WO2016190323A1 - 樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材 - Google Patents

樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材 Download PDF

Info

Publication number
WO2016190323A1
WO2016190323A1 PCT/JP2016/065360 JP2016065360W WO2016190323A1 WO 2016190323 A1 WO2016190323 A1 WO 2016190323A1 JP 2016065360 W JP2016065360 W JP 2016065360W WO 2016190323 A1 WO2016190323 A1 WO 2016190323A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
resin
filler
resin composition
conductive filler
Prior art date
Application number
PCT/JP2016/065360
Other languages
English (en)
French (fr)
Inventor
竹澤 由高
士輝 宋
敬二 福島
智和 棚瀬
哲司 加藤
彰洋 佐野
啓明 小島
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to EP16800028.9A priority Critical patent/EP3305856A4/en
Priority to CN201680030310.5A priority patent/CN107614620B/zh
Priority to JP2017520725A priority patent/JP6677249B2/ja
Priority to US15/576,533 priority patent/US20180148622A1/en
Publication of WO2016190323A1 publication Critical patent/WO2016190323A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2461/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2461/14Modified phenol-aldehyde condensates

Definitions

  • the present invention relates to a resin composition, a resin sheet, a prepreg, an insulator, a cured resin sheet, and a heat dissipation member.
  • the amount of heat generated per unit volume has increased due to the miniaturization of electrical equipment, and there has been a demand for higher thermal conductivity of insulating materials constituting electrical equipment.
  • the energy density has increased due to the higher performance of electrical equipment, and the environment in which insulating materials are exposed has become increasingly high electric fields. Therefore, in addition to increasing the thermal conductivity, the insulating material is required to have an improved electrical degradation life so that dielectric breakdown does not occur even when a voltage is applied to the insulating material for a long period of time.
  • a technique of compositing an epoxy resin and a thermally conductive filler is known.
  • the epoxy resin bisphenol A type epoxy resin, novolak type epoxy resin and the like are known.
  • methods for improving the thermal conductivity of the epoxy resin itself have been studied.
  • Japanese Patent Application Laid-Open Nos. 2005-206814 and 2014-201610 discuss a method for increasing the thermal conductivity of an epoxy resin itself by orderly arranging epoxy monomers having a mesogen skeleton.
  • the thermally conductive filler for example, silica, alumina, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, and silicon carbide are known.
  • an object of the present invention is to provide a resin composition capable of forming an insulating material having an excellent degradation life while maintaining high thermal conductivity, and a resin sheet, prepreg, insulator, and resin using the resin composition
  • the object is to provide a cured sheet and a heat dissipation member.
  • the present inventor has found that it is effective to add mica to the resin composition in order to improve the degradation life of electricity.
  • the particle diameter of the thermally conductive filler is 10 ⁇ m or more and 100 ⁇ m or less.
  • the thermal conductivity is divided into a filler group (A), a filler group (B) having a particle size of 1.0 ⁇ m or more and less than 10 ⁇ m, and a filler group (C) having a particle size of 0.1 ⁇ m or more and less than 1.0 ⁇ m. Obtained by curing the resin composition by making the volume-based ratio of the filler group (C) in the filler larger than the volume-based ratio of the filler group (B) in the thermally conductive filler. It has been found that an insulating material has an excellent electrical degradation life and high thermal conductivity, and has led to the present invention.
  • the thermally conductive filler includes a filler group (A) having a particle diameter of 10 ⁇ m to 100 ⁇ m, a filler group (B) having a particle diameter of 1.0 ⁇ m to less than 10 ⁇ m, and a filler having a particle diameter of 0.1 ⁇ m to less than 1.0 ⁇ m.
  • groups (C) When divided into groups (C), the volume-based ratio of the filler group (C) in the thermally conductive filler is more than the volume-based ratio of the filler group (B) in the thermally conductive filler. Large resin composition.
  • the ratio of the filler group (A) is 50% by volume to 90% by volume, and the ratio of the filler group (B) is 1 volume. % To 30% by volume, and the proportion of the filler group (C) is 5% to 40% by volume.
  • ⁇ 4> The resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the mica is 0.1% by volume to 5% by volume with respect to the total solid content.
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the heat conductive filler is 60% by volume to 80% by volume with respect to the total solid content.
  • thermosetting resin includes an epoxy monomer having a mesogenic skeleton or a polymer thereof.
  • thermoly conductive filler includes alumina
  • ⁇ 8> A resin sheet obtained by molding the resin composition according to any one of ⁇ 1> to ⁇ 7> into a sheet shape.
  • a cured resin sheet which is a heat-treated product of the resin sheet according to ⁇ 8>.
  • ⁇ 12> Any one of ⁇ 1> to ⁇ 7>, disposed between the first metal member, the second metal member, and the first metal member and the second metal member. And a cured resin layer that is a cured product of the resin composition described in 1.
  • a resin composition capable of forming an insulating material having an excellent electrical degradation life while maintaining high thermal conductivity, and a resin sheet, prepreg, insulator, and resin sheet curing using the resin composition An object and a heat dissipation member are provided.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content or content of each component in the composition refers to the plurality of components present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means the sum of species.
  • the particle diameter of each component in the composition is such that when there are a plurality of particles corresponding to each component in the composition, the plurality of particles present in the composition unless otherwise specified.
  • the value for a mixture of includes a configuration of a shape formed in part in addition to a configuration of a shape formed on the entire surface when observed as a plan view.
  • the term “stacked” indicates that the layers are stacked, and two or more layers may be bonded, or two or more layers may be detachable.
  • the resin composition of the present embodiment contains a thermosetting resin, a thermally conductive filler, and mica, and the thermally conductive filler includes a filler group (A) having a particle size of 10 ⁇ m to 100 ⁇ m, and a particle size of 1.
  • the thermally conductive filler includes a filler group (A) having a particle size of 10 ⁇ m to 100 ⁇ m, and a particle size of 1.
  • the volume standard of the filler group (C) in the thermally conductive filler Is larger than the volume-based proportion of the filler group (B) in the thermally conductive filler.
  • the thermally conductive filler in the resin composition when the volume basis ratio of the filler group (C) in the thermally conductive filler is larger than the volume basis ratio of the filler group (B) in the thermally conductive filler, The dielectric breakdown of the insulating material formed by the resin composition is prevented, and the life of deterioration due to electrical charging is improved. This is because, in the thermally conductive filler in the resin composition, the volume-based ratio of the filler group (C) in the thermally conductive filler is larger than the volume-based ratio of the filler group (B) in the thermally conductive filler. If it is large, it is assumed that the effect of inhibiting the progress of the electric tree by mica works effectively.
  • the thermally conductive filler contained in the resin composition of the present embodiment includes a filler group (A) having a particle size of 10 ⁇ m to 100 ⁇ m, and a filler group having a particle size of 1.0 ⁇ m to less than 10 ⁇ m.
  • the volume-based ratio of the filler group (C) in the thermally conductive filler is It will not specifically limit if it is larger than the volume basis ratio of the filler group (B) to occupy.
  • the thermally conductive filler used in the present embodiment satisfies the above conditions can be determined by calculating the total volume of particles having a particle diameter included in the above range from the volume cumulative particle size distribution of the filler used.
  • the volume cumulative particle size distribution is measured using a laser diffraction method.
  • the particle size distribution measurement using the laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring apparatus (for example, LS13 manufactured by Beckman Coulter, Inc.).
  • the filler dispersion for measurement can be obtained by introducing a thermally conductive filler into a 0.1% by mass sodium metaphosphate aqueous solution, ultrasonically dispersing it, and adjusting the concentration to an appropriate light amount in terms of sensitivity of the apparatus.
  • the material of the thermally conductive filler is not particularly limited as long as it has a higher thermal conductivity than the cured product of the thermosetting resin, and a material used as a filler for improving the thermal conductivity can be applied.
  • Specific examples of the thermally conductive filler include silica, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, and magnesium oxide. From the viewpoint of thermal conductivity, alumina, aluminum nitride and magnesium oxide are preferable, and alumina is more preferable.
  • the crystal type of alumina is not particularly limited, and may be any of ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ -type, and has high thermal conductivity, high melting point, high mechanical strength, and electrical insulation. ⁇ -alumina is preferred from the standpoint of superiority.
  • the content of the heat conductive filler is preferably 60% by volume to 80% by volume with respect to the total solid content in the resin composition.
  • the content of the heat conductive filler in the resin composition is more preferably 65% by volume to 80% by volume, and still more preferably 70% by volume to 80% by volume with respect to the total solid content.
  • the content rate (volume%) of the heat conductive filler in this specification be the value calculated
  • Content of heat conductive filler (% by volume) (Aw / Ad) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd) + (Dw / Dd)) ⁇ 100
  • Dw Mass composition ratio (% by mass) of other optional components (excluding organic solvents)
  • Bd Specific gravity of thermosetting resin
  • Cd Specific gravity of mica
  • Dd Specific gravity of other optional components (excluding organic solvents)
  • the thermally conductive filler (X) having an average particle diameter of 10 ⁇ m or more and 100 ⁇ m or less
  • the thermally conductive filler (Y) having an average particle diameter of 1.0 ⁇ m or more and less than 10 ⁇ m
  • the average particle diameter When the thermally conductive filler is composed of a mixture of thermally conductive fillers (Z) having a thickness of 0.1 ⁇ m or more and less than 1.0 ⁇ m, the thermally conductive filler (X), the thermally conductive filler (Z) are preferably 50% to 90% by volume, 1% to 30% by volume, and 5% to 40% by volume, respectively, and 60% by volume, respectively.
  • the heat conductive filler (X), the heat conductive filler (Y), and the heat conductive filler (Z) is 100 volume%.
  • the particle diameter (D50) at which the volume cumulative particle size distribution is 50% in this embodiment is defined as the “average particle diameter” of the thermally conductive filler.
  • the volume cumulative particle size distribution is measured by the same method as described above.
  • the average particle diameter of the heat conductive filler (X) is limited by the thickness of the target resin sheet or the like.
  • the thickness of the resin sheet or the like is preferably as thin as possible from the viewpoint of thermal resistance as long as the life of deterioration due to electric charge is allowed. Therefore, the average particle diameter of the heat conductive filler (X) is preferably 10 ⁇ m to 100 ⁇ m.
  • the average particle diameter of the entire thermally conductive filler is preferably 0.1 ⁇ m to 100 ⁇ m.
  • a heat conductive filler having an average particle size outside the range of 0.1 ⁇ m to 100 ⁇ m may be used in combination as long as the heat conductivity and the degradation life are allowed.
  • the volume-based proportion of the filler group (C) in the thermally conductive filler occupies the thermally conductive filler. It is necessary to be larger than the volume-based ratio of the filler group (B).
  • the heat conductive filler is contained in the resin composition in an amount of 60% by volume to 80% by volume with respect to the total solid content, and the proportions of the filler group (A), the filler group (B), and the filler group (C) are respectively , 50 volume% to 90 volume%, 1 volume% to 30 volume%, and 5 volume% to 40 volume%, the thermal conductivity of the insulating material such as a cured resin sheet obtained by curing the resin composition is In comparison with a single resin, it is dramatically improved and 8 W / (m ⁇ K) or more tends to be obtained.
  • mica In the resin composition of the present embodiment, mica is preferably contained in the range of 0.1% by volume to 5% by volume with respect to the total solid content. If the content of mica is within the above range, the life of deterioration of the insulating material tends to be improved.
  • the mica used in this embodiment is preferably synthetic mica or natural mica.
  • Synthetic mica is not particularly limited, and examples thereof include swellable mica and non-swellable mica.
  • synthetic mica it is possible to use a resin whose dispersibility in the resin is enhanced by surface treatment such as titanium coupling agent treatment or silane coupling agent treatment, if necessary.
  • synthetic mica it is also possible to use those that are intercalated with an organic substance or an inorganic substance and have an increased aspect ratio, or those that have an increased affinity with a thermosetting resin.
  • Specific examples of the synthetic mica include Micro Mica and Somasif manufactured by Coop Chemical Co., Ltd.
  • A-21S manufactured by Yamaguchi Mica Co., Ltd. is suitable as the natural mica.
  • natural mica those having increased affinity with the resin by surface treatment or intercalation can be used as necessary.
  • the mica used in the present embodiment preferably has an average particle size of 1 ⁇ m to 10 ⁇ m.
  • the average particle diameter of mica can be measured by a laser diffraction / scattering particle size distribution measuring apparatus (for example, LS13 manufactured by Beckman Coulter, Inc.) as in the case of the thermally conductive filler.
  • the particle diameter (D50) at which the volume cumulative particle size distribution is 50% is defined as the average particle diameter of mica.
  • mica is the surface of the resin cured product layer in the cured resin layer obtained by curing the resin composition. It becomes easy to align inward. Then, when a voltage is applied between the metal members sandwiching the cured resin layer, an effect of preventing or suppressing the progress of the electric tree generated from voids, peeling, and the like is obtained. As a result, it is possible to prevent the dielectric breakdown of the cured resin layer and lengthen the time until the dielectric breakdown.
  • dielectric breakdown is defined as a state in which the generated electrical tree reaches the facing electrode and an electrical short circuit is caused between two electrodes sandwiching the cured resin layer.
  • the time to dielectric breakdown is defined as “electricity degradation life”.
  • the voltage applied to the cured resin layer is generally an effective voltage of 100 V to 100 kV, and includes at least one of direct current, alternating current, and pulse wave.
  • the dielectric breakdown is prevented, and the effect of improving the electrical degradation life is obtained.
  • the aspect ratio of mica is preferably 5 to 500, more preferably 10 to 500, and the higher the aspect ratio, the more preferable.
  • the aspect ratio of mica can be measured using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the aspect ratio is obtained by measuring the thickness of mica from the SEM image and dividing the average particle diameter of mica measured by the laser diffraction method by the thickness of mica.
  • the thickness of the mica is the average value of the thickness of 20 mica particles.
  • thermosetting resin The resin composition of the present embodiment includes at least one thermosetting resin.
  • the thermosetting resin is not particularly limited as long as it is a thermosetting resin, and a commonly used thermosetting resin can be used.
  • thermosetting resin examples include epoxy resins, polyimide resins, polyamideimide resins, triazine resins, phenol resins, melamine resins, polyester resins, cyanate ester resins, and modified products of these resins. These resins may be used alone or in combination of two or more.
  • the thermosetting resin in the present embodiment is preferably a resin selected from an epoxy resin, a phenol resin, and a triazine resin, and more preferably an epoxy resin, from the viewpoint of heat resistance.
  • the epoxy resin may be used alone or in combination of two or more.
  • the epoxy resin include polyphenols such as bisphenol A, bisphenol F, biphenol, novolac phenol resin, orthocresol novolac phenol resin, triphenylmethane phenol resin, and polyhydric alcohols such as 1,4-butanediol.
  • Polyglycidyl ether obtained by reacting chlorohydrin with epichlorohydrin; polyglycidyl ester obtained by reacting polychlorobasic acid such as phthalic acid or hexahydrophthalic acid with epichlorohydrin; amine, amide, heterocyclic nitrogen base N-glycidyl derivatives such as compounds; and alicyclic epoxy resins.
  • an epoxy monomer having a mesogen skeleton typified by a biphenyl structure or a polymer thereof is preferable because the thermal conductivity of the cured resin itself is improved and the melt viscosity at the time of heating is reduced.
  • the mesogenic skeleton in the present embodiment refers to a molecular structure that facilitates the expression of crystallinity or liquid crystallinity. Specific examples include a biphenyl skeleton, a phenylbenzoate skeleton, a cyclohexyl benzoate skeleton, an azobenzene skeleton, a stilbene skeleton, and derivatives thereof.
  • Epoxy resins having a mesogenic skeleton in the molecular structure tend to form higher order structures when cured, and tend to achieve higher thermal conductivity when a cured product is produced.
  • the higher order structure is a state in which the constituent elements are arranged microscopically, and corresponds to, for example, a crystal phase and a liquid crystal phase. Whether or not such a higher-order structure exists can be easily determined by observation with a polarizing microscope. That is, when an interference pattern due to depolarization is observed in the observation in the crossed Nicol state, it can be determined that a higher order structure exists.
  • Examples of the epoxy monomer having a mesogenic skeleton include biphenyl type epoxy resin, bixylenyl type epoxy resin, 1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene.
  • the epoxy resin may be an epoxy monomer or a prepolymer obtained by polymerizing an epoxy monomer with a curing agent or the like and partially reacting it.
  • Resins having a mesogenic skeleton are generally easily crystallized and often have low solubility in solvents. However, since crystallization can be suppressed by polymerizing a part of the epoxy monomer, the moldability may be improved.
  • the content of the thermosetting resin is preferably 9% by volume to 40% by volume and more preferably 20% by volume to 40% by volume with respect to the total solid content of the resin composition.
  • curing agents, hardening accelerator, etc. shall be included in the content rate of a thermosetting resin here.
  • the resin composition of the present embodiment may contain at least one of a curing agent that cures the thermosetting resin and a curing accelerator as necessary.
  • the curing agent used in the present embodiment is appropriately selected from conventionally known compounds depending on the type of thermosetting resin. it can.
  • an amine-based curing agent, a phenol-based curing agent, and the like can be given as a curing agent when an epoxy resin is used as the thermosetting resin.
  • the amine curing agent is preferably an aromatic polyamine, and examples thereof include 4,4′-diaminodiphenylmethane and 1,5-diaminonaphthalene.
  • the phenolic curing agent is preferably a polyfunctional phenol, and examples thereof include a phenol novolak resin, a phenol aralkyl resin, a naphthol aralkyl resin, a dicyclopentadiene-modified phenol resin, a catechol novolak resin, and a resorcinol novolak resin.
  • curing agent may be used individually by 1 type, or may use 2 or more types together.
  • the content of the curing agent is cured by the reactive functional group of the epoxy resin as the main agent and the curing agent. It is preferable that the mixing ratio (equivalent ratio 1.0) is completely consumed from time to time.
  • the content ratio is preferably 0.8 to 1.2, more preferably 0.9 to 1.1. preferable.
  • a curing accelerator may be included for the purpose of accelerating the reaction between the thermosetting resin and the curing agent.
  • the kind and compounding quantity of a hardening accelerator are not specifically limited, From a viewpoint of reaction rate, reaction temperature, storage property, etc., an appropriate thing can be selected.
  • Specific examples of the curing accelerator include imidazole compounds, organophosphorus compounds, tertiary amines and quaternary ammonium salts. These may be used alone or in combination of two or more.
  • the resin composition of this embodiment may contain other components as necessary. It is preferable that the resin composition of this embodiment contains a silane coupling agent.
  • the effect of including a silane coupling agent plays a role in forming a covalent bond between the surface of the thermally conductive filler and the organic resin surrounding it (that is, equivalent to a binder agent), and effectively transfers heat. Furthermore, it contributes to the improvement of insulation reliability by preventing moisture from entering.
  • the type of silane coupling agent commercially available ones can be used normally, considering the compatibility with the thermosetting resin and the reduction of thermal conduction defects at the interface between the thermosetting resin and the heat conductive filler.
  • silane coupling agent having an epoxy group, amino group, mercapto group, ureido group or hydroxyl group.
  • the silane coupling agent include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethyl.
  • the resin composition of the present embodiment may contain an organic solvent in accordance with the molding process.
  • an organic solvent the organic solvent normally used for the resin composition is mentioned.
  • Specific examples of the organic solvent used in the present embodiment include alcohol solvents, ether solvents, ketone solvents, amide solvents, aromatic hydrocarbon solvents, ester solvents, nitrile solvents, and the like.
  • the organic solvent for example, methyl isobutyl ketone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, sulfolane, cyclohexanone and methyl ethyl ketone can be used. These may be used alone or as a mixed solvent using two or more kinds.
  • the resin sheet of the present embodiment is obtained by molding the resin composition of the present embodiment into a sheet shape.
  • a resin sheet of this embodiment it can manufacture by apply
  • the two resin sheets of this embodiment are faced to each other after drying or the release substrate is applied to the resin sheet and hot pressed to smooth both sides, so that pinholes during coating, etc. Is preferable because it can be eliminated.
  • an excellent electrical charging deterioration life is realized while maintaining high thermal conductivity.
  • the release substrate is not particularly limited as long as it can withstand the temperature during drying, and is generally used as a polyethylene terephthalate film with a release agent, a polyimide film, a resin film such as an aramid film, and a release agent.
  • a metal foil such as an attached aluminum foil can be used.
  • the average thickness of the resin sheet is not particularly limited and can be appropriately selected depending on the purpose.
  • the average thickness of the resin sheet is preferably 100 ⁇ m to 500 ⁇ m, and more preferably 100 ⁇ m to 300 ⁇ m.
  • the average thickness of the resin sheet is obtained as an arithmetic average value by measuring the thickness of five points using a micrometer.
  • the resin sheet is obtained as follows, for example.
  • the varnish containing the resin composition of the present embodiment is prepared by mixing, dissolving, and dispersing the components described in the column of the resin composition. And the prepared varnish is provided on a mold release base material.
  • the application of the varnish can be performed by a known method.
  • Specific examples of the varnish application method include a comma coating method, a die coating method, a lip coating method, and a gravure coating method.
  • a comma coating method for passing an object to be coated between gaps a die coating method for applying a varnish with a flow rate adjusted from a nozzle, or the like can be applied.
  • the drying temperature is desirably set as appropriate depending on the solvent used in the resin composition, and is generally about 80 ° C. to 180 ° C.
  • the drying time can be determined by considering the varnish gelation time and the thickness of the resin sheet, and is not particularly limited.
  • the release substrate is removed to obtain a resin sheet.
  • the residual amount of solvent in the resin sheet is preferably 2.0% by mass or less from the viewpoint of concern about the formation of bubbles due to the generation of outgas during curing.
  • the residual amount of solvent in the resin sheet is determined from the change in mass before and after drying when the resin sheet is cut into a 40 mm square and dried in a thermostat preheated to 190 ° C. for 2 hours.
  • the resin sheet of the present embodiment may be used after the surface has been flattened before being laminated or pasted by hot pressing with a press, a roll laminator or the like.
  • a method of hot pressurization a method such as a hot press, a hot roll, and a laminator can be arbitrarily selected.
  • the heating temperature is preferably set as appropriate according to the type of resin used in the resin composition, and is generally preferably 60 ° C. to 180 ° C., preferably 120 ° C. More preferably, the temperature is set to ⁇ 150 ° C.
  • the degree of vacuum is preferably 3 Pa to 0.1 kPa.
  • the pressing pressure is preferably 0.5 MPa to 4 MPa, more preferably 1 MPa to 2 MPa.
  • the prepreg of the present embodiment includes a fiber base material and the resin composition of the present embodiment impregnated in the fiber base material. With such a configuration, a prepreg having an excellent electrical charging deterioration life while maintaining high thermal conductivity is obtained.
  • the fiber base material constituting the prepreg is not particularly limited as long as it is used when producing a metal foil-clad laminate, a multilayer printed wiring board and the like, and fiber base materials such as woven fabric and nonwoven fabric are used.
  • the opening is preferably set to 5 times or more the average particle diameter of the heat conductive filler.
  • the material of the fiber substrate includes glass, alumina, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, carbon, zirconia, and other inorganic fibers, aramid, polyetheretherketone, polyetherimide, polyether There are organic fibers such as sulfone and cellulose, and mixed papers of these. Of these, a glass fiber woven fabric is preferably used. As a result, a prepreg that is flexible and can be arbitrarily bent can be obtained. Furthermore, it becomes possible to reduce the dimensional change of the substrate accompanying the temperature, moisture absorption, etc. in the manufacturing process.
  • the thickness of the fiber substrate is not particularly limited, but is preferably 30 ⁇ m or less from the viewpoint of imparting better flexibility, and more preferably 15 ⁇ m or less from the viewpoint of impregnation.
  • the minimum of the thickness of a fiber base material is not restrict
  • the impregnation ratio of the resin composition is preferably 50% by mass to 99.9% by mass with respect to the total mass of the fiber base material and the resin composition.
  • the prepreg of this embodiment can be produced by impregnating a fiber base material with the varnish of the resin composition of this embodiment prepared in the same manner as described above, and removing the solvent by heating at 80 ° C. to 180 ° C. .
  • the solvent residual amount in the prepreg is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.7% by mass or less.
  • the amount of solvent remaining in the prepreg is determined from the change in mass before and after drying when the prepreg is cut into 40 mm squares and dried in a thermostat preheated to 190 ° C. for 2 hours.
  • the drying time for removing the solvent by heating is not particularly limited.
  • the method of impregnating a fiber base material with a resin composition there is no restriction
  • coating with a coating machine can be mentioned.
  • a vertical coating method in which the fiber base material is pulled through the resin composition and a horizontal coating method in which the fiber base material is pressed and impregnated after the resin composition is coated on the support film are exemplified. From the viewpoint of suppressing the uneven distribution of the thermally conductive filler in the fiber base material, the horizontal coating method is suitable.
  • the prepreg of the present embodiment may be used after the surface is smoothed in advance before being laminated or pasted by hot pressing with a press, a roll laminator or the like.
  • the method of hot pressing is the same as the method mentioned for the resin sheet.
  • the conditions of the heating temperature, the degree of vacuum, and the pressing pressure in the hot press of the prepreg are the same as the conditions mentioned in the hot press of the resin sheet.
  • the insulator of this embodiment includes a cured product of the resin composition of this embodiment.
  • the insulator of the present embodiment can be manufactured by the same manufacturing method as that in the case of using a normal resin for cast insulators. Specifically, the insulator of this embodiment can be obtained by a method of injecting the resin composition of this embodiment into a mold.
  • the resin composition of the present embodiment it is possible to obtain an insulator having a higher insulation withstand voltage compared to an epoxy resin used as a conventional resin for cast insulators. Examples of such an insulator include an insulating spacer, an insulating rod, and a molded insulating part.
  • the cured resin sheet of the present embodiment is a heat-treated product of the resin sheet of the present embodiment.
  • the curing method for curing the resin sheet of this embodiment can be appropriately selected according to the composition of the resin composition constituting the resin sheet, the purpose of the cured resin sheet, and the like.
  • the curing method for curing the resin sheet is preferably a heat and pressure treatment.
  • the conditions for the heat and pressure treatment are, for example, that the heating temperature is 80 ° C. to 250 ° C., the pressure is preferably 0.5 MPa to 8 MPa, the heating temperature is 130 ° C. to 230 ° C., and the pressure is 1.5 MPa to 5 MPa. More preferably.
  • the treatment time for the heat and pressure treatment can be appropriately selected according to the heating temperature and the like. For example, it can be 2 to 8 hours, and preferably 4 to 6 hours. Further, the heat and pressure treatment may be performed once, or may be performed twice or more by changing the heating temperature or the like.
  • the heat dissipation member of this embodiment is a resin composition of this embodiment, which is disposed between the first metal member, the second metal member, and the first metal member and the second metal member. And a cured resin layer that is a cured product.
  • the “metal member” means a molded product containing a metal material that can function as a heat radiating member, such as a metal foil, a substrate, or a fin.
  • the member is preferably a substrate made of various metals such as Al (aluminum) and Cu (copper).
  • the heat radiating member of this embodiment is illustrated in FIG.
  • the heat radiating member of this embodiment is not limited to this.
  • the size of the members in FIG. 1 is conceptual, and the relative relationship between the sizes of the members is not limited to this.
  • the cured resin layer 10 is located between a first metal member 20 made of, for example, Al (aluminum) and a second metal member 30 made of, for example, Cu (copper).
  • a first metal member 20 made of, for example, Al (aluminum)
  • a second metal member 30 made of, for example, Cu (copper).
  • One side is bonded to the surface of the metal member 20 and the other side is bonded to the surface of the metal member 30. Since the cured resin layer 10 has a high dielectric strength voltage, for example, even if a large potential difference occurs between the first metal member 20 and the second metal member 30, the first metal member 20 and the second metal member 20 The insulation between the metal member 30 can be ensured.
  • the average thickness of the cured resin layer 10 is not particularly limited, and is preferably 100 ⁇ m to 300 ⁇ m, for example.
  • the ratio of the alumina powder to the total volume of the type epoxy resin, resorcinol novolak resin, alumina powder, and synthetic mica powder was calculated to be 75.2% by volume. When the ratio of the synthetic mica powder to the total volume was calculated, it was 0.1% by volume.
  • the proportion of filler group (A) is 72.5% by volume, the proportion of filler group (B) is 9.5% by volume, and the proportion of filler group (C) is 18. It was 0% by volume.
  • Thickness of the obtained resin composition is about 200 ⁇ m on the release surface of a polyethylene terephthalate film (Fujimori Kogyo Co., Ltd., 75E-0010CTR-4, hereinafter sometimes referred to as “PET film”) with an applicator. And dried for 10 minutes in a box oven at 100 ° C. to form an A-stage composite sheet on the PET film.
  • a composite sheet (A stage, 5 cm ⁇ 5 cm) obtained by the above-described method is applied to the roughened surface of a copper foil (5 cm ⁇ 5 cm, manufactured by Furukawa Electric Co., Ltd., GTS foil) having a thickness of 85 ⁇ m.
  • the PET film was peeled off. Furthermore, the copper foil was piled up on the side which peeled PET film, and the laminated body was obtained.
  • the obtained laminate was pressed by a high-temperature vacuum press under the conditions of a temperature of 180 ° C., a degree of vacuum of 1 kPa or less, a pressure of 60 MPa, and a time of 10 minutes to obtain a resin sheet having copper foil on both sides.
  • the resin sheet after the press treatment was put in an oven, and a cured resin sheet having a copper foil on both sides was obtained by step curing at 160 ° C. for 30 minutes and then at 190 ° C. for 2 hours.
  • the copper foil was etched away using a sodium persulfate solution to obtain a resin sheet cured product.
  • the average thickness of the obtained cured resin sheet was 200 ⁇ m.
  • the average thickness of the cured resin sheet was obtained as an arithmetic average value by measuring the thickness of five points using a micrometer.
  • ⁇ Electricity degradation life evaluation> The obtained resin sheet cured product was subjected to an evaluation of the degradation life of electricity using a Vt test apparatus (manufactured by Keinan Electric Co., Ltd.). The test was performed by immersing the sample in a container containing silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., KF-96-50cs). The voltage was set to 5 kVrms and 50 Hz, and the time from voltage application to dielectric breakdown was measured. Table 1 shows the measurement results.
  • the thermal resistance value of the cured resin sheet was measured using a thermal resistance evaluation apparatus (YST-901S) manufactured by Yamayo Tester Co., Ltd.
  • the thermal conductivity (W / (m ⁇ K)) was calculated by back-calculating the obtained thermal resistance value. Table 1 shows the measurement results.
  • Example 2 100 parts by mass of the same cyclohexylbenzoate type epoxy resin as in Example 1 as a thermosetting resin, 37 parts by mass of a resorcinol novolak resin (hydroxyl equivalent 62 g / eq, manufactured by Hitachi Chemical Co., Ltd.) as a curing agent, and triphenyl as a curing accelerator 1.4 parts by mass of phosphine, 1.4 parts by mass of KBM-573 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, and 1380 parts by mass of alumina powder as a thermally conductive filler ( ⁇ -alumina manufactured by Sumitomo Chemical Co., Ltd.) Powder: 1000 parts by mass of alumina (thermally conductive filler (X)) having an average particle size of 18 ⁇ m, 80 parts by mass of alumina (thermally conductive filler (Y)) having an average particle size of 3 ⁇ m, and an average particle size of
  • the ratio of the alumina powder to the total volume of the type epoxy resin, resorcinol novolak resin, alumina powder, and synthetic mica powder was calculated to be 74.2% by volume. When the ratio of the synthetic mica powder to the total volume was calculated, it was 1.3% by volume.
  • Example 3 100 parts by mass of the same cyclohexylbenzoate type epoxy resin as in Example 1 as a thermosetting resin, 37 parts by mass of a resorcinol novolak resin (hydroxyl equivalent 62 g / eq, manufactured by Hitachi Chemical Co., Ltd.) as a curing agent, and triphenyl as a curing accelerator 1.4 parts by mass of phosphine, 1.4 parts by mass of KBM-573 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, and 1380 parts by mass of alumina powder as a thermally conductive filler ( ⁇ -alumina manufactured by Sumitomo Chemical Co., Ltd.) Powder: 1000 parts by mass of alumina (thermally conductive filler (X)) having an average particle size of 18 ⁇ m, 80 parts by mass of alumina (thermally conductive filler (Y)) having an average particle size of 3 ⁇ m, and an average particle size of
  • the ratio of the alumina powder to the total volume of the type epoxy resin, resorcinol novolak resin, alumina powder, and synthetic mica powder was calculated to be 71.3% by volume.
  • the ratio of the synthetic mica powder to the total volume was calculated to be 5.2% by volume.
  • Example 4 In Example 1, an epoxy resin varnish was prepared in the same manner as in Example 1 except that a biphenyl type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YL6121H) was used instead of the cyclohexyl benzoate type epoxy resin. Produced. Table 1 shows the evaluation results of the electrical charging degradation life and the measurement results of the thermal conductivity of the obtained cured resin sheet. In addition, the density of the mixture of a biphenyl type epoxy resin (Mitsubishi Chemical Corporation make, YL6121H) and a resorcinol novolak resin was 1.2 g / cm ⁇ 3 >. Examples 5 and 6 were the same.
  • Example 5 an epoxy resin varnish was prepared in the same manner as in Example 2 except that a biphenyl type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YL6121H) was used instead of the cyclohexyl benzoate type epoxy resin. Produced. Table 1 shows the evaluation results of the electrical charging degradation life and the measurement results of the thermal conductivity of the obtained cured resin sheet.
  • Example 6 an epoxy resin varnish was prepared in the same manner as in Example 3 except that a biphenyl type epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., YL6121H) was used instead of the cyclohexyl benzoate type epoxy resin. Produced. Table 1 shows the evaluation results of the electrical charging degradation life and the measurement results of the thermal conductivity of the obtained cured resin sheet.
  • Example 7 In Example 1, instead of the cyclohexyl benzoate type epoxy resin, a triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-502H, having three or more six-membered ring structures in the skeleton) was used. An epoxy resin varnish was prepared in the same manner as in Example 1 to prepare a cured resin sheet. Table 1 shows the evaluation results of the electrical charging degradation life and the measurement results of the thermal conductivity of the obtained cured resin sheet. The density of the mixture of triphenylmethane type epoxy resin (Nippon Kayaku Co., Ltd., EPPN-502H) and resorcinol novolak resin was 1.2 g / cm 3 . Examples 8 and 9 were the same.
  • Example 8 In Example 2, an epoxy resin varnish was prepared in the same manner as in Example 2 except that a triphenylmethane type epoxy resin (EPPN-502H, manufactured by Nippon Kayaku Co., Ltd.) was used instead of the cyclohexyl benzoate type epoxy resin. A cured resin sheet was produced. Table 1 shows the evaluation results of the electrical charging degradation life and the measurement results of the thermal conductivity of the obtained cured resin sheet.
  • a triphenylmethane type epoxy resin EPPN-502H, manufactured by Nippon Kayaku Co., Ltd.
  • Example 9 In Example 3, an epoxy resin varnish was prepared in the same manner as in Example 3 except that triphenylmethane type epoxy resin (Nippon Kayaku Co., Ltd., EPPN-502H) was used instead of cyclohexyl benzoate type epoxy resin. A cured resin sheet was produced. Table 1 shows the evaluation results of the electrical charging degradation life and the measurement results of the thermal conductivity of the obtained cured resin sheet.
  • Triphenylmethane type epoxy resin manufactured by Nippon Kayaku Co., Ltd., EPPN-502H
  • the density of the alumina powder as 3.98 g / cm 3 triphenyl
  • the ratio of the alumina powder to the total volume of the methane type epoxy resin (Nippon Kayaku Co., Ltd., EPPN-502H), resorcinol novolak resin and alumina powder was calculated to be 75.1% by volume.
  • the ratio of the synthetic mica powder to the total volume was 0% by volume.
  • Example 10 100 parts by mass of a triphenylmethane type epoxy resin (EPPN-502H, manufactured by Nippon Kayaku Co., Ltd.) as a thermosetting resin, and 37 parts by mass of a resorcinol novolak resin (hydroxyl equivalent 62 g / eq, manufactured by Hitachi Chemical Co., Ltd.) as a curing agent And 1.4 parts by mass of triphenylphosphine as a curing accelerator, 1.4 parts by mass of KBM-573 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, and 2000 parts by mass of alumina powder as a thermally conductive filler ( ⁇ -alumina powder manufactured by Sumitomo Chemical Co., Ltd .; 1300 parts by mass of alumina (thermal conductive filler (X)) having an average particle size of 18 ⁇ m and 200 parts by mass of alumina (thermal conductive filler (Y)) having an average particle
  • Triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-502H) resorcinol novolak resin density of a mixture of the 1.2 g / cm 3, the density of the alumina powder 3.98 g / cm 3, the synthetic mica powder
  • the ratio of alumina powder to the total volume of triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-502H), resorcinol novolak resin, alumina powder, and synthetic mica powder is calculated with a density of 2.8 g / cm 3 As a result, it was 73.1 volume%.
  • Triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-502H) resorcinol novolak resin density of a mixture of the 1.2 g / cm 3, the density of the alumina powder 3.98 g / cm 3, the synthetic mica powder
  • the ratio of alumina powder to the total volume of triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-502H), resorcinol novolak resin, alumina powder, and synthetic mica powder is calculated with a density of 2.8 g / cm 3 As a result, it was 74.1 volume%.
  • Triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-502H) resorcinol novolak resin density of a mixture of the 1.2 g / cm 3, the density of the alumina powder 3.98 g / cm 3, the synthetic mica powder
  • the ratio of alumina powder to the total volume of triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-502H), resorcinol novolak resin, alumina powder, and synthetic mica powder is calculated with a density of 2.8 g / cm 3 As a result, it was 74.1 volume%.
  • Example 11 100 parts by mass of a triphenylmethane type epoxy resin (EPPN-502H, manufactured by Nippon Kayaku Co., Ltd.) as a thermosetting resin, and 37 parts by mass of a resorcinol novolak resin (hydroxyl equivalent 62 g / eq, manufactured by Hitachi Chemical Co., Ltd.) as a curing agent 1.4 parts by mass of triphenylphosphine as a curing accelerator, 1.4 parts by mass of KBM-573 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, and 1370 parts by mass of alumina powder as a thermally conductive filler ( ⁇ -alumina powder manufactured by Sumitomo Chemical Co., Ltd .: 1300 parts by mass of alumina (thermal conductive filler (X)) having an average particle size of 18 ⁇ m and 10 parts by mass of alumina (thermal conductive filler (Y)) having an average particle
  • Triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-502H) resorcinol novolak resin density of a mixture of the 1.2 g / cm 3, the density of the alumina powder 3.98 g / cm 3, the synthetic mica powder
  • the ratio of alumina powder to the total volume of triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN-502H), resorcinol novolak resin, alumina powder, and synthetic mica powder is calculated with a density of 2.8 g / cm 3 As a result, it was 74.1 volume%.
  • Example 12 an epoxy resin varnish was prepared in the same manner as in Example 9 except that synthetic mica powder with an average particle diameter of 1 ⁇ m collected by classification treatment of synthetic mica powder was used to produce a cured resin sheet.
  • Table 2 shows the evaluation results of the electrical charging deterioration life and the measurement results of the thermal conductivity of the obtained resin sheet cured product.
  • Example 13 an epoxy resin varnish was prepared in the same manner as in Example 9 except that synthetic mica powder with an average particle diameter of 4 ⁇ m collected by classification treatment of synthetic mica powder was used to produce a cured resin sheet.
  • Table 2 shows the evaluation results of the electrical charging deterioration life and the measurement results of the thermal conductivity of the obtained resin sheet cured product.
  • Example 14 In Example 9, an epoxy resin varnish was prepared in the same manner as in Example 9 except that synthetic mica powder having an average particle diameter of 7 ⁇ m collected by classification treatment of synthetic mica powder was used to produce a cured resin sheet. .
  • Table 2 shows the evaluation results of the electrical charging deterioration life and the measurement results of the thermal conductivity of the obtained resin sheet cured product.
  • Example 15 an epoxy resin varnish was prepared in the same manner as in Example 9 except that synthetic mica powder with an average particle diameter of 10 ⁇ m collected by classification treatment of synthetic mica powder was used, and a cured resin sheet was produced. .
  • Table 2 shows the evaluation results of the electrical charging deterioration life and the measurement results of the thermal conductivity of the obtained resin sheet cured product.
  • Example 16 In Example 9, an epoxy resin varnish was prepared in the same manner as in Example 9 except that synthetic mica powder with an average particle diameter of 0.1 ⁇ m collected by classification treatment of synthetic mica powder was used, and a cured resin sheet was obtained. Produced. Table 2 shows the evaluation results of the electrical charging deterioration life and the measurement results of the thermal conductivity of the obtained resin sheet cured product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Abstract

樹脂組成物は、熱硬化性樹脂、熱伝導性フィラー及びマイカを含有し、前記熱伝導性フィラーを、粒子径が10μm以上100μm以下のフィラー群(A)、粒子径が1.0μm以上10μm未満のフィラー群(B)及び粒子径が0.1μm以上1.0μm未満のフィラー群(C)に分割したときに、前記熱伝導性フィラーに占める前記フィラー群(C)の体積基準の割合が、前記熱伝導性フィラーに占める前記フィラー群(B)の体積基準の割合よりも大きい。

Description

樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材
 本発明は、樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材に関する。
 近年、電気機器の小型化により単位体積あたりの発熱量が増大し、電気機器を構成する絶縁材料の高熱伝導化が求められている。また、電気機器の高性能化によりエネルギー密度が増大し、絶縁材料が晒される環境はますます高電界化している。従って、絶縁材料には、高熱伝導化に加えて、絶縁材料に長期間にわたり電圧が印加されても絶縁破壊が起こらないように、課電劣化寿命の向上が求められている。
 絶縁材料の高熱伝導化には、エポキシ樹脂と熱伝導性フィラーとをコンポジット化する手法が知られている。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂等が知られている。また、近年は、エポキシ樹脂そのものの熱伝導率を向上させる手法も検討されている。例えば、特開2005-206814号公報及び特開2014-201610号公報には、メソゲン骨格を有するエポキシモノマーを秩序的に配列させることで、エポキシ樹脂そのものの高熱伝導化を図る方法が検討されている。熱伝導性フィラーとしては、例えば、シリカ、アルミナ、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、及び炭化ケイ素が知られている。
 従来の絶縁材料では、高熱伝導化が達成されたとしても高電界で発生するマイグレーションにより電気トリーが進行し、絶縁破壊に至る恐れがある。
 そこで、本発明の課題は、高い熱伝導性を維持しながら優れた課電劣化寿命を有する絶縁材料を形成可能な樹脂組成物並びにこの樹脂組成物を用いた樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材を提供することにある。
 本発明者は上記課題を解決するために、研究を進めた結果、課電劣化寿命の向上のためには樹脂組成物中にマイカを添加することが有効であることを見出した。また、熱伝導性フィラーの粒度分布に関する検討を進めた結果、熱硬化性樹脂、熱伝導性フィラー及びマイカを含有する樹脂組成物であって、熱伝導性フィラーを、粒子径が10μm以上100μm以下のフィラー群(A)、粒子径が1.0μm以上10μm未満のフィラー群(B)及び粒子径が0.1μm以上1.0μm未満のフィラー群(C)に分割したときに、前記熱伝導性フィラーに占める前記フィラー群(C)の体積基準の割合を、前記熱伝導性フィラーに占める前記フィラー群(B)の体積基準の割合よりも大きくすることで、樹脂組成物を硬化して得られる絶縁材料が、優れた課電劣化寿命と高い熱伝導性を有することを見出し、本発明に至った。
 前記課題を達成するための具体的手段は以下の通りである。
<1> 熱硬化性樹脂、熱伝導性フィラー及びマイカを含有し、
 前記熱伝導性フィラーを、粒子径が10μm以上100μm以下のフィラー群(A)、粒子径が1.0μm以上10μm未満のフィラー群(B)及び粒子径が0.1μm以上1.0μm未満のフィラー群(C)に分割したときに、前記熱伝導性フィラーに占める前記フィラー群(C)の体積基準の割合が、前記熱伝導性フィラーに占める前記フィラー群(B)の体積基準の割合よりも大きい樹脂組成物。
<2> 前記熱伝導性フィラーの総体積を100体積%としたときの、前記フィラー群(A)の割合が50体積%~90体積%であり、前記フィラー群(B)の割合が1体積%~30体積%であり、前記フィラー群(C)の割合が5体積%~40体積%である<1>に記載の樹脂組成物。
<3> 前記マイカの平均粒子径が1μm~10μmである<1>又は<2>に記載の樹脂組成物。
<4> 前記マイカの含有率が、全固形分に対して0.1体積%~5体積%である<1>~<3>のいずれか1項に記載の樹脂組成物。
<5> 前記熱伝導性フィラーの含有率が、全固形分に対して60体積%~80体積%である<1>~<4>のいずれか1項に記載の樹脂組成物。
<6> 前記熱硬化性樹脂が、メソゲン骨格を有するエポキシモノマー又はその重合体を含む<1>~<5>のいずれか1項に記載の樹脂組成物。
<7> 前記熱伝導性フィラーが、アルミナを含む<1>~<6>のいずれか1項に記載の樹脂組成物。
<8> <1>~<7>のいずれか1項に記載の樹脂組成物をシート状に成形してなる樹脂シート。
<9> 繊維基材と、前記繊維基材に含浸された<1>~<7>のいずれか1項に記載の樹脂組成物と、を有するプリプレグ。
<10> <1>~<7>のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁物。
<11> <8>に記載の樹脂シートの熱処理物である樹脂シート硬化物。
<12> 第一の金属部材と、第二の金属部材と、前記第一の金属部材と前記第二の金属部材との間に配置される、<1>~<7>のいずれか1項に記載の樹脂組成物の硬化物である樹脂硬化物層と、を有する放熱部材。
<13> 前記樹脂硬化物層の平均厚みが、100μm~300μmである<12>に記載の放熱部材。
 本発明によれば、高い熱伝導性を維持しながら優れた課電劣化寿命を有する絶縁材料を形成可能な樹脂組成物並びにこの樹脂組成物を用いた樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材が提供される。
本実施形態の放熱部材の一例を示す模式的断面図である。
 以下、本発明の樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材の実施形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書において組成物中の各成分の含有量又は含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計を意味する。また、本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
<樹脂組成物>
 本実施形態の樹脂組成物は、熱硬化性樹脂、熱伝導性フィラー及びマイカを含有し、前記熱伝導性フィラーを、粒子径が10μm以上100μm以下のフィラー群(A)、粒子径が1.0μm以上10μm未満のフィラー群(B)及び粒子径が0.1μm以上1.0μm未満のフィラー群(C)に分割したときに、前記熱伝導性フィラーに占める前記フィラー群(C)の体積基準の割合が、前記熱伝導性フィラーに占める前記フィラー群(B)の体積基準の割合よりも大きいものである。
 樹脂組成物中の熱伝導性フィラーにおいて、熱伝導性フィラーに占めるフィラー群(C)の体積基準の割合が、熱伝導性フィラーに占めるフィラー群(B)の体積基準の割合よりも大きいと、樹脂組成物により形成される絶縁材料の絶縁破壊が防止され、課電劣化寿命が向上する。これは、樹脂組成物中の熱伝導性フィラーにおいて、熱伝導性フィラーに占めるフィラー群(C)の体積基準の割合が、熱伝導性フィラーに占めるフィラー群(B)の体積基準の割合よりも大きいと、マイカによる電気トリー進展の阻害効果が効果的に作用するためと推察される。
 以下、本実施形態の樹脂組成物を構成する各成分について説明する。
(熱伝導性フィラー)
 本実施形態の樹脂組成物に含有される熱伝導性フィラーは、該熱伝導性フィラーを、粒子径が10μm以上100μm以下のフィラー群(A)、粒子径が1.0μm以上10μm未満のフィラー群(B)及び粒子径が0.1μm以上1.0μm未満のフィラー群(C)に分割したときに、熱伝導性フィラーに占めるフィラー群(C)の体積基準の割合が、熱伝導性フィラーに占めるフィラー群(B)の体積基準の割合よりも大きいものであれば、特に限定されるものではない。
 本実施形態に用いられる熱伝導性フィラーが上記条件を満たすか否かは、使用するフィラーの体積累積粒度分布から上記範囲に含まれる粒子径の粒子の体積の総和を計算することにより判断できる。体積累積粒度分布は、レーザー回折法を用いて測定される。レーザー回折法を用いた粒度分布測定は、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、LS13)を用いて行なうことができる。測定用のフィラー分散液は、熱伝導性フィラーを0.1質量%のメタリン酸ナトリウム水溶液に投入し、超音波分散させ、装置の感度上適切な光量となる濃度に調製することで得られる。
 熱伝導性フィラーの材質としては、熱硬化性樹脂の硬化物よりも高い熱伝導性を有すれば特に制限はなく、熱伝導性の向上のためにフィラーとして用いられるものを適用することができる。
 熱伝導性フィラーとして具体的には、例えば、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、炭化ケイ素及び酸化マグネシウムを挙げることができる。熱伝導率の観点では、アルミナ、窒化アルミニウム及び酸化マグネシウムが好ましく、アルミナがより好ましい。アルミナの結晶型は特に限定されず、α型、γ型、δ型及びθ型のいずれであってもよく、熱伝導率が高く、融点が高く、機械的強度が高く、且つ電気絶縁性に優れる点から、α-アルミナが好ましい。
 熱伝導性フィラーの含有率は、樹脂組成物中、全固形分に対して60体積%~80体積%であることが好ましい。樹脂組成物中に熱伝導性フィラーが60体積%以上含有されると、熱伝導率に優れる傾向にある。また、樹脂組成物中の熱伝導性フィラーの含有率が80体積%以下であれば、接着性等の機能が発現しやすい傾向にある。樹脂組成物中の熱伝導性フィラーの含有率は、全固形分に対して、より好ましくは65体積%~80体積%であり、更に好ましくは70体積%~80体積%である。
 なお、本明細書における熱伝導性フィラーの含有率(体積%)は、次式により求めた値とする。
 熱伝導性フィラーの含有率(体積%)=(Aw/Ad)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)+(Dw/Dd))×100
Aw:熱伝導性フィラーの質量組成比(質量%)
Bw:熱硬化性樹脂の質量組成比(質量%)
Cw:マイカの質量組成比(質量%)
Dw:その他の任意成分(有機溶剤を除く)の質量組成比(質量%)
Ad:熱伝導性フィラーの比重
Bd:熱硬化性樹脂の比重
Cd:マイカの比重
Dd:その他の任意成分(有機溶剤を除く)の比重
 熱伝導性フィラーの含有率を70体積%以上とすることは、フィラーの充填性の観点から、頻度分布において単一のピークを有するフィラー群で達成することが困難な傾向にある。そこで、異なる平均粒子径を有する2種類以上のフィラー群を組み合わせて充填することが好ましく、異なる平均粒子径を有する少なくとも3種類のフィラー群を組み合わせるとより好ましい。
 フィラー群の混合の割合については、例えば、平均粒子径が10μm以上100μm以下の熱伝導性フィラー(X)、平均粒子径が1.0μm以上10μm未満の熱伝導性フィラー(Y)及び平均粒子径が0.1μm以上1.0μm未満の熱伝導性フィラー(Z)の混合物により熱伝導性フィラーを構成する場合、熱伝導性フィラーの全体積に対する熱伝導性フィラー(X)、熱伝導性フィラー(Y)及び熱伝導性フィラー(Z)の割合が、それぞれ、50体積%~90体積%、1体積%~30体積%及び5体積%~40体積%であることが好ましく、それぞれ、60体積%~80体積%、1体積%~10体積%及び10体積%~30体積%であることがより好ましい。ただし、熱伝導性フィラー(X)、熱伝導性フィラー(Y)及び熱伝導性フィラー(Z)の総体積%は、100体積%である。
 ここで、本実施形態において体積累積粒度分布が50%となる粒子径(D50)を、熱伝導性フィラーの『平均粒子径』と定義する。体積累積粒度分布は、上記と同様の方法により測定される。
 本実施形態の樹脂組成物を樹脂シート、プリプレグ又は放熱部材に適用する場合には、熱伝導性フィラー(X)の平均粒子径は、目標とする樹脂シート等の厚みによって制限される。他の制限が特にない場合には、熱伝導率の観点からは熱伝導性フィラー(X)の平均粒子径は大きいほど好ましい。樹脂シート等の厚みは、熱抵抗の観点から課電劣化寿命が許容される範囲でなるべく薄い厚みとするのが好ましい。よって、熱伝導性フィラー(X)の平均粒子径は10μm~100μmであることが好ましい。
 上述のように、異なる粒度分布を持つ熱伝導性フィラーを組み合わせて充填する場合には、熱伝導性フィラー全体の平均粒子径が、0.1μm~100μmであることが好ましい。しかしながら、熱伝導性及び課電劣化寿命が許容される範囲において、平均粒子径が0.1μm~100μmの範囲から外れる熱伝導性フィラーを併用してもよい。平均粒子径が0.1μm~100μmの範囲から外れる熱伝導性フィラーを併用した場合であっても、熱伝導性フィラーに占めるフィラー群(C)の体積基準の割合が、熱伝導性フィラーに占めるフィラー群(B)の体積基準の割合よりも大きい状態とされる必要がある。
 熱伝導性フィラーが樹脂組成物中、全固形分に対して60体積%~80体積%で含有され、且つフィラー群(A)、フィラー群(B)及びフィラー群(C)の割合が、それぞれ、50体積%~90体積%、1体積%~30体積%、及び5体積%~40体積%のとき、樹脂組成物を硬化させて得られる樹脂シート硬化物等の絶縁材料の熱伝導率が、樹脂単体と比べて飛躍的に向上し、8W/(m・K)以上が得られる傾向にある。
(マイカ)
 本実施形態の樹脂組成物中、マイカは全固形分に対して0.1体積%~5体積%の範囲で含有されることが好ましい。マイカの含有率が上記範囲であれば、絶縁材料の課電劣化寿命が向上する傾向にある。
 本実施形態で用いるマイカ(雲母と表記する場合もある)は、合成マイカ又は天然マイカが好ましい。
 合成マイカは特に限定されるものではなく、例えば、膨潤性雲母及び非膨潤性雲母が挙げられる。合成マイカを使用する際には、必要に応じてチタンカップリング剤処理、シランカップリング剤処理等の表面処理により樹脂への分散性を高めたものを用いることができる。合成マイカとして、有機物若しくは無機物でインターカレーションし、アスペクト比を高めたもの、又は、熱硬化性樹脂との親和性を高めたものを使用することもできる。合成マイカとして具体的には、コープケミカル株式会社製のミクロマイカ、ソマシフ等が好適である。
 天然マイカは、例えば、ヤマグチマイカ株式会社製のA-21Sが好適である。天然マイカは、必要に応じて表面処理又はインターカレーションにより樹脂との親和性を高めたものが使用できる。
 本実施形態で用いられるマイカは、平均粒子径が1μm~10μmであることが好ましい。
 マイカの平均粒子径は、熱伝導性フィラーと同様、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、LS13)により測定することができる。体積累積粒度分布が50%となる粒子径(D50)をマイカの平均粒子径とする。
 本実施形態において、樹脂組成物に平均粒子径が1μm~10μmのマイカを特定量含有させることにより、樹脂組成物を硬化させて得られる樹脂硬化物層中において、マイカが樹脂硬化物層の面内方向に整列し易くなる。すると、樹脂硬化物層を挟んだ金属部材間に電圧が印加されたときにボイド、剥離等を起点として発生した電気トリーの進展を防止するか、又は抑制する効果が得られる。その結果として、樹脂硬化物層の絶縁破壊を阻止して、絶縁破壊に至る時間を長くすることができる。
 ここで、『絶縁破壊』とは、発生した電気トリーが対面電極に到達し、樹脂硬化物層を挟んだ2つの電極間で電気的な短絡に至った状態と定義し、樹脂硬化物層の絶縁破壊に至る時間を『課電劣化寿命』と定義する。樹脂硬化物層に印加される電圧は概ね実効電圧で100V~100kVであり、直流、交流及びパルス波の少なくとも1種類を含む。いずれの場合でも、本実施形態の樹脂組成物により形成された絶縁材料では、絶縁破壊が防止され、課電劣化寿命が向上する効果が得られる。
 このとき、樹脂硬化物層中に含まれるマイカのアスペクト比が高いほど絶縁破壊を防止し、課電劣化寿命を向上させる効果がある。マイカのアスペクト比は、5~500が好ましく、10~500がより好ましく、アスペクト比は高いほど好ましい。
 マイカのアスペクト比は、走査型電子顕微鏡(SEM)を用いて測定することができる。SEM画像からマイカの厚みを測定し、レーザー回折法で測定したマイカの平均粒子径をマイカの厚みで除することによりアスペクト比が求められる。
 マイカの厚みは、20個のマイカ粒子の厚みの平均値とする。
(熱硬化性樹脂)
 本実施形態の樹脂組成物は、熱硬化性樹脂を少なくとも1種含む。熱硬化性樹脂としては、熱硬化性を有する樹脂であれば特に制限はなく、通常用いられる熱硬化性樹脂を用いることができる。
 熱硬化性樹脂として具体的には、例えば、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、トリアジン樹脂、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シアネートエステル樹脂、及びこれら樹脂の変性物を挙げることができる。これらの樹脂は1種類を単独で用いても、2種類以上を併用してもよい。
 本実施形態における熱硬化性樹脂は、耐熱性の観点から、エポキシ樹脂、フェノール樹脂、及びトリアジン樹脂から選ばれる樹脂であることが好ましく、エポキシ樹脂であることがより好ましい。
 熱硬化性樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂は、1種類を単独で用いても、2種類以上を併用してもよい。
 エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビフェノール、ノボラック型フェノール樹脂、オルトクレゾールノボラック型フェノール樹脂、トリフェニルメタン型フェノール樹脂等の多価フェノール、1,4-ブタンジオール等の多価アルコールなどとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル;フタル酸、ヘキサヒドロフタル酸等の多塩基酸とエピクロルヒドリンとを反応させて得られるポリグリシジルエステル;アミン、アミド、複素環式窒素塩基を有する化合物等のN-グリシジル誘導体;及び脂環式エポキシ樹脂が挙げられる。
 エポキシ樹脂のなかでも、樹脂硬化物そのものの熱伝導率が向上し、加熱時の溶融粘度が小さくなることから、ビフェニル構造に代表されるメソゲン骨格を有するエポキシモノマー又はその重合体が好ましい。
 本実施形態におけるメソゲン骨格とは、結晶性又は液晶性を発現し易くするような分子構造のことを指す。具体的には、例えば、ビフェニル骨格、フェニルベンゾエート骨格、シクロヘキシルベンゾエート骨格、アゾベンゼン骨格、スチルベン骨格及びそれらの誘導体が挙げられる。
 分子構造中にメソゲン骨格を有しているエポキシ樹脂は硬化した際に高次構造を形成し易く、硬化物を作製した場合により高い熱伝導率を達成できる傾向にある。ここで、高次構造とは、その構成要素がミクロに配列している状態のことであり、例えば、結晶相及び液晶相が相当する。このような高次構造が存在しているか否かは、偏光顕微鏡での観察によって容易に判断することが可能である。すなわち、クロスニコル状態での観察において、偏光解消による干渉模様が見られる場合は高次構造が存在していると判断できる。
 メソゲン骨格を有するエポキシモノマーとしては、ビフェニル型エポキシ樹脂、ビキシレニル型エポキシ樹脂、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-ベンゼン及びtrans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートが好ましく、融点及び硬化物の熱伝導率の観点から、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、ビフェニル型エポキシ樹脂及びtrans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートがより好ましい。
 また、エポキシ樹脂は、エポキシモノマーであっても、エポキシモノマーを硬化剤等により重合させ部分的に反応させたプレポリマーの状態であってもよい。メソゲン骨格を持つ樹脂は一般に結晶化しやすく、溶媒への溶解度も低いものが多い。しかし、エポキシモノマーの一部を重合させることで結晶化を抑制することができるため、成形性が向上する場合がある。
 熱硬化性樹脂の含有率は、樹脂組成物の全固形分に対して、9体積%~40体積%であることが好ましく、20体積%~40体積%であることがより好ましい。なお、後述の硬化剤、硬化促進剤等を併用する場合には、ここでいう熱硬化性樹脂の含有率には、これら硬化剤、硬化促進剤等の含有率を含めるものとする。
(硬化剤及び硬化促進剤)
 本実施形態の樹脂組成物は、必要に応じて熱硬化性樹脂を硬化する硬化剤及び硬化促進剤の少なくとも一方を含有してもよい。
 本実施形態の樹脂組成物が硬化剤を含有する場合、本実施形態で用いられる硬化剤としては、熱硬化性樹脂の種類等に応じて、従来から公知の化合物から適宜選択して用いることができる。
 例えば熱硬化性樹脂としてエポキシ樹脂を用いる場合の硬化剤としては、アミン系硬化剤、フェノール系硬化剤等を挙げることができる。アミン系硬化剤としては芳香族多価アミンが好ましく、4,4’-ジアミノジフェニルメタン、1,5-ジアミノナフタレン等を挙げることができる。フェノール系硬化剤としては多官能性フェノールが好ましく、フェノールノボラック樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエン変性フェノール樹脂、カテコールノボラック樹脂、レゾルシノールノボラック樹脂等を挙げることができる。硬化剤は、1種類を単独で用いても、2種類以上を併用してもよい。
 本実施形態の樹脂組成物が硬化剤を含有し、熱硬化性樹脂としてエポキシ樹脂が使用される場合、硬化剤の含有率は、主剤であるエポキシ樹脂と硬化剤との反応性官能基が硬化時に完全に消費される混合比(当量比1.0)に近いほど好ましく、当量比が0.8~1.2となる含有率が好ましく、0.9~1.1となる含有率がより好ましい。
 本実施形態の樹脂組成物が硬化剤を含有する場合、本実施形態においては、熱硬化性樹脂と硬化剤との反応等を促進させる目的で硬化促進剤を含んでいてもよい。また硬化促進剤の種類及び配合量は特に限定するものではなく、反応速度、反応温度、保管性等の観点から、適切なものを選択することができる。硬化促進剤の具体例としては、例えば、イミダゾール系化合物、有機リン系化合物、第3級アミン及び第4級アンモニウム塩が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
(その他の成分)
 本実施形態の樹脂組成物は、必要に応じてその他の成分を含んでいてもよい。
 本実施形態の樹脂組成物にはシランカップリング剤を含むことが好ましい。シランカップリング剤を含む効果としては、熱伝導性フィラーの表面とその周りを取り囲む有機樹脂の間で共有結合を形成する役割(つまり、バインダ剤に相当)を果たし、熱を効率よく伝達する働きに寄与し、更には水分の浸入を妨げることにより、絶縁信頼性の向上にも寄与する。
 シランカップリング剤の種類として、市販のものを通常使用でき、熱硬化性樹脂との相溶性及び熱硬化性樹脂と熱伝導性フィラーとの界面での熱伝導欠損の低減を考慮すると、末端にエポキシ基、アミノ基、メルカプト基、ウレイド基又は水酸基を有するシランカップリング剤を用いることが好適である。
 シランカップリング剤の具体例としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン及び3-ウレイドプロピルトリエトキシシランが挙げられ、またSC-6000KS2(日立化成テクノサービス株式会社製)に代表されるシランカップリング剤オリゴマを使用することもできる。またこれらシランカップリング剤は1種類を単独で用いても、2種類以上を併用してもよい。
 本実施形態の樹脂組成物は、成形プロセスにあわせて、有機溶剤を含有していてもよい。有機溶剤としては、樹脂組成物に通常用いられる有機溶剤が挙げられる。
 本実施形態において使用される有機溶剤として具体的には、アルコール溶剤、エーテル溶剤、ケトン溶剤、アミド溶剤、芳香族炭化水素溶剤、エステル溶剤、ニトリル溶剤等を挙げることができる。有機溶剤として、例えば、メチルイソブチルケトン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、γ-ブチロラクトン、スルホラン、シクロヘキサノン及びメチルエチルケトンを用いることができる。これらは1種類を単独でも、2種類以上を併用した混合溶剤として用いてもよい。
<樹脂シート>
 本実施形態の樹脂シートは、本実施形態の樹脂組成物をシート状に成形したものである。本実施形態の樹脂シートとしては、例えば、本実施形態の樹脂組成物を離型基材上に塗布し、乾燥することで製造することができる。この際、乾燥後に必要に応じて本実施形態の樹脂シートの2枚を向かい合わせ又は樹脂シートに離型基材をあてて熱間加圧することで両面を平滑化すると塗工時のピンホール等を解消できるため好ましい。本実施形態の樹脂組成物から樹脂シートを成形することで、高い熱伝導性を維持しながら優れた課電劣化寿命が実現される。
 離型基材としては、乾燥時の温度に耐えうるものであれば特に制限はなく、一般的に用いられる離型剤付きのポリエチレンテレフタレートフィルム、ポリイミドフィルム、アラミドフィルム等の樹脂フィルム、離型剤付きのアルミニウム箔等の金属箔などを用いることができる。
 樹脂シートの平均厚みは特に制限されず、目的に応じて適宜選択することができる。例えば樹脂シートの平均厚みは、100μm~500μmであることが好ましく、100μm~300μmであることがより好ましい。なお、樹脂シートの平均厚みは、マイクロメーターを用いて5点の厚みを測定し、その算術平均値として求められる。
 上記樹脂シートは、例えば、下記のようにして得られる。まず、上述の樹脂組成物の欄で説明した各成分を、混合、溶解、分散等して、本実施形態の樹脂組成物を含むワニスを調製する。そして、調製したワニスを離型基材上に付与する。ワニスの付与は、公知の方法により実施することができる。ワニスの付与方法として、具体的には、コンマコート法、ダイコート法、リップコート法、グラビアコート法等の方法が挙げられる。所定の厚みに樹脂シートを形成するための付与方法としては、ギャップ間に被塗工物を通過させるコンマコート法、ノズルから流量を調整したワニスを塗布するダイコート法等を適用することができる。
 乾燥温度は、樹脂組成物に用いる溶剤によって適宜設定することが望ましく、一般には80℃~180℃程度である。乾燥時間はワニスのゲル化時間と樹脂シートの厚みとの兼ね合いで決めることができ、特に制限はない。乾燥後、離型基材を除去して、樹脂シートを得る。
 樹脂シートにおける溶剤残存量は、硬化の際のアウトガスの発生により気泡が形成されることへの懸念の観点から、2.0質量%以下であることが好ましい。
 樹脂シートの溶剤残存量は、樹脂シートを40mm角に切り出し、190℃に予熱した恒温槽中で2時間乾燥させたときの、乾燥前後の質量変化から求める。
 本実施形態の樹脂シートは、プレス、ロールラミネータ等による熱間加圧により、積層又は貼付する前に予め表面を平坦化してから使用してもよい。熱間加圧の方法は、熱プレス、熱ロール、ラミネータ等の方法を任意に選択することができる。
 真空プレスの方法で熱間加圧する場合、加熱温度は、樹脂組成物に用いる樹脂の種類等に応じて適宜設定することが望ましく、一般には、60℃~180℃とすることが好ましく、120℃~150℃とすることがより好ましい。また、真空度は、3Pa~0.1kPaとすることが好ましい。プレス圧は、0.5MPa~4MPaとすることが好ましく、1MPa~2MPaとすることがより好ましい。
<プリプレグ>
 本実施形態のプリプレグは、繊維基材と、繊維基材に含浸された本実施形態の樹脂組成物と、を有して構成される。かかる構成であることで高い熱伝導性を維持しながら優れた課電劣化寿命を有するプリプレグとなる。
 プリプレグを構成する繊維基材としては、金属箔張り積層板、多層プリント配線板等を製造する際に用いられるものであれば特に制限されず、織布、不織布等の繊維基材が用いられる。ただし、目が極めて詰まった繊維の場合、フィラーが詰まってしまい樹脂組成物が含浸できないことがあるため、目開きは熱伝導性フィラーの平均粒子径の5倍以上とすることが好ましい。繊維基材の材質としては、ガラス、アルミナ、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、カーボン、ジルコニア等の無機繊維、アラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、セルロース等の有機繊維及びこれらの混抄系がある。中でもガラス繊維の織布が好ましく用いられる。これにより屈曲性を有し任意に折り曲げ可能なプリプレグを得ることができる。更に、製造プロセスでの温度、吸湿等に伴う基板の寸法変化を小さくすることも可能となる。
 繊維基材の厚さは特に限定されないが、より良好な可とう性を付与する観点から、30μm以下であることが好ましく、含浸性の観点から15μm以下であることがより好ましい。繊維基材の厚みの下限は特に制限されないが、通常5μm程度である。
 本実施形態のプリプレグにおいて、樹脂組成物の含浸率は、繊維基材及び樹脂組成物の総質量に対して50質量%~99.9質量%であることが好ましい。
 本実施形態のプリプレグは、上記と同様に調製された本実施形態の樹脂組成物のワニスを、繊維基材に含浸し、80℃~180℃の加熱により溶剤を除去して製造することができる。プリプレグにおける溶剤残存量は、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.7質量%以下であることが更に好ましい。
 プリプレグの溶剤残存量は、プリプレグを40mm角に切り出し、190℃に予熱した恒温槽中で2時間乾燥させたときの、乾燥前後の質量変化から求める。
 加熱により溶剤を除去する乾燥時間については特に制限されない。また樹脂組成物を繊維基材に含浸する方法に特に制限はなく、例えば、塗工機により塗布する方法を挙げることができる。詳細には、例えば、繊維基材を樹脂組成物にくぐらせて引き上げる縦型塗工法、及び支持フィルム上に樹脂組成物を塗工してから繊維基材を押し付けて含浸させる横型塗工法を挙げることができ、繊維基材内での熱伝導性フィラーの偏在を抑える観点からは、横型塗工法が好適である。
 また、本実施形態のプリプレグは、プレス、ロールラミネータ等による熱間加圧により、積層又は貼付する前に予め表面を平滑化してから使用してもよい。熱間加圧の方法は、上記樹脂シートで挙げた方法と同様である。また、プリプレグの熱間加圧における加熱温度、真空度、及びプレス圧の条件についても、樹脂シートの熱間加圧で挙げた条件と同様である。
<絶縁物>
 本実施形態の絶縁物は、本実施形態の樹脂組成物の硬化物を含む。本実施形態の絶縁物は、通常の注型絶縁物用樹脂を使用した場合と同様の製造方法により、製造することができる。具体的には、本実施形態の樹脂組成物を金型に注入する方法等により、本実施形態の絶縁物を得ることができる。本実施形態の樹脂組成物を用いることで、従来の注型絶縁物用樹脂として用いられているエポキシ樹脂に比べて、高い絶縁耐電圧を備える絶縁物を得ることができる。そのような絶縁物としては、絶縁スペーサ、絶縁ロッド、成形絶縁部品等が挙げられる。
<樹脂シート硬化物>
 本実施形態の樹脂シート硬化物は、本実施形態の樹脂シートの熱処理物である。本実施形態の樹脂シートを硬化する硬化方法は、樹脂シートを構成する樹脂組成物の組成、樹脂シート硬化物の目的等に応じて適宜選択することができる。樹脂シートを硬化する硬化方法は、加熱加圧処理であることが好ましい。加熱加圧処理の条件は例えば、加熱温度が80℃~250℃で、圧力が0.5MPa~8MPaであることが好ましく、加熱温度が130℃~230℃で、圧力が1.5MPa~5MPaであることがより好ましい。
 加熱加圧処理する処理時間は、加熱温度等に応じて適宜選択できる。例えば2時間~8時間とすることができ、4時間~6時間であることが好ましい。
 また加熱加圧処理は1回で行ってもよく、加熱温度等を変化させて2回以上行ってもよい。
<放熱部材>
 本実施形態の放熱部材は、第一の金属部材と、第二の金属部材と、前記第一の金属部材と前記第二の金属部材との間に配置される、本実施形態の樹脂組成物の硬化物である樹脂硬化物層と、を有する。
 ここで「金属部材」とは、金属箔、基板、フィン等の、放熱部材として機能することができる金属材料を含む成形品を意味する。本実施形態においては、部材はAl(アルミニウム)、Cu(銅)等の各種金属から構成される基板であることが好ましい。
 本実施形態の放熱部材の一例を図1に例示する。なお、本実施形態の放熱部材はこれに限定されるものではない。また、図1における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 図1において、樹脂硬化物層10は、例えばAl(アルミニウム)から構成される第一の金属部材20と、例えばCu(銅)から構成される第二の金属部材30との間に位置し、その片面は金属部材20表面に接着し、他面は金属部材30表面に接着している。
 樹脂硬化物層10は高い絶縁耐電圧を備えるため、例えば、第一の金属部材20と第二の金属部材30との間に大きな電位差が生じても、第一の金属部材20と第二の金属部材30との間の絶縁性を確保できる。
 樹脂硬化物層10の平均厚みは特に限定されるものではなく、例えば、100μm~300μmが好ましい。
 本発明を実施例及び比較例によって説明するが、本発明は下記実施例に限定されるものではない。
(実施例1)
 <樹脂組成物の作製>
 熱硬化性樹脂として、下記構造のシクロヘキシルベンゾエート型エポキシ樹脂(trans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、特許第5471975号公報参照、エポキシ当量:212g/eq)100質量部と、硬化剤としてレゾルシノールノボラック樹脂(水酸基当量62g/eq、日立化成株式会社製)37質量部と、硬化促進剤としてトリフェニルホスフィン1.4質量部と、シランカップリング剤としてKBM-573(信越化学工業株式会社製)1.4質量部と、熱伝導性フィラーとしてアルミナ粉末1380質量部(住友化学株式会社製α-アルミナ粉末;平均粒子径が18μmのアルミナ(熱伝導性フィラー(X))1000質量部と、平均粒子径が3μmのアルミナ(熱伝導性フィラー(Y))80質量部と、平均粒子径が0.4μmのアルミナ(熱伝導性フィラー(Z))300質量部との混合物)と、合成マイカ粉末(コープケミカル株式会社製、商品名:ソマシフ、平均粒子径:5μm)1.5質量部と、溶剤としてメチルエチルケトン300質量部とを混合し、エポキシ樹脂ワニスを得た。
Figure JPOXMLDOC01-appb-C000001
 シクロヘキシルベンゾエート型エポキシ樹脂とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cm、アルミナ粉末の密度を3.98g/cm、合成マイカ粉末の密度を2.8g/cmとして、シクロヘキシルベンゾエート型エポキシ樹脂とレゾルシノールノボラック樹脂とアルミナ粉末と合成マイカ粉末の合計体積に対するアルミナ粉末の割合を算出したところ、75.2体積%であった。前記合計体積に対する合成マイカ粉末の割合を算出したところ、0.1体積%であった。アルミナの総体積を100体積%としたときのフィラー群(A)の割合は72.5体積%、フィラー群(B)の割合は9.5体積%、フィラー群(C)の割合は18.0体積%であった。
<樹脂シート硬化物の作製>
 得られた樹脂組成物を、アプリケーターでポリエチレンテレフタレートフィルム(藤森工業株式会社製、75E-0010CTR-4、以下、「PETフィルム」と称することがある)の離型面上に厚みが約200μmになるように塗布し、100℃のボックス型オーブンで10分乾燥させて、PETフィルム上に、Aステージ状態のコンポジットシートを形成した。
 厚さ85μmの銅箔(5cm×5cm、古河電気工業株式会社製、GTS箔)の粗化面に、上述の方法によって得たコンポジットシート(Aステージ、5cm×5cm)を、銅箔とコンポジットシートが丁度重なるように位置合わせをして重ねた後、PETフィルムを剥がした。更にPETフィルムを剥がした側に銅箔を重ねて積層体を得た。得られた積層体を温度180℃、真空度が1kPa以下、圧力60MPa、時間10分の条件で高温真空プレスにより、プレス処理して、両面に銅箔を有する樹脂シートを得た。プレス処理後の樹脂シートをオーブンに入れて160℃で30分、次いで190℃で2時間のステップキュアにより両面に銅箔を有する樹脂シート硬化物を得た。得られた両面に銅箔を有する樹脂シート硬化物から、過硫酸ナトリウム溶液を用いて銅箔をエッチング除去し、樹脂シート硬化物を得た。得られた樹脂シート硬化物の平均厚みは200μmであった。なお、樹脂シート硬化物の平均厚みは、マイクロメーターを用いて5点の厚みを測定し、その算術平均値として求めた
<課電劣化寿命評価>
 得られた樹脂シート硬化物に対して、V-t試験装置(京南電気株式会社製)を用いて課電劣化寿命評価を行った。試験はサンプルをシリコーンオイル(信越化学工業株式会社製、KF-96-50cs)の入った容器に浸漬して実施した。電圧を5kVrms、50Hzに設定し、電圧印加から絶縁破壊までの時間を計測した。表1に測定結果を示す。
<熱伝導率測定>
 得られた樹脂シート硬化物について、ヤマヨ試験器有限会社製(YST-901S)熱抵抗評価装置を用いて、樹脂シート硬化物の熱抵抗値を測定した。得られた熱抵抗値を逆算することによって、熱伝導率(W/(m・K))を算出した。表1に測定結果を示す。
(実施例2)
 熱硬化性樹脂として実施例1と同じシクロヘキシルベンゾエート型エポキシ樹脂100質量部と、硬化剤としてレゾルシノールノボラック樹脂(水酸基当量62g/eq、日立化成株式会社製)37質量部と、硬化促進剤としてトリフェニルホスフィン1.4質量部と、シランカップリング剤としてKBM-573(信越化学工業株式会社製)1.4質量部と、熱伝導性フィラーとしてアルミナ粉末1380質量部(住友化学株式会社製α-アルミナ粉末;平均粒子径が18μmのアルミナ(熱伝導性フィラー(X))1000質量部と、平均粒子径が3μmのアルミナ(熱伝導性フィラー(Y))80質量部と、平均粒子径が0.4μmのアルミナ(熱伝導性フィラー(Z))300質量部との混合物)と、合成マイカ粉末(コープケミカル株式会社製、商品名:ソマシフ、平均粒子径:5μm)17質量部と、溶剤としてメチルエチルケトン300質量部とを混合し、エポキシ樹脂ワニスを得た。
 シクロヘキシルベンゾエート型エポキシ樹脂とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cm、アルミナ粉末の密度を3.98g/cm、合成マイカ粉末の密度を2.8g/cmとして、シクロヘキシルベンゾエート型エポキシ樹脂とレゾルシノールノボラック樹脂とアルミナ粉末と合成マイカ粉末の合計体積に対するアルミナ粉末の割合を算出したところ、74.2体積%であった。前記合計体積に対する合成マイカ粉末の割合を算出したところ、1.3体積%であった。アルミナの総体積を100体積%としたときのフィラー群(A)の割合は72.5体積%、フィラー群(B)の割合は9.5体積%、フィラー群(C)の割合は18.0体積%であった。
 次いで、実施例1と同様に樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(実施例3)
 熱硬化性樹脂として実施例1と同じシクロヘキシルベンゾエート型エポキシ樹脂100質量部と、硬化剤としてレゾルシノールノボラック樹脂(水酸基当量62g/eq、日立化成株式会社製)37質量部と、硬化促進剤としてトリフェニルホスフィン1.4質量部と、シランカップリング剤としてKBM-573(信越化学工業株式会社製)1.4質量部と、熱伝導性フィラーとしてアルミナ粉末1380質量部(住友化学株式会社製α-アルミナ粉末;平均粒子径が18μmのアルミナ(熱伝導性フィラー(X))1000質量部と、平均粒子径が3μmのアルミナ(熱伝導性フィラー(Y))80質量部と、平均粒子径が0.4μmのアルミナ(熱伝導性フィラー(Z))300質量部との混合物)と、合成マイカ粉末(コープケミカル株式会社製、商品名:ソマシフ、平均粒子径:5μm)70質量部と、溶剤としてメチルエチルケトン300質量部とを混合し、エポキシ樹脂ワニスを得た。
 シクロヘキシルベンゾエート型エポキシ樹脂とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cm、アルミナ粉末の密度を3.98g/cm、合成マイカ粉末の密度を2.8g/cmとして、シクロヘキシルベンゾエート型エポキシ樹脂とレゾルシノールノボラック樹脂とアルミナ粉末と合成マイカ粉末の合計体積に対するアルミナ粉末の割合を算出したところ、71.3体積%であった。前記合計体積に対する合成マイカ粉末の割合を算出したところ、5.2体積%であった。アルミナの総体積を100体積%としたときのフィラー群(A)の割合は72.5体積%、フィラー群(B)の割合は9.5体積%、フィラー群(C)の割合は18.0体積%であった。
 次いで、実施例1と同様に樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(実施例4)
 実施例1において、シクロヘキシルベンゾエート型エポキシ樹脂の代わりにビフェニル型エポキシ樹脂(三菱化学株式会社製、YL6121H)を用いる以外は実施例1と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。なお、ビフェニル型エポキシ樹脂(三菱化学株式会社製、YL6121H)とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cmとした。実施例5及び6も同様とした。
(実施例5)
 実施例2において、シクロヘキシルベンゾエート型エポキシ樹脂の代わりにビフェニル型エポキシ樹脂(三菱化学株式会社製、YL6121H)を用いる以外は実施例2と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(実施例6)
 実施例3において、シクロヘキシルベンゾエート型エポキシ樹脂の代わりにビフェニル型エポキシ樹脂(三菱化学株式会社製、YL6121H)を用いる以外は実施例3と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(実施例7)
 実施例1において、シクロヘキシルベンゾエート型エポキシ樹脂の代わりにトリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H、骨格内に3個以上の6員環構造を有するもの)を用いる以外は実施例1と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。なお、トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cmとした。実施例8及び9も同様とした。
(実施例8)
 実施例2において、シクロヘキシルベンゾエート型エポキシ樹脂の代わりにトリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)を用いる以外は実施例2と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(実施例9)
 実施例3において、シクロヘキシルベンゾエート型エポキシ樹脂の代わりにトリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)を用いる以外は実施例3と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(比較例1)
 熱硬化性樹脂としてトリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)100質量部と、硬化剤としてレゾルシノールノボラック樹脂(水酸基当量62g/eq、日立化成株式会社製)37質量部と、硬化促進剤としてトリフェニルホスフィン1.4質量部と、シランカップリング剤としてKBM-573(信越化学工業株式会社製)1.4質量部と、熱伝導性フィラーとしてアルミナ粉末1380質量部(住友化学株式会社製α-アルミナ粉末;平均粒子径が18μmのアルミナ(熱伝導性フィラー(X))1000質量部と、平均粒子径が3μmのアルミナ(熱伝導性フィラー(Y))80質量部と、平均粒子径が0.4μmのアルミナ(熱伝導性フィラー(Z))300質量部との混合物)と、溶剤としてメチルエチルケトン300質量部とを混合し、エポキシ樹脂ワニスを得た。
 トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cm、アルミナ粉末の密度を3.98g/cmとして、トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂とアルミナ粉末の合計体積に対するアルミナ粉末の割合を算出したところ、75.1体積%であった。前記合計体積に対する合成マイカ粉末の割合は0体積%であった。アルミナの総体積を100体積%としたときのフィラー群(A)の割合は72.5体積%、フィラー群(B)の割合は9.5体積%、フィラー群(C)の割合は18.0体積%であった。
 次いで、実施例1と同様に樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(実施例10)
 熱硬化性樹脂としてトリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)100質量部と、硬化剤としてレゾルシノールノボラック樹脂(水酸基当量62g/eq、日立化成株式会社製)37質量部と、硬化促進剤としてトリフェニルホスフィン1.4質量部と、シランカップリング剤としてKBM-573(信越化学工業株式会社製)1.4質量部と、熱伝導性フィラーとしてアルミナ粉末2000質量部(住友化学株式会社製α-アルミナ粉末;平均粒子径が18μmのアルミナ(熱伝導性フィラー(X))1300質量部と、平均粒子径が3μmのアルミナ(熱伝導性フィラー(Y))200質量部と、平均粒子径が0.4μmのアルミナ(熱伝導性フィラー(Z))500質量部との混合物)と、合成マイカ粉末(コープケミカル株式会社製、商品名:ソマシフ、平均粒子径:5μm)200質量部と、溶媒としてメチルエチルケトン300質量部とを混合し、エポキシ樹脂ワニスを得た。
 トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cm、アルミナ粉末の密度を3.98g/cm、合成マイカ粉末の密度を2.8g/cmとして、トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂とアルミナ粉末と合成マイカ粉末の合計体積に対するアルミナ粉末の割合を算出したところ、73.1体積%であった。前記合計体積に対する合成マイカ粉末の割合を算出したところ、10.4体積%であった。アルミナの総体積を100体積%としたときのフィラー群(A)の割合は65.0体積%、フィラー群(B)の割合は14.2体積%、フィラー群(C)の割合は20.8体積%であった。
 次いで、実施例1と同様に樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(比較例2)
 熱硬化性樹脂としてトリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)100質量部と、硬化剤としてレゾルシノールノボラック樹脂(水酸基当量62g/eq、日立化成株式会社製)37質量部と、硬化促進剤としてトリフェニルホスフィン1.4質量部と、シランカップリング剤としてKBM-573(信越化学工業株式会社製)1.4質量部と、熱伝導性フィラーとしてアルミナ粉末1370質量部(住友化学株式会社製α-アルミナ粉末;平均粒子径が18μmのアルミナ(熱伝導性フィラー(X))960質量部と、平均粒子径が3μmのアルミナ(熱伝導性フィラー(Y))260質量部と、平均粒子径が0.4μmのアルミナ(熱伝導性フィラー(Z))150質量部との混合物)と、合成マイカ粉末(コープケミカル株式会社製、商品名:ソマシフ、平均粒子径:5μm)17質量部と、溶剤としてメチルエチルケトン300質量部とを混合し、エポキシ樹脂ワニスを得た。
 トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cm、アルミナ粉末の密度を3.98g/cm、合成マイカ粉末の密度を2.8g/cmとして、トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂とアルミナ粉末と合成マイカ粉末の合計体積に対するアルミナ粉末の割合を算出したところ、74.1体積%であった。前記合計体積に対する合成マイカ粉末の割合を算出したところ、1.3体積%であった。アルミナの総体積を100体積%としたときのフィラー群(A)の割合は70.1体積%、フィラー群(B)の割合は20.8体積%、フィラー群(C)の割合は9.1体積%であった。
 次いで、実施例1と同様に樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(比較例3)
 熱硬化性樹脂としてトリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)100質量部と、硬化剤としてレゾルシノールノボラック樹脂(水酸基当量62g/eq、日立化成株式会社製)37質量部と、硬化促進剤としてトリフェニルホスフィン1.4質量部と、シランカップリング剤としてKBM-573(信越化学工業株式会社製)1.4質量部と、熱伝導性フィラーとしてアルミナ粉末1370質量部(住友化学株式会社製α-アルミナ粉末;平均粒子径が18μmのアルミナ(熱伝導性フィラー(X))300質量部と、平均粒子径が3μmのアルミナ(熱伝導性フィラー(Y))490質量部と、平均粒子径が0.4μmのアルミナ(熱伝導性フィラー(Z))580質量部との混合物)と、合成マイカ粉末(コープケミカル株式会社製、商品名:ソマシフ、平均粒子径:5μm)17質量部と、溶剤としてメチルエチルケトン300質量部とを混合し、エポキシ樹脂ワニスを得た。
 トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cm、アルミナ粉末の密度を3.98g/cm、合成マイカ粉末の密度を2.8g/cmとして、トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂とアルミナ粉末と合成マイカ粉末の合計体積に対するアルミナ粉末の割合を算出したところ、74.1体積%であった。前記合計体積に対する合成マイカ粉末の割合を算出したところ、1.3体積%であった。アルミナの総体積を100体積%としたときのフィラー群(A)の割合は21.9体積%、フィラー群(B)の割合は42.9体積%、フィラー群(C)の割合は35.2体積%であった。
 次いで、実施例1と同様に樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(実施例11)
 熱硬化性樹脂としてトリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)100質量部と、硬化剤としてレゾルシノールノボラック樹脂(水酸基当量62g/eq、日立化成株式会社製)37質量部と、硬化促進剤としてトリフェニルホスフィン1.4質量部と、シランカップリング剤としてKBM-573(信越化学工業株式会社製)1.4質量部と、熱伝導性フィラーとしてアルミナ粉末1370質量部(住友化学株式会社製α-アルミナ粉末;平均粒子径が18μmのアルミナ(熱伝導性フィラー(X))1300質量部と、平均粒子径が3μmのアルミナ(熱伝導性フィラー(Y))10質量部と、平均粒子径が0.4μmのアルミナ(熱伝導性フィラー(Z))60質量部との混合物)と、合成マイカ粉末(コープケミカル株式会社製、商品名:ソマシフ、平均粒子径:5μm)17質量部と、溶剤としてメチルエチルケトン300質量部とを混合し、エポキシ樹脂ワニスを得た。
 トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂との混合物の密度を1.2g/cm、アルミナ粉末の密度を3.98g/cm、合成マイカ粉末の密度を2.8g/cmとして、トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-502H)とレゾルシノールノボラック樹脂とアルミナ粉末と合成マイカ粉末の合計体積に対するアルミナ粉末の割合を算出したところ、74.1体積%であった。前記合計体積に対する合成マイカ粉末の割合を算出したところ、1.3体積%であった。アルミナの総体積を100体積%としたときのフィラー群(A)の割合は94.9体積%、フィラー群(B)の割合は1.4体積%、フィラー群(C)の割合は3.7体積%であった。
 実施例1と同様に樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表1に示す。
(実施例12)
 実施例9において、合成マイカ粉末を分級処理して採取した平均粒子径が1μmの合成マイカ粉末を用いる以外は実施例9と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表2に示す。
(実施例13)
 実施例9において、合成マイカ粉末を分級処理して採取した平均粒子径が4μmの合成マイカ粉末を用いる以外は実施例9と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表2に示す。
(実施例14)
 実施例9において、合成マイカ粉末を分級処理して採取した平均粒子径が7μmの合成マイカ粉末を用いる以外は実施例9と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表2に示す。
(実施例15)
 実施例9において、合成マイカ粉末を分級処理して採取した平均粒子径が10μmの合成マイカ粉末を用いる以外は実施例9と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表2に示す。
(実施例16)
 実施例9において、合成マイカ粉末を分級処理して採取した平均粒子径が0.1μmの合成マイカ粉末を用いる以外は実施例9と同様の方法でエポキシ樹脂ワニスを調製し、樹脂シート硬化物を作製した。得られた樹脂シート硬化物の課電劣化寿命の評価結果、及び熱伝導率の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

 
 また、表3に、各実施例及び比較例で調製されたエポキシ樹脂ワニス(樹脂組成物)中におけるフィラー群(A)、フィラー群(B)及びフィラー群(C)の割合をまとめて記載する。
Figure JPOXMLDOC01-appb-T000004

 
 表1の実施例1~3より、マイカの含有率を、全固形分に対して0.1体積%~5.2体積%の範囲とすると課電劣化寿命が長いことが分かる。実施例4~9より、エポキシ樹脂がビフェニル型エポキシ樹脂、又はトリフェニルメタン型エポキシ樹脂でも、マイカを添加すると課電劣化寿命が長いことが分かる。比較例1より、マイカ無添加では課電劣化寿命が短いことが分かる。実施例10より、マイカ添加量が10.4体積%では、課電劣化寿命は長いが、熱伝導率が低いことが分かる。比較例2より、フィラー群(B)の体積%がフィラー群(C)の体積%よりも大きいと、課電劣化寿命が短いことが分かる。比較例3より、フィラー群(A)の体積%が小さく、フィラー群(B)の体積%がフィラー群(C)の体積%より大きいと、課電劣化寿命が短いことが分かる。また、実施例11より、フィラー群(A)の体積%が大きく、フィラー群(B)、(C)の体積%が小さ過ぎると、課電劣化寿命がやや短いことが分かる。
 表2の実施例12~16より、マイカの平均粒子径が1μm~10μmでは課電劣化寿命が長いが、マイカの平均粒子径が0.1μmでは課電劣化寿命が短いことが分かる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (13)

  1.  熱硬化性樹脂、熱伝導性フィラー及びマイカを含有し、
     前記熱伝導性フィラーを、粒子径が10μm以上100μm以下のフィラー群(A)、粒子径が1.0μm以上10μm未満のフィラー群(B)及び粒子径が0.1μm以上1.0μm未満のフィラー群(C)に分割したときに、前記熱伝導性フィラーに占める前記フィラー群(C)の体積基準の割合が、前記熱伝導性フィラーに占める前記フィラー群(B)の体積基準の割合よりも大きい樹脂組成物。
  2.  前記熱伝導性フィラーの総体積を100体積%としたときの、前記フィラー群(A)の割合が50体積%~90体積%であり、前記フィラー群(B)の割合が1体積%~30体積%であり、前記フィラー群(C)の割合が5体積%~40体積%である請求項1に記載の樹脂組成物。
  3.  前記マイカの平均粒子径が1μm~10μmである請求項1又は請求項2に記載の樹脂組成物。
  4.  前記マイカの含有率が、全固形分に対して0.1体積%~5体積%である請求項1~請求項3のいずれか1項に記載の樹脂組成物。
  5.  前記熱伝導性フィラーの含有率が、全固形分に対して60体積%~80体積%である請求項1~請求項4のいずれか1項に記載の樹脂組成物。
  6.  前記熱硬化性樹脂が、メソゲン骨格を有するエポキシモノマー又はその重合体を含む請求項1~請求項5のいずれか1項に記載の樹脂組成物。
  7.  前記熱伝導性フィラーが、アルミナを含む請求項1~請求項6のいずれか1項に記載の樹脂組成物。
  8.  請求項1~請求項7のいずれか1項に記載の樹脂組成物をシート状に成形してなる樹脂シート。
  9.  繊維基材と、前記繊維基材に含浸された請求項1~請求項7のいずれか1項に記載の樹脂組成物と、を有するプリプレグ。
  10.  請求項1~請求項7のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁物。
  11.  請求項8に記載の樹脂シートの熱処理物である樹脂シート硬化物。
  12.  第一の金属部材と、第二の金属部材と、前記第一の金属部材と前記第二の金属部材との間に配置される、請求項1~請求項7のいずれか1項に記載の樹脂組成物の硬化物である樹脂硬化物層と、を有する放熱部材。
  13.  前記樹脂硬化物層の平均厚みが、100μm~300μmである請求項12に記載の放熱部材。
     
PCT/JP2016/065360 2015-05-25 2016-05-24 樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材 WO2016190323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16800028.9A EP3305856A4 (en) 2015-05-25 2016-05-24 RESIN COMPOSITION, RESIN SHEET, PREPREG, INSULATING MATERIAL, CURED ARTICLE BASED ON RESIN SHEET, AND HEAT DISSIPATING ELEMENT
CN201680030310.5A CN107614620B (zh) 2015-05-25 2016-05-24 树脂组合物、树脂片、预浸渍体、绝缘物、树脂片固化物和散热构件
JP2017520725A JP6677249B2 (ja) 2015-05-25 2016-05-24 樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材
US15/576,533 US20180148622A1 (en) 2015-05-25 2016-05-24 Resin composition, resin sheet, prepreg, insulator, resin sheet cured product, and heat dissipator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015105425 2015-05-25
JP2015-105425 2015-05-25

Publications (1)

Publication Number Publication Date
WO2016190323A1 true WO2016190323A1 (ja) 2016-12-01

Family

ID=57392899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065360 WO2016190323A1 (ja) 2015-05-25 2016-05-24 樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材

Country Status (6)

Country Link
US (1) US20180148622A1 (ja)
EP (1) EP3305856A4 (ja)
JP (1) JP6677249B2 (ja)
CN (1) CN107614620B (ja)
TW (1) TWI716407B (ja)
WO (1) WO2016190323A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175775A1 (ja) * 2016-04-05 2017-10-12 日立化成株式会社 樹脂組成物、水素ガスバリア材、硬化物、複合材料、及び構造物
WO2019208242A1 (ja) * 2018-04-27 2019-10-31 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JPWO2019172342A1 (ja) * 2018-03-06 2021-03-18 昭和電工マテリアルズ株式会社 プリプレグ、積層板、多層プリント配線板、半導体パッケージ及び樹脂組成物、並びに、プリプレグ、積層板及び多層プリント配線板の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019002526B1 (pt) 2016-08-08 2022-09-27 Ticona Llc Composição polimérica termicamente condutora para um dissipador de calor
CN108807356B (zh) * 2018-06-05 2020-10-27 深圳市智讯达光电科技有限公司 一种四合一mini-LED模组、显示屏及制造方法
EP3582262B1 (en) 2018-06-14 2024-05-01 Shenzhen Zhixunda Optoelectronics Co., Ltd. Four-in-one mini-led module, display screen and manufacturing method
JPWO2020153505A1 (ja) * 2019-01-25 2021-12-02 デンカ株式会社 フィラー組成物、シリコーン樹脂組成物及び放熱部品
CN114222791B (zh) * 2019-08-19 2024-09-10 株式会社Lg化学 树脂组合物
CN111073217B (zh) * 2019-12-23 2022-10-14 江苏科化新材料科技有限公司 一种半导体封装用高导热低应力环氧塑封料
JP7298498B2 (ja) * 2020-02-10 2023-06-27 株式会社オートネットワーク技術研究所 ワイヤーハーネス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679161A (en) * 1979-11-30 1981-06-29 Somar Corp Epoxy resin composition for powder coating compound
JPH06207044A (ja) * 1993-01-13 1994-07-26 Kuraray Co Ltd 有機重合体組成物
JPH1192627A (ja) * 1997-09-19 1999-04-06 Yaskawa Electric Corp エポキシ樹脂組成物
JP2005171209A (ja) * 2003-12-15 2005-06-30 Toyota Motor Corp フィラー含有樹脂組成物及びその製造方法
WO2014208694A1 (ja) * 2013-06-27 2014-12-31 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート構造体、樹脂シート構造体硬化物、樹脂シート構造体硬化物の製造方法、半導体装置、及びled装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242948B2 (en) * 2009-09-03 2016-01-26 Sumitomo Chemical Company, Limited Diepoxy compound, process for producing same, and composition containing the diepoxy compound
KR101597390B1 (ko) * 2009-09-29 2016-02-24 히타치가세이가부시끼가이샤 다층 수지 시트 및 그 제조 방법, 다층 수지 시트 경화물의 제조 방법, 그리고, 고열전도 수지 시트 적층체 및 그 제조 방법
EP2626205A1 (en) * 2010-10-06 2013-08-14 Hitachi Chemical Co., Ltd. Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
JP5907171B2 (ja) * 2011-09-08 2016-04-26 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂付き金属箔及び放熱部材
JP2013092616A (ja) * 2011-10-25 2013-05-16 Toshiba Lighting & Technology Corp 照明装置
SG11201401906SA (en) * 2011-11-07 2014-10-30 Mitsubishi Gas Chemical Co Resin composition, and prepreg and laminate using the same
US20150299550A1 (en) * 2011-12-27 2015-10-22 Panasonic Corporation Thermally conductive resin composition
SG11201509490PA (en) * 2013-06-03 2015-12-30 Mitsubishi Gas Chemical Co Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679161A (en) * 1979-11-30 1981-06-29 Somar Corp Epoxy resin composition for powder coating compound
JPH06207044A (ja) * 1993-01-13 1994-07-26 Kuraray Co Ltd 有機重合体組成物
JPH1192627A (ja) * 1997-09-19 1999-04-06 Yaskawa Electric Corp エポキシ樹脂組成物
JP2005171209A (ja) * 2003-12-15 2005-06-30 Toyota Motor Corp フィラー含有樹脂組成物及びその製造方法
WO2014208694A1 (ja) * 2013-06-27 2014-12-31 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート構造体、樹脂シート構造体硬化物、樹脂シート構造体硬化物の製造方法、半導体装置、及びled装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305856A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175775A1 (ja) * 2016-04-05 2017-10-12 日立化成株式会社 樹脂組成物、水素ガスバリア材、硬化物、複合材料、及び構造物
JPWO2017175775A1 (ja) * 2016-04-05 2018-11-08 日立化成株式会社 樹脂組成物、水素ガスバリア材、硬化物、複合材料、及び構造物
JPWO2019172342A1 (ja) * 2018-03-06 2021-03-18 昭和電工マテリアルズ株式会社 プリプレグ、積層板、多層プリント配線板、半導体パッケージ及び樹脂組成物、並びに、プリプレグ、積層板及び多層プリント配線板の製造方法
WO2019208242A1 (ja) * 2018-04-27 2019-10-31 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JPWO2019208242A1 (ja) * 2018-04-27 2021-03-25 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JP7264050B2 (ja) 2018-04-27 2023-04-25 東レ株式会社 プリプレグおよび炭素繊維強化複合材料

Also Published As

Publication number Publication date
US20180148622A1 (en) 2018-05-31
CN107614620B (zh) 2020-09-22
TWI716407B (zh) 2021-01-21
CN107614620A (zh) 2018-01-19
JP6677249B2 (ja) 2020-04-08
EP3305856A4 (en) 2019-01-16
JPWO2016190323A1 (ja) 2018-03-15
EP3305856A1 (en) 2018-04-11
TW201702302A (zh) 2017-01-16

Similar Documents

Publication Publication Date Title
JP6677249B2 (ja) 樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材
JP6304419B2 (ja) 樹脂組成物、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板、プリント配線板及びパワー半導体装置
JP7201029B2 (ja) エポキシ樹脂組成物、樹脂シート、プリプレグ、樹脂付金属箔、金属基板、及びパワー半導体装置
JP6520966B2 (ja) プリプレグマイカテープ及びそれを用いたコイル
JP6311820B2 (ja) エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、配線板、半硬化エポキシ樹脂組成物の製造方法及び硬化エポキシ樹脂組成物の製造方法
JP6161864B2 (ja) 樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP5928477B2 (ja) 樹脂組成物、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板及びプリント配線板
KR101683355B1 (ko) 다층 수지 시트 및 그 제조 방법, 다층 수지 시트 경화물의 제조 방법, 그리고, 고열전도 수지 시트 적층체 및 그 제조 방법
US20100226095A1 (en) Heat conductive sheet and power module
JP6594799B2 (ja) 熱伝導性接着剤組成物、熱伝導性接着剤シートおよび積層体の製造方法
JP2014193965A (ja) 高熱伝導性樹脂組成物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂硬化物
JP2011178894A (ja) 熱硬化性樹脂組成物、熱伝導性シート及びパワーモジュール
US20180137956A1 (en) Coil for rotary electrical machine, method of producing rotary electrical machine and mica tape
JP6214336B2 (ja) 絶縁シートの製造方法
JP2016138276A (ja) 樹脂組成物、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板及びプリント配線板
CN111868921A (zh) 散热片、散热构件和半导体器件
JP7295635B2 (ja) 積層体、電子部品およびインバータ
JP2017149909A (ja) 熱伝導性接着剤組成物、熱伝導性接着剤シートおよび積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520725

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15576533

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016800028

Country of ref document: EP