WO2016194056A1 - 凝縮混合装置及びこれを有する蒸発ガス再液化装置 - Google Patents

凝縮混合装置及びこれを有する蒸発ガス再液化装置 Download PDF

Info

Publication number
WO2016194056A1
WO2016194056A1 PCT/JP2015/065597 JP2015065597W WO2016194056A1 WO 2016194056 A1 WO2016194056 A1 WO 2016194056A1 JP 2015065597 W JP2015065597 W JP 2015065597W WO 2016194056 A1 WO2016194056 A1 WO 2016194056A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
diameter
condensing
evaporative gas
stepped
Prior art date
Application number
PCT/JP2015/065597
Other languages
English (en)
French (fr)
Inventor
松本 繁則
林 謙年
以昌 山口
Original Assignee
Jfeエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeエンジニアリング株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to PCT/JP2015/065597 priority Critical patent/WO2016194056A1/ja
Publication of WO2016194056A1 publication Critical patent/WO2016194056A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0027Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium

Definitions

  • the present invention relates to a condensing and mixing apparatus for bringing vapor into contact with a low-temperature liquid, condensing and liquefying the vapor, and mixing it into a low-temperature liquid, and an evaporative gas reliquefaction apparatus having the same.
  • low temperature liquid such as liquefied natural gas (LNG)
  • LNG liquefied natural gas
  • a part of the low temperature liquid in the tank evaporates due to heat input to the tank from the outside, and evaporative gas is generated in the tank.
  • the low-temperature liquid is LNG
  • an evaporating gas mainly composed of methane is generated.
  • the generated evaporative gas can be compressed as it is and supplied to the demand side as city gas, but the compression power becomes very large. Therefore, in order to reduce such power, it can be considered that the evaporated gas is re-liquefied and pressurized in a liquid state and then gasified again to be supplied as city gas.
  • evaporative gas is compressed and cooled, and as a cooling method, evaporative gas is cooled by the cold heat of LNG discharged as a low temperature liquid from the tank, that is, compressed.
  • Patent Documents 1 and 2 disclose a method of cooling evaporative gas by exchanging heat with LNG.
  • Patent Document 1 discloses a method (indirect heat exchange method) in which compressed evaporative gas is cooled by heat exchange with LNG in a heat exchanger.
  • this indirect heat exchange method that requires a heat exchanger, a large heat exchanger is required to secure a sufficient heat transfer area for heat exchange, and there is a problem that the equipment becomes large and costs increase.
  • heat transfer is indirect through the heat transfer surface, improvement in heat transfer performance on this heat transfer surface is also required.
  • Patent Document 2 discloses a method (direct contact heat exchange method) in which compressed evaporative gas is blown into an LNG pipe and directly brought into contact with LNG to exchange heat, and evaporative gas is blown into LNG.
  • an injection method an apparatus is disclosed in which one evaporative gas supply nozzle is arranged in the LNG pipe so as to be in a direction orthogonal to the flow direction of the discharge LNG flowing in the LNG pipe or in a direction opposite to the flow direction of the LNG.
  • the evaporative gas supply nozzle is bent in an L shape in the LNG pipe, and the discharge port of the nozzle is located on the center line of the LNG pipe so that the evaporative gas is directed in the direction opposite to the flow of LNG. Is discharged.
  • the discharged evaporative gas is cooled by heat exchange with LNG, condensed, liquefied and mixed with LNG.
  • a condensing and mixing device that condenses and mixes steam by injecting steam into a low-temperature liquid flowing in a venturi-type flow tube and directly contacting it is patented. It is disclosed in documents 3 and 4.
  • steam holes for injecting steam from the radial direction are formed in the flow pipe, and the steam is a venturi of a low-temperature liquid flowing in the flow pipe. It is sucked into the flow tube from the vapor hole by the phenomenon. The vapor immediately after being sucked is present as bubbles in the cryogenic liquid, and then condensed and mixed with the cryogenic liquid.
  • Patent Document 3 a large number of small-diameter steam holes are formed in a plurality of positions in the circumferential direction and in the liquid flow direction in the enlarged diameter portion that is downstream of the throat portion of the venturi tube. Yes. Since the steam is dispersed from the plurality of steam holes and sucked into the enlarged diameter portion, the bubble diameter of the steam immediately after being sucked is small. As a result, the condensation of the steam is completed in a short time, and the water hammer action in the enlarged diameter portion is suppressed.
  • a section having a constant channel cross-sectional area is formed by forming a section with a constant diameter and extending downstream with a step immediately after the throat portion of the venturi tube and having a stepped diameter. Is provided at one position at the step where the flow path is rapidly expanded by the step.
  • Patent Document 5 discloses that vapor as evaporating gas is injected into water as low-temperature liquid flowing through a mixing chamber in a pipe, and the vapor is condensed and mixed with water. Discloses a condensing and mixing device that produces hot water. This condensing and mixing device is provided with a fixed swirl vane for imparting swirl to water in the mixing chamber, and the efficiency of mixing water and steam is improved by the fixed swirl vane.
  • the present invention increases the pressure of gaseous evaporative gas, and when this evaporative gas is brought into direct contact with a low temperature liquid such as LNG for reliquefaction, the evaporative gas is effectively condensed to a low temperature liquid. It is an object of the present invention to provide a condensing and mixing apparatus for mixing and an evaporative gas reliquefying apparatus having the apparatus and capable of effectively realizing reliquefaction.
  • a venturi-type flow tube that injects and condenses the vapor to mix with a cryogenic liquid, and a step portion formed at a plurality of positions in the axial direction of the diameter-expanded portion.
  • a step-shaped enlarged diameter portion having an inner peripheral surface extending toward the downstream side in the direction, and a radial direction and a downstream side of the flow tube for injecting steam from outside the flow tube to the low-temperature liquid flowing in the flow tube downstream And a vapor hole formed so as to have an injection opening on the inner diameter surface of the enlarged diameter portion at a plurality of positions in the axial direction of the flow tube.
  • the injection opening of the steam hole is provided at an upstream position within the region of each step-shaped enlarged diameter portion.
  • cryogenic liquid is allowed to flow toward the flow tube by being upstream of the flow tube and on the extension of the axis of the flow tube and connected to the reduced diameter portion.
  • a swirl flow forming portion may be provided, and the swirl flow forming portion may be formed so as to inject a liquid of the same type as the low temperature liquid in the flow tube from a tangential direction.
  • the swirl flow forming unit separates a part of the low-temperature liquid supplied to the reduced diameter portion of the flow tube at a position upstream of the swirl flow forming unit, with respect to the swirl flow forming unit.
  • the tangential injection can be performed.
  • the stepped portion has a radius difference between a preceding stepped diameter-enlarged portion adjacent to the stepped portion on the upstream side and a succeeding stepped diameter-expanded portion adjacent to the downstream side as described above.
  • the size is preferably 12 to 30% of the inner diameter of the expanded portion.
  • the stepped enlarged portion extends in the axial direction over a section length of 2.5 to 8 times the radius of the stepped enlarged portion.
  • ⁇ Evaporative gas reliquefaction device The above-mentioned condensing and mixing apparatus, an evaporative gas compressor that compresses evaporative gas, and a delivery pump that sends out the cryogenic liquid from the storage tank, and the cryogenic liquid is supplied from the upstream side to the flow pipe of the condensing and mixing apparatus by the delivery pump.
  • the evaporative gas generated from the low-temperature liquid stored in the storage tank is mixed with the low-temperature liquid discharged from the storage tank by injecting into the flow pipe from the vapor hole of the condensing and mixing device with the evaporative gas compressor.
  • An evaporative gas reliquefaction apparatus characterized in that it is condensed and reliquefied.
  • the vapor immediately after being sucked from the vapor hole cannot be condensed due to the small contact time and contact area with the low temperature liquid, and is present as bubbles in the liquid.
  • the turbulence of the low temperature liquid is increased by making the diameter-expanded portion stepped, so that the contact between the vapor and the low temperature liquid is promoted. While condensing and mixing.
  • the stepped portion is provided.
  • the space immediately after the sudden expansion at can be secured as a space large enough for vapor bubbles to mix with the cryogenic liquid, and sufficient contact time between the vapor and the cryogenic liquid can be secured in this space.
  • the vapor can be cooled and condensed with a cryogenic liquid and mixed. Further, the vapor is efficiently sucked by the venturi phenomenon efficiently without being affected by the flow of the low-temperature liquid in the flow tube in the space of the stepped enlarged diameter portion.
  • the swirl flow forming unit is provided in the previous stage to generate a swirl flow in the low temperature liquid before flowing into the flow tube, and the step flow tube in the subsequent flow tube
  • the stepped portion is formed by positioning the steam hole at an upstream position within the region of the stepped enlarged diameter portion, that is, immediately after the steam hole is suddenly enlarged at the stepped portion of the enlarged portion of the venturi pipe. The space immediately after the sudden expansion at can be secured as a sufficiently large space through which vapor bubbles are mixed in the low temperature liquid.
  • a plurality of step-shaped enlarged diameter portions are provided in the flow tube, and a vapor hole is formed in each step-shaped enlarged diameter portion. Therefore, a large number of vapor holes have a small diameter, in the circumferential direction and in the liquid flow direction. Since it can be arranged in a distributed manner, the bubble diameter of the vapor is reduced, the condensation of the vapor and the mixing with the cryogenic liquid are promoted, and the water hammer action is suppressed.
  • a plurality of stepped diameter enlarged portions are provided in the flow tube of the condensing and mixing apparatus to sequentially increase the diameter, and the injection opening of the steam hole is positioned upstream in the region of each stepped enlarged diameter portion. Therefore, the evaporative gas is effectively introduced into the cryogenic liquid, mixed in the cryogenic liquid in the space where the diameter has been expanded relative to the preceding stepped enlarged portion, so that the evaporating gas is effective in the cryogenic liquid. Therefore, it is possible to prevent the pump from being damaged due to the evaporating gas flowing into the pump as a gas.
  • the swirl flow forming section in the previous stage turns the cryogenic liquid into a swirling flow, and the cryogenic liquid flows into the flow tube section as a swirling flow to sufficiently mix the vapor and the cryogenic liquid both in the circumferential direction and in the radial direction. Therefore, the evaporative gas can be effectively reliquefied in the low-temperature liquid, and the evaporative gas can be prevented from flowing into the pump as a gas and causing a failure of the pump. Moreover, in the evaporative gas reliquefaction apparatus having the condensing and mixing apparatus having such a configuration, the reliquefaction of the evaporative gas can be completed efficiently in a short time, and as a result, the apparatus configuration can be made compact.
  • FIG. 1 is a schematic configuration diagram of an evaporative gas reliquefaction apparatus of the first embodiment of the present invention.
  • FIG. 2-1 is a sectional view of the condensing and mixing apparatus used in the apparatus of FIG.
  • FIG. 2-2 is an enlarged cross-sectional view of a part of FIG. 2-1.
  • FIG. 3A is a graph showing an experimental result regarding an efficiency improvement rate by providing a stepped diameter-enlarged portion in the apparatus shown in FIG. 2A and showing a step size ratio.
  • FIG. 3-2 is a graph showing an experimental result regarding the efficiency improvement rate by providing the stepped diameter-enlarged portion in the apparatus of FIG. 2-1, and is a diagram showing the efficiency improvement rate with respect to the section length dimension ratio.
  • FIG. 3A is a graph showing an experimental result regarding an efficiency improvement rate by providing a stepped diameter-enlarged portion in the apparatus shown in FIG. 2A and showing a step size ratio.
  • FIG. 3-2 is a graph showing an experimental result regarding the efficiency improvement rate by providing the
  • FIG. 4A is a cross-sectional view of the condensing and mixing apparatus used in the evaporative gas reliquefaction apparatus in the second embodiment, and is an overall view of the apparatus.
  • FIG. 4B is a sectional view taken along line BB in FIG. 4-1.
  • FIG. 5 is a schematic configuration diagram showing a configuration for controlling the flow rate of the cryogenic liquid in the third embodiment.
  • FIG. 6 is a diagram showing the relationship between the minimum value of the degree of supercooling of the mixed cryogenic liquid and the side flow rate ratio (swirl strength).
  • FIG. 1 is a schematic configuration diagram of an evaporative gas reliquefaction apparatus including a condensing and mixing apparatus as an embodiment of the present invention.
  • reference numeral 1 denotes an evaporative gas reliquefaction device of the present embodiment, which has a condensing and mixing device 2 having a structure shown in detail in FIGS. 2-1 and 2-2 later.
  • the inlet side (the left side in the figure) is connected to a feed pump 3 for sending the cryogenic liquid 11 to the condensing and mixing device 2 and an evaporating gas compressor 4 for injecting the evaporating gas 12.
  • the cryogenic liquid 11 is, for example, a part of liquefied natural gas (LNG) stored in a tank (not shown), and the evaporative gas 12 is, for example, a part of liquefied natural gas in the tank. Is a boil-off gas (BOG) generated by evaporation.
  • LNG liquefied natural gas
  • BOG boil-off gas
  • the cryogenic liquid 11 is sent out by the delivery pump 3 and flows into the condensing and mixing device 2.
  • the evaporative gas 12 compressed by the evaporative gas compressor 4 is injected into the low-temperature liquid 11 flowing in the condensing and mixing apparatus 2.
  • a booster pump 5 is connected to the outlet side of the condensing and mixing device 2 and condenses and mixes evaporative gas 12 condensed after being injected into the low temperature liquid 11 and mixed with the low temperature liquid 11 in a liquefied state.
  • the mixed cryogenic liquid 11A discharged from the apparatus 2 is pressurized. For example, if the low-temperature liquid is liquefied natural gas, the mixed low-temperature liquid 11A whose pressure has been increased is brought to the vaporizer, gasified again, and then sent to the demand side as city gas.
  • the condensing and mixing apparatus 2 includes a venturi-type flow tube 7 housed in a horizontal cylindrical casing 6, and between the casing 6 and the flow tube 7. Further, an insertion material 8 made of a woven or knitted fabric of fine fibrous metal wires such as stainless steel is inserted.
  • the casing 6 has an inlet portion 6A on the upstream side in the flow direction of the cryogenic liquid 11, an outlet portion 6B on the downstream side, and a flow tube housing portion 6C in which the flow tube 7 is housed and disposed at an intermediate position therebetween.
  • the inlet portion 6A and the outlet portion 6B have the same inner diameter, and the inner diameter is increased in the flow tube housing portion 6C.
  • the axis X that is the center of the inlet portion 6A, the outlet portion 6B, and the flow tube accommodating portion 6C is located on the same straight line.
  • the flow tube accommodating portion 6C has an inner diameter larger than the outer diameter of the flow tube 7, forms a space around the flow tube 7, is dispersed in this space, and the insert 8 is inserted therein. Yes.
  • an evaporative gas injection part 6D that opens upward is formed at the upper upstream side position of the flow tube accommodating part 6C, and the evaporative gas 12 pumped from the evaporative gas compressor 4 is injected into the evaporative gas. Part 6D accepts it.
  • the venturi-type flow tube 7 has mounting flanges 9A and 9B projecting radially outward on both sides in the direction of the axis X, and the mounting flanges 9A and 9B are provided in the flow tube housing portion 6C of the casing 6.
  • the flow tube 7, the inlet 6A of the casing 6 and the axis X of the outlet 6B are attached so that they are aligned and located on one straight line.
  • the inside of the flow tube 7 has a reduced diameter portion 7A positioned on the inlet 6A side of the casing 6, a throat portion 7B positioned immediately after the reduced diameter portion 7A, and an expansion extending from the throat portion 7B toward the outlet portion 6B.
  • the diameter portion 7C is sequentially formed.
  • the diameter-reduced portion 7A has a curved surface and the inner diameter is relatively abruptly reduced to narrow the cross-sectional area of the flow path, and the diameter-expanded portion 7C is expanded so as to recover the inner diameter over a long distance in the axis X direction.
  • the throat portion 7B connects the reduced-diameter portion 7A and the enlarged-diameter portion 7C with a smooth curved surface so as to have a low resistance to the flow of the cryogenic liquid 11, and has a minimum diameter so as to have a minimum flow path cross-sectional area. Is formed.
  • the reduced diameter portion 7A and the throat portion 7B may be formed other than a curved surface, for example, may be formed in a shape in which truncated cones having different inclination angles with respect to the rotation axis are combined. That is, the reduced diameter portion 7A and the throat portion 7B may be formed in a shape in which straight lines are combined when viewed in the cross section shown in FIG.
  • the diameter-expanded portion 7C is divided into a range from the position immediately after the throat portion 7B to the position of the right flange portion 9B in the direction of the axis X, and a plurality of step-shaped diameter-expanded portions 7C-1, 7C-2, ..., 7C-N.
  • Each of the stepped enlarged portions 7C-1, 7C-2,..., 7C-N has a cylindrical inner peripheral surface, and the inner diameter is uniform without changing in the same stepped enlarged portion.
  • FIG. 2-2 shows the stepped enlarged portions 7C-1, 7C as a part of the plurality of stepped enlarged portions 7C-1, 7C-2,..., 7C-N of the enlarged portion 7C. -2 and 7C-3 are enlarged.
  • the step-shaped enlarged diameter portion 7C-2 located in the middle in the axial direction has a step portion 10B- with respect to the radius R of the adjacent step-shaped enlarged diameter portion 7C-1 on the upstream side.
  • a cylindrical inner surface having a section length L extending in the axial direction is formed with a radius of R + ⁇ R expanded by a step size of ⁇ R so as to form 2.
  • the stepped enlarged portion 7C-3 adjacent on the downstream side is similarly expanded in diameter than the stepped enlarged portion 7C-2 and extends by the section length L.
  • the section length L of the stepped enlarged portions 7C-1, 7C-2,..., 7CN is the stepped enlarged portion other than the stepped enlarged portion 7C-N on the most downstream side.
  • the section length L may be lengthened as the downstream diameter increases.
  • the radius of the stepped diameter-enlarged portion has a constant dimension in the axial direction and forms the inner surface of the cylinder. Good. By doing so, the space volume of the step-shaped enlarged diameter portion is further increased, and the space for introducing and condensing the evaporative gas into the low-temperature liquid can be further increased, so that the evaporative gas can be condensed more reliably. Mixing can be performed.
  • an injection opening 10A-2 of the steam hole 10-2 is located at an upstream position in the region.
  • the upstream edge of the injection opening 10A-2 is formed so as to be at the position of the stepped portion 10B-2.
  • the steam hole 10-2 is formed so as to penetrate the tube wall of the flow tube 7 in the radial direction, and is inclined inward in the radial direction toward the inside in the radius.
  • the other steam holes 10-1, 10-3,..., 10-N are upstream of the corresponding step-shaped enlarged diameter portions 7C-1, 7C-3,.
  • the injection openings 10A-1, 10A-3, 10A-N are provided on the side.
  • the steam holes 10-1, 10-2,..., 10-N are positioned immediately after sudden expansion at the stepped portions 10B-1, 10B-2,.
  • the space over the section length L immediately after the sudden expansion at the stepped portions 10B-1, 10B-2,... Can be secured as a sufficiently large space through which bubbles of the evaporating gas are mixed in the low temperature liquid.
  • a sufficient contact time between the evaporative gas and the low-temperature liquid can be ensured in the space, and the evaporative gas can be cooled, condensed, and mixed with the low-temperature liquid. Further, the evaporative gas is efficiently sucked by the venturi phenomenon efficiently without being affected by the flow of the low-temperature liquid in the flow tube within the space of the stepped diameter-expanded portion.
  • the form of the stepped enlarged portion having the stepped portion described above is effective for condensing and mixing the evaporative gas in the low-temperature liquid, but this effect can be achieved by appropriately setting the size of the stepped enlarged portion. Can be played more reliably. For example, if the dimension ⁇ R of the stepped portions 10B-1, 10B-2,... For rapidly expanding the inner diameter of the venturi-type flow tube 7 is too large, the turbulence of the low temperature liquid may cause the vapor holes 10-1, 10-2,. , And the suction of evaporative gas around the vapor holes 10-1, 10-2,... Is hindered. As a result, the efficiency of sucking the vapor due to the venturi phenomenon of the low temperature liquid decreases. Accordingly, it is necessary to optimally set the step size for rapidly expanding the inner diameter of the venturi expanded portion.
  • Figure 3-1 shows the results of examining the efficiency of suction by the step size and the venturi phenomenon based on the experiment.
  • the step size ratio is expressed as a ratio (%) of the step size to the immediately preceding radius, that is, a ratio (%) of the step size to the radius of the step-shaped enlarged diameter portion located on the upstream side of the step portion.
  • the efficiency improvement rate is the ratio at which the flow rate of the evaporative gas sucked by the low temperature liquid venturi phenomenon increases compared to when no step is provided, assuming that the power required to flow the low temperature liquid to the venturi pipe is the same. It is expressed as an efficiency improvement rate (%).
  • the efficiency improvement rate is increased by setting the step size in the range of 5 to 40% of the immediately preceding radius compared to when no step is provided. It can be seen that the efficiency improvement rate is 70% or more and the suction efficiency is high when the content is within the range of 12 to 30%.
  • the section length (the length of one section which is the length in the axial direction) of the stepped diameter enlarged portion in which the inner diameter of the venturi expanded portion is rapidly expanded is an appropriate range.
  • the length of one section is short, the transition to the next step-shaped enlarged diameter portion occurs while mixing of the evaporating gas and the cryogenic liquid is insufficient, so that the temperature of only the cryogenic liquid near the vapor hole rises.
  • the evaporative gas is difficult to condense.
  • a part of a cryogenic liquid (for example, LNG) 11 in a tank (not shown) is sent out by the delivery pump 3 and introduced into the condensing and mixing device 2.
  • the evaporative gas generated in the tank is increased by the evaporative gas compressor 4 to a pressure (“intermediate pressure”) between the atmospheric pressure and the city gas operating pressure (4 to 7 MPa), and then the condensing and mixing device 2 To be introduced.
  • the low-temperature liquid 11 flows into the flow pipe 7 via the inlet 6A provided in the casing 6 of the condensing and mixing device 2, flows through the reduced diameter portion 7A, the throat portion 7B, and the enlarged diameter portion 7C, and exits from the casing 6. Reach 6B.
  • the cryogenic liquid 11 flowing in the flow tube 7 increases the flow velocity at the reduced diameter portion 7A, reaches the maximum flow velocity at the throat portion 7B, and then gradually decreases the flow velocity at the expanded diameter portion 7C, but the right end at the expanded diameter portion 7C. Since the maximum inner diameter is smaller than the inner diameter of the inlet portion 6A, the flow velocity at the enlarged diameter portion 7C is higher than the flow velocity at the time of inflow of the inlet portion 6A. For -2, ..., a suction force is provided.
  • the evaporative gas 12 is pressurized by the evaporative gas compressor 4 and injected into the casing 6 through the evaporative gas injection part 6D provided in the casing 6 of the condensing and mixing apparatus 2.
  • An insertion material 8 is inserted into the outer periphery of the flow tube 7 in the flow tube accommodating portion 6C of the casing 6 that accommodates the flow tube 7, and the evaporative gas injection portion is pumped by the evaporative gas compressor 4.
  • the evaporative gas 12 injected from 6D is buffered by the insert 8 and diffuses over the entire circumference and the entire length of the flow tube 7 in the flow tube housing 6C.
  • the low temperature liquid 11 flowing through the enlarged diameter portion 7C of the flow tube 7 brings a suction force to the vapor holes 10-1, 10-2,...
  • the evaporative gas 12 diffusing into the gas is sucked and introduced into the enlarged diameter portion 7C from the respective vapor holes 10-1, 10-2,.
  • the evaporative gas 12 is sucked from the vapor hole 10-2, and passes through the injection opening 10A-2 to be stepped diameter-expanded portion 7C-2. Flows in.
  • the injection opening 10A-2 is located on the upstream side in the region of the stepped enlarged diameter portion 7C-2, and the vapor hole 10-2 is inclined upstream in the radial inward direction. Are joined under low resistance without countering the flow of the cryogenic liquid 11 in the flow tube 7.
  • the step-shaped enlarged diameter portion 7C-2 has a diameter that is abruptly increased by ⁇ R at the step portion 10B-2 than the previous step-shaped enlarged diameter portion 7C-1 located on the upstream side.
  • a space over the section length L is formed on the downstream side of the part 10B-2, and this space can be secured as a sufficiently large space that is mixed in the cryogenic liquid 11 and through which bubbles of the evaporated gas 12 flow.
  • a sufficient contact time between the evaporative gas 12 and the cryogenic liquid 11 can be secured in the space, and the evaporative gas 12 can be easily mixed into the cryogenic liquid 11, and the evaporative gas 12 is cooled and condensed by the cryogenic liquid 11 and mixed. Can be made.
  • the evaporation gas 12 is condensed and reliably liquefied, and flows downstream as a part of the low temperature liquid 11.
  • the merging due to the inflow of evaporating gas from the vapor holes and mixing into the low-temperature liquid is performed in the same manner in the stepped enlarged portion other than the stepped enlarged portion 7C-2.
  • the mixed cryogenic liquid 11A containing the re-liquefied evaporative gas is boosted by the booster pump 5 and brought to the vaporizer, then vaporized by the vaporizer and sent to the demand side as city gas.
  • the evaporating gas injection part 6D is opened at the upper upstream side position of the flow tube housing part 6C, but the position of the evaporating gas injection part 6D is limited to this. Instead, the opening may be formed at a position upstream of the side portion of the flow tube accommodating portion 6C.
  • the condensing and mixing apparatus 2 is arranged in the horizontal direction, but it may be arranged in the vertical direction. Since the condensing and mixing device 2 is arranged in the vertical direction, the cryogenic liquid 11 is circulated downward in the vertical direction, and the evaporative gas 12 flows in from the horizontal direction. The condensation and mixing of the evaporative gas 12 is performed more stably.
  • FIG. 4A is a cross-sectional view of the condensing and mixing apparatus used in the evaporative gas reliquefaction apparatus in the second embodiment, and is an overall view of the apparatus.
  • the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the condensing and mixing apparatus 2 shown in FIG. 4A is substantially the same apparatus as the condensing and mixing apparatus 2 of the first embodiment shown in FIG. 2A, and the same reference numerals as those in the first embodiment are given to the respective parts. Yes.
  • the condensing and mixing apparatus 2 includes a swirl flow forming portion 2A arranged at a position for receiving the cryogenic liquid 11 delivered from the delivery pump 3, and subsequently And a mixed flow pipe portion 2B located on the downstream side thereof.
  • the swirl flow forming portion 2A and the mixed flow tube portion 2B are located on one axis X and are formed as one device.
  • the swirling flow forming portion 2A is a straight pipe having an inner diameter equal to the inner diameter on the inlet side of a venturi-type mixed flow pipe portion 2B described later, and at least at one place in the circumferential direction.
  • a tangential inlet 2A-1 for injecting a cryogenic liquid in the tangential direction is provided (see also FIG. 4-2).
  • the tangential inlet 2A-1 is connected to a branch pipe 2A-2 provided upstream of the tangential inlet 2A-1, and is sent out by the delivery pump 3 and swirled.
  • a part of the cryogenic liquid 11 flowing into the forming section 2A is extracted by the branch pipe 2A-2 and then injected into the swirling flow forming section 2A through the tangential inlet 2A-1, and the tangential direction generated by the injection
  • the low-temperature liquid in the swirl flow forming portion 2A is swirled flow S.
  • the cryogenic liquid flowing in the branch pipe 2A-2 can be injected into the tangential inlet 2A-1 with the flow momentum originally provided by the delivery pump 3, but to obtain the momentum more reliably.
  • the branch pipe 2A-2 is preferably provided with a pump.
  • the cryogenic liquid extracted by the branch pipe 2A-2 is injected into the tangential inlet 2A-1, but the present invention is not limited to this, and the same kind of liquid as the cryogenic liquid is injected. It is good as well.
  • the liquid to be injected is sufficient if it is completely the same as the low-temperature liquid flowing through the swirl flow forming portion 2A after the injection, and it is a liquid supplied from another supply source regardless of the branch pipe 2A-2. There may be.
  • the mixed flow pipe portion 2B connected to the swirl flow forming portion 2A on the wake side has a venturi-type flow tube 7 housed in a horizontal cylindrical casing 6, and the casing 6 and the flow Between the pipes 7, an insert 8 made of a woven or knitted fiber metal fine wire such as stainless steel is inserted.
  • a part of a cryogenic liquid (for example, LNG) 11 in a tank (not shown) is sent out by the delivery pump 3 and introduced into the condensing and mixing device 2.
  • the evaporative gas generated in the tank is increased to a pressure (intermediate pressure) between the atmospheric pressure and the city gas operating pressure (4 to 7 MPa) by the evaporative gas compressor 4 and then introduced into the condensing and mixing device 2. Is done.
  • the low-temperature liquid 11 introduced into the condensing and mixing apparatus 2 directly flows into the swirl flow forming portion 2A, and a part thereof is injected from the tangential inlet 2A-1 via the branch pipe 2A-2.
  • the cryogenic liquid 11 that has flowed directly into the swirling flow forming portion 2A flows in the direction of the axis X, and the cryogenic liquid injected from the tangential inlet 2A-1 flows in the circumferential direction, and flows through the swirling flow forming portion 2A. Forms a swirl flow S.
  • the cryogenic liquid 11 that has turned into a swirl flow in the swirl flow forming portion 2A flows into the flow tube 7 via an inlet portion 6A provided in the casing 6 of the condensing and mixing device 2 containing the mixed flow tube portion 2B. It flows through the reduced diameter portion 7A, the throat portion 7B, and the expanded diameter portion 7C, and reaches the outlet portion 6B of the casing 6.
  • the cryogenic liquid 11 flowing in the flow tube 7 increases the flow velocity at the reduced diameter portion 7A, reaches the maximum flow velocity at the throat portion 7B, and then gradually decreases the flow velocity at the expanded diameter portion 7C, but the right end at the expanded diameter portion 7C.
  • the flow velocity at the enlarged diameter portion 7C is higher than the flow velocity at the time of inflow of the inlet portion 6A.
  • a suction force is provided.
  • the evaporative gas 12 is pressurized by the evaporative gas compressor 4 and injected into the casing 6 through the evaporative gas injection part 6D provided in the casing 6 of the condensing and mixing apparatus 2.
  • An insertion material 8 is inserted into the outer periphery of the flow tube 7 in the flow tube accommodating portion 6C of the casing 6 that accommodates the flow tube 7, and the evaporative gas injection portion is pumped by the evaporative gas compressor 4.
  • the evaporative gas 12 injected from 6D is buffered by the insert 8 and diffuses over the entire circumference and the entire length of the flow tube 7 in the flow tube housing 6C.
  • the low temperature liquid 11 flowing through the enlarged diameter portion 7C of the flow tube 7 brings a suction force to the vapor holes 10-1, 10-2,...
  • the evaporative gas 12 diffusing into the gas is sucked and introduced into the enlarged diameter portion 7C from the respective vapor holes 10-1, 10-2,.
  • the evaporative gas 12 is sucked from the vapor hole 10-2, and passes through the injection opening 10A-2 to be stepped diameter-expanded portion 7C-2. Flows in.
  • the injection opening 10A-2 is located on the upstream side in the region of the stepped enlarged diameter portion 7C-2, and the vapor hole 10-2 is inclined upstream in the radial inward direction.
  • the evaporative gas 12 is sufficiently mixed with the cryogenic liquid 11 both in the circumferential direction and in the radial direction.
  • the step-shaped enlarged diameter portion 7C-2 has a diameter that is abruptly increased by ⁇ R at the step portion 10B-2 than the previous step-shaped enlarged diameter portion 7C-1 located on the upstream side.
  • a space over the section length L is formed on the downstream side of the part 10B-2, and this space can be secured as a sufficiently large space that is mixed in the cryogenic liquid 11 and through which bubbles of the evaporated gas 12 flow.
  • a sufficient contact time between the evaporative gas 12 and the cryogenic liquid 11 can be secured in the space, and the evaporative gas 12 can be easily mixed into the cryogenic liquid 11, and the evaporative gas 12 is cooled and condensed by the cryogenic liquid 11 and mixed. Can be made.
  • the evaporation gas 12 is condensed and reliably liquefied, and flows downstream as a part of the low temperature liquid 11.
  • the merging due to the inflow of evaporating gas from the vapor holes and mixing into the low-temperature liquid is performed in the same manner in the stepped enlarged portion other than the stepped enlarged portion 7C-2.
  • the mixed cryogenic liquid 11A containing the re-liquefied evaporative gas is boosted by the booster pump 5 and brought to the vaporizer, then vaporized by the vaporizer and sent to the demand side as city gas.
  • FIG. 5 is a schematic diagram showing a configuration for controlling the flow rate of the cryogenic liquid in the third embodiment.
  • 2nd embodiment attaches
  • the condensing and mixing apparatus 2 shown in FIG. 5 is the same apparatus as the condensing and mixing apparatus 2 of the second embodiment shown in FIG. 4-1, and the same reference numerals as those of the second embodiment are given to the respective parts.
  • a main flow pipe 25 that circulates the low-temperature liquid 11 that flows from the upstream side toward the downstream side as a main flow is connected to the upstream end portion of the swirl flow forming portion 2 ⁇ / b> A.
  • a subflow pipe 26 that branches from the main flow pipe 25 and distributes the low temperature liquid 11 as a subflow is connected to the tangential inlet 2A-1 of the swirl flow forming portion 2A.
  • a part of the low-temperature liquid (for example, LNG) 11 in the tank (not shown) is sent out by the delivery pump 3 and circulates in the main flow pipe 25 as the main flow to the swirl flow forming unit 2A.
  • a part of the mainstream cryogenic liquid flowing through the main flow pipe 25 flows as a subflow through the subflow pipe 26 and is injected in the tangential direction from the tangential inlet 2A-1 of the swirl flow forming portion 2A.
  • the swirling flow forming portion 2A receives the low-temperature liquid of the main flow and the subflow, and generates a swirling flow S with respect to the main flow by the subflow flowing in the circumferential direction in the swirling flow forming portion 2A.
  • the condensing and mixing apparatus 2 further includes a main flow meter 27 and a main flow adjusting valve 28 provided in the main flow tube 25, a sub flow meter 13 and a sub flow adjusting valve 14 provided in the sub flow tube 26, and a mixed liquid tube.
  • 10 stores a mixed liquid pressure gauge 15 and a mixed liquid thermometer 16, a control unit 17 for controlling the flow rates of the main flow and the substream, and data referred to in the control by the control unit 17.
  • the mainstream flow meter 27 and the mainstream adjustment valve 28 are provided in the mainstream pipe 25, respectively.
  • the mainstream flow meter 27 measures the flow rate of the mainstream cryogenic liquid 11 flowing in the mainstream pipe 25 and flowing into the swirl flow forming unit 2A.
  • the main flow regulating valve 28 can adjust the main flow rate by adjusting the opening degree under the control of the control means 17 described later.
  • the secondary flow meter 13 and the secondary flow adjustment valve 14 are provided in the secondary flow pipe 26, respectively.
  • the side flow meter 13 measures the flow rate of the low temperature liquid 11 in the side flow that flows through the side flow pipe 26 and is injected into the swirl flow forming unit 2A.
  • the subflow adjusting valve 14 can adjust the flow rate of the subflow by adjusting the opening degree under the control of the control means 17 described later.
  • the mixed liquid pressure gauge 15 and the mixed liquid thermometer 16 are provided in the mixed liquid pipe 10, respectively, and the pressure of the mixed low-temperature liquid flowing out from the outlet portion 6B and flowing in the mixed liquid pipe 10 and Each temperature is measured.
  • the storage means 18 uses the data of the correspondence between the pressure of the mixed cryogenic liquid and the saturation temperature at that pressure as the first correspondence A, and the allowable minimum value of the subcooling degree of the mixed cryogenic liquid and the side flow rate ratio. Data on the correspondence with (turning strength) is stored in advance as the second correspondence B (see FIG. 6).
  • the data of the first correspondence relationship A and the second correspondence relationship B is referred to by the control means 17 when controlling the flow rate of the secondary flow, as will be described later.
  • the “minimum value of the degree of supercooling” is the smallest value of the degree of supercooling that prevents vapor from being present in the mixed low-temperature liquid.
  • the degree of supercooling is calculated by the supercooling degree calculating means 22 as the difference between the derived value of the saturation temperature and the measured value of the temperature of the mixed cryogenic liquid.
  • the “substream flow rate ratio” is the ratio of the substream flow rate to the sum of the mainstream flow rate and the substream flow rate. It is calculated by dividing the measured value of the flow rate of the secondary flow by the sum of the measured value of the flow rate. Further, it is desirable that the storage means 18 stores the first correspondence relationship A as, for example, a relational expression between the pressure of the mixed cryogenic liquid and the saturation temperature, a relationship diagram, or a form of a vapor table.
  • FIG. 6 is a diagram showing the relationship between the minimum value of the degree of supercooling of the mixed cryogenic liquid and the secondary flow rate ratio (swirl strength), that is, the second correspondence relationship B.
  • the minimum value of the degree of supercooling of the mixed cryogenic liquid becomes smaller when the side flow rate ratio is 0, that is, when there is swirling, and the subcooling of the mixed cryogenic liquid is reduced.
  • the minimum value of the degree of flow and the secondary flow rate ratio (swirl strength) have a relation that the minimum value of the degree of supercooling decreases as the secondary flow rate ratio increases.
  • the control means 17 includes a supercooling degree calculating means 22 that calculates the degree of supercooling of the mixed cryogenic liquid, a subflow flow rate ratio calculating means 23 that calculates a subflow flow rate ratio, and a main flow regulating valve. 28 and a flow rate adjusting means 24 for adjusting the respective opening degrees of the auxiliary flow adjusting valve 14.
  • the supercooling degree calculation means 22 refers to the first correspondence A stored in the storage means 18 and derives the saturation temperature corresponding to the measured value of the pressure of the mixed cryogenic liquid, and then derives the saturation temperature derived value. And the difference between the measured value of the temperature of the mixed cryogenic liquid and the degree of supercooling of the mixed cryogenic liquid.
  • the secondary flow rate ratio calculating means 23 calculates the secondary flow rate ratio by dividing the measured value of the secondary flow by the sum of the measured value of the primary flow and the measured value of the secondary flow.
  • the flow rate adjusting unit 24 compares the calculated value of the degree of supercooling with the minimum value of the degree of supercooling in the second correspondence relationship B (see FIG. 6) stored in the storage unit 18. When the calculated value is equal to or less than the minimum value, the second correspondence relationship B is referred to, and a subflow rate ratio in which the calculated value of the degree of supercooling is larger than the minimum value is derived as a target value.
  • the flow rate of the secondary flow is increased by increasing the opening of the secondary flow adjustment valve 14 so that the calculated value of the secondary flow rate ratio follows the target value.
  • the supercooling degree calculation means 22 of the control means 17 refers to the first correspondence relationship A stored in the storage means 18 and corresponds to the measured value of the pressure of the mixed cryogenic liquid measured by the mixed liquid pressure gauge 15. The saturation temperature is calculated, and then the difference between the calculated saturation temperature and the measured value of the mixed cryogenic liquid temperature measured by the mixed liquid thermometer 16 is calculated as the degree of supercooling. Further, the side flow rate ratio calculating means 23 is the sum of the measurement value of the main flow rate measured by the main flow meter 27 and the measurement value of the sub flow rate measured by the sub flow meter 13. The measured value of the flow rate is divided to calculate the side flow rate ratio (turning strength).
  • the flow rate adjusting unit 24 compares the calculated value of the degree of supercooling calculated by the degree of supercooling calculating unit 22 with the minimum value of the degree of supercooling in the second correspondence relationship B stored in the storage unit 18. As a result of this comparison, when the calculated value of the degree of supercooling is larger than the minimum value, it can be said that the evaporated gas is mixed in the low temperature liquid without being present as bubbles in the low temperature liquid. Therefore, the flow rate adjusting means 24 does not perform control for opening the subflow adjusting valve 14. That is, since the subflow is not injected into the swirl flow forming portion 2A, the state where the swirl flow S is not formed with respect to the main flow is maintained.
  • the flow rate adjusting means 24 refers to the second correspondence B, derives the subflow flow rate ratio so that the calculated value of the degree of supercooling is larger than the minimum value, and sets the subflow flow rate ratio as a target value.
  • the opening degree of the secondary flow regulating valve 14 is adjusted so that the calculated value of the secondary flow rate ratio calculated by the calculation means 23 follows the target value.
  • the low-temperature liquid of the side flow adjusted to an appropriate flow rate is injected tangentially into the swirl flow forming portion 2A, and forms the swirl flow with respect to the main flow, thereby reducing the minimum value. Accordingly, the evaporated gas can be reliably condensed and mixed with the low temperature liquid without remaining in the low temperature liquid.
  • the flow rate of the mixed cryogenic liquid from the state in which the swirling flow S is not formed (the swirling strength is 0%) and the supercooling degree of the mixed cryogenic liquid is operating at 5 ° C.
  • the temperature of the mixed cryogenic liquid is increased without changing the above.
  • the supercooling degree of the mixed cryogenic liquid is the minimum value (5 ° C.). Therefore, if it remains as it is, bubbles of evaporative gas remain in the mixed low-temperature liquid, and the flow rate of evaporative gas cannot be increased.
  • the minimum value of the degree of supercooling is reduced by mixing the low-temperature liquid in the tangential direction by injecting the low-temperature liquid in the secondary flow into the swirl flow forming portion 2A with the side flow regulating valve 14 open, thereby reducing the minimum value of the supercooling degree. Increase the temperature.
  • the main flow regulating valve 28 is slightly throttled at the same time, the flow rate of the secondary flow can be easily increased.
  • the side flow rate ratio (swirl strength) is about 30%.
  • the condensation mixing performance of the evaporative gas is enhanced, so that the bubbles of the evaporative gas do not remain in the mixed low temperature liquid.
  • the application of such swirling causes an increase in the pressure loss of the fluid in the condensing and mixing apparatus 2 and increases the power of the pump to be supplied. Therefore, the swirling is performed only when the degree of supercooling of the mixed cryogenic liquid is reduced. It is desirable. In this way, by providing swirl only when necessary, it is possible to suppress an increase in pressure loss to a minimum as compared with the case where a device such as a fixed swirl blade is provided, and unnecessarily reduce energy consumption. An increase can be prevented.
  • Rotation imparting control as described above is performed when the amount of evaporating gas to be condensed and mixed with the low temperature liquid is increased as described above.
  • this swirl control is performed by increasing the temperature of the obtained mixed low temperature liquid, for example, when water as evaporative gas is mixed with water as low temperature liquid to generate hot water as mixed low temperature liquid. This is also effective when desired.
  • the evaporative gas is effectively mixed into the low-temperature liquid.
  • the liquid can be reliquefied, and it is possible to prevent the evaporative gas from flowing into the pump as a gas and causing a failure of the pump.
  • the pressure loss of the condensing and mixing device can be minimized, and the reliquefaction of the evaporative gas can be efficiently performed in a short time.
  • the apparatus configuration can be made compact.
  • control means 17 controls both the main flow adjustment valve 28 and the sub flow adjustment valve 14, but instead, only the main flow adjustment valve 28 or the sub flow adjustment valve 14 is used. Only the control may be performed. In this case, of the main flow adjustment valve 28 and the sub flow adjustment valve 14, the adjustment valve that is not the control target has a constant opening.
  • the calculated value of the degree of supercooling is compared with the minimum value of the degree of supercooling in the second correspondence B, and the side flow rate ratio is set such that the calculated value of the degree of supercooling is larger than the minimum value.
  • the flow rate of the secondary flow is adjusted as the target value, but the target system is required to set the secondary flow rate ratio that is larger than the value obtained by adding a constant value to the minimum value of the degree of subcooling. The safety factor may be reflected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

蒸発ガスを効果的に再液化するために、上流側から下流側へ向け漸次内径を小さくする縮径部7Aに引き続き最小径をなす喉部7Bを経て該喉部7Bから漸次内径を大きくする拡径部7Cが形成され、下流に向け流れる低温液体へ蒸気を注入して該蒸気を凝縮して低温液体に混合するベンチュリ管型の流管7と、拡径部7Cの軸線方向における複数位置に形成される段部10B-1,10B-2,…を有し、該段部で順次拡径され軸線方向で下流側に向け延びる内周面をもつ段状拡径部7C-1,7C-2,…と、流管7内を下流に向け流れる低温液体に対して流管7外から蒸気を注入するために該流管7の半径方向かつ下流側方向に向き、流管7の軸線方向の複数位置で拡径部7Cの内径面に注入開口10A-1,10A-2,…を有するように形成される蒸気孔10-1,10-2,…と、を備える。

Description

凝縮混合装置及びこれを有する蒸発ガス再液化装置
 本発明は、蒸気と低温液体を接触させ蒸気を凝縮し液化して低温液体に混合する凝縮混合装置及びこれを有する蒸発ガス再液化装置に関する。
 液化天然ガス(LNG)をはじめとする低温液体をタンクで貯蔵する場合、外部からのタンクへの入熱によりタンク内の低温液体の一部が蒸発し、タンク内には蒸発ガスが発生する。低温液体がLNGの場合には、メタンを主成分とする蒸発ガスが発生する。
 発生した蒸発ガスは、そのまま圧縮して都市ガスとして需要側へ供給することも可能であるが、圧縮動力が非常に大きくなる。そこで、かかる動力を削減するために、蒸発ガスを再液化して液の状態で昇圧した後に再びガス化して都市ガスとして供給することが考えられる。再液化するには、蒸発ガスを圧縮し、そして冷却する工程を経ることになるが、その冷却方法として、タンクからの低温液体としての払出LNGの冷熱で蒸発ガスを冷却する、つまり圧縮された蒸発ガスをLNGとの間で熱交換して冷却する方法が、特許文献1,2に開示されている。
 特許文献1では、圧縮された蒸発ガスを熱交換器でLNGと熱交換して冷却する方式(間接熱交換方式)が開示されている。しかし、熱交換器を要するこの間接熱交換方式では、熱交換のための十分な伝熱面積を確保するために大型の熱交換器が必要となり、設備が大型になりコストが嵩むという問題がある。さらには、伝熱が伝熱面を介しての間接であるため、この伝熱面での伝熱性能の改善も求められる。
 これに対し、特許文献2では、圧縮された蒸発ガスをLNG配管内に吹き込みLNGと直接に接触させて熱交換する方式(直接接触熱交換方式)が開示され、蒸発ガスのLNG中への吹込み方法として、LNG配管内を流れる払出しLNGの流れ方向と直交する方向もしくはLNGの流れ方向に逆らう方向になるように一つの蒸発ガス供給ノズルをLNG配管内に配置する装置が開示されている。該蒸発ガス供給ノズルは、LNG配管内でL字状に屈曲されていて、LNG配管の中心線上に該ノズルの吐出口が位置していて蒸発ガスがLNGの流れと逆方向に向けてLNG中へ吐出されている。吐出された蒸発ガスは、LNGとの熱交換により冷却され、凝縮して液化しLNGと混合される。
 このような特許文献2の直接接触熱交換方式は、伝熱面を介さずに熱交換するためLNGと蒸発ガスの両者が接する界面での伝熱性能は向上する。しかし、直接接触熱交換方式では、気体である蒸発ガスと低温液体であるLNGの密度の違いから、蒸発ガスと低温液体の接触、混合が十分に行われないことに起因して液化効率が悪くなりやすい。その改善のために、気体の蒸発ガスと低温液体のLNGとを混合し蒸発ガスを凝縮させ混合する効率的な装置が要望されているが、特許文献2の方法であっても、気体の蒸発ガスと液体のLNGの接触、混合を十分に確保でき、所望の液化性能を確保できるとは言い難い。
 一方、直接接触熱交換方式には、特許文献2の形式以外のものとして、ベンチュリ管型の流管内を流れる低温液体に蒸気を注入して直接接触させ蒸気を凝縮し混合する凝縮混合装置が特許文献3,4に開示されている。この特許文献3,4に開示されている形式の装置にあっては、流管に対して半径方向から蒸気を注入する蒸気孔が形成されていて、蒸気は、流管内を流れる低温液体のベンチュリ現象によって蒸気孔から流管内へ吸引される。吸引された直後の蒸気は低温液体中に気泡として存在し、その後、凝縮し低温液体に混合される。
 先ず、特許文献3にあっては、ベンチュリ管の喉部よりも下流側をなす拡径部に、円周方向そして液体の流れ方向の複数位置に、小口径の蒸気孔が多数、形成されている。蒸気は、それら複数の蒸気孔から分散して上記拡径部へ吸引されるので、吸引された直後の蒸気の気泡径は小さい。その結果、蒸気の凝縮は短時間で完了し、拡径部内でのウォーターハンマー作用が抑制される。
 次に、特許文献4にあっては、ベンチュリ管の喉部の直後に段差をもって急拡径されてから等径で下流側に延び流路断面積を一定とした区間を形成し、気体流入孔は、流路を段差で急拡径させた該段差の位置に1箇所だけ設けられている。
 また、他の方式の凝縮混合装置として、特許文献5には、管内の混合室を流通する低温液体としての水に蒸発ガスとしての蒸気を注入して該蒸気を凝縮して水に混合することにより温水を生成する凝縮混合装置が開示されている。この凝縮混合装置には、混合室内で水に旋回を付与するための固定旋回羽根が設けられており、該固定旋回羽根によって水と蒸気との混合効率の向上が図られている。
特開昭55-145897号公報 特開平08-173781号公報 特開平04-045832号公報 特開2013-039497号公報 特開平7-116486号公報
 しかしながら、特許文献3,4のような装置においても、気体の蒸発ガスを昇圧して、低温液体としてのLNGに直接接触させる場合、十分な凝縮混合性能が確保されないと、LNGに合流した蒸発ガスが完全に液化されず、液化されないままで気泡が残留した状態で液送ポンプに供給されると、液送が困難になるのみならず、液送ポンプの故障の原因にもなる。
 このように、所定量の蒸気を液体のベンチュリ現象で、さらに効率的に吸引するには、蒸気を吸引する蒸気孔の配置、ベンチュリ管内の圧力損失を低減するための最適な形状や構造など、凝縮混合装置としての最適な構造が求められることになる。また、特許文献5のような凝縮混合性能を向上させる旋回付与機構を備えた凝縮混合装置において、該凝縮混合装置内の流体は固定旋回羽根を通過するため、凝縮混合装置の圧力損失が大きくなるという問題がある。
 かかる事情に鑑み、本発明は、気体の蒸発ガスを昇圧して、この蒸発ガスをLNG等の低温液体に直接接触させて再液化させる際に、蒸発ガスを効果的に凝縮して低温液体へ混合する凝縮混合装置及び該装置を有して再液化を効果的に実現できる蒸発ガス再液化装置を提供することを課題とする。
 上述した課題は、本発明によると、次のような構成の凝縮混合装置そしてこれを有する蒸発ガス再液化装置により解決される。
 <凝縮混合装置>
 上流側から下流側へ向け漸次内径を小さくする縮径部に引き続き最小径をなす喉部を経て該喉部から漸次内径を大きくする拡径部が形成され、下流に向け流れる低温液体へ蒸気を注入して該蒸気を凝縮して低温液体に混合するベンチュリ管型の流管と、拡径部の軸線方向における複数位置に形成される段部を有し、該段部で順次拡径され軸線方向で下流側に向け延びる内周面をもつ段状拡径部と、流管内を下流に向け流れる低温液体に対して流管外から蒸気を注入するために該流管の半径方向かつ下流側方向に向き、流管の軸線方向の複数位置で上記拡径部の内径面に注入開口を有するように形成される蒸気孔と、を備えていることを特徴とする凝縮混合装置。
 かかる本発明において、蒸気孔の注入開口は、各段状拡径部の域内での上流側位置に設けられている。
 また、本発明において、流管に対して上流側で該流管の軸線の延長上に位置して上記縮径部に連通接続されて低温液体を上記流管へ向けて流通することを許容する旋回流形成部を備え、上記旋回流形成部は、上記流管内の低温液体と同一種の液体を接線方向から注入するように形成されていることができる。
 また、本発明において、旋回流形成部は、流管の縮径部へ供給される低温液体の一部を該旋回流形成部よりも上流側位置で分流して該旋回流形成部に対して接線方向に注入するようにすることができる。
 また、本発明において、段部は、該段部に対して上流側で隣接する先行の段状拡径部と下流で隣接する後続の段状拡径部との半径差が上記先行の段状拡径部の内径の12~30%の寸法となっていることが好ましい。
 また、本発明において、段状拡径部は、該段状拡径部の半径の2.5~8倍の区間長にわたり軸線方向に延びていることが好ましい。
 <蒸発ガス再液化装置>
 既出の凝縮混合装置と、蒸発ガスを圧縮する蒸発ガス圧縮機と、貯槽から低温液体を送出する送出ポンプと、を備え、低温液体を送出ポンプで凝縮混合装置の流管へ上流側から供給し、貯槽内に貯留された低温液体から発生する蒸発ガスを、上記蒸発ガス圧縮機で凝縮混合装置の蒸気孔から上記流管内へ注入することにより、貯槽から払い出された低温液体に混合して凝縮させ再液化することを特徴とする蒸発ガス再液化装置。
 本発明の凝縮混合装置そして蒸発ガス再液化装置によらない場合、蒸気孔から吸引された直後の蒸気は、低温液体との接触時間、接触面積が小さいため凝縮できず、液体中に気泡として存在してしまうが、本発明による凝縮混合装置そして蒸発ガス再液化装置では、拡径部を段状とすることにより低温液体の乱れを増大するようにしたので、蒸気と低温液体の接触を促進しつつ、凝縮・混合することができる。さらに、蒸気孔を上記段状拡径部の域内での上流側位置に、すなわち、蒸気孔をベンチュリ管の拡径部の段部で急拡大した直後に位置するようにしたので、上記段部にて急拡大した直後の空間を、低温液体中に混じって蒸気の気泡が流れる十分な大きさの空間として確保でき、この空間において蒸気と低温液体との接触時間を十分に確保することができ、蒸気を低温液体により冷却し凝縮させ混合させることができる。さらに、段状拡径部の空間内で流管中の低温液体の流れにあまり影響を受けずに効率良く蒸気がベンチュリ現象で良好に吸引される。
 また、本発明による凝縮混合装置そして蒸発ガス再液化装置では、前段で旋回流形成部を設けて、流管へ流入する前の低温液体に旋回流を生じさせ、後段の流管に段状の拡径部を形成することにより蒸気と低温液体の接触を促進することができる。さらに、蒸気孔を段状拡径部の域内での上流側位置に、すなわち、蒸気孔をベンチュリ管の拡径部の段部で急拡大した直後に位置するようにすることで、上記段部にて急拡大した直後の空間を、低温液体中に混じって蒸気の気泡が流れる十分な大きさの空間として確保できる。これにより、この空間において蒸気と低温液体との接触時間を十分に確保することができ、蒸気を低温液体により冷却し凝縮させ混合させることができる。さらに、段状拡径部の空間内で流管中の低温液体の流れにあまり影響を受けずに効率良く蒸気がベンチュリ現象で良好に吸引される。また、低温液体は旋回流を形成しながら流管へ流入するため、蒸気と低温液体とは周方向でも半径方向でも十分に混合される。
 また、本発明では、流管に段状拡径部を複数設け、それぞれの段状拡径部に蒸気孔を形成させるので、蒸気孔は小口径で多数、円周方向ならびに液体の流れ方向に分散配置されているようにすることができるので、蒸気の気泡径が小さくなり、蒸気の凝縮と低温液体との混合が促進され、ウォーターハンマー作用は抑制される。
 本発明は、以上のように、凝縮混合装置の流管に段状拡径部を複数設けて順次拡径させると共に蒸気孔の注入開口を各段状拡径部の域内で上流側に位置させたので、先行する段状拡径部に対して拡径した部分の空間で、蒸発ガスを低温液体中へ確実に導入して凝縮させ混合する構成としたので、蒸発ガスを低温液体中に効果的に再液化させることができ、ポンプに蒸発ガスが気体のまま流入してポンプに障害が発生するのを防止できる。また、前段での旋回流形成部で低温液体を旋回流とし、低温液体を旋回流として流管部へ流入して、蒸気と低温液体とを周方向でも半径方向でも十分に混合する構成としたので、蒸発ガスを低温液体中に効果的に再液化させることができ、ポンプに蒸発ガスが気体のまま流入してポンプに障害が発生するのを防止できる。また、このような構成の凝縮混合装置を有する蒸発ガス再液化装置では、蒸発ガスの再液化が効率よく短時間で完了すると共に、その結果、装置構成がコンパクトにできる。
図1は、本発明の第一実施形態装置の蒸発ガス再液化装置の概要構成図である。 図2-1は、図1装置に用いられる凝縮混合装置の断面図であり、装置全体図である。 図2-2は、図2-1の一部についての拡大断面図である。 図3-1は、図2-1装置についての段状拡径部を設けることによる効率向上率に関する実験結果を示すグラフであり、段差寸法比について示す図である。 図3-2は、図2-1装置についての段状拡径部を設けることによる効率向上率に関する実験結果を示すグラフであり、区間長寸法比についての効率向上率を示す図である。 図4-1は、第二実施形態における蒸発ガス再液化装置に用いられる凝縮混合装置の断面図であり、装置全体図である。 図4-2は、図4-1のB-B断面図である。 図5は、第三実施形態における低温液体の流量を制御するための構成を示す概要構成図である。 図6は、混合低温液体の過冷度の最小値と副流流量比(旋回強さ)との関係を示す図である。
 以下、添付図面にもとづき、本発明の実施の形態を説明する。
 <第一実施形態>
 図1は、本発明の一実施形態としての凝縮混合装置を備えた蒸発ガス再液化装置の概要構成図である。
 図1において、符号1は本実施形態の蒸発ガス再液化装置であり、後に図2-1、図2-2に詳細に示される構造の凝縮混合装置2を有していて該凝縮混合装置2の入口側(図にて左側)には、該凝縮混合装置2へ低温液体11を送出する送出ポンプ3そして蒸発ガス12を注入する蒸発ガス圧縮機4が接続されている。
 低温液体11は、例えば、タンク(図示せず)内に貯蔵されている液化天然ガス(LNG)の一部であり、また、蒸発ガス12は、例えば、上記タンク内の液化天然ガスの一部が蒸発して発生したボイルオフガス(BOG)である。
 図1に見られるように、低温液体11は送出ポンプ3により送出されて上記凝縮混合装置2へ流入する。この凝縮混合装置2内を流れる上記低温液体11へ、蒸発ガス圧縮機4で圧縮された蒸発ガス12が注入される。
 上記凝縮混合装置2の出口側には、昇圧ポンプ5が接続されていて、低温液体11中への注入後に凝縮して該低温液体11に混合された蒸発ガス12を液化状態で含んで凝縮混合装置2から排出された混合低温液体11Aを昇圧する。昇圧された混合低温液体11Aは、例えば、該低温液体が液化天然ガスならば、気化器へもたらされ再びガス化されてから都市ガスとして需要側に送出される。
 凝縮混合装置2は、図2-1に示されているように、横型筒状のケーシング6内に、ベンチュリ管型の流管7が収められており、ケーシング6と流管7の間には、ステンレススチールなどの繊維状金属細線の織物あるいは編物から成る挿填物8が挿填されている。
 ケーシング6は、低温液体11の流れ方向における上流側に入口部6Aと、下流側に出口部6Bと、それらの中間位置で流管7が収容配置される流管収容部6Cとを有しており、入口部6Aと出口部6Bは内径が等しく、流管収容部6Cにて内径が増大されている。入口部6A、出口部6Bそして流管収容部6Cの中心となる軸線Xは同一の直線上に位置している。上記流管収容部6Cは、その内径が上記流管7の外径よりも大きく、該流管7の周囲に空間を形成し、この空間に分散して上記挿填物8が挿填されている。さらに、上記流管収容部6Cの上部上流側位置には、上方に開口する蒸発ガス注入部6Dが開口形成されていて、蒸発ガス圧縮機4から圧送されてくる蒸発ガス12を該蒸発ガス注入部6Dで受け入れるようになっている。
 ベンチュリ管型の流管7は、軸線X方向の両側に半径外方に突出する取付フランジ9A,9Bを有していて、該取付フランジ9A,9Bで、上記ケーシング6の流管収容部6C内に、流管7、ケーシング6の入口部6Aそして出口部6Bの軸線Xが一致して一つの直線上に位置するように取り付けられている。
 上記流管7の内部は、ケーシング6の入口部6A側に位置する縮径部7A、該縮径部7Aの直後に位置する喉部7B、そして該喉部7Bから出口部6Bに向け延びる拡径部7Cを順次形成している。上記縮径部7Aは曲面をもって比較的急激に内径が小さくなって流路断面積を絞り込んでおり、拡径部7Cは軸線X方向で長い距離にわたり内径を回復するように拡径している。喉部7Bは縮径部7Aと拡径部7Cとを低温液体11の流れに対して低抵抗となるように円滑な曲面で結んでおり、最小の流路断面積となるように最小径に形成されている。なお、縮径部7Aや喉部7Bは、曲面以外で形成されていてもよく、例えば、回転軸に対する斜面の傾斜角度が異なる円錐台が組み合わされた形状で形成されていてもよい。つまり、縮径部7Aや喉部7Bは、図2-1で示す断面で見た場合に、直線が組み合わせられる形状で形成されていてもよい。
 上記拡径部7Cは、軸線X方向にて喉部7Bの直後の位置から右方のフランジ部9Bの位置までの範囲が区分されて複数の段状拡径部7C-1,7C-2,…,7C-Nとして形成されている。各段状拡径部7C-1,7C-2,…,7C-Nは円筒状内周面を有して同じ段状拡径部内では内径は変わらずに均一となっているが、最初の段状拡径部7C-1に対し次の段状拡径部7C-2、さらに次の段状拡径部7C-3がそれぞれ上流側位置に形成された段部10B-1,10B-2,…でステップ状に拡径されている。
 図2-2は、上記拡径部7Cの複数の段状拡径部7C-1,7C-2,…,7C-Nのうち、その一部として、段状拡径部7C-1,7C-2,そして7C-3の部分を拡大して示している。
 図2-2において、軸線方向で中間に位置する段状拡径部7C-2は、これに対して上流側で隣接する段状拡径部7C-1の半径Rに対して段部10B-2をなすようにΔRの段差寸法だけ拡大されたR+ΔRなる半径で、軸線方向に延びる区間長Lを有する円筒内面を形成している。これに対して下流側で隣接する段状拡径部7C-3も同様に、段状拡径部7C-2よりも拡径されて上記区間長Lだけ延びている。図2-2において、段状拡径部7C-1,7C-2,…,7C-Nの区間長Lは、最下流側の段状拡径部7C-N以外の段状拡径部で一定の長さとしているが、下流側の段状拡径部になるほど区間長Lを長くするようにしてもよい。また、一段の段状拡径部の半径は軸線方向において、一定の寸法であって円筒内面を形成しているが、一段の段状拡径部において下流側になるほど拡径するようにしてもよい。このようにすることにより、段状拡径部の空間容積がさらに大きくなり、蒸発ガスを低温液体中へ導入して凝縮させ混合する空間をさらに大きくすることができ、より確実に蒸発ガスの凝縮混合を行うことができる。
 上記段状拡径部7C-2には、その域内での上流側位置に蒸気孔10-2の注入開口10A-2が位置している。図2-2の例では、上記注入開口10A-2の上流側縁が上記段部10B-2の位置にくるように形成されている。上記蒸気孔10-2は、流管7の管壁を半径方向に貫通して形成されていて、半径内方に向け軸線方向下流側に傾くように形成されている。他の蒸気孔10-1,10-3,…,10-Nも同様に対応する段状拡径部7C-1,7C-3,…,7C-Nに対して、それぞれの域内での上流側に注入開口10A-1、10A-3、10A-Nが位置するようにして設けられている。
 本発明では、蒸気孔10-1,10-2,…,10-Nをベンチュリ管の拡径部の段部10B-1,10B-2,…で急拡大した直後に位置するようにしたので、上記段部10B-1,10B-2,…にて急拡大した直後の区間長Lにわたる空間を、低温液体中に混じって蒸発ガスの気泡が流れる十分な大きさの空間として確保でき、この空間において蒸発ガスと低温液体との接触時間を十分に確保することができ、蒸発ガスを低温液体により冷却し凝縮させ混合させることができる。さらに、段状拡径部の空間内で流管中の低温液体の流れにあまり影響を受けずに効率良く蒸発ガスがベンチュリ現象で良好に吸引されるようになる。
 上述の段部をもった段状拡径部の形態が蒸発ガスを低温液体中で凝縮させ混合するのに有効であるが、段状拡径部の寸法を適切に設定することにより、この効果をより確実に奏するようにできる。例えば、ベンチュリ管型の流管7の内径を急拡大させる段部10B-1,10B-2,…の寸法ΔRが大きすぎると、低温液体の乱れが蒸気孔10-1,10-2,…の近傍まで届かなくなり、蒸気孔10-1,10-2,…周辺での蒸発ガスの吸引を阻害する。この結果、低温液体のベンチュリ現象による蒸気の吸引の効率が低下する。したがって、ベンチュリ管拡径部内径を急拡大させる段差寸法を最適に設定する必要がある。
 そこで、発明者は、どのような段差寸法とすれば、蒸発ガスの低温液体への吸引の効率が良好となるか、種々実験を重ねた。その実験にもとづき、段差寸法とベンチュリ現象による吸引の効率性を検討した結果を図3-1に示す。段差寸法比は、段差寸法のその直前半径に対する比率(%)、すなわち、段部の上流側に位置する段状拡径部の半径に対する段差寸法の比率(%)で表したものである。効率向上率は、低温液体をベンチュリ管に流送するのに必要な動力を同じとして、低温液体のベンチュリ現象によって吸引される蒸発ガスの流量が、段差を設けないときに比べて増加する比率を効率向上率(%)として表したものである。図3-1に見られるように、段差寸法をその直前半径の5~40%の範囲にすることにより段差を設けないときに比べて効率向上率が増加しており、段差寸法をその直前半径の12~30%の範囲にすることにより効率向上率が70%以上となり高い吸引効率となることが判る。
 さらに、本発明では、上記段差半径についてのみならず、ベンチュリ管拡径部内径を急拡大した段状拡径部の区間長(軸線方向長さである一区間の長さ)についても適正な範囲があると考え、これについても実験を行った。一区間の長さが短ければ、蒸発ガスと低温液体の混合が不十分なうちに、次の段状拡径部へ移行してしまうので、蒸気孔近傍の低温液体のみ温度が上昇してしまい、その結果、後流において蒸発ガスと低温液体の温度差が小さくなるので蒸発ガスが凝縮しにくくなってしまう。一方で、区間長が長すぎると、ベンチュリ管内の圧力損失が大きくなるのでより大きな動力を必要とし、また装置が大きくなるのでコストアップに繋がる。段状拡径部の半径に対する区間長寸法の比率である区間長寸法比とベンチュリ管の吸引の効率向上率(%)についての実験の結果、図3-2に見られるように、区間長寸法は段状拡径部の半径の2.5~8倍が適正であることが判明した。
 次に、上述したように構成された本実施形態の蒸発ガス再液化装置そしてその動作を図1そして図2-1、図2-2にもとづき説明する。
 先ず、タンク(図示せず)内の低温液体(例えば、LNG)11の一部が、送出ポンプ3によって送出されて凝縮混合装置2に導入される。また、上記タンク内で発生した蒸発ガスは、蒸発ガス圧縮機4によって大気圧と都市ガス運用圧力(4~7MPa)の間の圧力(「中間圧」)まで昇圧された後、凝縮混合装置2に導入される。
 上記低温液体11は、凝縮混合装置2のケーシング6に設けられた入口部6Aを経て流管7に流入し、縮径部7A、喉部7Bそして拡径部7Cを流れ、ケーシング6の出口部6Bへ達する。流管7内を流れる低温液体11は、縮径部7Aで流速を高め、喉部7Bで最大流速に達し、その後、拡径部7Cで徐々に流速を低めるが、拡径部7Cでの右端における最大内径でも上記入口部6Aの内径より小さいので、拡径部7Cでの流速は入口部6Aの流入時の流速よりも高く、したがって、圧力は低くなっており、蒸気孔10-1,10-2,…に対しては吸引力をもたらす。
 一方、蒸発ガス12は蒸発ガス圧縮機4により昇圧されて、凝縮混合装置2のケーシング6に設けられた、蒸発ガス注入部6Dを経て上記ケーシング6内に注入される。流管7を収容しているケーシング6の流管収容部6Cには、流管7の外周に挿填物8が挿填されており、蒸発ガス圧縮機4で圧送されて上記蒸発ガス注入部6Dから注入された蒸発ガス12は、挿填物8により緩衝されそして流管収容部6C内で流管7の全周そして全長にわたり拡散する。
 上述の通り、流管7の拡径部7Cを流れる低温液体11は、ベンチュリ管現象により蒸気孔10-1,10-2,…に対して吸引力をもたらすので、上記流管収容部6C内に拡散している蒸発ガス12は、各蒸気孔10-1,10-2,…から拡径部7Cへ吸引導入される。例えば、図2-2に示されている蒸気孔10-2では、蒸発ガス12は、該蒸気孔10-2から吸引されてその注入開口10A-2を経て、段状拡径部7C-2内に流入する。上記注入開口10A-2は段状拡径部7C-2の域内の上流側に位置していると共に、蒸気孔10-2が半径内方に向け上流側に傾いているので、流入した蒸発ガスは、流管7内の低温液体11の流れに逆らうことなく低抵抗のもとで合流する。
 上記段状拡径部7C-2は、これに対して上流側に位置する前段の段状拡径部7C-1よりも段部10B-2でΔR分だけ急拡径していて、この段部10B-2よりも下流側で、区間長Lにわたる空間を形成しており、この空間を、低温液体11中に混じって蒸発ガス12の気泡が流れる十分な大きさの空間として確保でき、この空間において蒸発ガス12と低温液体11との接触時間を十分に確保することができ、蒸発ガス12を容易に低温液体11内に混入させて、蒸発ガス12を低温液体11により冷却し凝縮させ混合させることができる。この結果、蒸発ガス12は凝縮して確実に再液化し、低温液体11の一部として下流側へ流れる。このように蒸気孔から蒸発ガスの流入そして低温液体への混入による合流は、上記段状拡径部7C-2以外の他の段状拡径部でも同様に行われる。かくして、再液化された蒸発ガスを含む混合低温液体11Aは昇圧ポンプ5で昇圧されて気化器へもたらされた後、気化器で気化されて都市ガスとして需要側に送出される。
 なお、図2-1で示す凝縮混合装置2では、蒸発ガス注入部6Dが流管収容部6Cの上部上流側位置に開口形成されているが、蒸発ガス注入部6Dの位置はこれに限定されるものではなく、流管収容部6Cの側部上流側位置に開口形成されてもよい。また、図2-1で示す実施形態では、凝縮混合装置2を水平方向に配置しているが、鉛直方向に配置してもよい。凝縮混合装置2を鉛直方向に配置し低温液体11を鉛直方向下向きに流通し、蒸発ガス12を水平方向から流入することにより、低温液体11中で蒸発ガスは浮力を受け滞留時間が長くなるため、蒸発ガス12の凝縮混合がより安定して行われる。
 <第二実施形態>
 図4-1は、第二実施形態における蒸発ガス再液化装置に用いられる凝縮混合装置の断面図であり、装置全体図である。以下、第一実施形態との相違点を中心に説明し、第一実施形態と同じ部分には同一符号を付して説明を省略する。
 図4-1に示される凝縮混合装置2は、図2-1に示される第一実施形態の凝縮混合装置2とほぼ同じ装置であり、各部について第一実施形態と同一の符号を付されている。第二実施形態では、凝縮混合装置2は、図4-1に示されているように、送出ポンプ3から送り出される低温液体11を受ける位置に配された旋回流形成部2Aと、これに引き続いてその下流側に位置する混合流管部2Bとを有している。旋回流形成部2Aと混合流管部2Bは、一つの軸線X上に位置していて、一つの装置として形成されている。
 上記旋回流形成部2Aは、図4-1に見られるように、後述のベンチュリ管型の混合流管部2Bの入口側内径に等しい内径の直管をなし、少なくとも、周方向の一箇所に接線方向で低温液体を注入する接線方向注入口2A-1が設けられている(図4-2をも参照)。本実施形態では、該接線方向注入口2A-1は、該接線方向注入口2A-1の上流側位置に設けられた分岐管2A-2が接続されており、送出ポンプ3で送り出され旋回流形成部2Aに流入する低温液体11の一部が該分岐管2A-2で抽出された後に上記接線方向注入口2A-1を通って旋回流形成部2Aへ注入され、その注入により生ずる接線方向の流れによって該旋回流形成部2A内の低温液体を旋回流Sとする。上記分岐管2A-2内を流れる低温液体は、もともと送出ポンプ3により与えられた流れの勢いで接線方向注入口2A-1に注入されることもできるが、その勢いをさらに確実に得るには、分岐管2A-2にポンプを設けておくことが好ましい。
 本実施形態では、接線方向注入口2A-1には分岐管2A-2で抽出された低温液体を注入することとしているが、これには限定されず、上記低温液体と同種の液体を注入することとしてもよい。注入される液体は、上記旋回流形成部2Aを流れる低温液体と注入後に完全に同一液になればそれで十分であり、分岐管2A-2によらず、別の供給源から供給される液体であってもよい。
 上記旋回流形成部2Aに対して後流側で接続されている混合流管部2Bは、横型筒状のケーシング6内に、ベンチュリ管型の流管7が収められており、ケーシング6と流管7の間には、ステンレススチールなどの繊維状金属細線の織物あるいは編物から成る挿填物8が挿填されている。
 次に、上述したように構成された本実施形態の蒸発ガス再液化装置そしてその動作を図1そして図4-1、図4-2にもとづき説明する。
 先ず、タンク(図示せず)内の低温液体(例えば、LNG)11の一部が、送出ポンプ3によって送出されて凝縮混合装置2に導入される。また、上記タンク内で発生した蒸発ガスは、蒸発ガス圧縮機4によって大気圧と都市ガス運用圧力(4~7MPa)の間の圧力(中間圧)まで昇圧された後、凝縮混合装置2に導入される。
 凝縮混合装置2に導入される低温液体11は、旋回流形成部2Aに直接流入すると共に、一部が分岐管2A-2を経て接線方向注入口2A-1から注入される。旋回流形成部2Aに直接流入した低温液体11は軸線X方向に流入し、接線方向注入口2A-1から注入された低温液体は周方向に流れて、旋回流形成部2Aを流れる低温液体11が旋回流Sを形成するようになる。
 上記旋回流形成部2Aで旋回流となった低温液体11は、混合流管部2Bを収容している凝縮混合装置2のケーシング6に設けられた入口部6Aを経て流管7に流入し、縮径部7A、喉部7Bそして拡径部7Cを流れ、ケーシング6の出口部6Bへ達する。流管7内を流れる低温液体11は、縮径部7Aで流速を高め、喉部7Bで最大流速に達し、その後、拡径部7Cで徐々に流速を低めるが、拡径部7Cでの右端における最大内径でも上記入口部6Aの内径より小さいので、拡径部7Cでの流速は入口部6Aの流入時の流速よりも高く、したがって、圧力は低くなっており、蒸気孔10-1,10-2,…に対しては吸引力をもたらす。
 一方、蒸発ガス12は蒸発ガス圧縮機4により昇圧されて、上記凝縮混合装置2のケーシング6に設けられた、蒸発ガス注入部6Dを経て上記ケーシング6内に注入される。流管7を収容しているケーシング6の流管収容部6Cには、流管7の外周に挿填物8が挿填されており、蒸発ガス圧縮機4で圧送されて上記蒸発ガス注入部6Dから注入された蒸発ガス12は、挿填物8により緩衝されそして流管収容部6C内で流管7の全周そして全長にわたり拡散する。
 上述の通り、流管7の拡径部7Cを流れる低温液体11は、ベンチュリ管現象により蒸気孔10-1,10-2,…に対して吸引力をもたらすので、上記流管収容部6C内に拡散している蒸発ガス12は、各蒸気孔10-1,10-2,…から拡径部7Cへ吸引導入される。例えば、図2-2に示されている蒸気孔10-2では、蒸発ガス12は、該蒸気孔10-2から吸引されてその注入開口10A-2を経て、段状拡径部7C-2内に流入する。上記注入開口10A-2は段状拡径部7C-2の域内の上流側に位置していると共に、蒸気孔10-2が半径内方に向け上流側に傾いているので、流入した蒸発ガスは、流管7内の低温液体11の流れに逆らうことなく低抵抗のもとで合流する。その際、低温液体11は旋回流を形成しているので、上記蒸発ガス12は周方向でも半径方向でも、十分に低温液体11に混合される。
 上記段状拡径部7C-2は、これに対して上流側に位置する前段の段状拡径部7C-1よりも段部10B-2でΔR分だけ急拡径していて、この段部10B-2よりも下流側で、区間長Lにわたる空間を形成しており、この空間を、低温液体11中に混じって蒸発ガス12の気泡が流れる十分な大きさの空間として確保でき、この空間において蒸発ガス12と低温液体11との接触時間を十分に確保することができ、蒸発ガス12を容易に低温液体11内に混入させて、蒸発ガス12を低温液体11により冷却し凝縮させ混合させることができる。この結果、蒸発ガス12は凝縮して確実に再液化し、低温液体11の一部として下流側へ流れる。このように蒸気孔から蒸発ガスの流入そして低温液体への混入による合流は、上記段状拡径部7C-2以外の他の段状拡径部でも同様に行われる。かくして、再液化された蒸発ガスを含む混合低温液体11Aは昇圧ポンプ5で昇圧されて気化器へもたらされた後、気化器で気化されて都市ガスとして需要側に送出される。
 <第三実施形態>
 第二実施形態では、低温液体の流量は特に制御されていないが、第三実施形態では、低温液体の流量を制御することにより、生成される混合低温液体の過冷度を調整可能となっており、この点で、第二実施形態と異なっている。図5は、第三実施形態における低温液体の流量を制御するための構成を示す概略図である。以下、第二実施形態との相違点を中心に説明し、第二実施形態と同じ部分には同一符号を付して説明を省略する。
 図5に示される凝縮混合装置2は、図4-1に示される第二実施形態の凝縮混合装置2と全く同じ装置であり、各部について第二実施形態と同一の符号を付されている。図5に見られるように、凝縮混合装置2には、上流側から下流側へ向けて流れる低温液体11を主流として流通させる主流管25が旋回流形成部2Aの上流側の端部に接続されており、また、該主流管25から分岐して低温液体11を副流として流通させる副流管26が旋回流形成部2Aの接線方向注入口2A-1に接続されている。本実施形態では、タンク(図示せず)内の低温液体(例えば、LNG)11の一部が、送出ポンプ3によって送出されて、主流として主流管25内を流通して旋回流形成部2Aに直接流入する。また、主流管25を流通する主流の低温液体の一部が副流管26を副流として流通し旋回流形成部2Aの接線方向注入口2A-1から接線方向に注入される。旋回流形成部2Aは、上記主流および上記副流の低温液体を受けて、旋回流形成部2A内で周方向に流れる該副流により該主流に対して旋回流Sを生じさせる。また、凝縮混合装置2には、出口部6Bから流出した混合低温液体を下流側、すなわち昇圧ポンプ5側へ向けて流通させる混合液管10が出口部6Bの下流側の端部に接続されている。
 凝縮混合装置2は、さらに、主流管25に設けられた主流流量計27および主流調整弁28と、副流管26に設けられた副流流量計13および副流調整弁14と、混合液管10に設けられた混合液圧力計15および混合液温度計16と、主流および副流のそれぞれの流量を制御するための制御手段17と、該制御手段17による制御に際して参照されるデータを記憶する記憶手段18とを有している。
 上述したように、主流流量計27および主流調整弁28は、それぞれ主流管25に設けられている。該主流流量計27は、主流管25内を流れ旋回流形成部2Aへ流入する主流の低温液体11の流量を計測する。主流調整弁28は、後述する制御手段17の制御を受けて開度が調整されることにより、主流の流量を調整可能となっている。また、副流流量計13および副流調整弁14は、それぞれ副流管26に設けられている。該副流流量計13は、副流管26内を流れ旋回流形成部2Aへ注入される副流の低温液体11の流量を計測する。副流調整弁14は、後述する制御手段17の制御を受けて開度が調整されることにより、副流の流量を調整可能となっている。また、上述したように、混合液圧力計15および混合液温度計16は、それぞれ混合液管10に設けられており、出口部6Bから流出し混合液管10内を流れる混合低温液体の圧力および温度をそれぞれ計測する。
 記憶手段18は、混合低温液体の圧力とその圧力での飽和温度との対応関係のデータを第一対応関係Aとして、そして許容し得る混合低温液体の過冷度の最小値と副流流量比(旋回強さ)との対応関係のデータを第二対応関係B(図6参照)として予め記憶している。この第一対応関係Aおよび第二対応関係Bのデータは、後述するように、副流の流量の制御を行う際に制御手段17によって参照される。ここで、「過冷度の最小値」とは、混合低温液体に蒸気が存在しないようにする過冷度の最も小さい値である。過冷度の最小値が小さいほど、混合低温液体に蒸気が存在しないように混合低温液体を冷却する温度は飽和温度に近くなる。過冷度算出手段22により、過冷度が飽和温度の導出値と上記混合低温液体の温度の計測値との差として算出される。また、「副流流量比」とは、主流の流量と副流の流量の和に対する副流の流量の割合であり、副流流量比算出手段23によって、主流の流量の計測値と副流の流量の計測値との和で副流の流量の計測値を除して算出される。また、記憶手段18は、上記第一対応関係Aを、例えば、混合低温液体の圧力と飽和温度との関係式、関係線図または蒸気表等の形態として記憶していることが望ましい。
 図6は、混合低温液体の過冷度の最小値と副流流量比(旋回強さ)との関係、すなわち第二対応関係Bを示す図である。図6に示されているように、副流流量比が0すなわち旋回がない場合に比べて旋回があると混合低温液体の過冷度の最小値が小さくなり、また、混合低温液体の過冷度の最小値と副流流量比(旋回強さ)とは、副流流量比が大きいほど過冷度の最小値が低下する関係にある。つまり、副流流量比が大きいほど過冷度の最小値が小さくなり、混合低温液体に蒸気が存在しない液体状態の混合低温液体の温度は飽和温度に近くなり、凝縮混合装置2の混合性能が向上する。
 制御手段17は、図5に見られるように、混合低温液体の過冷度を算出する過冷度算出手段22と、副流流量比を算出する副流流量比算出手段23と、主流調整弁28および副流調整弁14のそれぞれの開度を調整する流量調整手段24とを有している。過冷度算出手段22は、記憶手段18に記憶されている第一対応関係Aを参照して、混合低温液体の圧力の計測値に対応する飽和温度を導出してから、飽和温度の導出値と上記混合低温液体の温度の計測値との差を該混合低温液体の過冷度として算出する。副流流量比算出手段23は、主流の流量の計測値と副流の流量の計測値との和で該副流の流量の計測値を除して副流流量比を算出する。流量調整手段24は、上記過冷度の算出値を、上記記憶手段18に記憶されている第二対応関係B(図6参照)における過冷度の最小値と比較して、上記過冷度の算出値が上記最小値以下であるときには、上記第二対応関係Bを参照して、上記過冷度の算出値が上記最小値より大きくなるような副流流量比を目標値として導出し、副流流量比の算出値が上記目標値に追従するように、副流調整弁14の開度を大きくして副流の流量を増大させる。
 次に、制御手段17による副流の流量の制御動作について説明する。本実施形態では、主流調整弁28が開状態そして副流調整弁14が閉状態で蒸発ガス再液化装置1が運転されている場合において、必要に応じて、副流調整弁14を開状態として旋回流形成部2Aに副流を注入して旋回流Sを形成するときの制御動作について説明する。
 制御手段17の過冷度算出手段22は、記憶手段18に記憶されている第一対応関係Aを参照して、混合液圧力計15により計測された混合低温液体の圧力の計測値に対応する飽和温度を算出し、次に、算出した飽和温度と混合液温度計16により計測された混合低温液体の温度の計測値との差を過冷度として算出する。また、副流流量比算出手段23は、主流流量計27により計測された主流の流量の計測値と副流流量計13により計測された副流の流量の計測値との和で該副流の流量の計測値を除して副流流量比(旋回強さ)を算出する。
 流量調整手段24は、過冷度算出手段22により算出された過冷度の算出値を、記憶手段18に記憶されている第二対応関係Bにおける過冷度の最小値と比較する。この比較の結果、上記過冷度の算出値が上記最小値より大きいときには、蒸発ガスは低温液体中に気泡として存在することなく低温液体に混合していると言える。したがって、流量調整手段24は、副流調整弁14を開状態とする制御を行うことはない。つまり、旋回流形成部2Aに副流が注入されないので、主流に対して旋回流Sが形成されない状態が維持される。
 一方、上記過冷度の算出値が上記最小値以下であるときには、出口部6Bから流出する混合低温液体に蒸発ガスの気泡が残存していて該混合低温液体が気液二相流となっていると言える。このような状態において、凝縮混合装置2の下流側で蒸発ガスが凝縮すると、ウォーターハンマー作用の発生など、蒸発ガス再液化装置1全体の安全な運転に支障が生じる。
 そこで、流量調整手段24は、上記第二対応関係Bを参照して、上記過冷度の算出値が上記最小値より大きくなるような副流流量比を目標値として導出し、副流流量比算出手段23により算出される副流流量比の算出値が上記目標値に追従するように、副流調整弁14の開度を調整する。この結果、適切な流量に調整された副流の低温液体が旋回流形成部2Aに接線方向で注入され、主流に対して旋回流を形成することにより、上記最小値が小さくなる。したがって、蒸発ガスを低温液体中に残存させることなく確実に凝縮して低温液体に混合させることができる。
 上述の制御動作の具体的な例として、旋回流Sが形成されておらず(旋回強さ0%)混合低温液体の過冷度を5℃で運転している状態から、混合低温液体の流量をあまり変えずに、混合低温液体の温度を高くするような場合について説明する。この場合、流管7に吹き込む蒸発ガスの流量を増大させる必要があるが、第二対応関係Bを示す図6を見ると判るように、混合低温液体の過冷度は最小値(5℃)にあるので、このままでは混合低温液体中に蒸発ガスの気泡が残存することになり、蒸発ガスの流量を増大できない。
 そこで、副流調整弁14を開状態として副流の低温液体を旋回流形成部2Aに接線方向で注入して旋回流を形成することにより、過冷度の最小値を低下させ、混合低温液体の温度を高くする。この際、主流調整弁28を同時に若干絞るようにすると、副流の流量を増やし易くなる。図6より、混合低温液体の温度を2℃上昇させる(過冷度5℃から過冷度3℃に上昇させる)場合は、副流流量比(旋回強さ)を約30%になるように副流の流量を調整して、蒸発ガスの凝縮混合性能を高め、混合低温液体中に蒸発ガスの気泡が残存しないようにする。このような旋回の付与は凝縮混合装置2の流体の圧力損失の増大を招き、供給するポンプの動力を増大させるので、旋回の付与は混合低温液体の過冷度を小さくする場合にのみ実施することが望ましい。このように旋回の付与を必要な場合にのみ行うようにすることにより、固定旋回羽根等の装置を設ける場合に比べて圧力損失の増大を最小限に抑制することができ、むやみにエネルギー消費を増大させることを防ぐことができる。
 上述したような旋回付与の制御は、上述したように、低温液体に凝縮混合させる蒸発ガスの量を増大させる場合に行われる。また、この旋回付与の制御は、例えば、低温液体としての水に蒸発ガスとしての水蒸気を混合して混合低温液体としての温水を生成するときのように、得られる混合低温液体の温度を高くすることが所望される場合においても有効である。
 本実施形態では、混合低温液体の過冷度が常に最小値より大きくなるように副流の低温液体の流量が制御される構成としたので、蒸発ガスを低温液体中に効果的に混合して再液化させることができ、ポンプに蒸発ガスが気体のまま流入してポンプに障害が発生するのを防止できる。また、旋回付与のために、従来のような固定旋回羽根等の装置を設ける必要がないので、凝縮混合装置の圧力損失を最小限に抑えることができ、蒸発ガスの再液化が効率よく短時間で完了すると共に、装置構成をコンパクトにできる。
 また、本実施形態では、制御手段17は、主流調整弁28および副流調整弁14の両方を制御することとしたが、これに代えて、主流調整弁28のみ、もしくは、副流調整弁14のみを制御するようにしてもよい。この場合、主流調整弁28と副流調整弁14とのうち制御対象でない方の調整弁は一定の開度になる。
 また、本実施形態では、過冷度の算出値を第二対応関係Bにおける過冷度の最小値と比較して、過冷度の算出値が最小値より大きくなるような副流流量比を目標値として副流の流量を調整することとしているが、過冷度の最小値に一定値を加算した値より大きくなるような副流流量比を目標値とするようにして、適用システムに要求される安全係数を反映するようにしてもよい。
 1 蒸発ガス再液化装置
 2 凝縮混合装置
 2A 旋回流形成部
 2B 混合流管部
 3 送出ポンプ
 4 蒸発ガス圧縮機
 7 流管
 7A 縮径部
 7B 喉部
 7C 拡径部
 7C-1,7C-2,… 段状拡径部
 9A 取付フランジ
 9B 取付フランジ
 10-1,10-2,… 蒸気孔
 10A-1,10A-2,… 注入開口
 10B-1,10B-2,… 段部
 L 区間長
 R 段状拡径部の半径
 ΔR 半径差(段差寸法)

Claims (7)

  1.  上流側から下流側へ向け漸次内径を小さくする縮径部に引き続き最小径をなす喉部を経て該喉部から漸次内径を大きくする拡径部が形成され、下流に向け流れる低温液体へ蒸気を注入して該蒸気を凝縮して低温液体に混合するベンチュリ管型の流管と、
     拡径部の軸線方向における複数位置に形成される段部を有し、該段部で順次拡径され軸線方向で下流側に向け延びる内周面をもつ段状拡径部と、
     流管内を下流に向け流れる低温液体に対して流管外から蒸気を注入するために該流管の半径方向かつ下流側方向に向き、流管の軸線方向の複数位置で上記拡径部の内径面に注入開口を有するように形成される蒸気孔と、
     を備えていることを特徴とする凝縮混合装置。
  2.  蒸気孔の注入開口は、各段状拡径部の域内での上流側位置に設けられている請求項1に記載の凝縮混合装置。
  3.  流管に対して上流側で該流管の軸線の延長上に位置して上記縮径部に連通接続されて低温液体を上記流管へ向けて流通することを許容する旋回流形成部を備え、
     上記旋回流形成部は、上記流管内の低温液体と同一種の液体を接線方向から注入するように形成されていることとする請求項1または2に記載の凝縮混合装置。
  4.  旋回流形成部は、流管の縮径部へ供給される低温液体の一部を該旋回流形成部よりも上流側位置で分流して該旋回流形成部に対して接線方向に注入するようになっていることとする請求項3に記載の凝縮混合装置。
  5.  段部は、該段部に対して上流側で隣接する先行の段状拡径部と下流で隣接する後続の段状拡径部との半径差が上記先行の段状拡径部の内径の12~30%の寸法となっていることとする請求項1~4のいずれか1項に記載の凝縮混合装置。
  6.  段状拡径部は、該段状拡径部の半径の2.5~8倍の区間長にわたり軸線方向に延びていることとする請求項1~5のいずれか1項に記載の凝縮混合装置。
  7.  請求項1~6のいずれか1項に記載の凝縮混合装置と、
     蒸発ガスを圧縮する蒸発ガス圧縮機と、
     貯槽から低温液体を送出する送出ポンプと、
     を備え、
     低温液体を送出ポンプで凝縮混合装置の流管へ上流側から供給し、
     貯槽内に貯留された低温液体から発生する蒸発ガスを、上記蒸発ガス圧縮機で凝縮混合装置の蒸気孔から上記流管内へ注入することにより、貯槽から払い出された低温液体に混合して凝縮させ再液化することを特徴とする蒸発ガス再液化装置。
PCT/JP2015/065597 2015-05-29 2015-05-29 凝縮混合装置及びこれを有する蒸発ガス再液化装置 WO2016194056A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065597 WO2016194056A1 (ja) 2015-05-29 2015-05-29 凝縮混合装置及びこれを有する蒸発ガス再液化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065597 WO2016194056A1 (ja) 2015-05-29 2015-05-29 凝縮混合装置及びこれを有する蒸発ガス再液化装置

Publications (1)

Publication Number Publication Date
WO2016194056A1 true WO2016194056A1 (ja) 2016-12-08

Family

ID=57440239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065597 WO2016194056A1 (ja) 2015-05-29 2015-05-29 凝縮混合装置及びこれを有する蒸発ガス再液化装置

Country Status (1)

Country Link
WO (1) WO2016194056A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028276A (zh) * 2021-02-24 2021-06-25 四川汇众力低温科技有限公司 一种低温气体回收装置
JP6895571B1 (ja) * 2020-09-03 2021-06-30 株式会社クボタ 異種液体混合装置および水処理設備
EP3919815A1 (en) 2020-05-28 2021-12-08 Bosch Thermotechnology Ltd (UK) Venturi-type mixing nozzle and combustion device with a venturi-type mixing nozzle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB713064A (en) * 1950-04-14 1954-08-04 Holmes & Co Ltd W C Improvements in method and apparatus for the oxidation of solutions and/or suspensions of oxidisable solids by means of oxygen-containing gases
JPS50125359A (ja) * 1974-03-05 1975-10-02
JPS6128427A (ja) * 1983-08-23 1986-02-08 テヒニカ、エントヴイツクルングスゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング、ウント、コムパニ−、コムマンジツト、ゲゼルシヤフト 液体に気体を吸収させる方法および装置、殊に園芸業、趣味的園芸家用の潅水に炭酸ガスを吸収させる方法および装置
JPS6297633A (ja) * 1985-08-16 1987-05-07 リクイツド カ−ボニツク コ−ポレ−シヨン アルカリ水の中和におけるco↓2プロセス用のエジエクタ−
JPH0445832A (ja) * 1990-06-12 1992-02-14 Mitsuo Hoshi ジェットミキサーにおけるウォターハンマー防止装置
JP2006045327A (ja) * 2004-08-04 2006-02-16 Jfe Engineering Kk 天然ガスの希釈熱量調整方法及び装置
JP2009507624A (ja) * 2005-09-12 2009-02-26 ツヴィスター・ベー・ウイ 流体分離器における凝縮及び分離を改善するための方法及び装置
JP2011025171A (ja) * 2009-07-27 2011-02-10 Jfe Engineering Corp ベンチュリ管を用いた流体の混合方法、ベンチュリ型混合装置
JP2014024012A (ja) * 2012-07-27 2014-02-06 Mitsubishi Electric Corp エジェクタ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB713064A (en) * 1950-04-14 1954-08-04 Holmes & Co Ltd W C Improvements in method and apparatus for the oxidation of solutions and/or suspensions of oxidisable solids by means of oxygen-containing gases
JPS50125359A (ja) * 1974-03-05 1975-10-02
JPS6128427A (ja) * 1983-08-23 1986-02-08 テヒニカ、エントヴイツクルングスゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング、ウント、コムパニ−、コムマンジツト、ゲゼルシヤフト 液体に気体を吸収させる方法および装置、殊に園芸業、趣味的園芸家用の潅水に炭酸ガスを吸収させる方法および装置
JPS6297633A (ja) * 1985-08-16 1987-05-07 リクイツド カ−ボニツク コ−ポレ−シヨン アルカリ水の中和におけるco↓2プロセス用のエジエクタ−
JPH0445832A (ja) * 1990-06-12 1992-02-14 Mitsuo Hoshi ジェットミキサーにおけるウォターハンマー防止装置
JP2006045327A (ja) * 2004-08-04 2006-02-16 Jfe Engineering Kk 天然ガスの希釈熱量調整方法及び装置
JP2009507624A (ja) * 2005-09-12 2009-02-26 ツヴィスター・ベー・ウイ 流体分離器における凝縮及び分離を改善するための方法及び装置
JP2011025171A (ja) * 2009-07-27 2011-02-10 Jfe Engineering Corp ベンチュリ管を用いた流体の混合方法、ベンチュリ型混合装置
JP2014024012A (ja) * 2012-07-27 2014-02-06 Mitsubishi Electric Corp エジェクタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3919815A1 (en) 2020-05-28 2021-12-08 Bosch Thermotechnology Ltd (UK) Venturi-type mixing nozzle and combustion device with a venturi-type mixing nozzle
JP6895571B1 (ja) * 2020-09-03 2021-06-30 株式会社クボタ 異種液体混合装置および水処理設備
CN113028276A (zh) * 2021-02-24 2021-06-25 四川汇众力低温科技有限公司 一种低温气体回收装置

Similar Documents

Publication Publication Date Title
JP5884995B2 (ja) 凝縮混合装置及びこれを有する蒸発ガス再液化装置
WO2016194056A1 (ja) 凝縮混合装置及びこれを有する蒸発ガス再液化装置
KR101711997B1 (ko) 연료공급시스템
JP2015105810A5 (ja)
ES2848158T3 (es) Eyector y método para hacer funcionar un sistema con tal eyector
JP6725571B2 (ja) ダブルフロー圧縮器を用いたlngプラントにおける並列圧縮
JP5333186B2 (ja) 蒸発ガス再液化装置
JP5945974B2 (ja) 凝縮混合装置及びこれを有する蒸発ガス再液化装置
WO2016194049A1 (ja) 凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法
JP5896172B2 (ja) 凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法
JP6090616B2 (ja) 凝縮混合装置及びこれを有する蒸発ガス再液化装置
US11022352B2 (en) Efficiency enhancing apparatus and methods for a heat exchange system
JP7393607B2 (ja) ガス液化方法およびガス液化装置
JP6036390B2 (ja) 低温液化ガスの蒸発ガス再液化・昇圧装置
KR960004253B1 (ko) 액화천연가스를 기화시키는 방법 및 장치
JP2009281638A (ja) 冷凍サイクル装置
JPH03236588A (ja) Lngのボイルオフガス処理方法および装置
CN112444100B (zh) 用于处理贫液lng的工艺和装置
JPH08173781A (ja) 液化天然ガス用気液混合器
JP2002338977A (ja) 液化天然ガスのボイルオフガスの再液化方法及び装置
JP2017018938A (ja) 凝縮設備
KR101251140B1 (ko) Lng bog의 재액화 시스템
KR20130023329A (ko) 선박의 연료가스 공급시스템
KR20210118140A (ko) 보일 오프 가스 처리 시스템 및 선박
JP5708702B2 (ja) 蒸発ガス再液化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP