WO2016192308A1 - 一种机床主轴电机中平衡外力负载的方法 - Google Patents
一种机床主轴电机中平衡外力负载的方法 Download PDFInfo
- Publication number
- WO2016192308A1 WO2016192308A1 PCT/CN2015/094306 CN2015094306W WO2016192308A1 WO 2016192308 A1 WO2016192308 A1 WO 2016192308A1 CN 2015094306 W CN2015094306 W CN 2015094306W WO 2016192308 A1 WO2016192308 A1 WO 2016192308A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- coil
- force
- cutting
- spindle motor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K26/00—Machines adapted to function as torque motors, i.e. to exert a torque when stalled
Definitions
- the invention belongs to the field of turning machining, and more particularly to a method for balancing an external force load in a machine tool spindle motor.
- the turning machining lathe is processed in such a way that the workpiece to be machined is fixed by a clamp, and is connected to the rotor of the spindle motor through a rotating shaft, and is driven by the motor under the support of the rotating bearing to perform turning under the action of the cutter.
- the existing method is to balance the asymmetric load, such as the eccentrically rotating workpiece, by adding an adjustable module to the rotating shaft and changing its mass distribution.
- This method can overcome the unbalanced working conditions to a certain extent, but it is limited to the adjustment of the weight and eccentricity equal to the workpiece.
- the unbalanced cutting force can not be adjusted in real time. .
- Figure 2 shows a schematic diagram of the force applied to the workpiece and the main components of the spindle motor.
- F E , F B , F L are electromagnetic force, bearing support force, load force (including workpiece weight and cutting force); T E , T B , T L are corresponding moments. In addition to the direction of rotation, the resultant force and the resultant moment are zero in the other directions.
- Figure 2 also shows the rotor permanent magnet and stator coil of the spindle motor.
- the existing spindle motor aims to provide high torque or high speed, so the input of symmetrical three-phase electric power is used, and the two coils with the same center symmetry pass the same current, and the adjacent coils are connected in groups of three.
- the current has a phase difference of 120 degrees.
- the energization sequence of the coils will be superimposed in the direction of rotation to generate a large combined torque to provide the workpiece torque, but the electromagnetic forces in other directions cancel each other out, and the resultant force and the resultant moment are zero.
- the result of the control method of the existing spindle motor is that in the other directions except the rotation, the load acting force, the torques F L , T L are all borne by the bearing, which causes problems such as vibration and wear mentioned above.
- the present invention provides a method for balancing an external force load in a machine tool spindle motor, wherein the electromagnetic force of the motor can be utilized by researching and designing the key steps thereof, especially the overall control principle. And the torque to offset the spindle rotor and the workpiece's own weight, especially the cutting force, which can cause the bearing imbalance, the test shows that the bearing force of the motor spindle can be significantly reduced, thereby solving the wear and tear of the bearing during operation and causing Technical issues of vibration and system aging.
- a method for balancing an external force load in a machine tool spindle motor characterized in that the method comprises the following steps:
- step 2) Based on the measurement results obtained in step 1), the electromagnetic force vector is controlled by adjusting the current in the motor coil, in this way, the cutting force vector on the rotor of the spindle motor is balanced while maintaining the rotation of the motor, the current in the coil of the motor
- the vector u is calculated as follows:
- N E is the total number of motor coils
- the measured cutting force and cutting torque are respectively ⁇ d is the rotational torque output by the speed controller.
- Figure 2 (a), Figure 2 (b) are the force diagram of the turning spindle motor and main components
- Figure 3 is a schematic diagram of electromagnetic force between a single permanent magnet and a coil in a motor
- Figure 4 is a schematic diagram showing the control of the balance external force load of the spindle motor according to the present invention.
- Figure 3 shows the electromagnetic force between a single coil and a single permanent magnet in a motor.
- the XYZ coordinate system is a motor coordinate system established with the geometric center of the motor as the origin.
- the X and Y axes are on the symmetry plane of the motor center, the X axis is horizontal, the Y axis is vertical, and the Z axis is along the center of the motor.
- the electromagnetic force between the coil and the permanent magnet is proportional to the current I in the coil and the polarization m of the permanent magnet.
- the electromagnetic force and the corresponding electromagnetic moments F E and T E can be expressed as follows:
- s is the vector of the origin of the motor coordinate system to the center point of the coil 3; by the center of the coil 3 and the permanent magnet 4 center projection on the XY plane, the relative position of the coil 3 and the permanent magnet 4 can be represented by the angle ⁇ between the coordinate origin and the line connecting the two projection points;
- f r ( ⁇ ), f t ( ⁇ ) and f z ( ⁇ ) are the three components of the electromagnetic force in the radial, tangential and axial directions at the center of the coil, respectively.
- f r ( ⁇ ), f t ( ⁇ ) and f z ( ⁇ ) depend on the relative positions of the coil and the permanent magnet, f r ( ⁇ ) and f t ( ⁇ ) can be obtained by polynomial fitting in the calculation. And f z ( ⁇ ) function for quick calculation.
- the relationship between the single coil 3 and the single permanent magnet 4 can be obtained by the above formula.
- the six-dimensional electromagnetic force vector Q E (including the three-direction electromagnetic force and the three-direction electromagnetic moment, the same below) can be obtained by linear superposition based on the above formula. which is
- K j is the ratio of the electromagnetic force applied to the rotor of the motor by the j-th coil to the current flowing in the coil
- m i is the magnetization of the i-th permanent magnet
- ⁇ ij is the center of the j-th coil
- I j is the current flowing through the j-th coil
- N E is The number of coils
- N P is the number of permanent magnets
- u is the vector of all coil currents
- f r ( ⁇ ij ), f t ( ⁇ ij ) and f z ( ⁇ ij ) are replaced by ⁇ ij f r ( ⁇ )
- the ⁇ in f t ( ⁇ ) and f z ( ⁇ ) gives a function.
- the spindle motor In order to reduce the force on the spindle bearing of the machine tool, the spindle motor provides the torque of the motor itself to rotate, and the electromagnetic force vector cancels the cutting force vector. Therefore, the controller of the spindle motor is divided into an external force load compensator and a speed regulator. The total output of the controller is equal to the sum of the two outputs, ie:
- ⁇ d is the rotational torque output by the speed controller to overcome the rotor inertia and bearing friction. It can be realized by PI control:
- the electromagnetic force vector Q E is equal to the total output Q of the controller,
- the current vector u can be obtained to obtain the current in each coil.
- the current signal is passed through a current amplifier to generate an accurate current output and is passed into the motor coil, thereby generating an electromagnetic force/torque capable of canceling the cutting force/torque, thereby reducing bearing stress, achieving vibration damping and reducing bearing wear. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
本发明公开了一种机床主轴电机中平衡外力负载的方法,属于主轴电机控制领域,该方法利用电机多维的电磁力输出,通过控制电机线圈中的电流,在维持主轴电机旋转的同时使得电机电磁力抵消切削过程中作用于工件上的各方向的切削力,从而减小主轴轴承受力,达到降低轴承磨损、减少切削过程中的振动的目的。本发明不需要在机床主轴系统上额外添加其它装置,只需控制电机线圈中的电流即可抵消切削力,在提高切削质量的同时可以极大地延长主轴系统的使用寿命。
Description
本发明属于车削加工领域,更具体地,涉及一种机床主轴电机中平衡外力负载的方法。
车削加工车床的加工方式是被加工工件由夹具固定,通过转轴和主轴电机转子连接,在旋转轴承的支撑下由电机带动旋转并在刀具作用下进行车削。
由于加工过程中有较大的切削力作用于工件上(如图1所示),这些作用力包括工件以及夹具等和转子直接连接的重量在运行过程中都需要由轴承来支撑。这些作用力以及相应产生的力矩在每个方向差异较大,因而作用在轴承上产生的反作用力也是不平衡的。在高速旋转过程中,轴承上的不平衡反作用力会产生振动,影响加工品质。在长时间不平衡的状态下运行轴承也会磨损和老化,增加了系统维修的频率,减少了使用年限。
为了减少不平衡的负载对主轴系统的损害,现有方法是通过在转轴上加入可调节的模块,通过改变其质量分布来平衡不对称的负载,如偏心转动的工件。这种方法可以从一定程度上克服不平衡的工况,但仅限于对重量、偏心等于工件相关的调节,对于引起轴承不平衡作用力的主要因素—不平衡的切削力作用无法做到实时调节。
图2显示了工件所受作用力及主轴电机主要部件的示意图。FE,FB,FL分别为电磁力、轴承支撑力、负载作用力(包括工件自重以及切削力);TE,TB,TL为对应的力矩。除了旋转方向,其他方向上合力以及合力矩为零。图2同时显示了主轴电机的转子永磁体及定子线圈。现有主轴电机目标是
提供大转矩或高转速,因此采用了对称三相电的输入,及关于圆心对称的两个线圈通入大小相同的电流,相邻的线圈三个一组,通入电流有120度的相位差。由于转子永磁体的周期性布置,这样线圈的通电顺序会在旋转方向叠加产生较大的合力矩提供工件转矩,但其他方向的电磁力相互抵消,合力及合力矩为零。现有主轴电机这样的控制方式产生的结果是在除旋转的其他方向,负载作用力、力矩FL、TL全部由轴承承担,就会引起前文提到的振动以及磨损等问题。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种机床主轴电机中平衡外力负载的方法,其中通过对其关键步骤尤其是整体控制原理的研究和设计,相应能够利用电机的电磁力及力矩来抵消主轴转子及工件自重、尤其是切削力这类能够引起轴承不平衡的作用力,测试表明能够显著减小电机主轴的轴承作用力,由此解决轴承在运行过程中的磨损以及引起的振动和系统老化的技术问题。
为实现上述目的,按照本发明,提供了一种机床主轴电机中平衡外力负载的方法,其特征在于,该方法包括下列步骤:
2)基于步骤1)所获得测量结果,通过调节电机线圈中的电流来控制电磁力向量,以此方式,在维持电机转动的同时平衡主轴电机转子上的切削力向量,所述电机线圈中电流的向量u按按照以下表达来予以计算:
u=[A]T([A][A]T)-1Q
由此完成了整体的主轴电机平外力平衡控制过程;
其中,NE为表示电机线圈总数量;Kj为第j个电机线圈施加于电机转子的电磁力与该线圈中所通入电流之间的比值,并且j=1,2,……NE;sj为电机中心点到电机线圈第j个线圈的中心点之间的向量,并且j=1,2,……NE,此外,所述和分别为测量得到的切削力和切削力矩,τd是由转速控制器输出的旋转力矩。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1)可以实时补偿主轴系统的负载及切削力,因而避免这些负载及外力直接作用于主轴系统中的轴承上,从而极大的减少了轴承的作用力,降低其磨损以及由此产生的振动和系统老化问题。
2)直接由主轴电机的电磁力进行多自由度的力和力矩补偿,只需要改变电机的控制方法及驱动方式,不需要在主轴系统中外加任何装置。
图1(a)、图1(b)分别为柱状零件和盘状零件车削加工过程中工件受切削力分析图;
图2(a)、图2(b)分别是车削加工主轴电机及主要部件受力图;
图3电机中单个永磁体-线圈之间电磁力示意图;
图4是按照本发明的主轴电机平衡外力负载控制原理图;
图中,1-工件,2-车刀,3-线圈,4-永磁体。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图3所示为电机中单个线圈和单个永磁体之间的电磁力。XYZ坐标系为以电机几何中心为原点建立的电机坐标系,其中X,Y轴在电机中心对称面上,X轴为水平方向,Y轴为竖直向上,Z轴沿电机中心对称面法向方向,与X,Y轴正交。
线圈和永磁体之间的电磁力与线圈中的电流I以及永磁体的极化强度m成正比。同时,因为它们之间的电磁力的每个分量都取决于两者之间的相对位置,因而电磁力及相应的电磁力矩FE和TE可以表示如下:
TE=s×FE
其中,和分别为线圈3中心点在电机坐标系中沿线圈3的径向、切向和轴向方向的单位向量;s为电机坐标系原点到线圈3中心点的向量;通过将线圈3中心和永磁体4中心投影在XY平面上,线圈3和永磁体4的相对位置可由坐标原点到两投影点连线之间的夹角σ来表示;fr(σ)、ft(σ)和fz(σ)分别为电磁力在线圈中心处沿径向、切向和轴向的三个分量。由于fr(σ)、ft(σ)和fz(σ)取决于线圈和永磁体的相对位置,在计算中可以通过多项式拟合的方法获得fr(σ)、ft(σ)和fz(σ)的函数,便于快速计算。
单个线圈3和单个永磁体4之间的相互关系均可由上述公式得到。对于由多个永磁体和多个线圈组成的电机系统,而六维电磁力向量QE(包括三方向电磁力及三方向的电磁力矩,下同)可在上述公式基础上通过线性叠加获得,即
u=[... Ij ...]T,j=1,...NE
上述各式中,Kj为第j个线圈施加于电机转子的电磁力与该线圈中通入电流的比值,mi为第i个永磁体的磁化强度;σij为第j个线圈中心在XY平面投影点与坐标原点的连线和第i个永磁体中心在XY平面投影点与坐标原点的连线之间的夹角;Ij为第j个线圈中通入的电流,NE为线圈数量,NP为永磁体数量;u为全部线圈电流组成的向量,fr(σij)、ft(σij)和fz(σij)为用σij替换fr(σ)、ft(σ)和fz(σ)中的σ得到函数。
可平衡外力的主轴电机控制原理如图4所示。在切削过程中,切削力以及轴承的支撑作用力分别通过工件和轴承作用于电机转子。
为了减小机床主轴轴承上的作用力,主轴电机在提供使电机自身旋转的力矩的同时,使电磁力向量抵消切削力向量,因此主轴电机的控制器分为外力负载补偿器和转速调节器,控制器的总输出等于两部分输出之和,即:
τd=kPe+ki∫edt
其中,e为速度误差,kp和ki为比例及积分系数。
由于u的解不唯一,可以获得总功率最小的电流向量u的最优解:
u=[A]T([A][A]T)-1Q
所求电流信号经过电流放大器,产生准确的电流输出并通入电机线圈,便产生了能够抵消切削力/力矩的电磁力/力矩,从而减少了轴承受力,达到减振和减少轴承磨损的目的。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (1)
- 一种机床主轴电机中平衡外力负载的方法,其特征在于,该方法包括下列步骤:2)基于步骤1)所获得测量结果,通过调节电机线圈中的电流来控制电磁力向量,以此方式,在维持电机转动的同时平衡主轴电机转子上的切削力向量,所述电机线圈中电流的向量u按按照以下表达来予以计算:u=[A]T([A][A]T)-1Q由此完成了整体的主轴电机平外力平衡控制过程;
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510288664.7 | 2015-05-29 | ||
CN201510288664.7A CN104866677B (zh) | 2015-05-29 | 2015-05-29 | 一种机床主轴电机中平衡外力负载的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016192308A1 true WO2016192308A1 (zh) | 2016-12-08 |
Family
ID=53912502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/094306 WO2016192308A1 (zh) | 2015-05-29 | 2015-11-11 | 一种机床主轴电机中平衡外力负载的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104866677B (zh) |
WO (1) | WO2016192308A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113312724A (zh) * | 2021-06-07 | 2021-08-27 | 金丰(中国)机械工业有限公司 | 一种基于模态分析的压力机减振方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104866677B (zh) * | 2015-05-29 | 2017-09-29 | 华中科技大学 | 一种机床主轴电机中平衡外力负载的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012223874A (ja) * | 2011-04-22 | 2012-11-15 | Daido Kogyo Co Ltd | 紙断裁装置 |
CN202726639U (zh) * | 2012-08-14 | 2013-02-13 | 沈阳机床(集团)设计研究院有限公司 | 基于数控铣床主轴伺服电机电流信号的切削状态监测系统 |
CN103115724A (zh) * | 2013-01-29 | 2013-05-22 | 深圳大学 | 一种高速电主轴的在线动平衡补偿装置及其补偿方法 |
CN103712807A (zh) * | 2012-09-29 | 2014-04-09 | 成都金福天下投资管理有限公司 | 伺服系统性能测试装置 |
CN103869757A (zh) * | 2014-03-26 | 2014-06-18 | 大连理工大学 | 复杂曲面五轴数控加工刀矢的动力学控制方法 |
CN104866677A (zh) * | 2015-05-29 | 2015-08-26 | 华中科技大学 | 一种机床主轴电机中平衡外力负载的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7511459B2 (en) * | 2007-06-11 | 2009-03-31 | Sunpower, Inc. | Controller computing a virtual tuning capacitor for controlling a free-piston stirling engine driving a linear alternator |
CN101882170B (zh) * | 2010-05-13 | 2012-05-23 | 江南大学 | 三维虚拟直流无刷电机动态仿真方法 |
CN102955862A (zh) * | 2011-08-29 | 2013-03-06 | 北京理工大学 | 一种永磁同步电机状态测量方法 |
CN103678829A (zh) * | 2013-12-31 | 2014-03-26 | 一重集团大连设计研究院有限公司 | 一种伺服压力机拉深加工工艺轨迹的优化设计方法 |
CN103823945A (zh) * | 2014-03-13 | 2014-05-28 | 大连理工大学 | 一种平面切削过程的颤振稳定域建模方法 |
-
2015
- 2015-05-29 CN CN201510288664.7A patent/CN104866677B/zh active Active
- 2015-11-11 WO PCT/CN2015/094306 patent/WO2016192308A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012223874A (ja) * | 2011-04-22 | 2012-11-15 | Daido Kogyo Co Ltd | 紙断裁装置 |
CN202726639U (zh) * | 2012-08-14 | 2013-02-13 | 沈阳机床(集团)设计研究院有限公司 | 基于数控铣床主轴伺服电机电流信号的切削状态监测系统 |
CN103712807A (zh) * | 2012-09-29 | 2014-04-09 | 成都金福天下投资管理有限公司 | 伺服系统性能测试装置 |
CN103115724A (zh) * | 2013-01-29 | 2013-05-22 | 深圳大学 | 一种高速电主轴的在线动平衡补偿装置及其补偿方法 |
CN103869757A (zh) * | 2014-03-26 | 2014-06-18 | 大连理工大学 | 复杂曲面五轴数控加工刀矢的动力学控制方法 |
CN104866677A (zh) * | 2015-05-29 | 2015-08-26 | 华中科技大学 | 一种机床主轴电机中平衡外力负载的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113312724A (zh) * | 2021-06-07 | 2021-08-27 | 金丰(中国)机械工业有限公司 | 一种基于模态分析的压力机减振方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104866677A (zh) | 2015-08-26 |
CN104866677B (zh) | 2017-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Field dynamic balancing for rigid rotor-AMB system in a magnetically suspended flywheel | |
CN105048913B (zh) | 基于电流补偿的无轴承异步电机不平衡振动控制系统 | |
CN107389268B (zh) | 一种基于快速算法的多点现场动平衡方法 | |
Tauhiduzzaman et al. | Form error in diamond turning | |
Xul et al. | Vibration characteristics of unbalance response for motorized spindle system | |
WO2016192308A1 (zh) | 一种机床主轴电机中平衡外力负载的方法 | |
JP2012251486A (ja) | 磁気浮上式真空ポンプ、振れまわり推定方法、ロータバランス検査方法および磁気軸受制御ゲイン調整方法 | |
CN104354068A (zh) | 一种高速铣削电主轴切削颤振的主动抑制装置 | |
CN114326409A (zh) | 基于双通道谐波重构的磁悬浮转子直接振动力抑制方法 | |
Zheng et al. | Rotor balancing for magnetically levitated TMPs integrated with vibration self-sensing of magnetic bearings | |
He et al. | Reduction of the high-speed magnetically suspended centrifugal compressor harmonic vibration using cascaded phase-shifted notch filters | |
Ma et al. | A novel active online electromagnetic balancing method—Principle and structure analysis | |
CN105048914A (zh) | 基于转矩逆的无轴承异步电机转子振动补偿控制系统 | |
Walter et al. | Specification and judging of high-speed rotating machinery with AMB—A practical guideline for OEMs, EPC, and end users | |
US6886436B2 (en) | Method and device for damping a chatter oscillation in a processing machine | |
Kuppa et al. | Characteristic parameter estimation of AMB supported coupled rotor system | |
Liu et al. | A high accuracy method for the field dynamic balancing of rigid spindles in the ultra-precision turning machine | |
CN114019907B (zh) | 一种消除直线进给伺服系统自激振动的实现方法 | |
Bai et al. | Design and decoupled compensation methods of a PM motor capable of 6-D force/torque actuation for minimum bearing reaction | |
Ji | Vibration mechanism analysis of magnetic levitation rotor system for low temperature waste heat power generation | |
CN112815007B (zh) | 磁悬浮轴承系统转子不平衡激励观测与位移振动抑制方法 | |
Li-Fang et al. | A study on electromagnetic driven bi-disc compensator for rotor auto-balancing and its movement control | |
JP3701307B2 (ja) | トルク及び横方向の力を同時に発生させる特殊な巻線を備えた電気誘導機を制御するための方法及びその制御装置 | |
CN112307580A (zh) | 一种计入动态运行刚度的高精度在线智能动平衡方法 | |
CN204195400U (zh) | 一种高速铣削电主轴切削颤振的主动抑制装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15893953 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.04.2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15893953 Country of ref document: EP Kind code of ref document: A1 |