1 true WO2016194635A1 (ja) 2016-12-08

Family

ID=57440880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064913 WO2016194635A1 (ja) 2015-05-29 2016-05-19 シールド体、及び超伝導加速器

Country Status (6)

Country Link
US (1) US10314158B2 (ja)
EP (1) EP3307032B1 (ja)
JP (1) JP6523047B2 (ja)
KR (1) KR102012117B1 (ja)
CN (1) CN107710882B (ja)
WO (1) WO2016194635A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2551244A (en) * 2016-04-12 2017-12-13 Varian Med Sys Inc Shielding structures for linear accelerators

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5985011B1 (ja) * 2015-06-30 2016-09-06 三菱重工メカトロシステムズ株式会社 超伝導加速器
JP6800607B2 (ja) * 2016-05-06 2020-12-16 三菱重工機械システム株式会社 加速空洞、加速器及び加速空洞の共振周波数調整方法
GB2575637B (en) * 2018-07-16 2022-06-29 Elekta ltd Radiotherapy apparatus
CN110536535B (zh) * 2019-07-12 2020-06-19 西安交通大学 一种用于高能粒子加速器的束屏

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545016A (ja) * 1991-08-10 1993-02-23 Daikin Ind Ltd 極低温冷凍機
JPH05109497A (ja) * 1991-10-15 1993-04-30 Mitsubishi Electric Corp 荷電粒子偏向電磁石装置
JPH06289200A (ja) * 1993-04-01 1994-10-18 Hitachi Medical Corp 荷電粒子線加速器
JPH07335399A (ja) * 1994-06-14 1995-12-22 Mitsubishi Electric Corp 超伝導加速空洞
JP2009175117A (ja) * 2007-12-25 2009-08-06 Sii Nanotechnology Inc X線分析装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114599A (ja) 1988-10-24 1990-04-26 Kobe Steel Ltd 磁気シールド板
JPH02114598A (ja) 1988-10-24 1990-04-26 Kobe Steel Ltd 磁気シールド板
EP0424835B1 (en) * 1989-10-23 1996-08-21 Nippon Steel Corporation Superconducting magnetic shield and process for preparing the same
JPH0736479B2 (ja) * 1989-10-23 1995-04-19 新日本製鐵株式会社 Nb―Ti系超電導磁気シールド材の製造方法
JPH0682949B2 (ja) * 1990-03-23 1994-10-19 新日本製鐵株式会社 超電導磁気シールド体およびその製造方法
JPH07245426A (ja) 1994-03-07 1995-09-19 Mitsubishi Heavy Ind Ltd 超電導加速器用クライオスタット
JPH08288100A (ja) 1995-04-10 1996-11-01 Toshiba Fa Syst Eng Kk 小型荷電粒子加速装置
JP3968211B2 (ja) * 2000-08-31 2007-08-29 株式会社日立製作所 微弱磁場計測デュワー
JP3469213B2 (ja) * 2001-03-29 2003-11-25 株式会社日立製作所 磁場印加試料観察システム
US7061147B2 (en) * 2001-08-30 2006-06-13 Siemens Aktiengesellschaft Superconducting electrical machines for use in navy ships
US7205643B2 (en) * 2005-03-08 2007-04-17 David Walter Smith Stray field shielding structure for semiconductors
US20070184285A1 (en) * 2006-02-08 2007-08-09 Dean Tran Light weight x-ray radiation shield for electronics components and related fabrication method
JP2008085204A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 半導体記憶装置及びその製造方法
DE102008062612B4 (de) * 2007-12-25 2018-10-25 Hitachi High-Tech Science Corporation Röntgenstrahlen-Analysator
JP5494975B2 (ja) * 2008-05-27 2014-05-21 学校法人中部大学 超伝導テープ線材及びその製造方法
GB2467596B (en) * 2009-02-10 2011-01-12 Siemens Magnet Technology Ltd A thermal radiation shield, a cryostat containing a cooled magnet and an MRI system comprising a radiation shield
CN103009709A (zh) * 2011-09-20 2013-04-03 李贵祥 隔热磁屏蔽超导体复合板
GB2502980B (en) * 2012-06-12 2014-11-12 Siemens Plc Superconducting magnet apparatus with cryogen vessel
CN103700461B (zh) * 2012-09-27 2016-12-21 通用电气公司 超导磁体系统
JP5937025B2 (ja) * 2013-02-15 2016-06-22 住友重機械工業株式会社 超電導磁気シールド装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545016A (ja) * 1991-08-10 1993-02-23 Daikin Ind Ltd 極低温冷凍機
JPH05109497A (ja) * 1991-10-15 1993-04-30 Mitsubishi Electric Corp 荷電粒子偏向電磁石装置
JPH06289200A (ja) * 1993-04-01 1994-10-18 Hitachi Medical Corp 荷電粒子線加速器
JPH07335399A (ja) * 1994-06-14 1995-12-22 Mitsubishi Electric Corp 超伝導加速空洞
JP2009175117A (ja) * 2007-12-25 2009-08-06 Sii Nanotechnology Inc X線分析装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2551244A (en) * 2016-04-12 2017-12-13 Varian Med Sys Inc Shielding structures for linear accelerators
US10143076B2 (en) 2016-04-12 2018-11-27 Varian Medical Systems, Inc. Shielding structures for linear accelerators
GB2551244B (en) * 2016-04-12 2021-10-06 Varian Med Sys Inc Shielding structures for linear accelerators

Also Published As

Publication number Publication date
US20180153028A1 (en) 2018-05-31
EP3307032A4 (en) 2019-02-27
EP3307032A1 (en) 2018-04-11
KR102012117B1 (ko) 2019-08-19
US10314158B2 (en) 2019-06-04
CN107710882A (zh) 2018-02-16
JP6523047B2 (ja) 2019-05-29
JP2016225156A (ja) 2016-12-28
KR20180002708A (ko) 2018-01-08
EP3307032B1 (en) 2020-12-16
CN107710882B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2016194635A1 (ja) シールド体、及び超伝導加速器
KR101812030B1 (ko) 열 방사 실드들을 갖는 초전도 자석들
JP4816004B2 (ja) ホールスラスタ及び宇宙航行体
GB2484079A (en) Cylindrical stiffener for cryoshield
WO2013003453A2 (en) Insert for radomes and methods of manufacturing insert for radomes
JP2005321404A (ja) 熱遮蔽体
JP2013219195A (ja) 超電導コイルの伝導冷却板及び超電導コイル装置
US8581483B2 (en) Device for conducting away lost heat, as well as ion accelerator arrangement having such a device
JP2010267887A (ja) 高温超電導パンケーキコイルおよび高温超電導コイル
US20130237426A1 (en) Superconducting magnet
US20070257751A1 (en) Guiding devices for electromagnetic waves and process for manufacturing these guiding devices
US8731628B1 (en) RF cavity fabrication method including adherence of superconductor-coated tiles
WO2017110700A1 (ja) 加速空洞及び加速器
JP2016049159A (ja) 超電導磁石および磁気共鳴イメージング装置
CN117941016A (zh) 超导磁体装置及辐射屏蔽结构
US11703556B2 (en) Self-supporting flexible thermal radiation shield
AU2019200039B2 (en) Passive magnetic shielding of structures immersed in plasma using superconductors
US20120036870A1 (en) Method of both cooling and maintaining the uniform temperature of an extended object
JP2019078280A (ja) 被冷却体および液化ガス冷媒を有する真空断熱管
JP6914131B2 (ja) 超電導コイル
JP2011171625A (ja) 超電導コイル
JP2010268459A (ja) 温度補償技術が適用されたフィルタおよびマルチプレクサ用の多重膜可撓性壁システム
JP2023139600A (ja) 積層型高温超電導コイル装置
JP2010251501A (ja) クライオスタット
JPH07318671A (ja) 核融合装置の真空容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576595

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177033949

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016803070

Country of ref document: EP