WO2016194126A9 - 無停電電源装置 - Google Patents

無停電電源装置 Download PDF

Info

Publication number
WO2016194126A9
WO2016194126A9 PCT/JP2015/065862 JP2015065862W WO2016194126A9 WO 2016194126 A9 WO2016194126 A9 WO 2016194126A9 JP 2015065862 W JP2015065862 W JP 2015065862W WO 2016194126 A9 WO2016194126 A9 WO 2016194126A9
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
semiconductor switch
supplied
inverter
Prior art date
Application number
PCT/JP2015/065862
Other languages
English (en)
French (fr)
Other versions
WO2016194126A1 (ja
Inventor
啓祐 大西
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CA2984331A priority Critical patent/CA2984331C/en
Priority to KR1020177036842A priority patent/KR20180011219A/ko
Priority to US15/568,895 priority patent/US10389120B2/en
Priority to CN201580080541.2A priority patent/CN107615615B/zh
Priority to PCT/JP2015/065862 priority patent/WO2016194126A1/ja
Priority to KR1020197032401A priority patent/KR102117801B1/ko
Priority to JP2017521385A priority patent/JP6348662B2/ja
Publication of WO2016194126A1 publication Critical patent/WO2016194126A1/ja
Publication of WO2016194126A9 publication Critical patent/WO2016194126A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/10Constant-current supply systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection

Definitions

  • the present invention relates to an uninterruptible power supply, and more particularly to an uninterruptible power supply capable of continuing the supply of AC power to a load even when a power failure occurs.
  • the conventional uninterruptible power supply device includes a converter, an inverter, and a bypass circuit.
  • the AC power supplied from the AC power supply is converted to DC power by the converter, and the DC power is stored in the power storage device and converted to AC power by the inverter. And supplied to the load.
  • the inverter fails, AC power from the AC power source is supplied to the load via the bypass circuit.
  • the DC power of the power storage device is converted into AC power by an inverter and supplied to a load (for example, JP 2010-220339 A (Patent Document 1). )reference).
  • the AC power generated by the inverter is normally supplied to the load, and when the inverter fails, the AC power from the AC power source is supplied to the load via the bypass circuit. is called.
  • This method has an advantage that high-quality AC power with a small voltage fluctuation generated by the inverter can be supplied to the load, and a disadvantage that power loss is always generated in the inverter and efficiency is low.
  • the main object of the present invention is to provide a low-cost uninterruptible power supply.
  • the uninterruptible power supply includes a first input terminal that receives the first AC power supplied from the first AC power supply, and a second input that receives the second AC power supplied from the second AC power supply.
  • Two input terminals a battery terminal connected to the power storage device, an output terminal connected to the load, a converter connected to the first input terminal and converting the first AC power to DC power, and a converter
  • An inverter that converts the DC power generated by or the DC power of the power storage device into third AC power, a first semiconductor switch connected between the second input terminal and the output terminal, A first mechanical switch connected in parallel to the semiconductor switch and a control device for controlling the uninterruptible power supply by the selected one of the first and second power feeding methods.
  • the second power supply method can be selected only when the second semiconductor switch is connected in parallel to the first semiconductor switch.
  • the first power supply method when the inverter is normal, the third AC power generated by the inverter is supplied to the load.
  • the inverter fails the second AC power supplied from the second AC power is supplied.
  • This is a power feeding method in which AC power is supplied to a load through a first semiconductor switch for a predetermined time and second AC power is supplied to the load through a first mechanical switch.
  • the second power supply method supplies the second AC power to the load via the second semiconductor switch, When the supply of the second AC power from the AC power supply is stopped, the second semiconductor switch is turned off and the third AC power generated by the inverter is supplied to the load.
  • the uninterruptible power supply according to the present invention is basically a device that executes a first power feeding method using a first semiconductor switch, and the second semiconductor switch is connected in parallel to the first semiconductor switch. When the second power supply method is selected, the second power supply method is performed using the second semiconductor switch. Therefore, the cost of the apparatus can be reduced as compared with the case where the first power supply type uninterruptible power supply apparatus and the second power supply type uninterruptible power supply apparatus are separately designed and manufactured.
  • FIG. 3 is a circuit diagram illustrating a configuration of a semiconductor switch 3 illustrated in FIG. 2. It is a circuit block diagram which shows the structure of the uninterruptible power supply device in which the semiconductor switch 20 is mounted. It is a circuit block diagram for demonstrating the usage method and operation
  • FIG. 5 is a circuit diagram illustrating a configuration of the semiconductor switch 20 illustrated in FIG. 4.
  • FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply 1 according to an embodiment of the present invention.
  • FIG. 1 shows a state where only the standard semiconductor switch 3 (first semiconductor switch) is mounted and the optional semiconductor switch 20 (second semiconductor switch) is not mounted.
  • the uninterruptible power supply 1 includes a substrate 2.
  • the operation unit 7 and the control device 8 are mounted.
  • a space A for mounting the optional semiconductor switch 20 is provided.
  • FIG. 2 is a circuit block diagram for explaining how to use and operate the uninterruptible power supply 1 shown in FIG.
  • the input terminals T1a to T1c receive commercial-phase three-phase AC power supplied from a commercial AC power source 31 (first AC power source).
  • Bypass terminals T2a to T2c receive commercial-phase three-phase AC power supplied from bypass AC power source 32 (second AC power source).
  • the bypass AC power supply 32 may be a commercial AC power supply or a generator.
  • the battery terminals T3a and T3b are connected to the positive electrode and the negative electrode of the battery 33 (power storage device), respectively.
  • a capacitor may be connected instead of the battery 33.
  • the output terminals T4a to T4c are connected to the load 34.
  • the load 34 is driven by commercial-phase three-phase AC power supplied from the uninterruptible power supply 1.
  • An optional semiconductor switch 20 is connected to the switch terminals T5a to T5c and T6a to T6c. This will be described later.
  • One terminals of the mechanical switches S1a to S1c are connected to the input terminals T1a to T1c, respectively, and the other terminals are connected to the three input nodes of the converter, respectively.
  • the mechanical switches S1a to S1c are controlled by the control device 8, and are turned on when DC power is generated by the converter 4, and when the operation of the converter 4 is stopped, for example, supply of three-phase AC power from the commercial AC power supply 31 is performed. Turned off during a stopped power outage.
  • the converter 4 is controlled by the control device 8, and at the normal time when the three-phase AC power is supplied from the commercial AC power supply 31, the converter 4 converts the three-phase AC power supplied from the commercial AC power supply 31 via the mechanical switches S 1 a to S 1 c to DC. Convert to electricity.
  • the converter 4 normally converts a three-phase AC voltage supplied from the commercial AC power supply 31 to the three input nodes via the mechanical switches S1a to S1c into a DC voltage, and outputs the DC voltage to two outputs. Output between nodes.
  • the operation of the converter 4 is stopped.
  • each of DC positive bus PL and DC negative bus NL is connected to two output nodes of converter 4, and the other end thereof is connected to two input nodes of inverter 5.
  • Capacitor C1 is connected between DC positive bus PL and DC negative bus NL, and smoothes the DC voltage between DC positive bus PL and DC negative bus NL.
  • the DC power generated by the converter 4 is supplied to the inverter 5 through the DC positive bus PL and the DC negative bus NL, and is also supplied to the bidirectional chopper 6.
  • Bidirectional chopper 6 is connected to DC positive bus PL and DC negative bus NL, and to battery terminals T3a and T3b.
  • the bidirectional chopper 6 is controlled by the control device 8, and supplies DC power generated by the converter 4 to the battery 33 during normal times when three-phase AC power is supplied from the commercial AC power supply 31.
  • the DC power of the battery 33 is supplied to the inverter 5.
  • the bi-directional chopper 6 steps down the DC voltage generated by the converter 4 and supplies it to the battery 33 during normal operation, and boosts the voltage across the terminals of the battery 33 and supplies it to the inverter 5 during power failure.
  • the inverter 5 is controlled by the control device 8 and converts the DC power generated by the converter 4 into the three-phase AC power of the commercial frequency in the normal time when the three-phase AC power is supplied from the commercial AC power supply 31. At the time of a power failure when the supply of the three-phase AC power from the AC power supply 31 is stopped, the DC power supplied from the battery 33 via the bidirectional chopper 6 is converted into the commercial-phase three-phase AC power.
  • the inverter 5 normally generates a three-phase AC voltage having a commercial frequency based on a DC voltage applied between two input nodes from the converter 4, and outputs the generated three-phase AC voltage to three outputs. Output to the node.
  • the inverter 5 In the event of a power failure, the inverter 5 generates a three-phase AC voltage having a commercial frequency based on a DC voltage applied between the two input nodes from the battery 33 via the bidirectional chopper 6, and generates the generated three-phase AC voltage. Output to three output nodes.
  • One terminals of the mechanical switches (second mechanical switches) S2a to S2c are connected to three output nodes of the inverter 5, respectively, and the other terminals thereof are connected to the output terminals T4a to T4c, respectively.
  • the mechanical switches S2a to S2c are controlled by the control device 8 and are turned on when supplying AC power generated by the inverter 5 to the load 34, and stop supplying AC power generated by the inverter 5 to the load 34. And when the inverter 5 fails.
  • One terminals of mechanical switches (first mechanical switches) S3a to S3c are connected to bypass terminals T2a to T2c, respectively, and the other terminals are connected to output terminals T4a to T4c, respectively.
  • the mechanical switches S3a to S3c are controlled by the control device 8, and when the three-phase AC power from the bypass AC power source 32 is supplied to the load 34, for example, when the inverter 5 fails, the mechanical switches S3a to S3c are turned on. When the phase AC power is not supplied to the load 34, it is turned off.
  • the one terminals of the mechanical switches S4a to S4c are connected to the bypass terminals T2a to T2c, respectively, and the other terminals are connected to the three input nodes of the semiconductor switch 3, respectively.
  • the mechanical switches S4a to S4c are controlled by the control device 8, are normally turned on, and are turned off, for example, during maintenance of the semiconductor switch 3.
  • the three output nodes of the semiconductor switch 3 are connected to output terminals T4a to T4c, respectively.
  • the semiconductor switch 3 is controlled by the control device 8, is normally turned off, and is turned on for a predetermined time Tb when the inverter 5 fails.
  • a semiconductor switch 3 having a rated current value smaller than the rated current value of the uninterruptible power supply 1 is used. For this reason, the load current cannot always flow through the semiconductor switch 3.
  • the rated current values of the mechanical switches S1a to S1c, S2a to S2c, S3a to S3c, and S4a to S4c are sufficiently larger than the rated current value of the semiconductor switch 3. For this reason, the load current can always flow through the mechanical switches S2a to S2c, S3a to S3c.
  • the semiconductor switch 3 includes six thyristors 10 as shown in FIG. Of the six thyristors 10, three thyristors 10 have anodes connected to three input nodes 3a to 3c, respectively, and cathodes connected to three output nodes 3d to 3f, respectively. The anodes of the remaining three thyristors 10 are connected to the three output nodes 3d to 3f, respectively, and their cathodes are connected to the three input nodes 3a to 3c, respectively.
  • the control terminal 3g of the semiconductor switch 3 receives the control signal CNT1 from the control device 8 via the signal line SL1.
  • the control signal CNT1 is normally set to the “L” level, which is an inactivation level, and is set to the “H” level, which is an activation level, for a predetermined time Tb when the inverter 5 fails.
  • each thyristor 10 is turned off.
  • Each thyristor 10 is turned on when the control signal CNT1 is set to “H” level and a voltage in the forward bias direction is applied.
  • An IGBT Insulated Gate Bipolar Transistor
  • the three input nodes 3a to 3c of the semiconductor switch 3 are connected to switch terminals T5a to T5c, respectively, and the three output nodes 3d to 3f of the semiconductor switch are connected to switch terminals T6a to T6c, respectively.
  • the switch terminals T5a to T5c and T6a to T6c will be described later.
  • the operation unit 7 includes buttons, switches, and the like.
  • the user of the uninterruptible power supply 1 operates the operation unit 7 so that any one of a constant inverter power supply method (first power supply method) and a constant bypass power supply method (second power supply method) is selected. Selection, instructions for starting and stopping automatic operation of the uninterruptible power supply 1, instructions for starting and stopping manual operation of the uninterruptible power supply 1 can be performed.
  • the operation unit 7 outputs a signal indicating the operation result to the control device 8.
  • the control device 8 includes a signal from the operation unit 7, an instantaneous value of the three-phase AC voltage supplied from the commercial AC power supply 31, an instantaneous value of the three-phase AC voltage supplied from the bypass AC power supply 32, and a terminal voltage of the battery 33. , The instantaneous value of the voltage across terminals of the capacitor C1, the instantaneous value of the voltage at each of the output terminals T4a to T4c, the instantaneous value of the load current, and the like.
  • the operation of the uninterruptible power supply 1 in which the optional semiconductor switch 20 is not mounted and the constant inverter power supply method is selected will be described. It is assumed that the user of the uninterruptible power supply 1 uses the operation unit 7 to select the constant inverter power supply method among the constant inverter power supply method and the constant bypass power supply method. When the optional semiconductor switch 20 is not mounted, the bypass power supply method cannot be selected at all times.
  • the inverter power supply method may be automatically selected without being selected using the operation unit 7. For example, when the signal line SL2 (see FIG. 6) for the semiconductor switch 20 is not connected, the control device 8 determines that the semiconductor switch 20 is not mounted and always performs inverter power feeding. If the semiconductor switch 20 is not mounted, the inverter power supply method may be fixed at the time of shipment.
  • the semiconductor switch 3 and the mechanical switches S3a to S3c are turned on, the mechanical switches S2a to S2c are turned off, and the semiconductor switch 3 is turned off after a predetermined time Tb has elapsed.
  • the three-phase AC power from the bypass AC power supply 32 is supplied to the load 34 via the mechanical switches S3a to S3c, and the operation of the load 34 is continued.
  • FIG. 4 is a circuit block diagram showing a configuration of the uninterruptible power supply 1A on which the optional semiconductor switch 20 is mounted, and is a diagram to be compared with FIG.
  • FIG. 5 is a circuit block diagram for explaining the method of use and operation of uninterruptible power supply 1A shown in FIG. 4, and is a diagram compared with FIG.
  • FIG. 6 is a circuit diagram showing a configuration of the semiconductor switch 20, and is a diagram to be compared with FIG.
  • the optional semiconductor switch 20 is disposed in the space A and is fixed to the uninterruptible power supply 1A using, for example, a plurality of screws. Since the semiconductor switch 20 is always energized, a cooler with fins that dissipates heat generated by the semiconductor switch 20 and a fan that blows air to the cooler may be provided.
  • the three input nodes 20a to 20c of the semiconductor switch 20 are connected to the switch terminals T5a to T5c, respectively, and the three output nodes 20d to 20f of the semiconductor switch 20 are connected to the switch terminals T6a to T6c, respectively.
  • one end of six wires is screwed to nodes 20a to 20f of semiconductor switch 20, and the other end is screwed to switch terminals T5a to T5c and T6a to T6c, respectively.
  • the connector provided at one end of the six wires and the connector provided at the nodes 20a to 20f of the semiconductor switch 20 are detachably connected, and the connector provided at the other end of the wiring and the switch terminal T5a to The connectors provided on T5c and T6a to T6c may be detachably connected.
  • the control terminal 20g of the semiconductor switch 20 is connected to a control terminal (not shown) of the control device 8 through the signal line SL2.
  • one end of the signal line SL2 is screwed to the control terminal 20g, and the other end is screwed to the control device 8.
  • the connector provided at one end of the signal line SL2 and the connector provided at the control terminal 20g are detachably connected, and the connector provided at the other end and the connector provided at the control device 8 are detachable. Connect freely.
  • the semiconductor switch 20 is detachably attached to the substrate 2.
  • the semiconductor switch 20 includes six thyristors 21 as shown in FIG. Of the six thyristors 21, the anodes of three thyristors 21 are connected to three input nodes 20a to 20c, respectively, and their cathodes are connected to three output nodes 20d to 20f, respectively. The anodes of the remaining three thyristors 21 are connected to the three output nodes 20d to 20f, respectively, and their cathodes are connected to the three input nodes 20a to 20c, respectively.
  • the control terminal 20g of the semiconductor switch 20 receives the control signal CNT2 from the control device 8 through the signal line SL2.
  • the control signal CNT2 is set to the “H” level of the activation level during normal times when the three-phase AC power is supplied from the AC power sources 31 and 32, and the supply of the three-phase AC power from the AC power sources 31 and 32 is stopped.
  • the deactivation level is set to “L” level.
  • each thyristor 21 is turned off.
  • Each thyristor 21 is turned on when the control signal CNT2 is set to the “H” level and a voltage in the forward bias direction is applied.
  • An IGBT may be provided instead of the thyristor 21.
  • the semiconductor switch 20 Since a load current always flows through the semiconductor switch 20, the semiconductor switch 20 having a rated current value equal to or higher than the rated current value of the uninterruptible power supply 1A is used. Therefore, the rated current value of the semiconductor switch 20 is larger than the rated current value of the semiconductor switch 3.
  • the uninterruptible power supply 1A equipped with the optional semiconductor switch 20 is basically used as an uninterruptible power supply of the always bypass power supply method.
  • the user of the uninterruptible power supply 1 ⁇ / b> A uses the operation unit 7 to select the always bypass power supply method. However, even when the semiconductor switch 20 is mounted, it is possible to always select the inverter feeding method using the operation unit 7.
  • the control device 8 controls the uninterruptible power supply 1 ⁇ / b> A according to a signal from the operation unit 7.
  • the bypass power feeding method may be automatically selected without being selected using the operation unit 7. For example, when the signal line SL2 is connected, the control device 8 determines that the semiconductor switch 20 is mounted and always performs bypass power feeding, and when the signal line SL2 is not connected, the semiconductor switch 20 It is determined that it is not installed, and inverter power supply is always performed.
  • the user of the uninterruptible power supply 1 ⁇ / b> A selects the always bypass power supply method using the operation unit 7, and uses the commercial AC power supply 31 as the bypass AC power supply 32.
  • the mechanical switches S1a to S1c are controlled by the control device 8 and the converter 4 generates DC power.
  • the converter 4 When it is turned on and the operation of the converter 4 is stopped, for example, it is turned off at the time of a power failure when the supply of three-phase AC power from the AC power sources 31 and 32 is stopped.
  • the converter 4 is controlled by the control device 8, and in the normal time when the three-phase AC power is supplied from the AC power sources 31 and 32, the three-phase AC power supplied from the AC power source 31 via the mechanical switches S 1 a to S 1 c When the power is converted into DC power and the supply of the three-phase AC power from the AC power sources 31 and 32 is stopped, the operation is stopped.
  • the bidirectional chopper 6 is controlled by the control device 8, and supplies DC power generated by the converter 4 to the battery 33 during normal times when three-phase AC power is supplied from the AC power sources 31 and 32. , 32, the DC power of the battery 33 is supplied to the inverter 5 at the time of a power failure when the supply of the three-phase AC power from the battery 32 is stopped.
  • the inverter 5 is controlled by the control device 8, and during normal times when three-phase AC power is supplied from the AC power sources 31 and 32, the operation is stopped and the supply of the three-phase AC power from the AC power sources 31 and 32 is stopped. At the time of a stopped power outage, the DC power supplied from the battery 33 via the bidirectional chopper 6 is converted into commercial-phase three-phase AC power.
  • the mechanical switches S2a to S2c are controlled by the control device 8, and are turned on when the DC power generated by the inverter 5 is supplied to the load 34, and the supply of the DC power generated by the inverter 5 to the load 34 is stopped. And when the inverter 5 fails.
  • the mechanical switches S3a to S3c are controlled by the control device 8 and are turned on when the semiconductor switch 20 and the inverter 5 both fail in a normal state when three-phase AC power is supplied from the AC power sources 31 and 32. The period is turned off.
  • the mechanical switches S4a to S4c are controlled by the control device 8, are normally turned on, and are turned off, for example, during maintenance of the semiconductor switches 3 and 20.
  • the semiconductor switch 3 is controlled by the control device 8 and is turned on only for a predetermined time Tb when both the semiconductor switch 20 and the inverter 5 fail in a normal time when three-phase AC power is supplied from the AC power sources 31 and 32. Other periods are turned off.
  • the operation of the uninterruptible power supply 1A in which the optional semiconductor switch 20 is mounted and the always bypass power feeding method is selected will be described.
  • the mechanical switches S1a to S1c, S4a to S4c and the semiconductor switch 20 are turned on, and the mechanical switches S2a to S2c, S3a to S3c and the semiconductor switch 3 is turned off.
  • the three-phase AC power supplied from the bypass AC power supply 32 is supplied to the load 34 via the mechanical switches S4a to S4c and the semiconductor switch 20, and the load 34 is operated.
  • Three-phase AC power supplied from the commercial AC power supply 31 is converted into DC power by the converter 4 and stored in the battery 33 via the bidirectional chopper 6.
  • the inverter 5 is set to a standby state.
  • the mechanical switches S2a to S2c are turned on, and the DC power generated by the converter 4 is converted into three-phase AC power by the inverter 5, and the three-phase AC power is supplied to the load 34 via the mechanical switches S2a to S2c, and the operation of the load 34 is continued.
  • the inverter 5 fails, the semiconductor switch 3 and the mechanical switches S3a to S3c are turned on, the mechanical switches S2a to S2c are turned off, and the semiconductor switch 3 is turned off after a predetermined time Tb has elapsed.
  • the three-phase AC power from the bypass AC power supply 32 is supplied to the load 34 via the mechanical switches S3a to S3c, and the operation of the load 34 is continued.
  • the semiconductor switch 20 is turned off, the bypass AC power source 32 and the load 34 are electrically disconnected, and the mechanical switches S1a to S1c are turned off. And the operation of the converter 4 is stopped. Further, the mechanical switches S2a to S2c are turned on, and the DC power of the battery 33 is supplied to the inverter 5 via the bidirectional chopper 6, converted into three-phase AC power of commercial frequency by the inverter 5, and supplied to the load 34. . Therefore, even when a power failure occurs, the operation of the load 34 can be continued during the period in which the DC power is stored in the battery 33.
  • the semiconductor switch 20 When the optional semiconductor switch 20 is mounted and the inverter power supply method is always selected, the semiconductor switch 20 is fixed in the off state. Since other operations are the same as when the inverter power supply method is always selected without mounting the semiconductor switch 20, the description thereof will not be repeated.
  • the uninterruptible power supply 1 in which the optional semiconductor switch 20 is not mounted is shipped as a constant inverter power supply type uninterruptible power supply with a large shipment amount.
  • the uninterruptible power supply 1 is provided with a semiconductor switch 20 as an optional product.
  • a space A in which the semiconductor switch 20 is arranged and switch terminals T5a to T5c and T6a to T6c to which the semiconductor switch 20 is connected are provided on the substrate 2. Prepared in advance.
  • the uninterruptible power supply 1A equipped with the optional semiconductor switch 20 is basically shipped as an uninterruptible power supply of a constant bypass power supply system with a small shipment amount.
  • the uninterruptible power supply 1A can also be used as an uninterruptible power supply of a constant inverter power supply system. Therefore, the cost of the apparatus can be reduced as compared with the case where the always-inverted power supply type uninterruptible power supply apparatus and the always-bypass power supply type uninterruptible power supply apparatus are separately designed and manufactured.
  • the semiconductor switch 20 when the optional semiconductor switch 20 is mounted and the always bypass power feeding method is selected, the semiconductor switch is normally used when three-phase AC power is supplied from the AC power sources 31 and 32. 20 was turned on and mechanical switches S2a to S2c were turned off. However, in this method, after the supply of the three-phase AC power from the AC power sources 31 and 32 is stopped, the three-phase AC power generated by the inverter 5 is supplied to the load 34 via the mechanical switches S2a to S2c. , Some time is required.
  • the semiconductor switch 20 and the mechanical switches S2a to S2c may be turned on, and only the three-phase AC voltage may be output from the inverter 5 and the inverter 5 may be maintained in a state where no three-phase AC current is output.
  • the three-phase AC power can be immediately supplied from the inverter 5 to the load 34.
  • the mechanical switches S2a to S2c may be removed and the three output nodes of the inverter 5 may be connected to the output terminals T4a to T4c, respectively.
  • T1a to T1c input terminal T2a to T2c bypass terminal, T3a, T3b battery terminal, T4a to T4c output terminal, T5a to T5c, T6a to T6c switch terminal, S1a to S1c, S2a ⁇ S2c, S3a ⁇ S3c, S4a ⁇ S4c
  • Mechanical switch 3,20 semiconductor switch, 4 converter, PL DC positive bus, NL DC negative bus, C1 capacitor, 5 inverter, 6 bidirectional chopper, 7 operation unit, 8 control device 10, 21 thyristor, A space, 31 commercial AC power, 32 bypass AC power, 33 loads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

無停電電源装置は、基本的には第1の半導体スイッチ(3)を用いて常時インバータ給電方式を実行する装置(1)であり、オプション品である第2の半導体スイッチ(20)が第1の半導体スイッチ(3)に並列接続されて常時バイパス給電方式が選択された場合は第2の半導体スイッチ(20)を用いて常時バイパス給電方式を実行する装置(1A)となる。したがって、常時インバータ給電方式の無停電電源装置と常時バイパス給電方式の無停電電源装置とを別々に設計して製造する場合に比べ、装置の低コスト化を図ることができる。

Description

無停電電源装置
 この発明は無停電電源装置に関し、特に、停電が発生した場合でも負荷に対する交流電力の供給を継続することが可能な無停電電源装置に関する。
 従来の無停電電源装置は、コンバータ、インバータ、およびバイパス回路を備える。交流電源から交流電力が正常に供給されている通常時は、交流電源から供給される交流電力がコンバータによって直流電力に変換され、その直流電力が電力貯蔵装置に蓄えられるとともにインバータによって交流電力に変換されて負荷に供給される。インバータが故障した場合は、交流電源からの交流電力がバイパス回路を介して負荷に供給される。交流電源からの交流電力の供給が停止された停電時は、電力貯蔵装置の直流電力がインバータによって交流電力に変換されて負荷に供給される(たとえば、特開2010-220339号公報(特許文献1)参照)。
特開2010-220339号公報
 上述のように、通常時はインバータによって生成された交流電力を負荷に供給し、インバータが故障した場合は交流電源からの交流電力をバイパス回路を介して負荷に供給する方式は、常時インバータ給電方式と呼ばれている。この方式は、インバータによって生成される電圧変動が小さな高品質の交流電力を負荷に供給することができるという長所と、インバータで常時、電力損失が発生し、効率が低いという短所とを有する。
 他の方式として、通常時は交流電源からの交流電力をバイパス回路を介して負荷に供給し、停電時はインバータによって生成された交流電力を負荷に供給する常時バイパス給電方式がある。この方式は、電力損失が小さく、効率が高いという長所と、交流電源から供給される電圧変動が大きな低品質の交流電力が常時、負荷に供給されるという短所とを有する。
 電力効率よりも負荷に供給する交流電力の品質を重視するユーザは常時インバータ給電方式の無停電電源装置を求め、負荷に供給する交流電力の品質よりも電力効率を重視するユーザは常時バイパス給電方式の無停電電源装置を求める。しかし、常時インバータ給電方式の無停電電源装置と常時バイパス給電方式の無停電電源装置とを別々に設計して製造すると、コスト高になる。
 それゆえに、この発明の主たる目的は、低コストの無停電電源装置を提供することである。
 この発明に係る無停電電源装置は、第1の交流電源から供給される第1の交流電力を受ける第1の入力端子と、第2の交流電源から供給される第2の交流電力を受ける第2の入力端子と、電力貯蔵装置に接続されるバッテリ端子と、負荷に接続される出力端子と、第1の入力端子に接続され、第1の交流電力を直流電力に変換するコンバータと、コンバータによって生成された直流電力または電力貯蔵装置の直流電力を第3の交流電力に変換するインバータと、第2の入力端子と出力端子との間に接続された第1の半導体スイッチと、第1の半導体スイッチに並列接続された第1の機械スイッチと、第1および第2の給電方式のうちの選択された方の給電方式で無停電電源装置を制御する制御装置とを備えたものである。第2の給電方式は、第1の半導体スイッチに第2の半導体スイッチが並列接続された場合のみ選択可能となる。第1の給電方式は、インバータが正常である場合は、インバータによって生成された第3の交流電力を負荷に供給し、インバータが故障した場合は、第2の交流電力から供給される第2の交流電力を第1の半導体スイッチを介して負荷に予め定められた時間だけ供給するとともに、第2の交流電力を第1の機械スイッチを介して負荷に供給する給電方式である。第2の給電方式は、第2の交流電源から第2の交流電力が正常に供給されている場合は、第2の交流電力を第2の半導体スイッチを介して負荷に供給し、第2の交流電源からの第2の交流電力の供給が停止された場合は、第2の半導体スイッチをオフし、インバータによって生成された第3の交流電力を負荷に供給する給電方式である。
 この発明に係る無停電電源装置は、基本的には第1の半導体スイッチを用いて第1の給電方式を実行する装置であり、第2の半導体スイッチが第1の半導体スイッチに並列接続されて第2の給電方式が選択された場合は第2の半導体スイッチを用いて第2の給電方式を実行する装置となる。したがって、第1の給電方式の無停電電源装置と第2の給電方式の無停電電源装置とを別々に設計して製造する場合に比べ、装置の低コスト化を図ることができる。
この発明の一実施の形態による無停電電源装置の構成を示す回路ブロック図である。 図1に示した無停電電源装置の使用方法および動作を説明するための回路ブロック図である。 図2に示した半導体スイッチ3の構成を示す回路図である。 半導体スイッチ20が搭載された無停電電源装置の構成を示す回路ブロック図である。 図4に示した無停電電源装置の使用方法および動作を説明するための回路ブロック図である。 図4に示した半導体スイッチ20の構成を示す回路図である。
 図1は、この発明の一実施の形態による無停電電源装置1の構成を示す回路ブロック図である。図1では、標準品の半導体スイッチ3(第1の半導体スイッチ)のみが搭載され、オプション品の半導体スイッチ20(第2の半導体スイッチ)が搭載されていない状態が示されている。
 図1において、この無停電電源装置1は、基板2を備える。基板2の表面には、入力端子(第1の入力端子)T1a~T1c、バイパス端子(第2の入力端子)T2a~T2c、バッテリ端子T3a,T3b、出力端子T4a~T4c、スイッチ端子T5a~T5c,T6a~T6c、機械スイッチS1a~S1c,S2a~S2c,S3a~S3c,S4a~S4c、半導体スイッチ3、コンバータ4、直流正母線PL、直流負母線NL、コンデンサC1、インバータ5、双方向チョッパ6、操作部7、および制御装置8が搭載されている。基板2の表面のうちのスイッチ端子T5a~T5c,T6a~T6cの近傍には、オプション品の半導体スイッチ20を搭載するためのスペースAが設けられている。
 図2は、図1に示した無停電電源装置1の使用方法および動作を説明するための回路ブロック図である。図2に示すように、入力端子T1a~T1cは、商用交流電源31(第1の交流電源)から供給される商用周波数の三相交流電力を受ける。バイパス端子T2a~T2cは、バイパス交流電源32(第2の交流電源)から供給される商用周波数の三相交流電力を受ける。バイパス交流電源32は、商用交流電源であっても構わないし、発電機であっても構わない。
 バッテリ端子T3a,T3bは、それぞれバッテリ33(電力貯蔵装置)の正極および負極に接続される。バッテリ33の代わりにコンデンサが接続されていても構わない。出力端子T4a~T4cは、負荷34に接続される。負荷34は、無停電電源装置1から供給される商用周波数の三相交流電力によって駆動される。スイッチ端子T5a~T5c,T6a~T6cには、オプション品の半導体スイッチ20が接続される。これについては後述する。
 機械スイッチS1a~S1cの一方端子はそれぞれ入力端子T1a~T1cに接続され、それらの他方端子はそれぞれコンバータの3つの入力ノードに接続される。機械スイッチS1a~S1cは、制御装置8によって制御され、コンバータ4によって直流電力を生成する場合はオンされ、コンバータ4の運転を停止する場合、たとえば商用交流電源31からの三相交流電力の供給が停止された停電時にオフされる。
 コンバータ4は、制御装置8によって制御され、商用交流電源31から三相交流電力が供給されている通常時には、商用交流電源31から機械スイッチS1a~S1cを介して供給される三相交流電力を直流電力に変換する。
 換言すると、コンバータ4は、通常時は、商用交流電源31から機械スイッチS1a~S1cを介して3つの入力ノードに供給される三相交流電圧を直流電圧に変換し、その直流電圧を2つの出力ノード間に出力する。商用交流電源31からの三相交流電力の供給が停止された停電時は、コンバータ4の運転は停止される。
 直流正母線PLおよび直流負母線NLの一方端はそれぞれコンバータ4の2つの出力ノードに接続され、それらの他方端はそれぞれインバータ5の2つの入力ノードに接続される。コンデンサC1は、直流正母線PLと直流負母線NLの間に接続され、直流正母線PLおよび直流負母線NL間の直流電圧を平滑化させる。コンバータ4によって生成された直流電力は、直流正母線PLおよび直流負母線NLを介してインバータ5に供給されるとともに、双方向チョッパ6に供給される。
 双方向チョッパ6は、直流正母線PLおよび直流負母線NLに接続されるとともに、バッテリ端子T3a,T3bに接続される。双方向チョッパ6は、制御装置8によって制御され、商用交流電源31から三相交流電力が供給されている通常時は、コンバータ4によって生成された直流電力をバッテリ33に供給し、商用交流電源31からの三相交流電力の供給が停止された停電時は、バッテリ33の直流電力をインバータ5に供給する。
 換言すると、双方向チョッパ6は、通常時は、コンバータ4によって生成された直流電圧を降圧してバッテリ33に供給し、停電時は、バッテリ33の端子間電圧を昇圧してインバータ5に供給する。
 インバータ5は、制御装置8によって制御され、商用交流電源31から三相交流電力が供給されている通常時は、コンバータ4によって生成された直流電力を商用周波数の三相交流電力に変換し、商用交流電源31からの三相交流電力の供給が停止された停電時は、バッテリ33から双方向チョッパ6を介して供給される直流電力を商用周波数の三相交流電力に変換する。
 換言すると、インバータ5は、通常時は、コンバータ4から2つの入力ノード間に与えられた直流電圧に基づいて商用周波数の三相交流電圧を生成し、生成した三相交流電圧をそれぞれ3つの出力ノードに出力する。インバータ5は、停電時は、バッテリ33から双方向チョッパ6を介して2つの入力ノード間に与えられた直流電圧に基づいて商用周波数の三相交流電圧を生成し、生成した三相交流電圧をそれぞれ3つの出力ノードに出力する。
[規則91に基づく訂正 29.06.2017] 
 機械スイッチ(第2の機械スイッチ)S2a~S2cの一方端子はそれぞれインバータ5の3つの出力ノードに接続され、それらの他方端子はそれぞれ出力端子T4a~T4cに接続される。機械スイッチS2a~S2cは、制御装置8によって制御され、インバータ5によって生成される交流電力を負荷34に供給する場合はオンされ、インバータ5によって生成される交流電力の負荷34への供給を停止する場合、およびインバータ5が故障した場合はオフされる。
 機械スイッチ(第1の機械スイッチ)S3a~S3cの一方端子はそれぞれバイパス端子T2a~T2cに接続され、それらの他方端子はそれぞれ出力端子T4a~T4cに接続される。機械スイッチS3a~S3cは、制御装置8によって制御され、バイパス交流電源32からの三相交流電力を負荷34に供給する場合、たとえばインバータ5が故障した場合はオンされ、バイパス交流電源32からの三相交流電力を負荷34に供給しない場合はオフされる。
 機械スイッチS4a~S4cの一方端子はそれぞれバイパス端子T2a~T2cに接続され、それらの他方端子はそれぞれ半導体スイッチ3の3つの入力ノードに接続される。機械スイッチS4a~S4cは、制御装置8によって制御され、通常はオンされ、たとえば、半導体スイッチ3のメンテナンス時にオフされる。
 半導体スイッチ3の3つの出力ノードはそれぞれ出力端子T4a~T4cに接続される。半導体スイッチ3は、制御装置8によって制御され、通常はオフされ、インバータ5が故障したときに所定時間Tbだけオンされる。低コスト化を図るため、無停電電源装置1の定格電流値よりも小さな定格電流値の半導体スイッチ3が使用されている。このため、負荷電流を常時、半導体スイッチ3に流すことはできない。なお、機械スイッチS1a~S1c,S2a~S2c,S3a~S3c,S4a~S4cの定格電流値は半導体スイッチ3の定格電流値よりも十分に大きい。このため、負荷電流を常時、機械スイッチS2a~S2c,S3a~S3cに流すことができる。
 半導体スイッチ3は、図3に示すように、6つのサイリスタ10を含む。6つのサイリスタ10のうちの3つのサイリスタ10のアノードはそれぞれ3つの入力ノード3a~3cに接続され、それらのカソードはそれぞれ3つの出力ノード3d~3fに接続される。残りの3つのサイリスタ10のアノードはそれぞれ3つの出力ノード3d~3fに接続され、それらのカソードはそれぞれ3つの入力ノード3a~3cに接続される。
 半導体スイッチ3の制御端子3gは、制御装置8から信号線SL1を介して制御信号CNT1を受ける。制御信号CNT1は、通常は非活性化レベルの「L」レベルにされ、インバータ5が故障したときに所定時間Tbだけ活性化レベルの「H」レベルにされる。制御信号CNT1が「L」レベルである場合は各サイリスタ10はオフされる。各サイリスタ10は、制御信号CNT1が「H」レベルにされ、かつ順バイアス方向の電圧が印加されている場合にオンされる。なお、サイリスタ10の代わりにIGBT(Insulated Gate Bipolar Transistor)が設けられていても構わない。
 半導体スイッチ3の3つの入力ノード3a~3cはそれぞれスイッチ端子T5a~T5cに接続され、半導体スイッチの3つの出力ノード3d~3fはそれぞれスイッチ端子T6a~T6cに接続される。スイッチ端子T5a~T5c,T6a~T6cについては後述する。
 操作部7は、ボタン、スイッチなどを含む。無停電電源装置1の使用者は、操作部7を操作することにより、常時インバータ給電方式(第1の給電方式)と常時バイパス給電方式(第2の給電方式)のうちのいずれかの方式の選択、無停電電源装置1の自動運転の開始および停止の指示、無停電電源装置1の手動運転の開始および停止の指示などを行なうことができる。操作部7は、操作された結果を示す信号を制御装置8に出力する。
 制御装置8は、操作部7からの信号、商用交流電源31から供給される三相交流電圧の瞬時値、バイパス交流電源32から供給される三相交流電圧の瞬時値、バッテリ33の端子間電圧の瞬時値、コンデンサC1の端子間電圧の瞬時値、出力端子T4a~T4cの各々の電圧の瞬時値、負荷電流の瞬時値などに基づいて、無停電電源装置1全体を制御する。
 次に、オプション品の半導体スイッチ20が搭載されず、常時インバータ給電方式が選択された無停電電源装置1の動作について説明する。無停電電源装置1の使用者は、操作部7を用いて、常時インバータ給電方式および常時バイパス給電方式のうちの常時インバータ給電方式を選択したものとする。オプション品の半導体スイッチ20が搭載されていない場合は、常時バイパス給電方式を選択することはできない。
 なお、オプション品の半導体スイッチ20が搭載されていない場合は、操作部7を用いて選択しなくても、自動的に常時インバータ給電方式が選択されるように構成されていても構わない。たとえば、制御装置8は、半導体スイッチ20用の信号線SL2(図6参照)が接続されていない場合は半導体スイッチ20が搭載されていないと判別して常時インバータ給電を実行する。半導体スイッチ20を搭載しない場合は、出荷時に常時インバータ給電方式に固定しても構わない。
 商用交流電源31から三相交流電力が正常に供給されている通常時は、機械スイッチS1a~S1c,S2a~S2c,S4a~S4cがオンされ、機械スイッチS3a~S3cおよび半導体スイッチ3がオフされる。商用交流電源31から供給される三相交流電力は、コンバータ4によって直流電力に変換される。コンバータ4によって生成された直流電力は、双方向チョッパ6を介してバッテリ33に蓄えられるとともに、インバータ5によって商用周波数の三相交流電力に変換されて負荷34に供給される。
 通常時においてインバータ5が故障した場合は、半導体スイッチ3および機械スイッチS3a~S3cがオンされるとともに、機械スイッチS2a~S2cがオフされ、所定時間Tbの経過後に半導体スイッチ3がオフされる。これにより、バイパス交流電源32からの三相交流電力が機械スイッチS3a~S3cを介して負荷34に供給され、負荷34の運転が継続される。
 商用交流電源31からの三相交流電力の供給が停止された停電時は、機械スイッチS1a~S1cがオフされるとともにコンバータ4の運転が停止され、バッテリ33の直流電力が双方向チョッパ6を介してインバータ5に供給され、商用周波数の三相交流電力に変換されて負荷34に供給される。したがって、停電が発生した場合でも、バッテリ33に直流電力が蓄えられている期間は、負荷34の運転を継続することができる。
 次に、無停電電源装置1にオプション品の半導体スイッチ20が搭載された場合について説明する。図4は、オプション品の半導体スイッチ20が搭載された無停電電源装置1Aの構成を示す回路ブロック図であって、図1と対比される図である。図5は、図4に示した無停電電源装置1Aの使用方法および動作を説明するための回路ブロック図であって、図2と対比される図である。図6は、半導体スイッチ20の構成を示す回路図であって、図3と対比される図である。
 図4~図6において、オプション品の半導体スイッチ20は、スペースAに配置され、たとえば複数のネジを用いて無停電電源装置1Aに固定される。半導体スイッチ20には常時通電されるので、半導体スイッチ20で発生する熱を放散させるフィン付の冷却器と、冷却器に送風するファンとを設けてもよい。
 半導体スイッチ20の3つの入力ノード20a~20cはそれぞれスイッチ端子T5a~T5cに接続され、半導体スイッチ20の3つの出力ノード20d~20fはそれぞれスイッチ端子T6a~T6cに接続される。たとえば、6本の配線の一方端が半導体スイッチ20のノード20a~20fにそれぞれネジ止めされ、それらの他方端がそれぞれスイッチ端子T5a~T5c,T6a~T6cにネジ止めされる。
 あるいは、6本の配線の一方端に設けられたコネクタと半導体スイッチ20のノード20a~20fに設けられたコネクタとが着脱自在に接続され、それらの他方端に設けられたコネクタとスイッチ端子T5a~T5c,T6a~T6cに設けられたコネクタとが着脱自在に接続されても構わない。
 半導体スイッチ20の制御端子20gは、信号線SL2を介して制御装置8の制御端子(図示せず)に接続される。たとえば、信号線SL2の一方端は制御端子20gにネジ止めされ、その他方端は制御装置8にネジ止めされる。あるいは、信号線SL2の一方端に設けられたコネクタと制御端子20gに設けられたコネクタとが着脱自在に接続され、その他方端に設けられたコネクタと制御装置8に設けられたコネクタとが着脱自在に接続される。このように、半導体スイッチ20は、基板2に対して着脱可能に設けられる。
 半導体スイッチ20は、図6に示すように、6つのサイリスタ21を含む。6つのサイリスタ21のうちの3つのサイリスタ21のアノードはそれぞれ3つの入力ノード20a~20cに接続され、それらのカソードはそれぞれ3つの出力ノード20d~20fに接続される。残りの3つのサイリスタ21のアノードはそれぞれ3つの出力ノード20d~20fに接続され、それらのカソードはそれぞれ3つの入力ノード20a~20cに接続される。
 半導体スイッチ20の制御端子20gは、制御装置8から信号線SL2を介して制御信号CNT2を受ける。制御信号CNT2は、交流電源31,32から三相交流電力が供給されている通常時は、活性化レベルの「H」レベルにされ、交流電源31,32からの三相交流電力の供給が停止された停電時は、非活性化レベルの「L」レベルにされる。制御信号CNT2が「L」レベルである場合は各サイリスタ21はオフされる。各サイリスタ21は、制御信号CNT2が「H」レベルにされ、かつ順バイアス方向の電圧が印加されている場合にオンされる。なお、サイリスタ21の代わりにIGBTが設けられていても構わない。
 半導体スイッチ20には常時、負荷電流が流されるので、無停電電源装置1Aの定格電流値以上の定格電流値の半導体スイッチ20が使用されている。したがって、半導体スイッチ20の定格電流値は、半導体スイッチ3の定格電流値よりも大きい。
 オプション品の半導体スイッチ20が搭載された無停電電源装置1Aは、基本的には、常時バイパス給電方式の無停電電源装置として使用される。無停電電源装置1Aの使用者は、操作部7を用いて、常時バイパス給電方式を選択する。ただし、半導体スイッチ20が搭載された場合であっても、操作部7を用いて常時インバータ給電方式を選択することも可能である。制御装置8は、操作部7からの信号に従って無停電電源装置1Aを制御する。
 なお、オプション品の半導体スイッチ20が搭載された場合は、操作部7を用いて選択しなくても、自動的に常時バイパス給電方式が選択されるように構成されていても構わない。たとえば、制御装置8は、信号線SL2が接続されている場合は半導体スイッチ20が搭載されていると判別して常時バイパス給電を実行し、信号線SL2が接続されていない場合は半導体スイッチ20が搭載されていないと判別して常時インバータ給電を実行する。
 ここでは、無停電電源装置1Aの使用者が操作部7を用いて常時バイパス給電方式を選択したものとし、バイパス交流電源32として商用交流電源31を使用したものとする。図5において、半導体スイッチ20が搭載されて常時バイパス給電方式が選択された無停電電源装置1Aでは、機械スイッチS1a~S1cは、制御装置8によって制御され、コンバータ4によって直流電力を生成する場合はオンされ、コンバータ4の運転を停止する場合、たとえば交流電源31,32からの三相交流電力の供給が停止された停電時にオフされる。
 コンバータ4は、制御装置8によって制御され、交流電源31,32から三相交流電力が供給されている通常時は、交流電源31から機械スイッチS1a~S1cを介して供給される三相交流電力を直流電力に変換し、交流電源31,32からの三相交流電力の供給が停止された停電時は、その運転が停止される。
 双方向チョッパ6は、制御装置8によって制御され、交流電源31,32から三相交流電力が供給されている通常時は、コンバータ4によって生成された直流電力をバッテリ33に供給し、交流電源31,32からの三相交流電力の供給が停止された停電時は、バッテリ33の直流電力をインバータ5に供給する。
 インバータ5は、制御装置8によって制御され、交流電源31,32から三相交流電力が供給されている通常時は、その運転が停止され、交流電源31,32からの三相交流電力の供給が停止された停電時は、バッテリ33から双方向チョッパ6を介して供給される直流電力を商用周波数の三相交流電力に変換する。
 機械スイッチS2a~S2cは、制御装置8によって制御され、インバータ5によって生成される直流電力を負荷34に供給する場合はオンされ、インバータ5によって生成される直流電力の負荷34への供給を停止する場合、およびインバータ5が故障した場合はオフされる。
 機械スイッチS3a~S3cは、制御装置8によって制御され、交流電源31,32から三相交流電力が供給されている通常時において、半導体スイッチ20およびインバータ5がともに故障した場合にオンされ、それ以外の期間はオフされる。機械スイッチS4a~S4cは、制御装置8によって制御され、通常はオンされ、たとえば、半導体スイッチ3,20のメンテナンス時にオフされる。
 半導体スイッチ3は、制御装置8によって制御され、交流電源31,32から三相交流電力が供給されている通常時において、半導体スイッチ20およびインバータ5がともに故障した場合に所定時間Tbだけオンされ、それ以外の期間はオフされる。
 次に、オプション品の半導体スイッチ20が搭載されて常時バイパス給電方式が選択された無停電電源装置1Aの動作について説明する。交流電源31,32から三相交流電力が正常に供給されている通常時は、機械スイッチS1a~S1c,S4a~S4cおよび半導体スイッチ20がオンされ、機械スイッチS2a~S2c,S3a~S3cおよび半導体スイッチ3がオフされる。
 バイパス交流電源32から供給される三相交流電力は、機械スイッチS4a~S4cおよび半導体スイッチ20を介して負荷34に供給され、負荷34が運転される。商用交流電源31から供給される三相交流電力は、コンバータ4によって直流電力に変換され、双方向チョッパ6を介してバッテリ33に蓄えられる。インバータ5は、スタンバイ状態にされる。
 通常時において半導体スイッチ20が故障してオフ状態になった場合は、機械スイッチS2a~S2cがオンされ、コンバータ4によって生成された直流電力がインバータ5によって三相交流電力に変換され、その三相交流電力が機械スイッチS2a~S2cを介して負荷34に供給され、負荷34の運転が継続される。さらに、インバータ5が故障した場合は、半導体スイッチ3および機械スイッチS3a~S3cがオンされるとともに、機械スイッチS2a~S2cがオフされ、所定時間Tbの経過後に半導体スイッチ3がオフされる。これにより、バイパス交流電源32からの三相交流電力が機械スイッチS3a~S3cを介して負荷34に供給され、負荷34の運転が継続される。
 交流電源31,32からの三相交流電力の供給が停止された停電時は、半導体スイッチ20がオフされてバイパス交流電源32と負荷34が電気的に切り離され、機械スイッチS1a~S1cがオフされるとともにコンバータ4の運転が停止される。さらに、機械スイッチS2a~S2cがオンされ、バッテリ33の直流電力が双方向チョッパ6を介してインバータ5に供給され、インバータ5によって商用周波数の三相交流電力に変換されて負荷34に供給される。したがって、停電が発生した場合でも、バッテリ33に直流電力が蓄えられている期間は、負荷34の運転を継続することができる。
 オプション品の半導体スイッチ20が搭載された場合において常時インバータ給電方式が選択されたときは、半導体スイッチ20がオフ状態に固定される。他の動作は、半導体スイッチ20が搭載されずに常時インバータ給電方式が選択された場合と同じであるので、その説明は繰り返さない。
 以上のように、この実施の形態では、オプション品である半導体スイッチ20が搭載されない無停電電源装置1は、出荷量の多い常時インバータ給電方式の無停電電源装置として出荷される。無停電電源装置1には、オプション品として半導体スイッチ20が用意され、その半導体スイッチ20を配置するスペースAと、その半導体スイッチ20を接続するスイッチ端子T5a~T5c,T6a~T6cとが基板2に予め用意されている。
 オプション品である半導体スイッチ20が搭載された無停電電源装置1Aは、基本的には、出荷量が少ない常時バイパス給電方式の無停電電源装置として出荷される。無停電電源装置1Aは、常時インバータ給電方式の無停電電源装置としても使用可能である。したがって、常時インバータ給電方式の無停電電源装置と常時バイパス給電方式の無停電電源装置とを別々に設計して製造する場合に比べ、装置の低コスト化を図ることができる。
 なお、この実施の形態では、オプション品の半導体スイッチ20が搭載されて常時バイパス給電方式が選択された場合において、交流電源31,32から三相交流電力が供給されている通常時では、半導体スイッチ20をオンさせるとともに機械スイッチS2a~S2cをオフさせた。しかし、この方法では、交流電源31,32からの三相交流電力の供給が停止されてから、インバータ5によって生成された三相交流電力を機械スイッチS2a~S2cを介して負荷34に供給するまで、若干の時間が必要となる。
 そこで、通常時において、半導体スイッチ20および機械スイッチS2a~S2cをオンさせるとともに、インバータ5から三相交流電圧のみが出力され、三相交流電流が出力されない状態にインバータ5を維持してもよい。この場合は、交流電源31,32からの三相交流電力の供給が停止されたとき、インバータ5から負荷34に三相交流電力を即座に供給することができる。この場合は、さらに、機械スイッチS2a~S2cを除去し、インバータ5の3つの出力ノードをそれぞれ出力端子T4a~T4cに接続しても構わない。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A 無停電電源装置、2 基板、T1a~T1c 入力端子、T2a~T2c バイパス端子、T3a,T3b バッテリ端子、T4a~T4c 出力端子、T5a~T5c,T6a~T6c スイッチ端子、S1a~S1c,S2a~S2c,S3a~S3c,S4a~S4c 機械スイッチ、3,20 半導体スイッチ、4 コンバータ、PL 直流正母線、NL 直流負母線、C1 コンデンサ、5 インバータ、6 双方向チョッパ、7 操作部、8 制御装置、10,21 サイリスタ、A スペース、31 商用交流電源、32 バイパス交流電源、33 負荷。

Claims (10)

  1. [規則91に基づく訂正 29.06.2017] 
     無停電電源装置であって、
     第1の交流電源から供給される第1の交流電力を受ける第1の入力端子と、
     第2の交流電源から供給される第2の交流電力を受ける第2の入力端子と、
     電力貯蔵装置に接続されるバッテリ端子と、
     負荷に接続される出力端子と、
     前記第1の入力端子に接続され、前記第1の交流電力を直流電力に変換するコンバータと、
     前記コンバータによって生成された直流電力または前記電力貯蔵装置の直流電力を第3の交流電力に変換するインバータと、
     前記第2の入力端子と前記出力端子との間に接続された第1の半導体スイッチと、
     前記第1の半導体スイッチに並列接続された第1の機械スイッチと、
     第1および第2の給電方式のうちの選択された方の給電方式で前記無停電電源装置を制御する制御装置とを備え、
     前記第2の給電方式は、前記第1の半導体スイッチに第2の半導体スイッチが並列接続された場合のみ選択可能となり、
     前記第1の給電方式は、前記インバータが正常である場合は、前記インバータによって生成された前記第3の交流電力を前記負荷に供給し、前記インバータが故障した場合は、前記第2の交流電源から供給される前記第2の交流電力を前記第1の半導体スイッチを介して前記負荷に予め定められた時間だけ供給するとともに、前記第2の交流電力を前記第1の機械スイッチを介して前記負荷に供給する給電方式であり、
     前記第2の給電方式は、前記第2の交流電源から前記第2の交流電力が正常に供給されている場合は、前記第2の交流電力を前記第2の半導体スイッチを介して前記負荷に供給し、前記第2の交流電源からの前記第2の交流電力の供給が停止された場合は、前記第2の半導体スイッチをオフし、前記インバータによって生成された前記第3の交流電力を前記負荷に供給する給電方式である、無停電電源装置。
  2.  前記第2の半導体スイッチの定格電流値は前記第1の半導体スイッチの定格電流値よりも大きい、請求項1に記載の無停電電源装置。
  3.  前記第2の半導体スイッチは、前記無停電電源装置のオプション品として用意されている、請求項1に記載の無停電電源装置。
  4.  前記第2の半導体スイッチは着脱可能になっている、請求項1に記載の無停電電源装置。
  5.  前記第2の半導体スイッチを設置するためのスペースが用意されている、請求項1に記載の無停電電源装置。
  6.  さらに、前記第1の半導体スイッチの一方端子および他方端子にそれぞれ接続された第1および第2のスイッチ端子を備え、
     前記第2の半導体スイッチは前記第1および第2のスイッチ端子間に接続される、請求項1に記載の無停電電源装置。
  7.  さらに、前記第1の半導体スイッチに並列接続された前記第2の半導体スイッチを備える、請求項1に記載の無停電電源装置。
  8.  前記第2の給電方式は、前記第2の交流電源から前記第2の交流電力が正常に供給されている場合において、前記第2の半導体スイッチが故障してオンしないときは前記インバータによって生成された前記第3の交流電力を前記負荷に供給し、さらに、前記インバータも故障したときは、前記第1の機械スイッチをオンし、前記第2の交流電力を前記第1の機械スイッチを介して前記負荷に供給する給電方式である、請求項1に記載の無停電電源装置。
  9.  さらに、前記インバータの出力ノードと前記出力端子との間に接続された第2の機械スイッチを備え、
     前記第1の給電方式が選択された場合において、前記インバータが正常であるときは、前記第2の機械スイッチはオンされ、前記インバータが故障したときは、前記第2の機械スイッチはオフされ、
     前記第2の給電方式が選択された場合において、前記第2の交流電源から前記第2の交流電力が正常に供給されているときは、前記第2の機械スイッチはオフされ、前記第2の交流電源からの前記第2の交流電力の供給が停止されたときは、前記第2の機械スイッチはオンされる、請求項1に記載の無停電電源装置。
  10.  さらに、前記第1の交流電源から前記第1の交流電力が正常に供給されている場合は、前記コンバータによって生成された直流電力を前記電力貯蔵装置に供給し、前記第1の交流電源からの前記第1の交流電力の供給が停止された場合は、前記電力貯蔵装置の直流電力を前記インバータに供給する双方向チョッパを備える、請求項1に記載の無停電電源装置。
PCT/JP2015/065862 2015-06-02 2015-06-02 無停電電源装置 WO2016194126A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2984331A CA2984331C (en) 2015-06-02 2015-06-02 Uninterruptible power supply device
KR1020177036842A KR20180011219A (ko) 2015-06-02 2015-06-02 무정전 전원 장치
US15/568,895 US10389120B2 (en) 2015-06-02 2015-06-02 Uninterruptible power supply device
CN201580080541.2A CN107615615B (zh) 2015-06-02 2015-06-02 不间断电源装置
PCT/JP2015/065862 WO2016194126A1 (ja) 2015-06-02 2015-06-02 無停電電源装置
KR1020197032401A KR102117801B1 (ko) 2015-06-02 2015-06-02 무정전 전원 장치
JP2017521385A JP6348662B2 (ja) 2015-06-02 2015-06-02 無停電電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065862 WO2016194126A1 (ja) 2015-06-02 2015-06-02 無停電電源装置

Publications (2)

Publication Number Publication Date
WO2016194126A1 WO2016194126A1 (ja) 2016-12-08
WO2016194126A9 true WO2016194126A9 (ja) 2017-09-28

Family

ID=57440908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065862 WO2016194126A1 (ja) 2015-06-02 2015-06-02 無停電電源装置

Country Status (6)

Country Link
US (1) US10389120B2 (ja)
JP (1) JP6348662B2 (ja)
KR (2) KR102117801B1 (ja)
CN (1) CN107615615B (ja)
CA (1) CA2984331C (ja)
WO (1) WO2016194126A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056907B2 (en) 2017-02-03 2021-07-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply device
JP6714157B2 (ja) * 2017-06-01 2020-06-24 東芝三菱電機産業システム株式会社 電源装置およびそれを用いた電源システム
JP6608405B2 (ja) * 2017-07-19 2019-11-20 矢崎総業株式会社 電圧変換ユニット
JP6958287B2 (ja) 2017-11-24 2021-11-02 トヨタ自動車株式会社 電力制御システムおよび車両
US11075540B2 (en) * 2018-07-23 2021-07-27 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply device
JP6754015B1 (ja) * 2019-06-25 2020-09-09 東芝三菱電機産業システム株式会社 無停電電源装置
JP7381236B2 (ja) * 2019-07-24 2023-11-15 ファナック株式会社 電力変換装置及びその制御方法
US20220239146A1 (en) * 2019-12-26 2022-07-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power supply device
CN113131598A (zh) * 2020-01-15 2021-07-16 太阳能安吉科技有限公司 多功能不间断电源供应器
JP7348091B2 (ja) * 2020-01-24 2023-09-20 東芝三菱電機産業システム株式会社 無停電電源装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115143B2 (ja) * 1993-02-26 2000-12-04 株式会社東芝 無停電電源装置
US6201371B1 (en) * 1998-08-07 2001-03-13 Matsushita Electric Industrial Co., Ltd. Uninterruptible power system
JP3636704B2 (ja) * 2002-10-08 2005-04-06 川崎重工業株式会社 無停電電源装置及び電力供給方法
KR20040042529A (ko) 2002-11-14 2004-05-20 주식회사 포스코 무정전 전원공급장치의 비상절체회로
US7265458B2 (en) * 2005-04-08 2007-09-04 Eaton Power Quality Corporation Apparatus and methods for coordinated static switch operations for load transfers in uninterruptible power supply systems
CN2819589Y (zh) * 2005-07-08 2006-09-20 北京动力源科技股份有限公司 一种具有高速转换特性的静态开关
EP1890371A1 (en) * 2006-08-03 2008-02-20 Michael J. Mosman UPS system configuration comprising parallel modules being independent of each other
JP2008283729A (ja) * 2007-05-08 2008-11-20 Fuji Electric Systems Co Ltd 無停電電源装置
JP5444774B2 (ja) 2009-03-16 2014-03-19 富士電機株式会社 無停電電源システム
ES2651273T3 (es) * 2009-04-17 2018-01-25 Toshiba Mitsubishi-Electric Industrial Systems Corporation Sistema de suministro de energía ininterrumpible
JP2011045176A (ja) * 2009-08-20 2011-03-03 Tdk-Lambda Corp 無停電電源装置、アプリケーションプログラム、コンピュータシステム、バックアップ処理方法およびプログラム
CA2774063C (en) * 2009-09-16 2016-01-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion system and uninterruptible power supply system
US8138625B2 (en) * 2009-09-23 2012-03-20 International Business Machines Corporation Dual line active automatic transfer switch
US20110278932A1 (en) * 2010-05-13 2011-11-17 Eaton Corporation Uninterruptible power supply systems and methods using isolated interface for variably available power source
WO2012169046A1 (ja) * 2011-06-09 2012-12-13 東芝三菱電機産業システム株式会社 無停電電源システム
CN202183635U (zh) * 2011-08-08 2012-04-04 秦皇岛国安电力电子技术有限公司 电梯应急供电设备
US9906074B2 (en) * 2011-09-13 2018-02-27 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power supply system
KR101223260B1 (ko) 2012-04-13 2013-01-17 아이. 에프. 텍 (주) 병렬 무정전 전원 공급 장치의 배터리 충전 시스템 및 방법
US9362781B2 (en) * 2012-09-14 2016-06-07 Chloride Srl Uninterruptible power supply system with fast transfer for undervoltage source line failures
JP5882884B2 (ja) * 2012-12-20 2016-03-09 東芝三菱電機産業システム株式会社 無停電電源装置
GB2516414A (en) * 2013-05-28 2015-01-28 Meb Engineering & Commercial Services Ltd Residential Domestic Uninterruptable Power Supply
WO2014193385A2 (en) * 2013-05-30 2014-12-04 Schneider Electric It Corporation Uninterruptible power supply control
CN203368124U (zh) * 2013-07-11 2013-12-25 Tcl通力电子(惠州)有限公司 电源切换电路和Dock设备
US9219384B2 (en) * 2013-08-05 2015-12-22 Rosendin Electric, Inc. Modular power skid that can meet two or more different datacenter tier ratings
JP6196108B2 (ja) * 2013-09-18 2017-09-13 株式会社東芝 無停電電源システムとそのコントローラおよび制御方法
CN203537047U (zh) * 2013-10-25 2014-04-09 广东易事特电源股份有限公司 一种双输入智能供电的不间断电源系统
CN103683463A (zh) * 2013-12-04 2014-03-26 深圳科士达新能源有限公司 一种具有不间断电源功能的混合逆变器
WO2016157469A1 (ja) * 2015-04-01 2016-10-06 東芝三菱電機産業システム株式会社 無停電電源装置およびそれを用いた無停電電源システム

Also Published As

Publication number Publication date
KR20190125549A (ko) 2019-11-06
WO2016194126A1 (ja) 2016-12-08
CN107615615B (zh) 2020-06-30
CA2984331A1 (en) 2016-12-08
US20180102647A1 (en) 2018-04-12
US10389120B2 (en) 2019-08-20
JPWO2016194126A1 (ja) 2018-03-15
KR20180011219A (ko) 2018-01-31
JP6348662B2 (ja) 2018-06-27
CA2984331C (en) 2019-10-29
CN107615615A (zh) 2018-01-19
KR102117801B1 (ko) 2020-06-01

Similar Documents

Publication Publication Date Title
JP6348662B2 (ja) 無停電電源装置
EP2579688B1 (en) Constant-current led driver circuit and output voltage adjustable circuit and method thereof
JP5940946B2 (ja) パワーコンディショナ及びその制御方法
US9385597B2 (en) Multi-mode current-allocating device
WO2012169046A9 (ja) 無停電電源システム
JP2005354894A (ja) 負荷分担式スイッチングモード電源における循環電流損失の解消
KR102579213B1 (ko) 인버터 시스템, 인버터 시스템의 제어방법 및 병렬연결 인버터 시스템
JP2009195079A (ja) 直流給電システムおよびその制御方法
US9614456B2 (en) Power conversion apparatus that prevents inrush current and air-conditioning apparatus using the same
KR101226628B1 (ko) 태양광 발전시스템의 직렬전압 보상장치
JP5882884B2 (ja) 無停電電源装置
JP5106484B2 (ja) 可変電源装置とモータ駆動制御装置とそれらの保護回路動作方法
JP5748919B2 (ja) 駅舎電源装置
JP2013165577A (ja) パワーコンディショナ、発電システムおよび電流抑制回路
JP2012135207A (ja) 電力変換装置
JP2016123241A (ja) パワーコンディショナ
WO2013046658A1 (ja) 切替装置および蓄電システム
JP2015130752A (ja) 空気調和機
EP3104485B1 (en) Power providing apparatus for use with multiple electricity sources
JP6591057B2 (ja) 系統連系用電力変換システム
JP5457963B2 (ja) 無停電電源装置
JP2014239561A (ja) 切替装置および蓄電システム
JP2016177832A (ja) パワーコンディショナ及びその制御方法
JP6301150B2 (ja) 電力変換装置
US9531192B2 (en) Power providing apparatus for use with multiple electricity sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521385

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15568895

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2984331

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036842

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15894161

Country of ref document: EP

Kind code of ref document: A1