KR102117801B1 - 무정전 전원 장치 - Google Patents

무정전 전원 장치 Download PDF

Info

Publication number
KR102117801B1
KR102117801B1 KR1020197032401A KR20197032401A KR102117801B1 KR 102117801 B1 KR102117801 B1 KR 102117801B1 KR 1020197032401 A KR1020197032401 A KR 1020197032401A KR 20197032401 A KR20197032401 A KR 20197032401A KR 102117801 B1 KR102117801 B1 KR 102117801B1
Authority
KR
South Korea
Prior art keywords
power
semiconductor switch
power supply
inverter
supplied
Prior art date
Application number
KR1020197032401A
Other languages
English (en)
Other versions
KR20190125549A (ko
Inventor
게이스케 오니시
Original Assignee
도시바 미쓰비시덴키 산교시스템 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 filed Critical 도시바 미쓰비시덴키 산교시스템 가부시키가이샤
Publication of KR20190125549A publication Critical patent/KR20190125549A/ko
Application granted granted Critical
Publication of KR102117801B1 publication Critical patent/KR102117801B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/10Constant-current supply systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

무정전 전원 장치는, 기본적으로는 제1 반도체 스위치(3)를 사용하여 상시 인버터 급전 방식을 실행하는 장치(1)이며, 옵션품인 제2 반도체 스위치(20)가 제1 반도체 스위치(3)에 병렬 접속되어 상시 바이패스 급전 방식이 선택된 경우에는 제2 반도체 스위치(20)를 사용하여 상시 바이패스 급전 방식을 실행하는 장치(1A)로 된다. 따라서, 상시 인버터 급전 방식의 무정전 전원 장치와 상시 바이패스 급전 방식의 무정전 전원 장치를 별개로 설계하여 제조하는 경우에 비하여, 장치의 저비용화를 도모할 수 있다.

Description

무정전 전원 장치{UNINTERRUPTIBLE POWER SUPPLY DEVICE}
본 발명은 무정전 전원 장치에 관한 것이며, 특히 정전이 발생한 경우에도 부하에 대한 교류 전력의 공급을 계속하는 것이 가능한 무정전 전원 장치에 관한 것이다.
종래의 무정전 전원 장치는, 컨버터, 인버터 및 바이패스 회로를 구비한다. 교류 전원으로부터 교류 전력이 정상으로 공급되고 있는 통상 시에는, 교류 전원으로부터 공급되는 교류 전력이 컨버터에 의해 직류 전력으로 변환되고, 그 직류 전력이 전력 저장 장치에 축적됨과 함께 인버터에 의해 교류 전력으로 변환되어 부하에 공급된다. 인버터가 고장난 경우에는, 교류 전원으로부터의 교류 전력이 바이패스 회로를 통하여 부하에 공급된다. 교류 전원으로부터의 교류 전력의 공급이 정지된 정전 시에는, 전력 저장 장치의 직류 전력이 인버터에 의해 교류 전력으로 변환되어 부하에 공급된다(예를 들어, 일본 특허 공개 제2010-220339호 공보(특허문헌 1) 참조).
일본 특허 공개 제2010-220339호 공보
상술한 바와 같이, 통상 시에는 인버터에 의해 생성된 교류 전력을 부하에 공급하고, 인버터가 고장난 경우에는 교류 전원으로부터의 교류 전력을 바이패스 회로를 통하여 부하에 공급하는 방식은, 상시 인버터 급전 방식이라고 불리고 있다. 이 방식은, 인버터에 의해 생성되는 전압 변동이 작은 고품질의 교류 전력을 부하에 공급할 수 있다고 하는 장점과, 인버터에서 상시, 전력 손실이 발생하고, 효율이 낮다고 하는 단점을 갖는다.
다른 방식으로서, 통상 시에는 교류 전원으로부터의 교류 전력을 바이패스 회로를 통하여 부하에 공급하고, 정전 시에는 인버터에 의해 생성된 교류 전력을 부하에 공급하는 상시 바이패스 급전 방식이 있다. 이 방식은, 전력 손실이 작고, 효율이 높다고 하는 장점과, 교류 전원으로부터 공급되는 전압 변동이 큰 저품질의 교류 전력이 상시, 부하에 공급된다고 하는 단점을 갖는다.
전력 효율보다 부하에 공급하는 교류 전력의 품질을 중시하는 유저는 상시 인버터 급전 방식의 무정전 전원 장치를 요구하고, 부하에 공급하는 교류 전력의 품질보다 전력 효율을 중시하는 유저는 상시 바이패스 급전 방식의 무정전 전원 장치를 요구한다. 그러나, 상시 인버터 급전 방식의 무정전 전원 장치와 상시 바이패스 급전 방식의 무정전 전원 장치를 별개로 설계하여 제조하면, 고비용으로 된다.
그래서, 본 발명의 주된 목적은, 저비용의 무정전 전원 장치를 제공하는 것이다.
본 발명에 관한 무정전 전원 장치는, 제1 교류 전원으로부터 공급되는 제1 교류 전력을 받는 제1 입력 단자와, 제2 교류 전원으로부터 공급되는 제2 교류 전력을 받는 제2 입력 단자와, 전력 저장 장치에 접속되는 배터리 단자와, 부하에 접속되는 출력 단자와, 제1 입력 단자에 접속되고, 제1 교류 전력을 직류 전력으로 변환하는 컨버터와, 컨버터에 의해 생성된 직류 전력 또는 전력 저장 장치의 직류 전력을 제3 교류 전력으로 변환하는 인버터와, 제2 입력 단자와 출력 단자의 사이에 접속된 제1 반도체 스위치와, 제1 반도체 스위치에 병렬 접속된 제1 기계 스위치와, 제1 및 제2 급전 방식 중 선택된 쪽의 급전 방식으로 무정전 전원 장치를 제어하는 제어 장치를 구비한 것이다. 제2 급전 방식은, 제1 반도체 스위치에 제2 반도체 스위치가 병렬 접속된 경우에만 선택 가능하게 된다. 제1 급전 방식은, 인버터가 정상인 경우에는, 인버터에 의해 생성된 제3 교류 전력을 부하에 공급하고, 인버터가 고장난 경우에는, 제2 교류 전력으로부터 공급되는 제2 교류 전력을 제1 반도체 스위치를 통하여 부하에 미리 정해진 시간만큼 공급함과 함께, 제2 교류 전력을 제1 기계 스위치를 통하여 부하에 공급하는 급전 방식이다. 제2 급전 방식은, 제2 교류 전원으로부터 제2 교류 전력이 정상으로 공급되고 있는 경우에는, 제2 교류 전력을 제2 반도체 스위치를 통하여 부하에 공급하고, 제2 교류 전원으로부터의 제2 교류 전력의 공급이 정지된 경우에는, 제2 반도체 스위치를 오프하고, 인버터에 의해 생성된 제3 교류 전력을 부하에 공급하는 급전 방식이다.
본 발명에 관한 무정전 전원 장치는, 기본적으로는 제1 반도체 스위치를 사용하여 제1 급전 방식을 실행하는 장치이며, 제2 반도체 스위치가 제1 반도체 스위치에 병렬 접속되어 제2 급전 방식이 선택된 경우에는 제2 반도체 스위치를 사용하여 제2 급전 방식을 실행하는 장치로 된다. 따라서, 제1 급전 방식의 무정전 전원 장치와 제2 급전 방식의 무정전 전원 장치를 별개로 설계하여 제조하는 경우에 비하여, 장치의 저비용화를 도모할 수 있다.
도 1은, 본 발명의 일 실시 형태에 따른 무정전 전원 장치의 구성을 도시하는 회로 블록도이다.
도 2는, 도 1에 도시한 무정전 전원 장치의 사용 방법 및 동작을 설명하기 위한 회로 블록도이다.
도 3은, 도 2에 도시한 반도체 스위치(3)의 구성을 도시하는 회로도이다.
도 4는, 반도체 스위치(20)가 탑재된 무정전 전원 장치의 구성을 도시하는 회로 블록도이다.
도 5는, 도 4에 도시한 무정전 전원 장치의 사용 방법 및 동작을 설명하기 위한 회로 블록도이다.
도 6은, 도 4에 도시한 반도체 스위치(20)의 구성을 도시하는 회로도이다.
도 1은, 본 발명의 일 실시 형태에 따른 무정전 전원 장치(1)의 구성을 도시하는 회로 블록도이다. 도 1에서는, 표준품인 반도체 스위치(3)(제1 반도체 스위치)만이 탑재되고, 옵션품인 반도체 스위치(20)(제2 반도체 스위치)는 탑재되지 않은 상태가 도시되어 있다.
도 1에 있어서, 이 무정전 전원 장치(1)는 기판(2)을 구비한다. 기판(2)의 표면에는, 입력 단자(제1 입력 단자) T1a 내지 T1c, 바이패스 단자(제2 입력 단자) T2a 내지 T2c, 배터리 단자 T3a, T3b, 출력 단자 T4a 내지 T4c, 스위치 단자 T5a 내지 T5c, T6a 내지 T6c, 기계 스위치 S1a 내지 S1c, S2a 내지 S2c, S3a 내지 S3c, S4a 내지 S4c, 반도체 스위치(3), 컨버터(4), 직류 정 모선 PL, 직류 부 모선 NL, 콘덴서 C1, 인버터(5), 쌍방향 초퍼(6), 조작부(7) 및 제어 장치(8)가 탑재되어 있다. 기판(2)의 표면 중 스위치 단자 T5a 내지 T5c, T6a 내지 T6c의 근방에는, 옵션품인 반도체 스위치(20)를 탑재하기 위한 스페이스 A가 설정되어 있다.
도 2는, 도 1에 도시한 무정전 전원 장치(1)의 사용 방법 및 동작을 설명하기 위한 회로 블록도이다. 도 2에 도시하는 바와 같이, 입력 단자 T1a 내지 T1c는, 상용 교류 전원(31)(제1 교류 전원)으로부터 공급되는 상용 주파수의 3상 교류 전력을 받는다. 바이패스 단자 T2a 내지 T2c는, 바이패스 교류 전원(32)(제2 교류 전원)으로부터 공급되는 상용 주파수의 3상 교류 전력을 받는다. 바이패스 교류 전원(32)은, 상용 교류 전원이어도 상관없고, 발전기여도 상관없다.
배터리 단자 T3a, T3b는, 각각 배터리(33)(전력 저장 장치)의 정극 및 부극에 접속된다. 배터리(33) 대신에 콘덴서가 접속되어 있어도 상관없다. 출력 단자 T4a 내지 T4c는, 부하(34)에 접속된다. 부하(34)는, 무정전 전원 장치(1)로부터 공급되는 상용 주파수의 3상 교류 전력에 의해 구동된다. 스위치 단자 T5a 내지 T5c, T6a 내지 T6c에는, 옵션품인 반도체 스위치(20)가 접속된다. 이것에 대해서는 후술한다.
기계 스위치 S1a 내지 S1c의 한쪽 단자는 각각 입력 단자 T1a 내지 T1c에 접속되고, 그들의 다른 쪽 단자는 각각 컨버터의 3개의 입력 노드에 접속된다. 기계 스위치 S1a 내지 S1c는, 제어 장치(8)에 의해 제어되고, 컨버터(4)에 의해 직류 전력을 생성하는 경우에는 온되고, 컨버터(4)의 운전을 정지하는 경우, 예를 들어 상용 교류 전원(31)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에 오프된다.
컨버터(4)는, 제어 장치(8)에 의해 제어되고, 상용 교류 전원(31)으로부터 3상 교류 전력이 공급되고 있는 통상 시에는, 상용 교류 전원(31)으로부터 기계 스위치 S1a 내지 S1c를 통하여 공급되는 3상 교류 전력을 직류 전력으로 변환한다.
환언하면, 컨버터(4)는, 통상 시에는, 상용 교류 전원(31)으로부터 기계 스위치 S1a 내지 S1c를 통하여 3개의 입력 노드에 공급되는 3상 교류 전압을 직류 전압으로 변환하고, 그 직류 전압을 2개의 출력 노드 간에 출력한다. 상용 교류 전원(31)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는, 컨버터(4)의 운전은 정지된다.
직류 정 모선 PL 및 직류 부 모선 NL의 한쪽 단은 각각 컨버터(4)의 2개의 출력 노드에 접속되고, 그들의 다른 쪽 단은 각각 인버터(5)의 2개의 입력 노드에 접속된다. 콘덴서 C1은, 직류 정 모선 PL과 직류 부 모선 NL의 사이에 접속되고, 직류 정 모선 PL 및 직류 부 모선 NL 간의 직류 전압을 평활화시킨다. 컨버터(4)에 의해 생성된 직류 전력은, 직류 정 모선 PL 및 직류 부 모선 NL을 통하여 인버터(5)에 공급됨과 함께, 쌍방향 초퍼(6)에 공급된다.
쌍방향 초퍼(6)는, 직류 정 모선 PL 및 직류 부 모선 NL에 접속됨과 함께, 배터리 단자 T3a, T3b에 접속된다. 쌍방향 초퍼(6)는, 제어 장치(8)에 의해 제어되고, 상용 교류 전원(31)으로부터 3상 교류 전력이 공급되고 있는 통상 시에는, 컨버터(4)에 의해 생성된 직류 전력을 배터리(33)에 공급하고, 상용 교류 전원(31)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는, 배터리(33)의 직류 전력을 인버터(5)에 공급한다.
환언하면, 쌍방향 초퍼(6)는, 통상 시에는, 컨버터(4)에 의해 생성된 직류 전압을 강압하여 배터리(33)에 공급하고, 정전 시에는, 배터리(33)의 단자 간 전압을 승압하여 인버터(5)에 공급한다.
인버터(5)는, 제어 장치(8)에 의해 제어되고, 상용 교류 전원(31)으로부터 3상 교류 전력이 공급되고 있는 통상 시에는, 컨버터(4)에 의해 생성된 직류 전력을 상용 주파수의 3상 교류 전력으로 변환하고, 상용 교류 전원(31)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는, 배터리(33)로부터 쌍방향 초퍼(6)를 통하여 공급되는 직류 전력을 상용 주파수의 3상 교류 전력으로 변환한다.
환언하면, 인버터(5)는, 통상 시에는, 컨버터(4)로부터 2개의 입력 노드 간에 제공된 직류 전압에 기초하여 상용 주파수의 3상 교류 전압을 생성하고, 생성된 3상 교류 전압을 각각 3개의 출력 노드에 출력한다. 인버터(5)는, 정전 시에는, 배터리(33)로부터 쌍방향 초퍼(6)를 통하여 2개의 입력 노드 간에 제공된 직류 전압에 기초하여 상용 주파수의 3상 교류 전압을 생성하고, 생성된 3상 교류 전압을 각각 3개의 출력 노드에 출력한다.
기계 스위치(제2 기계 스위치) S2a 내지 S2c의 한쪽 단자는 각각 인버터(5)의 3개의 출력 노드에 접속되고, 그들의 다른 쪽 단자는 각각 출력 단자 T4a 내지 T4c에 접속된다. 기계 스위치 S2a 내지 S2c는, 제어 장치(8)에 의해 제어되고, 인버터(5)에 의해 생성되는 교류 전력을 부하(34)에 공급하는 경우에는 온되고, 인버터(5)에 의해 생성되는 교류 전력의 부하(34)로의 공급을 정지하는 경우, 및 인버터(5)가 고장난 경우에는 오프된다.
기계 스위치(제1 기계 스위치) S3a 내지 S3c의 한쪽 단자는 각각 바이패스 단자 T2a 내지 T2c에 접속되고, 그들의 다른 쪽 단자는 각각 출력 단자 T4a 내지 T4c에 접속된다. 기계 스위치 S3a 내지 S3c는, 제어 장치(8)에 의해 제어되고, 바이패스 교류 전원(32)으로부터의 3상 교류 전력을 부하(34)에 공급하는 경우, 예를 들어 인버터(5)가 고장난 경우에는 온되고, 바이패스 교류 전원(32)으로부터의 3상 교류 전력을 부하(34)에 공급하지 않는 경우에는 오프된다.
기계 스위치 S4a 내지 S4c의 한쪽 단자는 각각 바이패스 단자 T2a 내지 T2c에 접속되고, 그들의 다른 쪽 단자는 각각 반도체 스위치(3)의 3개의 입력 노드에 접속된다. 기계 스위치 S4a 내지 S4c는, 제어 장치(8)에 의해 제어되고, 통상은 온되며, 예를 들어 반도체 스위치(3)의 메인터넌스 시에 오프된다.
반도체 스위치(3)의 3개의 출력 노드는 각각 출력 단자 T4a 내지 T4c에 접속된다. 반도체 스위치(3)는, 제어 장치(8)에 의해 제어되고, 통상은 오프되고, 인버터(5)가 고장났을 때 소정 시간 Tb만큼 온된다. 저비용화를 도모하기 위해, 무정전 전원 장치(1)의 정격 전류값보다 작은 정격 전류값의 반도체 스위치(3)가 사용되고 있다. 이 때문에, 부하 전류를 상시, 반도체 스위치(3)에 흘릴 수는 없다. 또한, 기계 스위치 S1a 내지 S1c, S2a 내지 S2c, S3a 내지 S3c, S4a 내지 S4c의 정격 전류값은 반도체 스위치(3)의 정격 전류값보다 충분히 크다. 이 때문에, 부하 전류를 상시, 기계 스위치 S2a 내지 S2c, S3a 내지 S3c에 흘릴 수 있다.
반도체 스위치(3)는, 도 3에 도시하는 바와 같이, 6개의 사이리스터(10)를 포함한다. 6개의 사이리스터(10) 중 3개의 사이리스터(10)의 애노드는 각각 3개의 입력 노드(3a 내지 3c)에 접속되고, 그들의 캐소드는 각각 3개의 출력 노드(3d 내지 3f)에 접속된다. 남은 3개의 사이리스터(10)의 애노드는 각각 3개의 출력 노드(3d 내지 3f)에 접속되고, 그들의 캐소드는 각각 3개의 입력 노드(3a 내지 3c)에 접속된다.
반도체 스위치(3)의 제어 단자(3g)는, 제어 장치(8)로부터 신호선 SL1을 통하여 제어 신호 CNT1을 받는다. 제어 신호 CNT1은, 통상은 비활성화 레벨인 「L」 레벨로 되고, 인버터(5)가 고장났을 때 소정 시간 Tb만큼 활성화 레벨인 「H」 레벨로 된다. 제어 신호 CNT1이 「L」 레벨인 경우에는 각 사이리스터(10)는 오프된다. 각 사이리스터(10)는, 제어 신호 CNT1이 「H」 레벨로 되고, 또한 순바이어스 방향의 전압이 인가된 경우에 온된다. 또한, 사이리스터(10) 대신에 IGBT(Insulated Gate Bipolar Transistor)가 설치되어 있어도 상관없다.
반도체 스위치(3)의 3개의 입력 노드(3a 내지 3c)는 각각 스위치 단자 T5a 내지 T5c에 접속되고, 반도체 스위치의 3개의 출력 노드(3d 내지 3f)는 각각 스위치 단자 T6a 내지 T6c에 접속된다. 스위치 단자 T5a 내지 T5c, T6a 내지 T6c에 대해서는 후술한다.
조작부(7)는 버튼, 스위치 등을 포함한다. 무정전 전원 장치(1)의 사용자는, 조작부(7)를 조작함으로써, 상시 인버터 급전 방식(제1 급전 방식)과 상시 바이패스 급전 방식(제2 급전 방식) 중 어느 방식의 선택, 무정전 전원 장치(1)의 자동 운전의 개시 및 정지의 지시, 무정전 전원 장치(1)의 수동 운전의 개시 및 정지의 지시 등을 행할 수 있다. 조작부(7)는, 조작된 결과를 나타내는 신호를 제어 장치(8)에 출력한다.
제어 장치(8)는, 조작부(7)로부터의 신호, 상용 교류 전원(31)으로부터 공급되는 3상 교류 전압의 순시값, 바이패스 교류 전원(32)으로부터 공급되는 3상 교류 전압의 순시값, 배터리(33)의 단자 간 전압의 순시값, 콘덴서 C1의 단자 간 전압의 순시값, 출력 단자 T4a 내지 T4c의 각각의 전압의 순시값, 부하 전류의 순시값 등에 기초하여, 무정전 전원 장치(1) 전체를 제어한다.
이어서, 옵션품인 반도체 스위치(20)가 탑재되지 않고, 상시 인버터 급전 방식이 선택된 무정전 전원 장치(1)의 동작에 대하여 설명한다. 무정전 전원 장치(1)의 사용자는, 조작부(7)를 사용하여, 상시 인버터 급전 방식 및 상시 바이패스 급전 방식 중 상시 인버터 급전 방식을 선택한 것으로 한다. 옵션품인 반도체 스위치(20)가 탑재되지 않은 경우에는, 상시 바이패스 급전 방식을 선택할 수 없다.
또한, 옵션품인 반도체 스위치(20)가 탑재되지 않은 경우에는, 조작부(7)를 사용하여 선택하지 않아도, 자동적으로 상시 인버터 급전 방식이 선택되도록 구성되어 있어도 상관없다. 예를 들어, 제어 장치(8)는, 반도체 스위치(20)용 신호선 SL2(도 6 참조)가 접속되지 않은 경우에는 반도체 스위치(20)가 탑재되어 있지 않다고 판별하여 상시 인버터 급전을 실행한다. 반도체 스위치(20)를 탑재하지 않는 경우에는, 출하 시에 상시 인버터 급전 방식으로 고정해도 상관없다.
상용 교류 전원(31)으로부터 3상 교류 전력이 정상으로 공급되고 있는 통상 시에는, 기계 스위치 S1a 내지 S1c, S2a 내지 S2c, S4a 내지 S4c가 온되고, 기계 스위치 S3a 내지 S3c 및 반도체 스위치(3)가 오프된다. 상용 교류 전원(31)으로부터 공급되는 3상 교류 전력은, 컨버터(4)에 의해 직류 전력으로 변환된다. 컨버터(4)에 의해 생성된 직류 전력은, 쌍방향 초퍼(6)를 통하여 배터리(33)에 축적됨과 함께, 인버터(5)에 의해 상용 주파수의 3상 교류 전력으로 변환되어 부하(34)에 공급된다.
통상 시에 있어서 인버터(5)가 고장난 경우에는, 반도체 스위치(3) 및 기계 스위치 S3a 내지 S3c가 온됨과 함께, 기계 스위치 S2a 내지 S2c가 오프되고, 소정 시간 Tb의 경과 후에 반도체 스위치(3)가 오프된다. 이에 의해, 바이패스 교류 전원(32)으로부터의 3상 교류 전력이 기계 스위치 S3a 내지 S3c를 통하여 부하(34)에 공급되고, 부하(34)의 운전이 계속된다.
상용 교류 전원(31)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는, 기계 스위치 S1a 내지 S1c가 오프됨과 함께 컨버터(4)의 운전이 정지되고, 배터리(33)의 직류 전력이 쌍방향 초퍼(6)를 통하여 인버터(5)에 공급되고, 상용 주파수의 3상 교류 전력으로 변환되어 부하(34)에 공급된다. 따라서, 정전이 발생한 경우라도, 배터리(33)에 직류 전력이 축적되어 있는 기간은, 부하(34)의 운전을 계속할 수 있다.
이어서, 무정전 전원 장치(1)에 옵션품인 반도체 스위치(20)가 탑재된 경우에 대하여 설명한다. 도 4는, 옵션품인 반도체 스위치(20)가 탑재된 무정전 전원 장치(1A)의 구성을 도시하는 회로 블록도이며, 도 1과 대비되는 도면이다. 도 5는, 도 4에 도시한 무정전 전원 장치(1A)의 사용 방법 및 동작을 설명하기 위한 회로 블록도이며, 도 2와 대비되는 도면이다. 도 6은, 반도체 스위치(20)의 구성을 도시하는 회로도이며, 도 3과 대비되는 도면이다.
도 4 내지 도 6에 있어서, 옵션품인 반도체 스위치(20)는, 스페이스 A에 배치되며, 예를 들어 복수의 나사를 사용하여 무정전 전원 장치(1A)에 고정된다. 반도체 스위치(20)에는 상시 통전되므로, 반도체 스위치(20)에서 발생하는 열을 방산시키는 핀 부착 냉각기와, 냉각기로 송풍하는 팬을 설치해도 된다.
반도체 스위치(20)의 3개의 입력 노드(20a 내지 20c)는 각각 스위치 단자 T5a 내지 T5c에 접속되고, 반도체 스위치(20)의 3개의 출력 노드(20d 내지 20f)는 각각 스위치 단자 T6a 내지 T6c에 접속된다. 예를 들어, 6개의 배선의 한쪽 단이 반도체 스위치(20)의 노드(20a 내지 20f)에 각각 나사 고정되고, 그들의 다른 쪽 단이 각각 스위치 단자 T5a 내지 T5c, T6a 내지 T6c에 나사 고정된다.
혹은, 6개의 배선의 한쪽 단에 설치된 커넥터와 반도체 스위치(20)의 노드(20a 내지 20f)에 설치된 커넥터가 착탈 가능하게 접속되고, 그들의 다른 쪽 단에 설치된 커넥터와 스위치 단자 T5a 내지 T5c, T6a 내지 T6c에 설치된 커넥터가 착탈 가능하게 접속되어도 상관없다.
반도체 스위치(20)의 제어 단자(20g)는, 신호선 SL2를 통하여 제어 장치(8)의 제어 단자(도시하지 않음)에 접속된다. 예를 들어, 신호선 SL2의 한쪽 단은 제어 단자(20g)에 나사 고정되고, 그의 다른 쪽 단은 제어 장치(8)에 나사 고정된다. 혹은, 신호선 SL2의 한쪽 단에 설치된 커넥터와 제어 단자(20g)에 설치된 커넥터가 착탈 가능하게 접속되고, 그의 다른 쪽 단에 설치된 커넥터와 제어 장치(8)에 설치된 커넥터가 착탈 가능하게 접속된다. 이와 같이, 반도체 스위치(20)는, 기판(2)에 대하여 착탈 가능하게 설치된다.
반도체 스위치(20)는, 도 6에 도시하는 바와 같이, 6개의 사이리스터(21)를 포함한다. 6개의 사이리스터(21) 중 3개의 사이리스터(21)의 애노드는 각각 3개의 입력 노드(20a 내지 20c)에 접속되고, 그들의 캐소드는 각각 3개의 출력 노드(20d 내지 20f)에 접속된다. 남은 3개의 사이리스터(21)의 애노드는 각각 3개의 출력 노드(20d 내지 20f)에 접속되고, 그들의 캐소드는 각각 3개의 입력 노드(20a 내지 20c)에 접속된다.
반도체 스위치(20)의 제어 단자(20g)는, 제어 장치(8)로부터 신호선 SL2를 통하여 제어 신호 CNT2를 받는다. 제어 신호 CNT2는, 교류 전원(31, 32)으로부터 3상 교류 전력이 공급되고 있는 통상 시에는, 활성화 레벨인 「H」 레벨로 되고, 교류 전원(31, 32)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는, 비활성화 레벨인 「L」 레벨로 된다. 제어 신호 CNT2가 「L」 레벨인 경우에는 각 사이리스터(21)는 오프된다. 각 사이리스터(21)는, 제어 신호 CNT2가 「H」 레벨로 되고, 또한 순바이어스 방향의 전압이 인가된 경우에 온된다. 또한, 사이리스터(21) 대신에 IGBT가 설치되어 있어도 상관없다.
반도체 스위치(20)에는 상시, 부하 전류가 흘려지므로, 무정전 전원 장치(1A)의 정격 전류값 이상의 정격 전류값의 반도체 스위치(20)가 사용되고 있다. 따라서, 반도체 스위치(20)의 정격 전류값은, 반도체 스위치(3)의 정격 전류값보다 크다.
옵션품인 반도체 스위치(20)가 탑재된 무정전 전원 장치(1A)는, 기본적으로는, 상시 바이패스 급전 방식의 무정전 전원 장치로서 사용된다. 무정전 전원 장치(1A)의 사용자는, 조작부(7)를 사용하여, 상시 바이패스 급전 방식을 선택한다. 단, 반도체 스위치(20)가 탑재된 경우라도, 조작부(7)를 사용하여 상시 인버터 급전 방식을 선택하는 것도 가능하다. 제어 장치(8)는, 조작부(7)로부터의 신호에 따라 무정전 전원 장치(1A)를 제어한다.
또한, 옵션품인 반도체 스위치(20)가 탑재된 경우에는, 조작부(7)를 사용하여 선택하지 않아도, 자동적으로 상시 바이패스 급전 방식이 선택되도록 구성되어 있어도 상관없다. 예를 들어, 제어 장치(8)는, 신호선 SL2가 접속되어 있는 경우에는 반도체 스위치(20)가 탑재되어 있다고 판별하여 상시 바이패스 급전을 실행하고, 신호선 SL2가 접속되지 않은 경우에는 반도체 스위치(20)가 탑재되어 있지 않다고 판별하여 상시 인버터 급전을 실행한다.
여기서는, 무정전 전원 장치(1A)의 사용자가 조작부(7)를 사용하여 상시 바이패스 급전 방식을 선택한 것으로 하고, 바이패스 교류 전원(32)으로서 상용 교류 전원(31)을 사용한 것으로 한다. 도 5에 있어서, 반도체 스위치(20)가 탑재되어 상시 바이패스 급전 방식이 선택된 무정전 전원 장치(1A)에서는, 기계 스위치 S1a 내지 S1c는, 제어 장치(8)에 의해 제어되고, 컨버터(4)에 의해 직류 전력을 생성하는 경우에는 온되고, 컨버터(4)의 운전을 정지하는 경우, 예를 들어 교류 전원(31, 32)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는 오프된다.
컨버터(4)는, 제어 장치(8)에 의해 제어되고, 교류 전원(31, 32)으로부터 3상 교류 전력이 공급되고 있는 통상 시에는, 교류 전원(31)으로부터 기계 스위치 S1a 내지 S1c를 통하여 공급되는 3상 교류 전력을 직류 전력으로 변환하고, 교류 전원(31, 32)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는, 그 운전이 정지된다.
쌍방향 초퍼(6)는, 제어 장치(8)에 의해 제어되고, 교류 전원(31, 32)으로부터 3상 교류 전력이 공급되고 있는 통상 시에는, 컨버터(4)에 의해 생성된 직류 전력을 배터리(33)에 공급하고, 교류 전원(31, 32)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는, 배터리(33)의 직류 전력을 인버터(5)에 공급한다.
인버터(5)는, 제어 장치(8)에 의해 제어되고, 교류 전원(31, 32)으로부터 3상 교류 전력이 공급되고 있는 통상 시에는, 그 운전이 정지되고, 교류 전원(31, 32)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는, 배터리(33)로부터 쌍방향 초퍼(6)를 통하여 공급되는 직류 전력을 상용 주파수의 3상 교류 전력으로 변환한다.
기계 스위치 S2a 내지 S2c는, 제어 장치(8)에 의해 제어되고, 인버터(5)에 의해 생성되는 직류 전력을 부하(34)에 공급하는 경우에는 온되고, 인버터(5)에 의해 생성되는 직류 전력의 부하(34)로의 공급을 정지하는 경우, 및 인버터(5)가 고장난 경우에는 오프된다.
기계 스위치 S3a 내지 S3c는, 제어 장치(8)에 의해 제어되고, 교류 전원(31, 32)으로부터 3상 교류 전력이 공급되고 있는 통상 시에 있어서, 반도체 스위치(20) 및 인버터(5)가 모두 고장난 경우에 온되고, 그 이외의 기간은 오프된다. 기계 스위치 S4a 내지 S4c는, 제어 장치(8)에 의해 제어되고, 통상은 온되며, 예를 들어 반도체 스위치(3, 20)의 메인터넌스 시에는 오프된다.
반도체 스위치(3)는, 제어 장치(8)에 의해 제어되고, 교류 전원(31, 32)으로부터 3상 교류 전력이 공급되고 있는 통상 시에 있어서, 반도체 스위치(20) 및 인버터(5)가 모두 고장난 경우에 소정 시간 Tb만큼 온되고, 그 이외의 기간은 오프된다.
이어서, 옵션품인 반도체 스위치(20)가 탑재되어 상시 바이패스 급전 방식이 선택된 무정전 전원 장치(1A)의 동작에 대하여 설명한다. 교류 전원(31, 32)으로부터 3상 교류 전력이 정상으로 공급되고 있는 통상 시에는, 기계 스위치 S1a 내지 S1c, S4a 내지 S4c 및 반도체 스위치(20)가 온되고, 기계 스위치 S2a 내지 S2c, S3a 내지 S3c 및 반도체 스위치(3)가 오프된다.
바이패스 교류 전원(32)으로부터 공급되는 3상 교류 전력은, 기계 스위치 S4a 내지 S4c 및 반도체 스위치(20)를 통하여 부하(34)에 공급되고, 부하(34)가 운전된다. 상용 교류 전원(31)으로부터 공급되는 3상 교류 전력은, 컨버터(4)에 의해 직류 전력으로 변환되고, 쌍방향 초퍼(6)를 통하여 배터리(33)에 축적된다. 인버터(5)는, 스탠바이 상태로 된다.
통상 시에 있어서 반도체 스위치(20)가 고장나서 오프 상태로 된 경우에는, 기계 스위치 S2a 내지 S2c가 온되고, 컨버터(4)에 의해 생성된 직류 전력이 인버터(5)에 의해 3상 교류 전력으로 변환되고, 그 3상 교류 전력이 기계 스위치 S2a 내지 S2c를 통하여 부하(34)에 공급되고, 부하(34)의 운전이 계속된다. 또한, 인버터(5)가 고장난 경우에는, 반도체 스위치(3) 및 기계 스위치 S3a 내지 S3c가 온됨과 함께, 기계 스위치 S2a 내지 S2c가 오프되고, 소정 시간 Tb의 경과 후에 반도체 스위치(3)가 오프된다. 이에 의해, 바이패스 교류 전원(32)으로부터의 3상 교류 전력이 기계 스위치 S3a 내지 S3c를 통하여 부하(34)에 공급되고, 부하(34)의 운전이 계속된다.
교류 전원(31, 32)으로부터의 3상 교류 전력의 공급이 정지된 정전 시에는, 반도체 스위치(20)가 오프되어 바이패스 교류 전원(32)과 부하(34)가 전기적으로 분리되고, 기계 스위치 S1a 내지 S1c가 오프됨과 함께 컨버터(4)의 운전이 정지된다. 또한, 기계 스위치 S2a 내지 S2c가 온되고, 배터리(33)의 직류 전력이 쌍방향 초퍼(6)를 통하여 인버터(5)에 공급되고, 인버터(5)에 의해 상용 주파수의 3상 교류 전력으로 변환되어 부하(34)에 공급된다. 따라서, 정전이 발생한 경우라도, 배터리(33)에 직류 전력이 축적되어 있는 기간에는, 부하(34)의 운전을 계속할 수 있다.
옵션품인 반도체 스위치(20)가 탑재된 경우에 있어서 상시 인버터 급전 방식이 선택되었을 때에는, 반도체 스위치(20)가 오프 상태로 고정된다. 다른 동작은, 반도체 스위치(20)가 탑재되지 않고 상시 인버터 급전 방식이 선택된 경우와 동일하므로, 그 설명은 반복하지 않는다.
이상과 같이, 이 실시 형태에서는, 옵션품인 반도체 스위치(20)가 탑재되지 않는 무정전 전원 장치(1)는, 출하량이 많은 상시 인버터 급전 방식의 무정전 전원 장치로서 출하된다. 무정전 전원 장치(1)에는, 옵션품으로서 반도체 스위치(20)가 준비되고, 그 반도체 스위치(20)를 배치하는 스페이스 A와, 그 반도체 스위치(20)를 접속하는 스위치 단자 T5a 내지 T5c, T6a 내지 T6c가 기판(2)에 미리 준비되어 있다.
옵션품인 반도체 스위치(20)가 탑재된 무정전 전원 장치(1A)는, 기본적으로는, 출하량이 적은 상시 바이패스 급전 방식의 무정전 전원 장치로서 출하된다. 무정전 전원 장치(1A)는, 상시 인버터 급전 방식의 무정전 전원 장치로서도 사용 가능하다. 따라서, 상시 인버터 급전 방식의 무정전 전원 장치와 상시 바이패스 급전 방식의 무정전 전원 장치를 별개로 설계하여 제조하는 경우에 비하여, 장치의 저비용화를 도모할 수 있다.
또한, 이 실시 형태에서는, 옵션품인 반도체 스위치(20)가 탑재되어 상시 바이패스 급전 방식이 선택된 경우에 있어서, 교류 전원(31, 32)으로부터 3상 교류 전력이 공급되고 있는 통상 시에서는, 반도체 스위치(20)를 온시킴과 함께 기계 스위치 S2a 내지 S2c를 오프시켰다. 그러나, 이 방법에서는, 교류 전원(31, 32)으로부터의 3상 교류 전력의 공급이 정지되고 나서, 인버터(5)에 의해 생성된 3상 교류 전력을 기계 스위치 S2a 내지 S2c를 통하여 부하(34)에 공급할 때까지, 약간의 시간이 필요하게 된다.
그래서, 통상 시에 있어서, 반도체 스위치(20) 및 기계 스위치 S2a 내지 S2c를 온시킴과 함께, 인버터(5)로부터 3상 교류 전압만이 출력되고, 3상 교류 전류가 출력되지 않는 상태로 인버터(5)를 유지해도 된다. 이 경우에는, 교류 전원(31, 32)으로부터의 3상 교류 전력의 공급이 정지되었을 때, 인버터(5)로부터 부하(34)로 3상 교류 전력을 바로 공급할 수 있다. 이 경우에는, 추가로 기계 스위치 S2a 내지 S2c를 제거하고, 인버터(5)의 3개의 출력 노드를 각각 출력 단자 T4a 내지 T4c에 접속해도 상관없다.
금회 개시된 실시 형태는 모든 점에서 예시이지 제한적인 것은 아니라고 생각되어야 한다. 본 발명의 범위는 상기한 설명이 아니라 청구범위에 의해 나타나며, 청구범위와 균등의 의미 및 범위 내에서의 모든 변경이 포함될 것이 의도된다.
1, 1A: 무정전 전원 장치
2: 기판
T1a 내지 T1c: 입력 단자
T2a 내지 T2c: 바이패스 단자
T3a, T3b: 배터리 단자
T4a 내지 T4c: 출력 단자
T5a 내지 T5c, T6a 내지 T6c: 스위치 단자
S1a 내지 S1c, S2a 내지 S2c, S3a 내지 S3c, S4a 내지 S4c: 기계 스위치
3, 20: 반도체 스위치
4: 컨버터
PL: 직류 정 모선
NL: 직류 부 모선
C1: 콘덴서
5: 인버터
6: 쌍방향 초퍼
7: 조작부
8: 제어 장치
10, 21: 사이리스터
A: 스페이스
31: 상용 교류 전원
32: 바이패스 교류 전원
34: 부하

Claims (9)

  1. 무정전 전원 장치이며,
    제1 교류 전원으로부터 공급되는 제1 교류 전력을 받는 제1 입력 단자와,
    제2 교류 전원으로부터 공급되는 제2 교류 전력을 받는 제2 입력 단자와,
    전력 저장 장치에 접속되는 배터리 단자와,
    부하에 접속되는 출력 단자와,
    상기 제1 입력 단자에 접속되고, 상기 제1 교류 전력을 직류 전력으로 변환하는 컨버터와,
    상기 컨버터에 의해 생성된 직류 전력 또는 상기 전력 저장 장치의 직류 전력을 제3 교류 전력으로 변환하는 인버터와,
    상기 제2 입력 단자와 상기 출력 단자의 사이에 접속된 제1 반도체 스위치와,
    상기 제1 반도체 스위치에 병렬 접속된 제1 기계 스위치와,
    제1 및 제2 급전 방식 중 선택된 쪽의 급전 방식으로 상기 무정전 전원 장치를 제어하는 제어 장치를 구비하고,
    상기 제2 급전 방식은, 상기 제1 반도체 스위치에 제2 반도체 스위치가 병렬 접속된 경우에만 선택 가능하게 되고,
    상기 제1 급전 방식은, 상기 인버터가 정상인 경우에는, 상기 인버터에 의해 생성된 상기 제3 교류 전력을 상기 부하에 공급하고, 상기 인버터가 고장난 경우에는, 상기 제2 교류 전원으로부터 공급되는 상기 제2 교류 전력을 상기 제1 반도체 스위치를 통하여 상기 부하에 미리 정해진 시간만큼 공급함과 함께, 상기 제2 교류 전력을 상기 제1 기계 스위치를 통하여 상기 부하에 공급하는 급전 방식이고,
    상기 제2 급전 방식은, 상기 제2 교류 전원으로부터 상기 제2 교류 전력이 정상으로 공급되고 있는 경우에는, 상기 제2 교류 전력을 상기 제2 반도체 스위치를 통하여 상기 부하에 공급하고, 상기 제2 교류 전원으로부터의 상기 제2 교류 전력의 공급이 정지된 경우에는, 상기 제2 반도체 스위치를 오프하고, 상기 인버터에 의해 생성된 상기 제3 교류 전력을 상기 부하에 공급하는 급전 방식이며,
    상기 제2 반도체 스위치의 정격 전류값은 상기 제1 반도체 스위치의 정격 전류값보다 크고,
    상기 제2 반도체 스위치의 정격 전류값은 상기 무정전 전원 장치의 정격 전류값 이상인, 무정전 전원 장치.
  2. 제1항에 있어서, 상기 제2 반도체 스위치는, 상기 무정전 전원 장치의 옵션품으로서 준비되어 있는, 무정전 전원 장치.
  3. 제1항에 있어서, 상기 제2 반도체 스위치는, 착탈가능하게 되어 있는, 무정전 전원 장치.
  4. 제1항에 있어서, 상기 제2 반도체 스위치를 설치하기 위한 스페이스가 준비되어 있는, 무정전 전원 장치.
  5. 제1항에 있어서, 추가로, 상기 제1 반도체 스위치의 한쪽 단자 및 다른 쪽 단자에 각각 접속된 제1 및 제2 스위치 단자를 구비하고,
    상기 제2 반도체 스위치는 상기 제1 및 제2 스위치 단자 간에 접속되는, 무정전 전원 장치.
  6. 제1항에 있어서, 추가로, 상기 제1 반도체 스위치에 병렬 접속된 상기 제2 반도체 스위치를 구비하는, 무정전 전원 장치.
  7. 제1항에 있어서, 상기 제2 급전 방식은, 상기 제2 교류 전원으로부터 상기 제2 교류 전력이 정상으로 공급되고 있는 경우에 있어서, 상기 제2 반도체 스위치가 고장나서 온되지 않을 때에는 상기 인버터에 의해 생성된 상기 제3 교류 전력을 상기 부하에 공급하고, 또한 상기 인버터도 고장났을 때에는, 상기 제1 기계 스위치를 온하고, 상기 제2 교류 전력을 상기 제1 기계 스위치를 통하여 상기 부하에 공급하는 급전 방식인, 무정전 전원 장치.
  8. 제1항에 있어서, 추가로, 상기 인버터의 출력 노드와 상기 출력 단자의 사이에 접속된 제2 기계 스위치를 구비하고,
    상기 제1 급전 방식이 선택된 경우에 있어서, 상기 인버터가 정상일 때에는, 상기 제2 기계 스위치는 온되고, 상기 인버터가 고장났을 때에는, 상기 제2 기계 스위치는 오프되고,
    상기 제2 급전 방식이 선택된 경우에 있어서, 상기 제2 교류 전원으로부터 상기 제2 교류 전력이 정상으로 공급되고 있을 때에는, 상기 제2 기계 스위치는 오프되고, 상기 제2 교류 전원으로부터의 상기 제2 교류 전력의 공급이 정지되었을 때에는, 상기 제2 기계 스위치는 온되는, 무정전 전원 장치.
  9. 제1항에 있어서, 추가로, 상기 제1 교류 전원으로부터 상기 제1 교류 전력이 정상으로 공급되고 있는 경우에는, 상기 컨버터에 의해 생성된 직류 전력을 상기 전력 저장 장치에 공급하고, 상기 제1 교류 전원으로부터의 상기 제1 교류 전력의 공급이 정지된 경우에는, 상기 전력 저장 장치의 직류 전력을 상기 인버터에 공급하는 쌍방향 초퍼를 구비하는, 무정전 전원 장치.
KR1020197032401A 2015-06-02 2015-06-02 무정전 전원 장치 KR102117801B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065862 WO2016194126A1 (ja) 2015-06-02 2015-06-02 無停電電源装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020177036842A Division KR20180011219A (ko) 2015-06-02 2015-06-02 무정전 전원 장치

Publications (2)

Publication Number Publication Date
KR20190125549A KR20190125549A (ko) 2019-11-06
KR102117801B1 true KR102117801B1 (ko) 2020-06-01

Family

ID=57440908

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020177036842A KR20180011219A (ko) 2015-06-02 2015-06-02 무정전 전원 장치
KR1020197032401A KR102117801B1 (ko) 2015-06-02 2015-06-02 무정전 전원 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020177036842A KR20180011219A (ko) 2015-06-02 2015-06-02 무정전 전원 장치

Country Status (6)

Country Link
US (1) US10389120B2 (ko)
JP (1) JP6348662B2 (ko)
KR (2) KR20180011219A (ko)
CN (1) CN107615615B (ko)
CA (1) CA2984331C (ko)
WO (1) WO2016194126A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6748234B2 (ja) 2017-02-03 2020-08-26 東芝三菱電機産業システム株式会社 無停電電源装置
WO2018220777A1 (ja) * 2017-06-01 2018-12-06 東芝三菱電機産業システム株式会社 電源装置およびそれを用いた電源システム
JP6608405B2 (ja) * 2017-07-19 2019-11-20 矢崎総業株式会社 電圧変換ユニット
JP6958287B2 (ja) 2017-11-24 2021-11-02 トヨタ自動車株式会社 電力制御システムおよび車両
CN111279576B (zh) * 2018-07-23 2023-01-10 东芝三菱电机产业系统株式会社 不间断电源装置
CN112970168B (zh) * 2019-06-25 2024-04-26 东芝三菱电机产业系统株式会社 不间断电源装置
JP7381236B2 (ja) * 2019-07-24 2023-11-15 ファナック株式会社 電力変換装置及びその制御方法
KR102620032B1 (ko) * 2019-12-26 2023-12-29 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전원 장치
US11381108B2 (en) 2020-01-15 2022-07-05 Solaredge Technologies Ltd. Versatile uninterruptable power supply
JP7348091B2 (ja) * 2020-01-24 2023-09-20 東芝三菱電機産業システム株式会社 無停電電源装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223260B1 (ko) 2012-04-13 2013-01-17 아이. 에프. 텍 (주) 병렬 무정전 전원 공급 장치의 배터리 충전 시스템 및 방법

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115143B2 (ja) * 1993-02-26 2000-12-04 株式会社東芝 無停電電源装置
US6201371B1 (en) * 1998-08-07 2001-03-13 Matsushita Electric Industrial Co., Ltd. Uninterruptible power system
JP3636704B2 (ja) * 2002-10-08 2005-04-06 川崎重工業株式会社 無停電電源装置及び電力供給方法
KR20040042529A (ko) * 2002-11-14 2004-05-20 주식회사 포스코 무정전 전원공급장치의 비상절체회로
US7265458B2 (en) * 2005-04-08 2007-09-04 Eaton Power Quality Corporation Apparatus and methods for coordinated static switch operations for load transfers in uninterruptible power supply systems
CN2819589Y (zh) * 2005-07-08 2006-09-20 北京动力源科技股份有限公司 一种具有高速转换特性的静态开关
EP1890371A1 (en) * 2006-08-03 2008-02-20 Michael J. Mosman UPS system configuration comprising parallel modules being independent of each other
JP2008283729A (ja) * 2007-05-08 2008-11-20 Fuji Electric Systems Co Ltd 無停電電源装置
JP5444774B2 (ja) 2009-03-16 2014-03-19 富士電機株式会社 無停電電源システム
MX2011009260A (es) * 2009-04-17 2011-09-26 Poration Toshiba Mitsubishi Electric Ind Systems Cor Sistema de suministro continuo de energia.
JP2011045176A (ja) * 2009-08-20 2011-03-03 Tdk-Lambda Corp 無停電電源装置、アプリケーションプログラム、コンピュータシステム、バックアップ処理方法およびプログラム
CA2774063C (en) * 2009-09-16 2016-01-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion system and uninterruptible power supply system
US8138625B2 (en) * 2009-09-23 2012-03-20 International Business Machines Corporation Dual line active automatic transfer switch
US20110278932A1 (en) * 2010-05-13 2011-11-17 Eaton Corporation Uninterruptible power supply systems and methods using isolated interface for variably available power source
JP5732134B2 (ja) * 2011-06-09 2015-06-10 東芝三菱電機産業システム株式会社 無停電電源システム
CN202183635U (zh) * 2011-08-08 2012-04-04 秦皇岛国安电力电子技术有限公司 电梯应急供电设备
KR20140032495A (ko) * 2011-09-13 2014-03-14 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전원 시스템
US9362781B2 (en) * 2012-09-14 2016-06-07 Chloride Srl Uninterruptible power supply system with fast transfer for undervoltage source line failures
JP5882884B2 (ja) * 2012-12-20 2016-03-09 東芝三菱電機産業システム株式会社 無停電電源装置
GB2516414A (en) * 2013-05-28 2015-01-28 Meb Engineering & Commercial Services Ltd Residential Domestic Uninterruptable Power Supply
AU2013390617B2 (en) * 2013-05-30 2018-03-29 Schneider Electric It Corporation Uninterruptible power supply control
CN203368124U (zh) * 2013-07-11 2013-12-25 Tcl通力电子(惠州)有限公司 电源切换电路和Dock设备
US9219384B2 (en) * 2013-08-05 2015-12-22 Rosendin Electric, Inc. Modular power skid that can meet two or more different datacenter tier ratings
JP6196108B2 (ja) * 2013-09-18 2017-09-13 株式会社東芝 無停電電源システムとそのコントローラおよび制御方法
CN203537047U (zh) * 2013-10-25 2014-04-09 广东易事特电源股份有限公司 一种双输入智能供电的不间断电源系统
CN103683463A (zh) * 2013-12-04 2014-03-26 深圳科士达新能源有限公司 一种具有不间断电源功能的混合逆变器
JP6527225B2 (ja) * 2015-04-01 2019-06-05 東芝三菱電機産業システム株式会社 無停電電源装置およびそれを用いた無停電電源システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223260B1 (ko) 2012-04-13 2013-01-17 아이. 에프. 텍 (주) 병렬 무정전 전원 공급 장치의 배터리 충전 시스템 및 방법

Also Published As

Publication number Publication date
WO2016194126A1 (ja) 2016-12-08
CN107615615A (zh) 2018-01-19
KR20180011219A (ko) 2018-01-31
CA2984331A1 (en) 2016-12-08
CA2984331C (en) 2019-10-29
JP6348662B2 (ja) 2018-06-27
JPWO2016194126A1 (ja) 2018-03-15
KR20190125549A (ko) 2019-11-06
WO2016194126A9 (ja) 2017-09-28
US10389120B2 (en) 2019-08-20
CN107615615B (zh) 2020-06-30
US20180102647A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
KR102117801B1 (ko) 무정전 전원 장치
KR101989758B1 (ko) 무정전 전원 장치
US10523049B2 (en) Uninterruptible power supply apparatus
CN113629757A (zh) 一种储能装置、储能装置控制方法以及光伏系统
US9614456B2 (en) Power conversion apparatus that prevents inrush current and air-conditioning apparatus using the same
JP5106484B2 (ja) 可変電源装置とモータ駆動制御装置とそれらの保護回路動作方法
JP2014124017A (ja) 無停電電源装置
EP3375066A1 (en) Emergency power supply for lighting apparatus
US9898027B2 (en) Station building power supply device
US20200153271A1 (en) Integrated Power Supply System for Auxiliary Services for Power Converters
US9007794B2 (en) Control system for a power supply having a first half-bridge leg and a second half-bridge leg
CN214429313U (zh) 一种电源切换电路
JP2016123241A (ja) パワーコンディショナ
WO2015116931A1 (en) Unidirectional matrix converter with regeneration system
JP6171180B2 (ja) 電力変換装置
JP2015091181A (ja) 太陽光発電用計測ユニット
JP5457963B2 (ja) 無停電電源装置
KR101691007B1 (ko) 전원제어장치
JP6301150B2 (ja) 電力変換装置
CN112564265A (zh) 一种电源切换电路
KR100863458B1 (ko) Ac계통 연계 변압기를 사용한 dc회생 인버터출력시험장치
JP2014142726A (ja) 自動販売機
JP2014182947A (ja) 燃料電池用系統連系システム

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant