WO2016194049A1 - 凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法 - Google Patents

凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法 Download PDF

Info

Publication number
WO2016194049A1
WO2016194049A1 PCT/JP2015/065586 JP2015065586W WO2016194049A1 WO 2016194049 A1 WO2016194049 A1 WO 2016194049A1 JP 2015065586 W JP2015065586 W JP 2015065586W WO 2016194049 A1 WO2016194049 A1 WO 2016194049A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
flow rate
liquid
temperature
degree
Prior art date
Application number
PCT/JP2015/065586
Other languages
English (en)
French (fr)
Inventor
松本 繁則
林 謙年
以昌 山口
Original Assignee
Jfeエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeエンジニアリング株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to PCT/JP2015/065586 priority Critical patent/WO2016194049A1/ja
Publication of WO2016194049A1 publication Critical patent/WO2016194049A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B3/00Condensers in which the steam or vapour comes into direct contact with the cooling medium
    • F28B3/06Condensers in which the steam or vapour comes into direct contact with the cooling medium by injecting the steam or vapour into the cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications

Definitions

  • the present invention relates to a condensing and mixing device, a condensing and mixing method, an evaporating gas reliquefaction device, and an evaporating gas reliquefaction method in which vapor and a low temperature liquid are brought into contact with each other to condense and liquefy the vapor and mix it with the low temperature liquid.
  • low temperature liquid such as liquefied natural gas (LNG)
  • LNG liquefied natural gas
  • a part of the low temperature liquid in the tank evaporates due to heat input to the tank from the outside, and evaporative gas is generated in the tank.
  • the low-temperature liquid is LNG
  • an evaporating gas mainly composed of methane is generated.
  • the generated evaporative gas can be compressed as it is and supplied to the demand side as city gas, but the compression power becomes very large. Therefore, in order to reduce such power, it can be considered that the evaporated gas is re-liquefied and pressurized in a liquid state and then gasified again to be supplied as city gas.
  • evaporative gas is compressed and cooled, and as a cooling method, evaporative gas is cooled by the cold heat of LNG discharged as a low temperature liquid from the tank, that is, compressed.
  • Patent Documents 1 and 2 disclose a method of cooling evaporative gas by exchanging heat with LNG.
  • Patent Document 1 discloses a method (indirect heat exchange method) in which compressed evaporative gas is cooled by heat exchange with LNG in a heat exchanger.
  • this indirect heat exchange method that requires a heat exchanger, a large heat exchanger is required to secure a sufficient heat transfer area for heat exchange, and there is a problem that the equipment becomes large and costs increase.
  • heat transfer is indirect through the heat transfer surface, improvement in heat transfer performance on this heat transfer surface is also required.
  • Patent Document 2 discloses a method (direct contact heat exchange method) in which compressed evaporative gas is blown into an LNG pipe and directly brought into contact with LNG to exchange heat, and evaporative gas is blown into LNG.
  • an injection method an apparatus is disclosed in which one evaporative gas supply nozzle is arranged in the LNG pipe so as to be in a direction orthogonal to the flow direction of the discharge LNG flowing in the LNG pipe or in a direction opposite to the flow direction of the LNG.
  • the evaporative gas supply nozzle is bent in an L shape in the LNG pipe, and the discharge port of the nozzle is located on the center line of the LNG pipe so that the evaporative gas is directed in the direction opposite to the flow of LNG. Is discharged.
  • the discharged evaporative gas is cooled by heat exchange with LNG, condensed, liquefied and mixed with LNG.
  • the condensing and mixing device When the condensing and mixing device is capable of completely and uniformly condensing the evaporative gas and the low-temperature liquid, the condensate and the low-temperature liquid in which the evaporative gas is condensed are uniformly mixed as a mixed liquid, and the temperature of the mixed liquid Is lower than the saturation temperature (the maximum temperature at which the evaporating gas condenses under the pressure at that time). At this time, evaporative gas does not exist in the liquid mixture and is in a liquid state.
  • the temperature of the liquid mixture rises from the temperature of the low-temperature liquid before mixing.
  • the amount of evaporative gas blown into the low-temperature liquid is the maximum amount until the temperature of the mixed liquid of evaporative gas and low-temperature liquid rises to the saturation temperature (until the mixture becomes saturated). Can be blown in as. If an amount of evaporating gas exceeding this amount is blown, evaporating gas bubbles are present in the liquid mixture, which causes a problem.
  • the temperature of the liquid mixture should be lower than the saturation temperature in order to prevent the presence of evaporating gas bubbles in the liquid mixture.
  • the amount of evaporating gas blown into the low temperature liquid is reduced.
  • the difference between the actual temperature of the liquid mixture (the temperature of the liquid mixture flowing out from the condensing and mixing apparatus) and the saturation temperature is called the degree of supercooling.
  • the condensing and mixing performance in the condensing and mixing apparatus can be improved, the liquid mixture can be made into a liquid state even if the degree of supercooling is small, the amount of evaporation gas blown can be increased, and the processing capacity of the condensing and mixing apparatus can be increased. It can be expected to improve.
  • Patent Document 3 discloses a condensing and mixing device that generates hot water by injecting steam as evaporating gas into water as low-temperature liquid flowing through a mixing chamber in a pipe, condensing the steam, and mixing it with water. ing.
  • This condensing and mixing device is provided with a fixed swirl vane for imparting swirl to water in the mixing chamber, and the efficiency of mixing water and steam is improved by the fixed swirl vane.
  • the present invention increases the pressure of gaseous evaporative gas, and when this evaporative gas is brought into direct contact with a low temperature liquid such as LNG for reliquefaction, the evaporative gas is effectively condensed to a low temperature liquid. It is an object of the present invention to provide a condensing and mixing apparatus for mixing, a condensing and mixing method, and an evaporating gas reliquefaction apparatus and an evaporating gas reliquefaction method capable of effectively realizing reliquefaction of evaporating gas.
  • the above-described problems are solved by the condensing and mixing apparatus according to the first and second aspects of the invention, the evaporative gas reliquefaction apparatus according to the third aspect, the condensing and mixing method according to the fourth aspect, and the second aspect. It is solved by the evaporative gas reliquefaction method according to the fifth invention.
  • the condensing and mixing apparatus injects evaporative gas generated from the low temperature liquid into the main flow formed by the flow of the low temperature liquid, condenses the evaporative gas, and mixes it with the main temperature low temperature liquid.
  • a tubular body having an axis in the direction in which the low-temperature liquid flowing from upstream to downstream is circulated as the main stream is formed, and a part of the main stream is divided upstream of the tubular body.
  • a tangential inlet for receiving the substream obtained by the flow is formed, and a swirl flow forming portion for generating a swirl flow with respect to the main flow by the subflow, and the swirl flow formation downstream of the swirl flow forming portion
  • a venturi tube positioned on an extension line of the axis of the portion, receiving a low-temperature liquid forming the swirling flow from the swirling flow forming portion, and forming an evaporating gas hole for receiving the evaporating gas on a tube wall of the venturi tube.
  • a mixing tube section that condenses the evaporated gas and mixes with the low-temperature liquid forming the swirling flow to generate a mixed liquid.
  • the condensing and mixing apparatus injects evaporative gas generated from the low-temperature liquid into the main flow formed by the flow of the low-temperature liquid, condenses the evaporative gas, and mixes it with the main-stream low-temperature liquid.
  • a tubular body having an axis in the direction in which the low-temperature liquid flowing from upstream to downstream is circulated as the main stream is formed, and a part of the main stream is separated upstream of the tubular body.
  • a tangential inlet for receiving the substream obtained by the flow is formed, and a swirl flow forming portion for generating a swirl flow with respect to the main flow by the subflow, and the swirl flow formation downstream of the swirl flow forming portion
  • a venturi tube positioned on an extension line of the axis of the portion, receiving a low-temperature liquid forming the swirling flow from the swirling flow forming portion, and forming an evaporating gas hole for receiving the evaporating gas on a tube wall of the venturi tube.
  • a mixing tube section that condenses the evaporative gas and mixes with the low-temperature liquid that forms the swirling flow to generate a mixed liquid
  • a main flow meter that measures the flow rate of the main flow flowing into the swirling flow forming section
  • a secondary flow meter for measuring the flow rate of the secondary flow entering
  • a secondary flow adjustment valve for adjusting the flow rate of the secondary flow
  • a mixed solution thermometer for measuring the temperature of the mixed solution flowing out of the mixing pipe section
  • the liquid mixture pressure gauge for measuring the pressure of the liquid mixture, the correspondence between the pressure of the liquid mixture and the saturation temperature at the pressure as a first correspondence, and the allowable minimum value of the degree of supercooling of the liquid mixture
  • a storage means for storing in advance a second correspondence relationship between the secondary flow rate ratio obtained by dividing the secondary flow rate by the sum of the primary and secondary flow rates, and the first correspondence Based on the measured values of the main flow rate, the secondary flow rate, the temperature and pressure of the mixed solution, while referring to the relationship and the relationship
  • the control means is based on the measured values of the flow rate of the main flow, the flow rate of the secondary flow, the temperature and the pressure of the mixed liquid while referring to the first correspondence relationship and the second correspondence relationship.
  • the supercooling degree of the mixed liquid is always larger than the minimum value of the supercooling degree, so that the evaporated gas is surely condensed and effectively mixed with the low temperature liquid.
  • the “minimum value of the degree of supercooling” is the smallest value of the degree of supercooling that prevents the mixture from containing steam.
  • control means refers to the first correspondence relationship stored in the storage means, derives the saturation temperature corresponding to the measured value of the pressure of the mixed liquid, Supercooling degree calculating means for calculating a difference between the measured value of the temperature of the mixed liquid as the degree of supercooling of the mixed liquid, and the sum of the measured value of the main flow rate and the measured value of the substream flow rate.
  • the subflow flow rate ratio calculating means for calculating the subflow flow ratio by dividing the measured value of the flow rate, and the calculated value of the supercooling degree is the minimum supercooling degree in the second correspondence relationship stored in the storage means.
  • the secondary flow is such that the calculated value of the degree of supercooling is greater than the minimum value with reference to the second correspondence relationship.
  • the flow rate ratio is derived as a target value, and the side flow regulating valve is opened so that the calculated value of the side flow rate ratio follows the target value.
  • the “substream flow rate ratio” is a ratio obtained by dividing the substream flow rate by the sum of the main flow rate and the substream flow rate, and is formed in the swirl flow forming portion. This represents the strength of the swirling flow, that is, “swirl strength”.
  • the minimum value of supercooling is lower than when there is no swirling flow, and the minimum value of subcooling decreases as the side flow rate ratio (swirl strength) increases (Fig. 3). That is, by generating a swirling flow with respect to the main flow by the side flow, and as the swirling strength increases, the degree of supercooling decreases, and the mixing performance of the condensing and mixing apparatus improves.
  • the evaporative gas reliquefaction apparatus mixes the evaporative gas generated from the low temperature liquid stored in the storage tank with the low temperature liquid by injecting it into the low temperature liquid discharged from the storage tank and condensing it. Re-liquefy.
  • the third invention comprises the condensing and mixing apparatus according to the first invention or the second invention, a delivery pump for sending out the low temperature liquid from the storage tank, and an evaporating gas compressor for compressing the evaporating gas.
  • the low-temperature liquid is supplied to the swirl flow forming portion of the condensing and mixing device by the delivery pump, and the evaporating gas is injected into the mixing tube portion of the condensing and mixing device by the evaporative gas compressor.
  • the degree of supercooling of the mixed liquid is always greater than the minimum value as in the case of the second aspect. It can be condensed and efficiently mixed into a cryogenic liquid for reliquefaction.
  • the evaporative gas generated from the low temperature liquid is injected into the main flow formed by the flow of the low temperature liquid, and the evaporative gas is condensed and mixed with the main flow low temperature liquid.
  • the main flow rate measurement step for measuring the flow rate of the low-temperature liquid flowing as the main flow from upstream to downstream, and the low temperature flowing as a side flow obtained by dividing a part of the main flow
  • a substream flow rate measuring step for measuring the flow rate of the liquid, and the mainstream cryogenic liquid is circulated in the tubular body, and the substream cryogenic liquid is injected in a tangential direction of the tubular body, and the mainstream is introduced by the substream.
  • the first correspondence that is the correspondence between the pressure of the liquid mixture and the saturation temperature at that pressure, and the sum of the minimum value of the allowable subcooling of the mixed liquid and the flow rates of the main flow and the subflow.
  • control step refers to the first correspondence relationship, derives the saturation temperature corresponding to the measured value of the mixed liquid pressure, and then derives the saturated temperature derived value and the measured temperature of the mixed liquid.
  • the subcooled flow rate is calculated by subtracting the measured value of the secondary flow rate from the sum of the measured value of the main flow rate and the measured value of the secondary flow rate.
  • the sub-flow rate ratio calculation step for calculating the sub-flow rate ratio, and the calculated value of the supercooling degree is compared with the minimum value of the supercooling degree in the second correspondence relationship.
  • the second correspondence relationship is referred to, and a subflow flow rate ratio in which the calculated value of the degree of supercooling is larger than the minimum value is derived as a target value. It is preferable to have a secondary flow rate adjustment step of increasing the secondary flow rate so as to follow the target value.
  • the evaporative gas reliquefaction method according to the fifth aspect of the present invention is to mix evaporative gas generated from the low temperature liquid stored in the storage tank into the low temperature liquid by injecting it into the low temperature liquid discharged from the storage tank and condensing it. Re-liquefy.
  • the fifth invention comprises the steps described in the condensing and mixing method according to the fourth invention, a delivery step for sending out the cryogenic liquid from the storage tank, and an evaporative gas compression step for compressing the evaporative gas.
  • the low temperature liquid is supplied to the tubular body in the delivery step, and the evaporation gas is injected into the venturi tube in the evaporation gas compression step.
  • the flow of the low-temperature liquid in the secondary flow is controlled by the control means or the control process so that the degree of supercooling of the mixed liquid always becomes larger than the minimum value. It is possible to reliably condense and effectively mix and re-liquefy in the low temperature liquid, and it is possible to prevent the pump from being damaged due to the evaporating gas flowing into the pump as a gas. Further, the reliquefaction of the evaporative gas is completed efficiently in a short time, and as a result, the apparatus configuration can be made compact.
  • FIG. 1 is a schematic configuration diagram of an evaporative gas reliquefaction apparatus according to an embodiment of the present invention.
  • FIG. 2-1 is a schematic configuration diagram of a condensing and mixing device used in the evaporative gas reliquefaction device of FIG.
  • FIG. 2-2 is a cross-sectional view taken along the line BB of FIG. 2-1.
  • FIG. 3 is a diagram showing the relationship between the minimum value of the degree of supercooling of the mixed liquid and the side flow rate ratio (swirl strength).
  • FIG. 1 is a schematic configuration diagram of an evaporative gas reliquefaction apparatus provided with a condensing and mixing apparatus as one embodiment of the present invention.
  • reference numeral 1 denotes an evaporative gas reliquefaction device of the present embodiment, which has a condensing and mixing device 2 having a structure shown in detail in FIGS. 2-1 and 2-2 later.
  • a feed pump 3 for sending a cryogenic liquid 25 to the condensing and mixing device 2 and an evaporating gas compressor 4 for injecting evaporating gas 26.
  • the cryogenic liquid 25 is, for example, a part of liquefied natural gas (LNG) stored in a tank (not shown), and the evaporative gas 26 is, for example, a part of liquefied natural gas in the tank. Is a boil-off gas (BOG) generated by evaporation.
  • LNG liquefied natural gas
  • BOG boil-off gas
  • the cryogenic liquid 25 is sent out by the delivery pump 3 and flows into the condensing and mixing device 2.
  • the evaporative gas 26 compressed by the evaporative gas compressor 4 is injected into the low-temperature liquid 25 flowing in the condensing and mixing apparatus 2.
  • a booster pump 5 is connected to the outlet side of the condensing and mixing device 2 and condenses and mixes the evaporated gas 26 condensed after being injected into the low temperature liquid 25 and mixed with the low temperature liquid 25 in a liquefied state.
  • the mixed low temperature liquid (hereinafter referred to as “mixed liquid”) discharged from the apparatus 2 is pressurized. For example, if the low-temperature liquid 25 is liquefied natural gas, the pressurized liquid mixture is sent to the vaporizer, gasified again, and sent to the demand side as city gas.
  • the condensing and mixing device 2 includes a main flow pipe 6 that circulates a low-temperature liquid 25 flowing from the upstream side toward the downstream side as a main flow, and a low-temperature liquid branched from the main flow pipe 6.
  • a subflow pipe 7 that circulates 25 as a substream, a swirl flow forming section 8 that receives the main stream and the low-temperature liquid 25 of the subflow and generates a swirl flow with respect to the main flow by the subflow, and the swirl flow Receiving the low-temperature liquid 25 and the evaporative gas 26, condensing the evaporative gas 26 and mixing it with the low-temperature liquid 25 to produce a mixed liquid, and the mixed liquid flowing out of the mixed pipe section 9 downstream And a mixed liquid pipe 10 to be circulated to the side.
  • the condensing and mixing device 2 further includes a main flow meter 11 and a main flow adjusting valve 12 provided in the main flow pipe 6, a sub flow meter 13 and a sub flow adjusting valve 14 provided in the sub flow pipe 7, and a mixed liquid pipe.
  • 10 stores a mixed liquid pressure gauge 15 and a mixed liquid thermometer 16, a control unit 17 for controlling the flow rates of the main flow and the substream, and data referred to in the control by the control unit 17.
  • the secondary flow pipe 7 is branched from the main flow pipe 6 on the upstream side of the swirl flow forming portion 8, and is obtained by dividing a part of the main flow flowing in the main flow pipe 6.
  • the secondary flow is circulated toward the swirl flow forming portion 8.
  • the swirl flow forming portion 8 is a tubular body having an axis in the direction from the upstream to the downstream (left and right in FIG. 2A), and is connected to the downstream end of the main flow tube 6.
  • a tangential inlet 8A to which the downstream end of the subflow pipe 7 is connected is formed in the tube wall of the swirling flow forming section 8, and the cryogenic liquid 25 forming the subflow is supplied to the tangential inlet 8A.
  • 8 A is received in the tangential direction of the swirl flow forming portion 8.
  • the cryogenic liquid 25 flowing in the side flow pipe 7 can be injected into the tangential inlet 8A with the flow momentum originally provided by the delivery pump 3, but in order to obtain the momentum more reliably, It is preferable to provide a pump in the flow tube 7.
  • the mixing tube portion 9 receives from the swirl flow forming portion 8 a horizontal cylindrical casing 19 connected to the downstream end of the swirl flow forming portion 8 and a low-temperature liquid 25 housed in the casing 19 and forming swirl flow. It has a venturi tube 20 and an insert 21 inserted in a space between the casing 19 and the venturi tube 20.
  • the axis of the mixing tube portion 9 is located on the extension of the axis of the swirling flow forming portion 8 (see the axis X in FIG. 2-1).
  • the casing 19 has an inlet portion 19A on the upstream side in the flow direction of the cryogenic liquid 25, an outlet portion 19B on the downstream side, and a storage portion 19C in which the venturi tube 20 is stored and disposed at an intermediate position therebetween.
  • the inlet portion 19A and the outlet portion 19B have the same inner diameter, and the inner diameter is increased in the accommodating portion 19C.
  • the central axes of the inlet portion 19A, the outlet portion 19B, and the accommodating portion 19C are located on the same straight line (see the axial line X in FIG. 2-1).
  • the accommodating portion 19C has an inner diameter larger than the outer diameter of the venturi tube 20, forms a space around the venturi tube 20, and is an insert 21 made of a woven or knitted fibrous metal wire such as stainless steel.
  • an evaporating gas injection part 19D that opens upward is formed at an upper upstream side position of the housing part 19C, and the evaporating gas 26 fed from the evaporating gas compressor 4 is supplied to the evaporating gas injection part 19D.
  • the evaporative gas injection part 19D is opened at the upper upstream side position of the accommodating part 19C, but the position of the evaporative gas injection part 19D is not limited to this.
  • an opening may be formed at a position upstream of the side portion of the accommodating portion 19C.
  • the venturi tube 20 has mounting flanges 20D and 20E projecting radially outward on both sides in the direction of the axis X, and the venturi tube 20 and the mounting flanges 20D and 20E are placed in the housing portion 19C of the casing 19, respectively. It is attached so that the axis X of the inlet 19A and the outlet 19B of the casing 19 coincides and is positioned on one straight line.
  • the inner diameter of the venturi tube 20 has a reduced diameter portion 20A located on the inlet portion 19A side of the casing 19, a throat portion 20B located immediately after the reduced diameter portion 20A, and an expanded portion extending from the throat portion 20B toward the outlet portion 19B.
  • the diameter portion 20C is sequentially formed.
  • the diameter-reduced portion 20A has a curved surface and the inner diameter is relatively abruptly reduced to narrow the flow path cross-sectional area, and the diameter-expanded portion 20C is expanded so as to recover the inner diameter over a long distance in the axis X direction.
  • the throat portion 20B connects the reduced diameter portion 20A and the enlarged diameter portion 20C with a smooth curved surface so as to have a low resistance to the flow of the cryogenic liquid 25, and has a minimum diameter so as to have a minimum flow path cross-sectional area. Is formed.
  • the reduced diameter portion 20A and the throat portion 20B may be formed in a shape other than a curved surface, and for example, may be formed in a shape in which truncated cones having different inclination angles with respect to the rotation axis are combined. That is, the reduced diameter portion 20A and the throat portion 20B may be formed in a shape in which straight lines are combined when viewed in the cross section shown in FIG.
  • a large number of evaporative gas holes 20C-1 having a small diameter are formed in the enlarged diameter portion 20C at a plurality of positions in the circumferential direction and in the liquid flow direction.
  • Each of the evaporative gas holes 20C-1 is formed so as to penetrate the tube wall of the venturi tube 20 in the radial direction, and is inclined inward in the radial direction toward the radial inward.
  • the evaporated gas 26 injected from the evaporated gas injection part 19D is dispersed from the plurality of evaporated gas holes 20C-1 and sucked into the enlarged diameter part 20C.
  • the evaporative gas 26 is condensed in the swirling low temperature liquid 25 flowing in the enlarged diameter portion 20C and mixed with the swirling low temperature liquid 25 to generate a mixed liquid.
  • the mixed liquid pipe 10 is connected to the downstream end of the outlet part 19B of the casing 19 of the mixing pipe part 9, and the mixed liquid generated in the mixed pipe part 9 is directed to the downstream side, that is, the booster pump 5 side. To distribute.
  • the main flow meter 11 and the main flow control valve 12 are provided in the main flow pipe 6 respectively.
  • the main flow meter 11 measures the flow rate of the mainstream cryogenic liquid 25 flowing in the main flow pipe 6 and flowing into the swirl flow forming unit 8.
  • the main flow regulating valve 12 can adjust the main flow rate by adjusting the opening degree under the control of the control means 17 described later.
  • the secondary flow meter 13 and the secondary flow adjustment valve 14 are provided in the secondary flow pipe 7 respectively.
  • the side flow meter 13 measures the flow rate of the side-stream cryogenic liquid 25 injected into the swirling flow forming unit 8 through the side flow pipe 7.
  • the subflow adjusting valve 14 can adjust the flow rate of the subflow by adjusting the opening degree under the control of the control means 17 described later.
  • the mixed liquid pressure gauge 15 and the mixed liquid thermometer 16 are provided in the mixed liquid pipe 10, respectively, and measure the pressure and temperature of the mixed liquid flowing out of the mixed pipe portion 9 and flowing in the mixed liquid pipe 10, respectively. .
  • the storage means 18 uses the data of the correspondence between the pressure of the liquid mixture and the saturation temperature at that pressure as the first correspondence A, and the allowable minimum value of the degree of subcooling of the liquid mixture and the side flow rate ratio (swirl) Strength) is stored in advance as second correspondence B (see FIG. 3).
  • the data of the first correspondence relationship A and the second correspondence relationship B is referred to by the control means 17 when controlling the flow rate of the secondary flow, as will be described later.
  • the “minimum value of the degree of supercooling” is the smallest value of the degree of supercooling that prevents the mixture from containing steam.
  • the degree of supercooling is calculated by the supercooling degree calculation means 22 as the difference between the derived value of the saturation temperature and the measured value of the temperature of the mixed liquid.
  • the “substream flow rate ratio” is the ratio of the substream flow rate to the sum of the mainstream flow rate and the substream flow rate. It is calculated by dividing the measured value of the flow rate of the secondary flow by the sum of the measured value of the flow rate.
  • the storage means 18 preferably stores the first correspondence relationship A in the form of, for example, a relational expression between the pressure of the liquid mixture and a saturation temperature, a relationship diagram, or a steam table.
  • FIG. 3 is a diagram showing the relationship between the minimum value of the degree of supercooling of the mixed liquid and the side flow rate ratio (swirl strength), that is, the second correspondence B.
  • the minimum value of the degree of subcooling of the mixed liquid becomes smaller when the side flow rate ratio is 0, that is, when there is swirling, compared to the case where there is no swirling, and
  • the minimum value and the secondary flow rate ratio (swirl strength) have a relationship that the minimum value of the degree of supercooling decreases as the secondary flow rate ratio increases.
  • the minimum value of the degree of supercooling decreases, the temperature of the liquid mixture in the liquid state in which no vapor is present in the liquid mixture approaches the saturation temperature, and the mixing performance of the condensing and mixing device 2 improves.
  • the control unit 17 includes a supercooling degree calculating unit 22 that calculates the degree of supercooling of the mixed liquid, a substream flow rate ratio calculating unit 23 that calculates a substream flow rate ratio, and main flow adjustment. And a flow rate adjusting means 24 for adjusting the opening degree of each of the valve 12 and the auxiliary flow adjusting valve 14.
  • the supercooling degree calculation means 22 refers to the first correspondence A stored in the storage means 18 and derives the saturation temperature corresponding to the measured value of the pressure of the mixed liquid, The difference from the measured value of the temperature of the mixed solution is calculated as the degree of supercooling of the mixed solution.
  • the secondary flow rate ratio calculating means 23 calculates the secondary flow rate ratio by dividing the measured value of the secondary flow by the sum of the measured value of the primary flow and the measured value of the secondary flow.
  • the flow rate adjusting unit 24 compares the calculated value of the degree of supercooling with the minimum value of the degree of supercooling in the second correspondence relationship B (see FIG. 3) stored in the storage unit 18. When the calculated value is equal to or less than the minimum value, the second correspondence relationship B is referred to, and a subflow rate ratio in which the calculated value of the degree of supercooling is larger than the minimum value is derived as a target value.
  • the flow rate of the secondary flow is increased by increasing the opening of the secondary flow adjustment valve 14 so that the calculated value of the secondary flow rate ratio follows the target value.
  • a part of a low-temperature liquid (for example, LNG) 25 in a tank (not shown) is sent out by the delivery pump 3 and introduced into the condensing and mixing apparatus 2.
  • the evaporative gas 26 generated in the tank is raised to a pressure (intermediate pressure) between the atmospheric pressure and the city gas operating pressure (4 to 7 MPa) by the evaporative gas compressor 4, and then supplied to the condensing and mixing device 2. be introduced.
  • the cryogenic liquid 25 introduced into the condensing and mixing device 2 flows through the main flow pipe 6 as a main flow and directly flows into the swirl flow forming unit 8. Further, a part of the mainstream cryogenic liquid 25 flowing through the main flow pipe 6 flows as a subflow through the subflow pipe 7 and is injected in the tangential direction from the tangential inlet 8A of the swirl flow forming portion 8.
  • the cryogenic liquid 25 that has directly flowed into the swirling flow forming section 8 flows in the direction of the axis X, and the cryogenic liquid 25 injected from the tangential inlet 8A flows in the circumferential direction to generate a swirling flow with respect to the main flow.
  • the low-temperature liquid 25 flowing in the direction of the axis X from the upstream side is also affected by the swirling flow, and the entire low-temperature liquid 25 flowing in the swirling flow forming unit 8 swirls.
  • a flow is formed.
  • the flow rates of the main flow and the sub flow are controlled by adjusting the opening degrees of the main flow adjustment valve 12 and the sub flow adjustment valve 14 by the control means 17.
  • the cryogenic liquid 25 that has been swirled in the swirling flow forming section 8 flows into the venturi pipe 20 through the inlet 19A provided in the casing 19 of the mixing pipe section 9 that accommodates the venturi pipe 20, and is reduced in diameter. It flows through the part 20A, the throat part 20B and the enlarged diameter part 20C and reaches the outlet part 19B of the casing 19.
  • the low-temperature liquid 25 flowing in the Venturi tube 20 increases the flow velocity at the reduced diameter portion 20A, reaches the maximum flow velocity at the throat portion 20B, and then gradually decreases the flow velocity at the expanded diameter portion 20C, but downstream at the expanded diameter portion 20C. Since the maximum inner diameter at the end (right end in FIG.
  • the evaporative gas 26 is pressurized by the evaporative gas compressor 4 and is injected into the casing 19 through the evaporative gas injection part 19D provided in the casing 19 of the condensing and mixing apparatus 2.
  • an insert 21 is inserted on the outer periphery of the venturi tube 20, and is pumped by the evaporative gas compressor 4 from the evaporative gas injection portion 19D.
  • the injected evaporative gas 26 is buffered by the insert 21 and diffuses over the entire circumference and the entire length of the venturi 20 in the accommodating portion 19C.
  • the low-temperature liquid 25 flowing through the enlarged diameter portion 20C of the venturi pipe 20 brings a suction force to the evaporative gas hole 20C-1 due to the venturi phenomenon, so that the evaporated gas diffused in the accommodating portion 19C. 26 is sucked and introduced from each of the evaporating gas holes 20C-1 into the enlarged diameter portion 20C.
  • the evaporative gas hole 20C-1 is inclined upstream in the radial direction, so that the evaporative gas 26 that has flowed in opposes the flow of the mainstream cryogenic liquid 25 in the venturi tube 20. It joins under low resistance without any problems.
  • the mainstream cryogenic liquid 25 forms a swirling flow, the evaporative gas 26 is sufficiently mixed with the cryogenic liquid 25 both in the circumferential direction and in the radial direction.
  • the evaporative gas 26 sucked and introduced into the enlarged diameter portion 20C is mixed in the low temperature liquid 25 and cooled by the low temperature liquid 25.
  • the evaporative gas 26 is condensed and reliably liquefied, and flows downstream as a part of the cryogenic liquid 25.
  • the low-temperature liquid 25 containing the re-liquefied evaporative gas 26 is boosted by the booster pump 5 and brought to the vaporizer, and then vaporized by the vaporizer and sent to the demand side as city gas.
  • the supercooling degree calculation means 22 of the control means 17 refers to the first correspondence relationship A stored in the storage means 18 and saturates corresponding to the measured value of the pressure of the mixed liquid measured by the mixed liquid pressure gauge 15. The temperature is calculated, and then the difference between the calculated saturation temperature and the measured value of the temperature of the liquid mixture measured by the liquid mixture thermometer 16 is calculated as the degree of supercooling. Further, the side flow rate ratio calculating means 23 is the sum of the measurement value of the main flow rate measured by the main flow meter 11 and the measurement value of the sub flow rate measured by the sub flow meter 13. The measured value of the flow rate is divided to calculate the side flow rate ratio (turning strength).
  • the flow rate adjusting unit 24 compares the calculated value of the degree of supercooling calculated by the degree of supercooling calculating unit 22 with the minimum value of the degree of supercooling in the second correspondence relationship B stored in the storage unit 18. As a result of this comparison, when the calculated value of the degree of supercooling is larger than the minimum value, it can be said that the evaporative gas 26 is mixed in the low temperature liquid 25 without being present as bubbles in the low temperature liquid 25. Therefore, the flow rate adjusting means 24 does not perform control for opening the subflow adjusting valve 14. That is, since a substream is not injected into the swirl flow forming unit 8, a state in which a swirl flow is not formed with respect to the main flow is maintained.
  • the flow rate adjusting means 24 refers to the second correspondence B, derives the subflow flow rate ratio so that the calculated value of the degree of supercooling is larger than the minimum value, and sets the subflow flow rate ratio as a target value.
  • the opening degree of the secondary flow regulating valve 14 is adjusted so that the calculated value of the secondary flow rate ratio calculated by the calculation means 23 follows the target value.
  • the low-temperature liquid 25 of the side flow adjusted to an appropriate flow rate is injected tangentially into the swirl flow forming unit 8 to form a swirl flow with respect to the main flow, thereby reducing the minimum value. Therefore, the evaporative gas 26 can be reliably condensed and mixed with the low temperature liquid 25 without remaining in the low temperature liquid 25.
  • the flow rate of the mixed liquid is changed greatly from the state in which the swirl flow is not formed (the swirl strength is 0%) and the supercooling degree of the mixed liquid is operated at 5 ° C.
  • the degree of supercooling of the mixed liquid is the minimum value (5 ° C.). Therefore, if it remains as it is, bubbles of the evaporative gas 26 remain in the liquid mixture, and the flow rate of the evaporative gas 26 cannot be increased.
  • the secondary flow regulating valve 14 is opened, and the secondary low-temperature liquid 25 is injected tangentially into the swirl flow forming unit 8 to form a swirl flow, thereby reducing the minimum value of the degree of supercooling and the liquid mixture. Increase the temperature.
  • the main flow regulating valve 12 is slightly throttled at the same time, it becomes easy to increase the flow rate of the secondary flow. As shown in FIG. 3, when the temperature of the mixed solution is increased by 2 ° C. (increase from 5 ° C. to 3 ° C.), the side flow rate ratio (swirl strength) is adjusted to about 30%.
  • the condensation and mixing performance of the evaporative gas 26 is enhanced, so that bubbles of the evaporative gas 26 do not remain in the mixed liquid.
  • the application of such swirling causes an increase in the pressure loss of the fluid in the condensing and mixing apparatus 2 and increases the power of the pump to be supplied. Therefore, the imparting of swirling should be performed only when the degree of supercooling of the mixed liquid is reduced. Is desirable. In this way, by providing swirl only when necessary, it is possible to suppress an increase in pressure loss to a minimum as compared with the case where a device such as a fixed swirl blade is provided, and unnecessarily reduce energy consumption. An increase can be prevented.
  • Rotation imparting control as described above is performed when the amount of the evaporation gas 26 to be condensed and mixed in the low temperature liquid 25 is increased as described above.
  • the swirl imparting control is performed, for example, by increasing the temperature of the obtained mixed liquid as in the case of mixing the water as the low temperature liquid 25 with the water vapor as the evaporating gas 26 to generate the hot water as the mixed liquid. This is also effective when desired.
  • the evaporative gas 26 is effectively mixed into the low-temperature liquid 25.
  • the liquid can be reliquefied, and the evaporation gas 26 can be prevented from flowing into the pump as a gas and causing a failure of the pump.
  • the pressure loss of the condensing and mixing device 2 can be minimized, and the liquefaction of the evaporative gas 26 is efficiently performed. While completing in a short time, the apparatus configuration can be made compact.
  • control means 17 controls both the main flow adjustment valve 12 and the sub flow adjustment valve 14, but instead of this, only the main flow adjustment valve 12 or the sub flow adjustment valve 14 is used. Only the control may be performed. In this case, of the main flow adjustment valve 12 and the sub flow adjustment valve 14, the adjustment valve that is not the control target has a constant opening.
  • the condensing and mixing apparatus 2 is arranged in the horizontal direction, but may be arranged in the vertical direction.
  • the condensing and mixing device 2 is arranged in the vertical direction, the low-temperature liquid 25 is circulated downward in the vertical direction, and the evaporative gas 26 flows in from the horizontal direction. Therefore, the condensing and mixing of the evaporative gas 26 is performed more stably.
  • the calculated value of the degree of supercooling is compared with the minimum value of the degree of supercooling in the second correspondence B, and the side flow rate ratio is set such that the calculated value of the degree of supercooling is larger than the minimum value.
  • the flow rate of the secondary flow is adjusted as the target value, but the target system is required to set the secondary flow rate ratio that is larger than the value obtained by adding a constant value to the minimum value of the degree of subcooling. The safety factor may be reflected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

蒸発ガスを効果的に凝縮して低温液体へ混合するために、凝縮混合装置2は、混合液の圧力とその圧力での飽和温度との対応関係を第一対応関係Aとして、そして許容し得る混合液の過冷度の最小値と、主流および副流の流量の和で該副流の流量を除して得られる副流流量比との対応関係を第二対応関係Bとして予め記憶している記憶手段18と、上記第一対応関係Aおよび上記第二対応関係Bを参照しつつ、上記主流の流量、上記副流の流量、上記混合液の温度および圧力のそれぞれの計測値に基いて、上記混合液の過冷度が上記最小値より大きくなるように副流調整弁14の開度を調整して上記副流の流量を制御する制御手段17とを備えている。

Description

凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法
 本発明は、蒸気と低温液体を接触させ蒸気を凝縮し液化して低温液体に混合する凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法に関する。
 液化天然ガス(LNG)をはじめとする低温液体をタンクで貯蔵する場合、外部からのタンクへの入熱によりタンク内の低温液体の一部が蒸発し、タンク内には蒸発ガスが発生する。低温液体がLNGの場合には、メタンを主成分とする蒸発ガスが発生する。
 発生した蒸発ガスは、そのまま圧縮して都市ガスとして需要側へ供給することも可能であるが、圧縮動力が非常に大きくなる。そこで、かかる動力を削減するために、蒸発ガスを再液化して液の状態で昇圧した後に再びガス化して都市ガスとして供給することが考えられる。再液化するには、蒸発ガスを圧縮し、そして冷却する工程を経ることになるが、その冷却方法として、タンクからの低温液体としての払出LNGの冷熱で蒸発ガスを冷却する、つまり圧縮された蒸発ガスをLNGとの間で熱交換して冷却する方法が、特許文献1,2に開示されている。
 特許文献1では、圧縮された蒸発ガスを熱交換器でLNGと熱交換して冷却する方式(間接熱交換方式)が開示されている。しかし、熱交換器を要するこの間接熱交換方式では、熱交換のための十分な伝熱面積を確保するために大型の熱交換器が必要となり、設備が大型になりコストが嵩むという問題がある。さらには、伝熱が伝熱面を介しての間接であるため、この伝熱面での伝熱性能の改善も求められる。
 これに対し、特許文献2では、圧縮された蒸発ガスをLNG配管内に吹き込みLNGと直接に接触させて熱交換する方式(直接接触熱交換方式)が開示され、蒸発ガスのLNG中への吹込み方法として、LNG配管内を流れる払出しLNGの流れ方向と直交する方向もしくはLNGの流れ方向に逆らう方向になるように一つの蒸発ガス供給ノズルをLNG配管内に配置する装置が開示されている。該蒸発ガス供給ノズルは、LNG配管内でL字状に屈曲されていて、LNG配管の中心線上に該ノズルの吐出口が位置していて蒸発ガスがLNGの流れと逆方向に向けてLNG中へ吐出されている。吐出された蒸発ガスは、LNGとの熱交換により冷却され、凝縮して液化しLNGと混合される。
 このような特許文献2の直接接触熱交換方式は、伝熱面を介さずに熱交換するためLNGと蒸発ガスの両者が接する界面での伝熱性能は向上する。しかし、直接接触熱交換方式では、気体である蒸発ガスと低温液体であるLNGの密度の違いから、蒸発ガスと低温液体の接触、混合が十分に行われないことに起因して液化効率が悪くなりやすい。その改善のために、気体の蒸発ガスと低温液体のLNGとを混合し蒸発ガスを凝縮させ混合する効率的な凝縮混合装置が要望されているが、特許文献2の方法であっても、気体の蒸発ガスと液体のLNGの接触、混合を十分に確保でき、所望の液化性能を確保できるとは言い難い。
 凝縮混合装置が蒸発ガスと低温液体とを完全に均一に凝縮混合できている場合には、蒸発ガスが凝縮した凝縮液と低温液体とは混合液として均一に混合されており、混合液の温度は飽和温度(その際の圧力下で蒸発ガスが凝縮する最高温度)より低い温度になっている。このとき、混合液中には蒸発ガスが存在せず液体状態である。
 低温液体に蒸発ガスを吹き込み、蒸発ガスを液体と接触させて冷却し凝縮させるとき、混合液の温度は混合前の低温液体の温度から上昇する。低温液体に蒸発ガスを吹き込む量は、吹き込んだときの蒸発ガスと低温液体の混合液の温度が(上昇して)飽和温度となるまで(混合液が飽和状態になるまで)の量を最大量として吹き込むことができる。この量を超える量の蒸発ガスを吹き込むと、混合液中に蒸発ガスの気泡が存在し問題が生じる。
 実際には、凝縮混合装置が完全に均一に凝縮混合できるわけではないので、混合液中に蒸発ガスの気泡が存在しないようにするため、混合液の温度を飽和温度より低い温度にするように低温液体に蒸発ガスを吹き込む量を少なくしている。この実際の混合液の温度(凝縮混合装置から流出される混合液の温度)と飽和温度との差を過冷度という。
 凝縮混合装置から流出される混合液を液体状態とするためには、所定の過冷度を保つことが必要であり、そのために低温液体に蒸発ガスを吹き込む量を制限することが必要となっている。ここで、凝縮混合装置における凝縮混合性能を向上させることができれば、過冷度が小さくても混合液を液体状態とすることができ、蒸発ガス吹き込み量を増大でき、凝縮混合装置の処理能力を向上させることが期待できる。
 特許文献3には、管内の混合室を流通する低温液体としての水に蒸発ガスとしての蒸気を注入して該蒸気を凝縮して水に混合することにより温水を生成する凝縮混合装置が開示されている。この凝縮混合装置には、混合室内で水に旋回を付与するための固定旋回羽根が設けられており、該固定旋回羽根によって水と蒸気との混合効率の向上が図られている。
特開昭55-145897号公報 特開平08-173781号公報 特開平7-116486号公報
 しかしながら、気体の蒸発ガスを昇圧して低温液体に直接接触させる場合、十分な凝縮混合性能が確保されないと、低温液体に合流した蒸発ガスが完全に液化されず、液化されないままで気泡が残留した状態で液送ポンプに供給されると、液送が困難になるのみならず、液送ポンプの故障の原因にもなる。また、特許文献3のような凝縮混合性能を向上させる旋回付与機構を備えた凝縮混合装置において、該凝縮混合装置内の流体は固定旋回羽根を通過するため、凝縮混合装置の圧力損失が大きくなるという問題がある。
 かかる事情に鑑み、本発明は、気体の蒸発ガスを昇圧して、この蒸発ガスをLNG等の低温液体に直接接触させて再液化させる際に、蒸発ガスを効果的に凝縮して低温液体へ混合する凝縮混合装置、凝縮混合方法、そして蒸発ガスの再液化を効果的に実現できる蒸発ガス再液化装置及び蒸発ガス再液化方法を提供することを課題とする。
 上述した課題は、本発明によると、次のような構成の第一発明及び第二発明に係る凝縮混合装置、第三発明に係る蒸発ガス再液化装置、第四発明に係る凝縮混合方法及び第五発明に係る蒸発ガス再液化方法により解決される。
 <第一発明>
 第一発明に係る凝縮混合装置は、低温液体から発生した蒸発ガスを該低温液体の流れで形成される主流へ注入して、該蒸発ガスを凝縮して上記主流の低温液体に混合する。
 かかる凝縮混合装置において、第一発明では、上流から下流へ向けて流れる低温液体を上記主流として流通させる方向に軸線をもつ管状体をなし、該管状体よりも上流側で主流の一部を分流して得られる副流を受ける接線方向注入口が形成され、上記副流により上記主流に対して旋回流を生じさせる旋回流形成部と、該旋回流形成部よりも下流側で該旋回流形成部の軸線の延長線上に位置するベンチュリ管を有し、上記旋回流形成部から上記旋回流をなす低温液体を受けるとともに、上記ベンチュリ管の管壁に上記蒸発ガスを受ける蒸発ガス孔が形成され、該蒸発ガスを凝縮して上記旋回流をなす低温液体に混合して混合液を生成する混合管部とを備えることを特徴としている。
 <第二発明>
 第二発明に係る凝縮混合装置は、低温液体から発生した蒸発ガスを該低温液体の流れで形成される主流へ注入して、該蒸発ガスを凝縮して上記主流の低温液体に混合する。
 かかる凝縮混合装置において、第二発明では、上流から下流へ向けて流れる低温液体を上記主流として流通させる方向に軸線をもつ管状体をなし、該管状体よりも上流側で主流の一部を分流して得られる副流を受ける接線方向注入口が形成され、上記副流により上記主流に対して旋回流を生じさせる旋回流形成部と、該旋回流形成部よりも下流側で該旋回流形成部の軸線の延長線上に位置するベンチュリ管を有し、上記旋回流形成部から上記旋回流をなす低温液体を受けるとともに、上記ベンチュリ管の管壁に上記蒸発ガスを受ける蒸発ガス孔が形成され、該蒸発ガスを凝縮して上記旋回流をなす低温液体に混合して混合液を生成する混合管部と、上記旋回流形成部に流入する上記主流の流量を計測する主流流量計と、上記旋回流形成部に流入する上記副流の流量を計測する副流流量計および該副流の流量を調整するための副流調整弁と、上記混合管部から流出する混合液の温度を計測する混合液温度計および該混合液の圧力を計測する混合液圧力計と、上記混合液の圧力とその圧力での飽和温度との対応関係を第一対応関係として、そして許容し得る混合液の過冷度の最小値と、上記主流および副流の流量の和で該副流の流量を除して得られる副流流量比との対応関係を第二対応関係として予め記憶している記憶手段と、上記第一対応関係および上記第二対応関係を参照しつつ、上記主流の流量、上記副流の流量、上記混合液の温度および圧力のそれぞれの計測値に基いて、上記混合液の過冷度が上記最小値より大きくなるように上記副流調整弁の開度を調整して上記副流の流量を制御する制御手段とを備えることを特徴としている。
 第二発明では、制御手段が、上記第一対応関係および上記第二対応関係を参照しつつ、上記主流の流量、上記副流の流量、上記混合液の温度および圧力のそれぞれの計測値に基いて上記副流の流量を制御することにより、上記混合液の過冷度が常に上記過冷度の最小値より大きくなるので、蒸発ガスを確実に凝縮させて低温液体に効果的に混合することができる。ここで、「過冷度の最小値」とは、混合液に蒸気が存在しないようにする過冷度の最も小さい値である。
 第二発明において、制御手段は、記憶手段に記憶されている第一対応関係を参照して、混合液の圧力の計測値に対応する飽和温度を導出してから、飽和温度の導出値と上記混合液の温度の計測値との差を該混合液の過冷度として算出する過冷度算出手段と、主流の流量の計測値と副流の流量の計測値との和で該副流の流量の計測値を除して副流流量比を算出する副流流量比算出手段と、上記過冷度の算出値を、上記記憶手段に記憶されている第二対応関係における過冷度の最小値と比較して、上記過冷度の算出値が上記最小値以下であるときには、上記第二対応関係を参照して、上記過冷度の算出値が上記最小値より大きくなるような副流流量比を目標値として導出し、副流流量比の算出値が上記目標値に追従するように、副流調整弁の開度を大きくして副流の流量を増大させる副流流量調整手段とを有していることが好ましい。
 ここで、「副流流量比」とは、上述したように、主流の流量と副流の流量との和で副流の流量を除して得られる比であり、旋回流形成部で形成される旋回流の強さ、すなわち「旋回強さ」を表す。旋回流がある場合は、旋回流がない場合と比べて過冷度の最小値が低下し、また、副流流量比(旋回強さ)が大きいほど過冷度の最小値が低下する(図3参照)。つまり、副流により主流に対して旋回流を生じさせることによって、また、旋回強さが大きいほど過冷度が小さくなり、凝縮混合装置の混合性能が向上する。
 <第三発明>
 第三発明に係る蒸発ガス再液化装置は、貯槽内に貯留された低温液体から発生する蒸発ガスを、貯槽から払い出された低温液体に注入して凝縮させることにより該低温液体に混合して再液化する。
 かかる蒸発ガス再液化装置において、第三発明では、第一発明又は第二発明に係る凝縮混合装置と、貯槽から低温液体を送出する送出ポンプと、蒸発ガスを圧縮する蒸発ガス圧縮機とを備え、該送出ポンプで低温液体を凝縮混合装置の旋回流形成部へ供給し、上記蒸発ガス圧縮機で蒸発ガスを凝縮混合装置の上記混合管部内へ注入するようになっていることを特徴としている。
 第二発明に係る凝縮混合装置を備える構成の蒸発ガス再液化装置によれば、第二発明と同様に、上記混合液の過冷度が常に上記最小値より大きくなるので、蒸発ガスを確実に凝縮させて低温液体に効率的に混合して再液化させることができる。
 <第四発明>
 第四発明に係る凝縮混合方法は、低温液体から発生した蒸発ガスを該低温液体の流れで形成される主流へ注入して、該蒸発ガスを凝縮して上記主流の低温液体に混合する。
 かかる凝縮混合方法において、第四発明では、上流から下流へ向けて上記主流として流れる低温液体の流量を計測する主流流量計測工程と、上記主流の一部を分流して得られる副流として流れる低温液体の流量を計測する副流流量計測工程と、上記主流の低温液体を管状体内に流通させるとともに、上記副流の低温液体を上記管状体の接線方向で注入して、上記副流により上記主流に対して旋回流を生じさせる旋回流形成工程と、該旋回流形成工程で旋回流が形成された低温液体を受けるベンチュリ管に上記蒸発ガスを注入して、該蒸発ガスを凝縮して上記旋回流が形成された低温液体に混合して混合液を生成する混合工程と、上記混合液の温度を計測する混合液温度計測工程と、上記混合液の圧力を計測する混合液圧力計測工程と、上記混合液の圧力とその圧力での飽和温度との対応関係である第一対応関係、そして許容し得る混合液の過冷度の最小値と、上記主流および副流の流量の和で該副流の流量を除して得られる副流流量比との対応関係である第二対応関係を参照しつつ、上記主流の流量、上記副流の流量、上記混合液の温度および圧力のそれぞれの計測値に基いて、上記混合液の過冷度が上記最小値より大きくなるように上記副流の流量を制御する制御工程とを備えることを特徴としている。
 第四発明において、制御工程は、第一対応関係を参照して、混合液の圧力の計測値に対応する飽和温度を導出してから、飽和温度の導出値と上記混合液の温度の計測値との差を該混合液の過冷度として算出する過冷度算出工程と、主流の流量の計測値と副流の流量の計測値との和で該副流の流量の計測値を除して副流流量比を算出する副流流量比算出工程と、上記過冷度の算出値を第二対応関係における過冷度の最小値と比較して、上記過冷度の算出値が上記最小値以下であるときには、上記第二対応関係を参照して、上記過冷度の算出値が上記最小値より大きくなるような副流流量比を目標値として導出し、副流流量比の算出値が上記目標値に追従するように副流の流量を増大させる副流流量調整工程とを有していることが好ましい。
 <第五発明>
 第五発明に係る蒸発ガス再液化方法は、貯槽内に貯留された低温液体から発生する蒸発ガスを、貯槽から払い出された低温液体に注入して凝縮させることにより該低温液体に混合して再液化する。
 かかる蒸発ガス再液化方法において、第五発明では、第四発明に係る凝縮混合方法に記載の工程と、貯槽から低温液体を送出する送出工程と、蒸発ガスを圧縮する蒸発ガス圧縮工程とを備え、上記送出工程で低温液体を管状体へ供給し、上記蒸発ガス圧縮工程で蒸発ガスをベンチュリ管内へ注入するようになっていることを特徴としている。
 本発明では、以上のように、制御手段あるいは制御工程によって、混合液の過冷度が常に最小値より大きくなるように副流の低温液体の流量が制御される構成としたので、蒸発ガスを確実に凝縮させて低温液体中に効果的に混合して再液化させることができ、ポンプに蒸発ガスが気体のまま流入してポンプに障害が発生するのを防止できる。また、蒸発ガスの再液化が効率よく短時間で完了すると共に、その結果、装置構成をコンパクトにできる。
図1は、本発明の一実施形態装置の蒸発ガス再液化装置の概要構成図である。 図2-1は、図1の蒸発ガス再液化装置に用いられる凝縮混合装置の概略構成図である。 図2-2は、図2-1のB-B断面図である。 図3は、混合液の過冷度の最小値と副流流量比(旋回強さ)との関係を示す図である。
 以下、添付図面にもとづき、本発明の実施の形態を説明する。
 図1は、本発明の一実施形態としての凝縮混合装置を備えた蒸発ガス再液化装置の概要構成図である。
 図1において、符号1は本実施形態の蒸発ガス再液化装置であり、後に図2-1、図2-2に詳細に示される構造の凝縮混合装置2を有していて該凝縮混合装置2の入口側(図にて左側)には、該凝縮混合装置2へ低温液体25を送出する送出ポンプ3そして蒸発ガス26を注入する蒸発ガス圧縮機4が接続されている。
 低温液体25は、例えば、タンク(図示せず)内に貯蔵されている液化天然ガス(LNG)の一部であり、また、蒸発ガス26は、例えば、上記タンク内の液化天然ガスの一部が蒸発して発生したボイルオフガス(BOG)である。
 図1に見られるように、低温液体25は送出ポンプ3により送出されて上記凝縮混合装置2へ流入する。この凝縮混合装置2内を流れる上記低温液体25へ、蒸発ガス圧縮機4で圧縮された蒸発ガス26が注入される。
 上記凝縮混合装置2の出口側には、昇圧ポンプ5が接続されていて、低温液体25中への注入後に凝縮して該低温液体25に混合された蒸発ガス26を液化状態で含んで凝縮混合装置2から排出された混合低温液体(以下、「混合液」という)を昇圧する。昇圧された混合液は、例えば、該低温液体25が液化天然ガスならば、気化器へもたらされ再びガス化されてから都市ガスとして需要側に送出される。
 凝縮混合装置2は、図2-1に示されているように、上流側から下流側へ向けて流れる低温液体25を主流として流通させる主流管6と、該主流管6から分岐して低温液体25を副流として流通させる副流管7と、上記主流および上記副流の低温液体25を受けて該副流により該主流に対して旋回流を生じさせる旋回流形成部8と、該旋回流をなす低温液体25および蒸発ガス26を受けて該蒸発ガス26を凝縮して低温液体25に混合して混合液を生成する混合管部9と、該混合管部9から流出した混合液を下流側へ流通させる混合液管10とを有している。
 凝縮混合装置2は、さらに、主流管6に設けられた主流流量計11および主流調整弁12と、副流管7に設けられた副流流量計13および副流調整弁14と、混合液管10に設けられた混合液圧力計15および混合液温度計16と、主流および副流のそれぞれの流量を制御するための制御手段17と、該制御手段17による制御に際して参照されるデータを記憶する記憶手段18とを有している。
 以下、凝縮混合装置2の各部の構成を説明する。副流管7は、図2-1に見られるように、旋回流形成部8よりも上流側で主流管6から分岐しており、主流管6内を流れる主流の一部を分流して得られる副流を旋回流形成部8へ向けて流通させるようになっている。旋回流形成部8は、上流から下流へ向けた方向(図2-1にて左右方向)に軸線をもつ管状体をなし、主流管6の下流側の端部に接続されている。該旋回流形成部8の管壁には、副流管7の下流側の端部が接続された接線方向注入口8Aが形成されており、副流をなす低温液体25を該接線方向注入口8Aから旋回流形成部8の接線方向で受けるようになっている。このように接線方向で副流を受ける結果、旋回流形成部8内で、該副流により主流に対して旋回流が形成される(図2-2参照)。上記副流管7内を流れる低温液体25は、もともと送出ポンプ3により与えられた流れの勢いで接線方向注入口8Aに注入されることもできるが、その勢いをさらに確実に得るには、副流管7にポンプを設けておくことが好ましい。
 混合管部9は、旋回流形成部8の下流側端部に接続された横型筒状のケーシング19と、該ケーシング19内に収容され旋回流をなす低温液体25を旋回流形成部8から受けるベンチュリ管20と、ケーシング19とベンチュリ管20との間の空間に挿填された挿填物21とを有している。混合管部9の軸線は、旋回流形成部8の軸線の延長線上に位置している(図2-1の軸線Xを参照)。
 ケーシング19は、低温液体25の流れ方向における上流側に入口部19Aと、下流側に出口部19Bと、それらの中間位置でベンチュリ管20が収容配置される収容部19Cとを有しており、入口部19Aと出口部19Bは内径が等しく、収容部19Cにて内径が増大されている。入口部19A、出口部19Bそして収容部19Cの中心となる軸線は同一の直線上に位置している(図2-1の軸線Xを参照)。上記収容部19Cは、その内径が上記ベンチュリ管20の外径よりも大きく、該ベンチュリ管20の周囲に空間を形成し、ステンレススチールなどの繊維状金属細線の織物あるいは編物から成る挿填物21がこの空間に分散して挿填されている。さらに、上記収容部19Cの上部上流側位置には、上方に開口する蒸発ガス注入部19Dが開口形成されていて、蒸発ガス圧縮機4から圧送されてくる蒸発ガス26を該蒸発ガス注入部19Dで受け入れるようになっている。図2-1で示す凝縮混合装置2では、蒸発ガス注入部19Dが収容部19Cの上部上流側位置に開口形成されているが、蒸発ガス注入部19Dの位置はこれに限定されるものではなく、収容部19Cの側部上流側位置に開口形成されてもよい。
 ベンチュリ管20は、軸線X方向の両側に半径外方に突出する取付フランジ20D,20Eを有していて、該取付フランジ20D,20Eで、上記ケーシング19の収容部19C内に、ベンチュリ管20、ケーシング19の入口部19Aそして出口部19Bの軸線Xが一致して一つの直線上に位置するように取り付けられている。
 上記ベンチュリ管20の内径は、ケーシング19の入口部19A側に位置する縮径部20A、該縮径部20Aの直後に位置する喉部20B、そして該喉部20Bから出口部19Bに向け延びる拡径部20Cを順次形成している。上記縮径部20Aは曲面をもって比較的急激に内径が小さくなって流路断面積を絞り込んでおり、拡径部20Cは軸線X方向で長い距離にわたり内径を回復するように拡径している。喉部20Bは縮径部20Aと拡径部20Cとを低温液体25の流れに対して低抵抗となるように円滑な曲面で結んでおり、最小の流路断面積となるように最小径に形成されている。なお、縮径部20Aや喉部20Bは、曲面以外で形成されていてもよく、例えば、回転軸に対する斜面の傾斜角度が異なる円錐台が組み合わされた形状で形成されていてもよい。つまり、縮径部20Aや喉部20Bは、図2-1で示す断面で見た場合に、直線が組み合わせられる形状で形成されていてもよい。
 拡径部20Cには、円周方向そして液体の流れ方向の複数位置に、小口径の蒸発ガス孔20C-1が多数形成されている。各蒸発ガス孔20C-1は、ベンチュリ管20の管壁を半径方向に貫通して形成されていて、半径内方に向け軸線方向下流側に傾くように形成されている。後述するように、蒸発ガス注入部19Dから注入された蒸発ガス26は、それら複数の蒸発ガス孔20C-1から分散して拡径部20Cへ吸引される。この結果、拡径部20C内を流れる旋回流の低温液体25内で蒸発ガス26が凝縮されて該旋回流の低温液体25に混合され、混合液が生成される。
 混合液管10は、混合管部9のケーシング19の出口部19Bの下流側の端部に接続されており、混合管部9で生成された混合液を下流側、すなわち昇圧ポンプ5側へ向けて流通させる。
 主流流量計11および主流調整弁12は、それぞれ主流管6に設けられている。該主流流量計11は、主流管6内を流れ旋回流形成部8へ流入する主流の低温液体25の流量を計測する。主流調整弁12は、後述する制御手段17の制御を受けて開度が調整されることにより、主流の流量を調整可能となっている。また、副流流量計13および副流調整弁14は、それぞれ副流管7に設けられている。該副流流量計13は、副流管7内を流れ旋回流形成部8へ注入される副流の低温液体25の流量を計測する。副流調整弁14は、後述する制御手段17の制御を受けて開度が調整されることにより、副流の流量を調整可能となっている。また、混合液圧力計15および混合液温度計16は、それぞれ混合液管10に設けられており、混合管部9から流出し混合液管10内を流れる混合液の圧力および温度をそれぞれ計測する。
 記憶手段18は、混合液の圧力とその圧力での飽和温度との対応関係のデータを第一対応関係Aとして、そして許容し得る混合液の過冷度の最小値と副流流量比(旋回強さ)との対応関係のデータを第二対応関係B(図3参照)として予め記憶している。この第一対応関係Aおよび第二対応関係Bのデータは、後述するように、副流の流量の制御を行う際に制御手段17によって参照される。ここで、「過冷度の最小値」とは、混合液に蒸気が存在しないようにする過冷度の最も小さい値である。過冷度の最小値が小さいほど、混合液に蒸気が存在しないように混合液を冷却する温度は飽和温度に近くなる。過冷度算出手段22により、過冷度が飽和温度の導出値と上記混合液の温度の計測値との差として算出される。また、「副流流量比」とは、主流の流量と副流の流量の和に対する副流の流量の割合であり、副流流量比算出手段23によって、主流の流量の計測値と副流の流量の計測値との和で副流の流量の計測値を除して算出される。また、記憶手段18は、上記第一対応関係Aを、例えば、混合液の圧力と飽和温度との関係式、関係線図または蒸気表等の形態として記憶していることが望ましい。
 図3は、混合液の過冷度の最小値と副流流量比(旋回強さ)との関係、すなわち第二対応関係Bを示す図である。図3に示されているように、副流流量比が0すなわち旋回がない場合に比べて旋回があると混合液の過冷度の最小値が小さくなり、また、混合液の過冷度の最小値と副流流量比(旋回強さ)とは、副流流量比が大きいほど過冷度の最小値が低下する関係にある。つまり、副流流量比が大きいほど過冷度の最小値が小さくなり、混合液に蒸気が存在しない液体状態の混合液の温度は飽和温度に近くなり、凝縮混合装置2の混合性能が向上する。
 制御手段17は、図2-1に見られるように、混合液の過冷度を算出する過冷度算出手段22と、副流流量比を算出する副流流量比算出手段23と、主流調整弁12および副流調整弁14のそれぞれの開度を調整する流量調整手段24とを有している。過冷度算出手段22は、記憶手段18に記憶されている第一対応関係Aを参照して、混合液の圧力の計測値に対応する飽和温度を導出してから、飽和温度の導出値と上記混合液の温度の計測値との差を該混合液の過冷度として算出する。副流流量比算出手段23は、主流の流量の計測値と副流の流量の計測値との和で該副流の流量の計測値を除して副流流量比を算出する。流量調整手段24は、上記過冷度の算出値を、上記記憶手段18に記憶されている第二対応関係B(図3参照)における過冷度の最小値と比較して、上記過冷度の算出値が上記最小値以下であるときには、上記第二対応関係Bを参照して、上記過冷度の算出値が上記最小値より大きくなるような副流流量比を目標値として導出し、副流流量比の算出値が上記目標値に追従するように、副流調整弁14の開度を大きくして副流の流量を増大させる。
 次に、上述のように構成された本実施形態の蒸発ガス再液化装置1そしてその動作を図1そして図2-1、図2-2に基づき説明する。
 先ず、タンク(図示せず)内の低温液体(例えば、LNG)25の一部が、送出ポンプ3によって送出されて凝縮混合装置2に導入される。また、上記タンク内で発生した蒸発ガス26は、蒸発ガス圧縮機4によって大気圧と都市ガス運用圧力(4~7MPa)の間の圧力(中間圧)まで昇圧された後、凝縮混合装置2に導入される。
 凝縮混合装置2に導入される低温液体25は、主流として主流管6内を流通して旋回流形成部8に直接流入する。また、主流管6を流通する主流の低温液体25の一部が副流管7を副流として流通し旋回流形成部8の接線方向注入口8Aから接線方向に注入される。旋回流形成部8に直接流入した低温液体25は軸線X方向に流入し、接線方向注入口8Aから注入された低温液体25は周方向に流れて主流に対して旋回流を生ずる。したがって、上記接線方向注入口8Aよりも後流側では、上流側から軸線X方向に流れてきた低温液体25も上記旋回流の影響を受け、旋回流形成部8を流れる低温液体25全体が旋回流を形成するようになる。本実施形態では、上記主流および副流の流量は、主流調整弁12および副流調整弁14のそれぞれの開度が制御手段17によって調整されることにより制御される。
 上記旋回流形成部8で旋回流となった低温液体25は、ベンチュリ管20を収容している混合管部9のケーシング19に設けられた入口部19Aを経てベンチュリ管20に流入し、縮径部20A、喉部20Bそして拡径部20Cを流れ、ケーシング19の出口部19Bへ達する。ベンチュリ管20内を流れる低温液体25は、縮径部20Aで流速を高め、喉部20Bで最大流速に達し、その後、拡径部20Cで徐々に流速を低めるが、拡径部20Cでの下流端(図2-1にて右端)における最大内径でも上記入口部19Aの内径より小さいので、拡径部20Cでの流速は入口部19Aの流入時の流速よりも高く、したがって、圧力は低くなっており、蒸発ガス孔20C-1に対しては吸引力をもたらす。
 一方、蒸発ガス26は蒸発ガス圧縮機4により昇圧されて、上記凝縮混合装置2のケーシング19に設けられた、蒸発ガス注入部19Dを経て上記ケーシング19内に注入される。ベンチュリ管20を収容しているケーシング19の収容部19Cには、ベンチュリ管20の外周に挿填物21が挿填されており、蒸発ガス圧縮機4で圧送されて上記蒸発ガス注入部19Dから注入された蒸発ガス26は、挿填物21により緩衝されそして収容部19C内でベンチュリ管20の全周そして全長にわたり拡散する。
 上述の通り、ベンチュリ管20の拡径部20Cを流れる低温液体25は、ベンチュリ管現象により蒸発ガス孔20C-1に対して吸引力をもたらすので、上記収容部19C内に拡散している蒸発ガス26は、各蒸発ガス孔20C-1から拡径部20Cへ吸引導入される。図2-1に見られるように蒸発ガス孔20C-1が半径内方に向け上流側に傾いているので、流入した蒸発ガス26は、ベンチュリ管20内の主流の低温液体25の流れに逆らうことなく低抵抗のもとで合流する。その際、上記主流の低温液体25は旋回流を形成しているので、上記蒸発ガス26は周方向でも半径方向でも、十分に低温液体25に混合される。
 上記拡径部20Cに吸引導入された蒸発ガス26は低温液体25内に混入して該低温液体25により冷却される。その冷却の結果、蒸発ガス26は凝縮して確実に再液化し、低温液体25の一部として下流側へ流れる。このようにして再液化された蒸発ガス26を含む低温液体25は昇圧ポンプ5で昇圧されて気化器へもたらされた後、気化器で気化されて都市ガスとして需要側に送出される。
 次に、凝縮混合装置2における制御手段17による副流の流量の制御動作について、説明する。本実施形態では、主流調整弁12が開状態そして副流調整弁14が閉状態で蒸発ガス再液化装置1が運転されている場合において、必要に応じて、副流調整弁14を開状態として旋回流形成部8に副流を注入して旋回流を形成するときの制御動作について説明する。
 制御手段17の過冷度算出手段22は、記憶手段18に記憶されている第一対応関係Aを参照して、混合液圧力計15により計測された混合液の圧力の計測値に対応する飽和温度を算出し、次に、算出した飽和温度と混合液温度計16により計測された混合液の温度の計測値との差を過冷度として算出する。また、副流流量比算出手段23は、主流流量計11により計測された主流の流量の計測値と副流流量計13により計測された副流の流量の計測値との和で該副流の流量の計測値を除して副流流量比(旋回強さ)を算出する。
 流量調整手段24は、過冷度算出手段22により算出された過冷度の算出値を、記憶手段18に記憶されている第二対応関係Bにおける過冷度の最小値と比較する。この比較の結果、上記過冷度の算出値が上記最小値より大きいときには、蒸発ガス26は低温液体25中に気泡として存在することなく低温液体25に混合していると言える。したがって、流量調整手段24は、副流調整弁14を開状態とする制御を行うことはない。つまり、旋回流形成部8に副流が注入されないので、主流に対して旋回流が形成されない状態が維持される。
 一方、上記過冷度の算出値が上記最小値以下であるときには、混合管部9から流出する混合液に蒸発ガス26の気泡が残存していて該混合液が気液二相流となっていると言える。このような状態において、凝縮混合装置2の下流側で蒸発ガス26が凝縮すると、ウォーターハンマー作用の発生など、蒸発ガス再液化装置1全体の安全な運転に支障が生じる。
 そこで、流量調整手段24は、上記第二対応関係Bを参照して、上記過冷度の算出値が上記最小値より大きくなるような副流流量比を目標値として導出し、副流流量比算出手段23により算出される副流流量比の算出値が上記目標値に追従するように、副流調整弁14の開度を調整する。この結果、適切な流量に調整された副流の低温液体25が旋回流形成部8に接線方向で注入され、主流に対して旋回流を形成することにより、上記最小値が小さくなる。したがって、蒸発ガス26を低温液体25中に残存させることなく確実に凝縮して低温液体25に混合させることができる。
 上述の制御動作の具体的な例として、旋回流が形成されておらず(旋回強さ0%)混合液の過冷度を5℃で運転している状態から、混合液の流量をあまり変えずに、混合液の温度を高くするような場合について説明する。この場合、ベンチュリ管20に吹き込む蒸発ガス26の流量を増大させる必要があるが、第二対応関係Bを示す図3を見ると判るように、混合液の過冷度は最小値(5℃)にあるので、このままでは混合液中に蒸発ガス26の気泡が残存することになり、蒸発ガス26の流量を増大できない。
 そこで、副流調整弁14を開状態として副流の低温液体25を旋回流形成部8に接線方向で注入して旋回流を形成することにより、過冷度の最小値を低下させ、混合液の温度を高くする。この際、主流調整弁12を同時に若干絞るようにすると、副流の流量を増やし易くなる。図3より、混合液の温度を2℃上昇させる(過冷度5℃から過冷度3℃に上昇させる)場合は、副流流量比(旋回強さ)を約30%になるように副流の流量を調整して、蒸発ガス26の凝縮混合性能を高め、混合液中に蒸発ガス26の気泡が残存しないようにする。このような旋回の付与は凝縮混合装置2の流体の圧力損失の増大を招き、供給するポンプの動力を増大させるので、旋回の付与は混合液の過冷度を小さくする場合にのみ実施することが望ましい。このように旋回の付与を必要な場合にのみ行うようにすることにより、固定旋回羽根等の装置を設ける場合に比べて圧力損失の増大を最小限に抑制することができ、むやみにエネルギー消費を増大させることを防ぐことができる。
 上述したような旋回付与の制御は、上述したように、低温液体25に凝縮混合させる蒸発ガス26の量を増大させる場合に行われる。また、この旋回付与の制御は、例えば、低温液体25としての水に蒸発ガス26としての水蒸気を混合して混合液としての温水を生成するときのように、得られる混合液の温度を高くすることが所望される場合においても有効である。
 本実施形態では、混合液の過冷度が常に最小値より大きくなるように副流の低温液体25の流量が制御される構成としたので、蒸発ガス26を低温液体25中に効果的に混合して再液化させることができ、ポンプに蒸発ガス26が気体のまま流入してポンプに障害が発生するのを防止できる。また、旋回付与のために、従来のような固定旋回羽根等の装置を設ける必要がないので、凝縮混合装置2の圧力損失を最小限に抑えることができ、蒸発ガス26の再液化が効率よく短時間で完了すると共に、装置構成をコンパクトにできる。
 また、本実施形態では、制御手段17は、主流調整弁12および副流調整弁14の両方を制御することとしたが、これに代えて、主流調整弁12のみ、もしくは、副流調整弁14のみを制御するようにしてもよい。この場合、主流調整弁12と副流調整弁14とのうち制御対象でない方の調整弁は一定の開度になる。
 また、本実施形態では、凝縮混合装置2を水平方向に配置しているが、鉛直方向に配置してもよい。凝縮混合装置2を鉛直方向に配置し低温液体25を鉛直方向下向きに流通し、蒸発ガス26を水平方向から流入することにより、低温液体25中で蒸発ガス26は浮力を受け滞留時間が長くなるため、蒸発ガス26の凝縮混合がより安定して行われる。
 また、本実施形態では、過冷度の算出値を第二対応関係Bにおける過冷度の最小値と比較して、過冷度の算出値が最小値より大きくなるような副流流量比を目標値として副流の流量を調整することとしているが、過冷度の最小値に一定値を加算した値より大きくなるような副流流量比を目標値とするようにして、適用システムに要求される安全係数を反映するようにしてもよい。
 1 蒸発ガス再液化装置
 2 凝縮混合装置
 3 送出ポンプ
 4 蒸発ガス圧縮機
 8 旋回流形成部
 9 混合管部
 11 主流流量計
 13 副流流量計
 14 副流調整弁
 15 混合液圧力計
 16 混合液温度計
 17 制御手段
 18 記憶手段
 20 ベンチュリ管
 20C-1 蒸発ガス孔
 22 過冷度算出手段
 23 副流流量比算出手段
 24 流量調整手段
 25 低温液体
 26 蒸発ガス

Claims (7)

  1.  上流から下流へ向けて流れる低温液体を主流として流通させる方向に軸線をもつ管状体をなし、該管状体よりも上流側で主流の一部を分流して得られる副流を受ける接線方向注入口が形成され、上記副流により上記主流に対して旋回流を生じさせる旋回流形成部と、
     該旋回流形成部よりも下流側で該旋回流形成部の軸線の延長線上に位置するベンチュリ管を有し、上記旋回流形成部から上記旋回流をなす低温液体を受けるとともに、上記ベンチュリ管の管壁に低温液体から発生した蒸発ガスを受ける蒸発ガス孔が形成され、該蒸発ガスを凝縮して上記旋回流をなす低温液体に混合して混合液を生成する混合管部とを備えることを特徴とする凝縮混合装置。
  2.  上流から下流へ向けて流れる低温液体を主流として流通させる方向に軸線をもつ管状体をなし、該管状体よりも上流側で主流の一部を分流して得られる副流を受ける接線方向注入口が形成され、上記副流により上記主流に対して旋回流を生じさせる旋回流形成部と、
     該旋回流形成部よりも下流側で該旋回流形成部の軸線の延長線上に位置するベンチュリ管を有し、上記旋回流形成部から上記旋回流をなす低温液体を受けるとともに、上記ベンチュリ管の管壁に低温液体から発生した蒸発ガスを受ける蒸発ガス孔が形成され、該蒸発ガスを凝縮して上記旋回流をなす低温液体に混合して混合液を生成する混合管部と、
     上記旋回流形成部に流入する上記主流の流量を計測する主流流量計と、
     上記旋回流形成部に流入する上記副流の流量を計測する副流流量計および該副流の流量を調整するための副流調整弁と、
     上記混合管部から流出する混合液の温度を計測する混合液温度計および該混合液の圧力を計測する混合液圧力計と、
     上記混合液の圧力とその圧力での飽和温度との対応関係を第一対応関係として、そして許容し得る混合液の過冷度の最小値と、上記主流および副流の流量の和で該副流の流量を除して得られる副流流量比との対応関係を第二対応関係として予め記憶している記憶手段と、
     上記第一対応関係および上記第二対応関係を参照しつつ、上記主流の流量、上記副流の流量、上記混合液の温度および圧力のそれぞれの計測値に基いて、上記混合液の過冷度が上記最小値より大きくなるように上記副流調整弁の開度を調整して上記副流の流量を制御する制御手段とを備えることを特徴とする凝縮混合装置。
  3.  制御手段は、記憶手段に記憶されている第一対応関係を参照して、混合液の圧力の計測値に対応する飽和温度を導出してから、飽和温度の導出値と上記混合液の温度の計測値との差を該混合液の過冷度として算出する過冷度算出手段と、
     主流の流量の計測値と副流の流量の計測値との和で該副流の流量の計測値を除して副流流量比を算出する副流流量比算出手段と、
     上記過冷度の算出値を、上記記憶手段に記憶されている第二対応関係における過冷度の最小値と比較して、上記過冷度の算出値が上記最小値以下であるときには、上記第二対応関係を参照して、上記過冷度の算出値が上記最小値より大きくなるような副流流量比を目標値として導出し、副流流量比の算出値が上記目標値に追従するように、副流調整弁の開度を大きくして副流の流量を増大させる副流流量調整手段とを有していることとする請求項2に記載の凝縮混合装置。
  4.  請求項1乃至請求項3のいずれかに記載の凝縮混合装置と、
     貯槽から低温液体を送出する送出ポンプと、
     貯槽内に貯留された低温液体から発生する蒸発ガスを圧縮する蒸発ガス圧縮機とを備え、
     該送出ポンプで低温液体を凝縮混合装置の旋回流形成部へ供給し、上記蒸発ガス圧縮機で蒸発ガスを凝縮混合装置の上記混合管部内へ注入することにより、蒸発ガスを低温液体に注入して凝縮させ、該低温液体に混合して再液化することを特徴とする蒸発ガス再液化装置。
  5.  上流から下流へ向けて主流として流れる低温液体の流量を計測する主流流量計測工程と、
     上記主流の一部を分流して得られる副流として流れる低温液体の流量を計測する副流流量計測工程と、
     上記主流の低温液体を管状体内に流通させるとともに、上記副流の低温液体を上記管状体の接線方向で注入して、上記副流により上記主流に対して旋回流を生じさせる旋回流形成工程と、
     該旋回流形成工程で旋回流が形成された低温液体を受けるベンチュリ管に低温液体から発生した蒸発ガスを注入して、該蒸発ガスを凝縮して上記旋回流が形成された低温液体に混合して混合液を生成する混合工程と、
     上記混合液の温度を計測する混合液温度計測工程と、
     上記混合液の圧力を計測する混合液圧力計測工程と、
     上記混合液の圧力とその圧力での飽和温度との対応関係である第一対応関係、そして許容し得る混合液の過冷度の最小値と、上記主流および副流の流量の和で該副流の流量を除して得られる副流流量比との対応関係である第二対応関係を参照しつつ、上記主流の流量、上記副流の流量、上記混合液の温度および圧力のそれぞれの計測値に基いて、上記混合液の過冷度が上記最小値より大きくなるように上記副流の流量を制御する制御工程とを備えることを特徴とする凝縮混合方法。
  6.  制御工程は、第一対応関係を参照して、混合液の圧力の計測値に対応する飽和温度を導出してから、飽和温度の導出値と上記混合液の温度の計測値との差を該混合液の過冷度として算出する過冷度算出工程と、
     主流の流量の計測値と副流の流量の計測値との和で該副流の流量の計測値を除して副流流量比を算出する副流流量比算出工程と、
     上記過冷度の算出値を第二対応関係における過冷度の最小値と比較して、上記過冷度の算出値が上記最小値以下であるときには、上記第二対応関係を参照して、上記過冷度の算出値が上記最小値より大きくなるような副流流量比を目標値として導出し、副流流量比の算出値が上記目標値に追従するように副流の流量を増大させる副流流量調整工程とを有していることとする請求項5に記載の凝縮混合方法。
  7.  請求項5または請求項6に記載の凝縮混合方法に記載の工程と、
     貯槽から低温液体を送出する送出工程と、
     貯槽内に貯留された低温液体から発生する蒸発ガスを圧縮する蒸発ガス圧縮工程とを備え、
     上記送出工程で低温液体を管状体へ供給し、上記蒸発ガス圧縮工程で蒸発ガスをベンチュリ管内へ注入することにより、蒸発ガスを低温液体に注入して凝縮させ、該低温液体に混合して再液化することを特徴とする蒸発ガス再液化方法。
PCT/JP2015/065586 2015-05-29 2015-05-29 凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法 WO2016194049A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065586 WO2016194049A1 (ja) 2015-05-29 2015-05-29 凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065586 WO2016194049A1 (ja) 2015-05-29 2015-05-29 凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法

Publications (1)

Publication Number Publication Date
WO2016194049A1 true WO2016194049A1 (ja) 2016-12-08

Family

ID=57442263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065586 WO2016194049A1 (ja) 2015-05-29 2015-05-29 凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法

Country Status (1)

Country Link
WO (1) WO2016194049A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3135628A1 (fr) * 2022-05-23 2023-11-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de fragmentation d’un liquide cryogénique dans une conduite de gaz.

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB694918A (en) * 1951-02-23 1953-07-29 F S Gibbs Inc Diffusion of gases in liquids
JPS61283328A (ja) * 1985-06-06 1986-12-13 Mitsuo Hoshi ジエツトミキサ−におけるウオタ−ハンマ−防止装置
JPH0445832A (ja) * 1990-06-12 1992-02-14 Mitsuo Hoshi ジェットミキサーにおけるウォターハンマー防止装置
JPH08178188A (ja) * 1994-12-21 1996-07-12 Tokyo Gas Co Ltd 液化天然ガス貯蔵タンク内に発生する蒸発ガスの処理方法及びその装置
JP2006045327A (ja) * 2004-08-04 2006-02-16 Jfe Engineering Kk 天然ガスの希釈熱量調整方法及び装置
JP2006272150A (ja) * 2005-03-29 2006-10-12 Jfe Steel Kk ガス混合器およびガス混合方法
JP2008122067A (ja) * 2006-11-08 2008-05-29 General Electric Co <Ge> 予混合装置内の混合を促進するための方法及び装置
JP2011025171A (ja) * 2009-07-27 2011-02-10 Jfe Engineering Corp ベンチュリ管を用いた流体の混合方法、ベンチュリ型混合装置
JP2011105955A (ja) * 2011-03-03 2011-06-02 Jfe Engineering Corp 天然ガスの希釈熱量調整方法
JP2011117562A (ja) * 2009-12-05 2011-06-16 Jfe Engineering Corp 蒸発ガス再液化装置
JP2012139689A (ja) * 2012-04-13 2012-07-26 Jfe Engineering Corp ベンチュリ型混合装置
JP2014024012A (ja) * 2012-07-27 2014-02-06 Mitsubishi Electric Corp エジェクタ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB694918A (en) * 1951-02-23 1953-07-29 F S Gibbs Inc Diffusion of gases in liquids
JPS61283328A (ja) * 1985-06-06 1986-12-13 Mitsuo Hoshi ジエツトミキサ−におけるウオタ−ハンマ−防止装置
JPH0445832A (ja) * 1990-06-12 1992-02-14 Mitsuo Hoshi ジェットミキサーにおけるウォターハンマー防止装置
JPH08178188A (ja) * 1994-12-21 1996-07-12 Tokyo Gas Co Ltd 液化天然ガス貯蔵タンク内に発生する蒸発ガスの処理方法及びその装置
JP2006045327A (ja) * 2004-08-04 2006-02-16 Jfe Engineering Kk 天然ガスの希釈熱量調整方法及び装置
JP2006272150A (ja) * 2005-03-29 2006-10-12 Jfe Steel Kk ガス混合器およびガス混合方法
JP2008122067A (ja) * 2006-11-08 2008-05-29 General Electric Co <Ge> 予混合装置内の混合を促進するための方法及び装置
JP2011025171A (ja) * 2009-07-27 2011-02-10 Jfe Engineering Corp ベンチュリ管を用いた流体の混合方法、ベンチュリ型混合装置
JP2011117562A (ja) * 2009-12-05 2011-06-16 Jfe Engineering Corp 蒸発ガス再液化装置
JP2011105955A (ja) * 2011-03-03 2011-06-02 Jfe Engineering Corp 天然ガスの希釈熱量調整方法
JP2012139689A (ja) * 2012-04-13 2012-07-26 Jfe Engineering Corp ベンチュリ型混合装置
JP2014024012A (ja) * 2012-07-27 2014-02-06 Mitsubishi Electric Corp エジェクタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3135628A1 (fr) * 2022-05-23 2023-11-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de fragmentation d’un liquide cryogénique dans une conduite de gaz.

Similar Documents

Publication Publication Date Title
JP5884995B2 (ja) 凝縮混合装置及びこれを有する蒸発ガス再液化装置
KR101489737B1 (ko) 선박의 연료가스 공급 시스템
WO2016194056A1 (ja) 凝縮混合装置及びこれを有する蒸発ガス再液化装置
CN109154471A (zh) 用于处理来自低温液体的蒸发的气体且向气体马达供应加压气体的系统
JP2015105810A5 (ja)
WO2016194049A1 (ja) 凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法
JP5896172B2 (ja) 凝縮混合装置、凝縮混合方法、蒸発ガス再液化装置及び蒸発ガス再液化方法
JP5333186B2 (ja) 蒸発ガス再液化装置
JP6218867B2 (ja) 凝縮設備
JP5945974B2 (ja) 凝縮混合装置及びこれを有する蒸発ガス再液化装置
JP6090616B2 (ja) 凝縮混合装置及びこれを有する蒸発ガス再液化装置
JP6036390B2 (ja) 低温液化ガスの蒸発ガス再液化・昇圧装置
JPH03236588A (ja) Lngのボイルオフガス処理方法および装置
KR101251140B1 (ko) Lng bog의 재액화 시스템
JPH08173781A (ja) 液化天然ガス用気液混合器
JPH11325714A (ja) 熱交換式ガス液化装置
JP2015105740A5 (ja)
KR20130023329A (ko) 선박의 연료가스 공급시스템
KR102011864B1 (ko) 선박용 증발가스 재액화 시스템 및 방법
JP5761977B2 (ja) 液化ガス貯蔵再ガス化設備およびボイルオフガス再液化方法
JP7429600B2 (ja) 天然ガス液化装置及びその起動方法
KR101957324B1 (ko) 선박용 증발가스 재액화 시스템 및 방법
WO2018131103A1 (ja) 凝縮設備
KR20240110464A (ko) 가스 처리 시스템 및 이를 포함하는 선박
KR20240103927A (ko) 가스 처리 시스템 및 이를 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP