WO2016190023A1 - 還元鉄の製造方法 - Google Patents

還元鉄の製造方法 Download PDF

Info

Publication number
WO2016190023A1
WO2016190023A1 PCT/JP2016/062957 JP2016062957W WO2016190023A1 WO 2016190023 A1 WO2016190023 A1 WO 2016190023A1 JP 2016062957 W JP2016062957 W JP 2016062957W WO 2016190023 A1 WO2016190023 A1 WO 2016190023A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
agglomerate
iron
reducing agent
carbonaceous reducing
Prior art date
Application number
PCT/JP2016/062957
Other languages
English (en)
French (fr)
Inventor
優維 細野
正樹 島本
孝夫 原田
紳吾 吉田
晶一 菊池
泰二 畠山
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to RU2017146087A priority Critical patent/RU2676378C1/ru
Priority to CN201680029835.7A priority patent/CN107614710B/zh
Priority to UAA201712964A priority patent/UA119292C2/uk
Priority to US15/577,151 priority patent/US10683562B2/en
Publication of WO2016190023A1 publication Critical patent/WO2016190023A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • C21B13/0053On a massing grate
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/006Starting from ores containing non ferrous metallic oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/12Making spongy iron or liquid steel, by direct processes in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates

Definitions

  • the present invention provides an agglomerate by heating an agglomerate comprising an iron oxide source such as iron ore (also referred to as “iron oxide-containing substance”) and a carbonaceous reducing agent containing carbon such as coal.
  • an iron oxide source such as iron ore (also referred to as “iron oxide-containing substance”)
  • a carbonaceous reducing agent containing carbon such as coal.
  • the present invention relates to a method for producing reduced iron by reducing iron oxide therein.
  • Patent Document 10 Japanese Patent Laid-Open No. 2014-623211 discloses the use of a carbonaceous reducing agent having an average particle diameter of 40 to 160 ⁇ m and containing 2% by mass or more of particles having a particle diameter of 400 ⁇ m or more.
  • Patent Document 11 discloses a first carbonaceous reducing agent having a size of less than 48 mesh and an average particle of the first carbonaceous reducing agent having a size of 3 to 48 mesh.
  • An agglomerate comprising a second carbonaceous reducing agent having an average particle size larger than the size is disclosed.
  • the first carbonaceous reducing agent is contained in an amount of 65% to 95% of the stoichiometric ratio necessary for converting the iron oxide-containing substance into reduced iron
  • the second carbonaceous reducing agent is an iron oxide-containing substance. Is contained in an amount of 20% to 60% of the stoichiometric ratio necessary to make reduced iron.
  • the agglomerate disclosed in Patent Document 10 can improve the yield of reduced iron having a large particle size by including a carbonaceous reducing agent having a particle size of 400 ⁇ m or more.
  • a carbonaceous reducing agent having a particle diameter of 400 ⁇ m or more it may be difficult to produce an agglomerate before heating.
  • Patent Document 11 Since the agglomerate disclosed in Patent Document 11 needs to prepare carbonaceous reducing agents having two types of particle diameters, it is necessary to prepare two pulverizing facilities for the carbonaceous reducing agent. This has a demerit that the cost of the production equipment is increased.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a method for producing reduced iron with high productivity.
  • the method for producing reduced iron according to the present invention comprises a step of agglomerating a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent, and agglomeration by heating the agglomerate. Reducing iron oxide in the product to produce reduced iron, and the mass ratio of the amount of oxygen contained in the iron oxide in the agglomerate is O FeO, and the total fixation contained in the agglomerate When the mass ratio of the carbon amount is C fix and the mass ratio of particles having a particle diameter of 105 ⁇ m or less with respect to the total mass of the particles constituting the carbonaceous reducing agent is X under105 , the following formula (I) is satisfied.
  • FIG. 1 is a graph showing the correlation between C fix ⁇ X under105 / O 2 FeO and iron yield (mass%) in each example and each comparative example, the vertical axis is iron yield (mass%), and the horizontal axis Is C fix ⁇ X under105 / O FeO .
  • FIG. 2 is a graph showing the correlation between C fix ⁇ X under105 / O 2 FeO and the powder generation rate (mass%) of each example and each comparative example, and the vertical axis is the powder generation ratio (mass%).
  • the horizontal axis is C fix ⁇ X under105 / O FeO .
  • FIG. 3 shows the particle size distribution of coal used in Example 3 (A-5), Comparative Example 1 (A-1) and Comparative Example 2 (A-4), and the vertical axis represents frequency (mass%).
  • the horizontal axis is the particle diameter ( ⁇ m).
  • FIG. 4 is a particle size distribution of coal used in Example 4 (A-7), Comparative Example 3 (A-6) and Comparative Example 4 (B-1), and the vertical axis represents frequency (mass%).
  • the horizontal axis is the particle diameter ( ⁇ m).
  • FIG. 5 is used in Example 1 (A-2), Example 2 (A-3), Example 7 (B-3), Example 8 (B-4), and Comparative Example 5 (B-2). It is a particle size distribution of coal, a vertical axis
  • shaft is frequency (mass%), and a horizontal axis
  • shaft is a particle diameter (micrometer).
  • the present inventors examined the relationship between the amount of oxygen contained in iron oxide in the agglomerate, the amount of carbonaceous reducing agent in the agglomerate, and the particle size. As a result, if the amount of carbonaceous reductant in the agglomerate is excessive relative to the amount of oxygen contained in the iron oxide in the agglomerate, that is, it contains fixed carbon exceeding the amount of carbon necessary for the reduction of iron oxide. When it does, it became clear that reduced iron does not fully aggregate and the yield of reduced iron falls.
  • the method for producing reduced iron according to the present invention includes a step of agglomerating a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent (hereinafter also referred to as “agglomeration step”), Heating the agglomerate to reduce iron oxide in the agglomerate to produce reduced iron (hereinafter also referred to as “reduction process”).
  • the mass ratio of the amount of oxygen contained in the iron oxide in the agglomerate is O FeO
  • the mass ratio of the total fixed carbon content contained in the agglomerate is C fix
  • the total amount of particles constituting the carbonaceous reducing agent is
  • reduced iron permeate transmits between the particles of a carbonaceous reducing agent, and reduced iron becomes easy to aggregate. Thereby, reduced irons unite and it can raise the recovery rate of coarse reduced iron with a diameter of 3.35 mm or more.
  • the left side of the formula (I) is more preferably 45 or less, and further preferably 40 or less.
  • the method of setting the left side of the above formula (I) to 51 or less is not particularly limited, and the mass ratio C fix of the total fixed carbon amount contained in the agglomerate may be reduced, or iron oxide in the agglomerate
  • the mass ratio O FeO of the oxygen amount contained in the carbonaceous reductant may be increased, or the mass ratio X under105 of the particles having a particle diameter of 105 ⁇ m or less among the particles constituting the carbonaceous reducing agent may be decreased.
  • the “mass fraction C fix of the total fixed carbon amount contained in the agglomerate” in the formula (I) is contained in the mass proportion of the fixed carbon amount contained in the carbonaceous reducing agent and, if a binder is contained, the binder. It is calculated by the sum of the mass ratio of the fixed carbon amount.
  • regulated by JISM8812 is employ
  • the mass ratio of the fixed carbon amount contained in the binder can be calculated by the same method as the fixed carbon amount contained in the carbonaceous reducing agent.
  • mass fraction of the amount of oxygen contained in the iron oxide in the agglomerate O FeO represents the mass fraction of the amount of oxygen contained in the iron oxide in the iron oxide-containing substance, and the carbonaceous reducing agent. It is calculated by the sum of the mass ratio of the amount of oxygen contained in the iron oxide in the ash among the components. Since the iron oxide in the agglomerate is contained as magnetite (Fe 3 O 4 ) or hematite (Fe 2 O 3 ), the mass ratio of the amount of oxygen contained in each iron oxide after specifying the content ratio thereof The mass ratio of the amount of oxygen contained in iron oxide is calculated by converting to.
  • the ratio of ash contained in the carbonaceous reducing agent is a value quantified by the ash content determination method defined in JIS M8812.
  • the ratio of iron oxide in the ash content is high frequency inductive coupled plasma (ICP) emission spectroscopic analysis.
  • ICP inductive coupled plasma
  • the “mass ratio X under105 of particles having a particle diameter of 105 ⁇ m or less among the particles constituting the carbonaceous reducing agent” in the formula (I) is determined by using a laser diffraction particle size distribution measuring device (Microtrack FRA 9220 manufactured by Leads and Northrup). This is a value obtained by measuring the particle size distribution of the carbonaceous reducing agent and calculating the mass% of the mass of the particle diameter with a volume average particle diameter of 105 ⁇ m or less with respect to the mass of the total particle diameter. In the measurement by the measuring device, the value of the volume ratio is calculated, but the volume ratio is assumed to be equal to the mass ratio.
  • an agglomerate is produced by agglomerating a mixture containing the iron oxide-containing substance and the carbonaceous reducing agent.
  • the mixture can be obtained by mixing raw material powders such as an iron oxide-containing substance and a carbonaceous reducing agent with a mixer.
  • raw material powders such as an iron oxide-containing substance and a carbonaceous reducing agent
  • One or both of a melting point adjusting agent and a binder may be further mixed into the above mixture.
  • the mixer for producing the above mixture may be either a rotating container type or a fixed container type.
  • the rotating container type mixer include a rotating cylindrical shape, a double cone shape, and a V shape.
  • a fixed container type mixer for example, a mixing tank provided with rotating blades such as a basket inside can be mentioned.
  • the agglomerate is produced using an agglomerator that agglomerates the mixture.
  • an agglomerating machine for example, a dish granulator, a cylindrical granulator, a twin roll briquette molding machine, or the like can be used.
  • the shape of the agglomerate is not particularly limited, and may be a pellet shape, a briquette shape, or the like. Pellet molding, briquette molding or extrusion molding can be used as a method for molding the agglomerate.
  • the size of the agglomerate is not particularly limited, but a particle size of 50 mm or less is preferable. More preferably, the particle diameter is 40 mm or less. By using an agglomerate having such a particle size, the granulation efficiency can be increased, and heat can be easily distributed throughout the agglomerate during heating. On the other hand, the size of the agglomerate is preferably 5 mm or more, and more preferably 10 mm or more. By using such a particle size, the agglomerate can be easily handled.
  • the iron oxide-containing substance contains iron oxide such as magnetite (Fe 3 O 4 ), hematite (Fe 2 O 3 ), and generates reduced iron by being heated together with the carbonaceous reducing agent in a subsequent heating step.
  • O FeO of formula (I) mass ratio of the amount of oxygen contained in iron oxide in the agglomerate
  • iron oxide-containing substance iron ore, iron sand, iron-making dust, non-ferrous refining residue, iron-making waste, and the like can be used.
  • the iron ore for example, Australian or Indian hematite ore is preferably used.
  • the iron oxide-containing substance is preferably pulverized in advance before mixing, and more preferably pulverized so that the average particle size is 10 to 60 ⁇ m.
  • the method for pulverizing the iron oxide-containing substance is not particularly limited, and known means such as a vibration mill, a roll crusher, and a ball mill can be employed.
  • the carbonaceous reducing agent reduces iron oxide contained in the iron oxide-containing substance, and is added to supply fixed carbon to the agglomerate.
  • C fix (mass ratio of the total fixed carbon amount contained in the agglomerate) of the formula (I) can be adjusted by increasing or decreasing the ratio of the carbonaceous reducing agent.
  • carbonaceous reducing agent coal, coke, iron-making dust etc. can be used, for example.
  • the carbonaceous reducing agent has an atomic molar ratio (O FeO / C fix ) with the oxygen atom O FeO contained in the iron oxide in the agglomerate to the total fixed carbon amount C fix contained in the agglomerate is 0.8. It is preferable to add so that it may become 2 or less.
  • the lower limit of the atomic molar ratio O FeO / C fix is preferably 0.9 or more, more preferably 1.0 or more, and further preferably 1.1 or more.
  • the upper limit of the atomic molar ratio O FeO / C fix is preferably 1.8 or less, more preferably 1.7 or less.
  • the yield of reduced iron is the mass ratio of reduced iron having a diameter of 3.35 mm or more with respect to the total mass of iron contained in the agglomerate, and [(weight of reduced iron having a diameter of 3.35 mm or more / lumb The total mass of iron contained in the composition) ⁇ 100].
  • the upper limit of the average particle diameter of the carbonaceous reducing agent is preferably 1000 ⁇ m or less, more preferably 700 ⁇ m or less, and even more preferably 500 ⁇ m or less. When the average particle size is 1000 ⁇ m or less, the reduction of iron oxide contained in the iron oxide-containing substance can be promoted uniformly.
  • the lower limit of the average particle diameter is preferably 100 ⁇ m or more, more preferably 150 ⁇ m or more, and further preferably 200 ⁇ m.
  • the average particle diameter means 50% volume particle diameter.
  • Particles with a carbonaceous reducing agent particle size of 710 ⁇ m or more use the value obtained by measuring the particle size distribution using a standard sieve specified in JIS, and particles with a particle size of less than 710 ⁇ m use a laser diffraction particle size distribution analyzer and a value measured with a Microtrac FRA 9220 manufactured by Northrup).
  • the average particle size of the carbonaceous reducing agent affects the productivity of reduced iron, but the present inventors have determined that the particle size distribution of the reduced iron is rather than the average particle size of the carbonaceous reducing agent. We found that it affects productivity. In other words, the present inventors, regardless of whether the average particle size of the carbonaceous reducing agent is large or small, does not significantly affect the yield of reduced iron, but rather the carbonaceous reducing agent. It has been found that reducing the proportion of particles of 105 ⁇ m or less contained in the material improves the yield of reduced iron. This is because the carbonaceous reducing agent of particles of 105 ⁇ m or less fills between the particles of the carbonaceous reducing agent, so that the reduced iron is less likely to aggregate to a coarse size of 3.35 mm or more.
  • the mass ratio X under105 of particles having a particle diameter of 105 ⁇ m or less with respect to the total mass of the particles constituting the carbonaceous reducing agent is preferably 65% by mass or less, more preferably 50% by mass or less, Preferably it is 25 mass% or less.
  • X under105 is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass or more.
  • the particle size distribution of the carbonaceous reducing agent can be obtained by using the same measurement device as that used to measure the average particle size.
  • the mass ratio X 120 to 250 of particles having a particle size of 120 ⁇ m to 250 ⁇ m with respect to the total mass of the particles constituting the carbonaceous reducing agent is preferably 30% by mass to 80% by mass.
  • X 120 to 250 is more preferably 45% by mass or more, and further preferably 50% by mass or more.
  • X 120 to 250 is preferably 75% by mass or less.
  • the melting point adjusting agent is a component that acts to lower the melting point of gangue in the iron oxide-containing substance and the melting point of ash in the carbonaceous reducing agent.
  • the gangue melts upon heating to form molten slag.
  • a part of the iron oxide is dissolved in the molten slag and reduced in the molten slag to become metallic iron.
  • This metallic iron agglomerates as solid metallic iron in contact with the reduced metallic iron in the solid state.
  • a CaO supply material As the melting point adjusting agent, a CaO supply material, a MgO supply material, a SiO 2 supply material, or the like can be used.
  • the CaO supply substance one or more selected from the group consisting of CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (limestone) and CaMg (CO 3 ) 2 (dolomite) can be used.
  • the MgO supply material include MgO-containing material extracted from MgO powder, natural ore, seawater, and the like, and MgCO 3 .
  • the SiO 2 supply substance include SiO 2 powder and silica sand.
  • the melting point adjusting agent is preferably pulverized in advance before mixing.
  • the melting point modifier is preferably pulverized so that the average particle size is 5 ⁇ m or more and 90 ⁇ m or less.
  • the same pulverization method as that for the iron oxide-containing material can be used.
  • Binder for example, a polysaccharide such as starch such as corn starch or wheat flour can be used.
  • heating process reduced iron is produced by heating the agglomerate obtained in the agglomeration step.
  • the heating step it is preferable to charge the agglomerate to 1300 ° C. or more and 1500 ° C. or less by charging the agglomerate into a heating furnace and raising the temperature in the furnace.
  • the said heating temperature is 1300 degreeC or more, metallic iron becomes easy to fuse
  • heating temperature is 1500 degrees C or less, it can suppress that the temperature of waste gas becomes high and can suppress the cost of waste gas treatment equipment.
  • the hearth it is preferable to protect the hearth by placing a floor covering material on the hearth before charging the agglomerate into the heating furnace.
  • the floor covering material include carbonaceous materials, refractory ceramics, refractory particles, and materials used for the above-described carbonaceous reducing agent.
  • the material constituting the flooring material is preferably one having a particle size of 0.5 mm or more and 3 mm or less. By being 0.5 mm or more, the flooring material can be prevented from flying with the combustion gas of the burner in the furnace. By being 3 mm or less, it becomes difficult for the agglomerate and its melt to sink into the flooring material.
  • the moving hearth type heating furnace is a heating furnace in which the hearth moves in the furnace like a belt conveyor, and examples thereof include a rotary hearth furnace and a tunnel furnace.
  • Rotating hearth furnaces are designed to have a circular or donut-shaped outer hearth shape, and the start and end points of the hearth are in the same position.
  • the iron oxide contained in the agglomerate charged on the hearth is heated and reduced during one round of the furnace to produce reduced iron. Therefore, the rotary hearth furnace is provided with charging means for charging the agglomerate into the furnace on the most upstream side in the rotation direction, and with discharging means on the most downstream side in the rotation direction.
  • the discharge means is provided immediately upstream of the charging means.
  • a tunnel furnace is a heating furnace in which the hearth moves in the furnace in a linear direction.
  • the granular metallic iron obtained in the granulation step is discharged from the furnace together with slag produced as a by-product and floor covering material laid as necessary.
  • the granular metallic iron discharged in this manner can be collected using a sieve, a magnetic separator, or the like to recover reduced iron having a desired size. Reduced iron can be manufactured as described above.
  • the reduced iron production method of the present invention has high reduced iron productivity.
  • the mass ratio O FeO of the amount of oxygen contained in the iron oxide in the agglomerate, and the mass percentage C fix of the total fixed carbon amount contained in the agglomerate Since the mass ratio of particles having a particle diameter of 105 ⁇ m or less and X under105 are contained in an appropriate ratio, the yield of reduced iron can be improved and the productivity of reduced iron can be increased.
  • reduced iron becomes easy to osmose
  • the mass ratio of particles having a particle size of 120 ⁇ m or more and 250 ⁇ m or less with respect to the total mass of particles constituting the carbonaceous reducing agent is 30% by mass or more and 80% by mass or less, so that oxidation in the iron oxide-containing substance is performed. Iron can be reduced efficiently, and reduced iron tends to aggregate and increase in size.
  • Examples 1 to 8 and Comparative Examples 1 to 5 A mixture was prepared by blending iron ore (iron oxide-containing substance), coal (carbonaceous reducing agent), limestone (melting point modifier), and wheat flour (binder) at the blending ratio shown in Table 1.
  • coal carbonaceous reducing agent
  • limestone melting point modifier
  • wheat flour binder
  • As the coal 11 types (A-1 to A-7 and B-1 to B-4) having different particle size distributions and compositions as shown in Tables 2 and 3 below were used.
  • An appropriate amount of water was added to the above mixture, and raw pellets (agglomerated) having a size of ⁇ 19 mm were granulated by a tire type granulator. The raw pellets were dried by heating at 180 ° C. for 1 hour using a dryer to obtain dry pellets.
  • charcoal anthracite having a maximum particle size of 2 mm or less was placed on the hearth of the heating furnace, and dried pellets were placed on the charcoal. Then, the inside of the heating furnace is heated at 1450 ° C. for 11.5 minutes while introducing a mixed gas containing 40% by volume of nitrogen gas and 60% by volume of carbon dioxide gas into the heating furnace at a gas flow rate of 220 NL / min. The iron oxide was reduced by this to produce heated pellets. In addition, even if it changed the component and flow volume of the mixed gas introduce
  • the above heated pellets were taken out from the heating furnace and subjected to magnetic separation, and then sieved using a sieve having an opening of 3.35 mm, and reduced iron having a diameter of 3.35 mm or more was recovered.
  • Mass ratio C fix of the total fixed carbon amount in Table 1 is the total mass ratio (%) of fixed carbon contained in the carbonaceous reducing agent and binder in the pellet.
  • a value calculated by a fixed carbon mass fraction calculation method defined in JIS M8812 was adopted.
  • Oxygen amount in iron oxide O FeO in Table 1 is the mass ratio of the oxygen amount contained in the iron oxide in the iron oxide-containing substance and the oxygen contained in the iron oxide in the ash among the components of the carbonaceous reducing agent. The total mass ratio (%) with the mass ratio of the quantity.
  • the mass ratio of the amount of oxygen contained in iron oxide in the iron oxide-containing material is the mass percentage of the amount of oxygen contained in each of magnetite (Fe 3 O 4 ) and hematite (Fe 2 O 3 ) in the iron oxide-containing material. Calculated by sum. Details of the calculation method will be described later.
  • the proportion of ash contained in the carbonaceous reducing agent was quantified by the ash content quantification method defined in JIS M8812.
  • “105 ⁇ m or less mass ratio (%) X under105 ” in Table 1 is the mass ratio (%) of particles having a particle diameter of 105 ⁇ m or less with respect to the total mass of particles constituting the carbonaceous reducing agent. This mass ratio was calculated by measuring the particle size distribution of the particles constituting the carbonaceous reducing agent using a laser diffraction particle size distribution measuring apparatus (Microtrack FRA 9220 manufactured by Leads and Northrup).
  • 120 to 250 ⁇ m mass ratio (%) X 120 to 250 is the mass ratio (%) of particles having a particle diameter of 120 to 250 ⁇ m with respect to the total mass of the particles constituting the carbonaceous reducing agent. This mass ratio was calculated by measuring with the laser diffraction particle size distribution analyzer.
  • Iron yield in Table 1 is the mass ratio of reduced iron on the sieve to the total mass of iron in the pellets charged in the heating furnace, and is a value calculated by the following equation. The higher the iron yield value, the higher the productivity.
  • the “powder generation rate” in Table 1 is the mass ratio of fine iron not remaining on the sieve to the total mass of iron in the pellets charged in the heating furnace, and is a value calculated by the following equation. .
  • Powder generation rate (%) ((total mass of iron in pellets charged into heating furnace ⁇ mass of fine iron in reduced iron on sieve) / total mass of iron in pellets charged into heating furnace) ⁇ 100
  • FIG. 1 is a graph showing a correlation between C fix ⁇ X under105 / O 2 FeO and iron yield (mass%) in each example and each comparative example
  • FIG. 2 shows C fix in each example and each comparative example. It is a graph which shows the correlation with xX under105 / O FeO and a powder generation rate (mass%).
  • FIGS. 3 to 5 are graphs of the particle size distribution of coals A-1 to A-7 and B-1 to B-4.
  • FIG. 3 shows the particle size distribution of coal having a two-peaked particle size distribution
  • FIG. 4 shows the particle size distribution of coal having different average particle diameters but similar shapes of peaks in the particle size distribution.
  • FIG. 5 shows the particle size distribution of coal having an average particle size of one mountain shape. As shown in FIGS. 3 to 5, it can be seen that the productivity of reduced iron may be high or low regardless of whether the shape of the particle size distribution is a single or double shape.
  • iron oxide-containing substance examples include 62.52% by mass of iron (T.Fe), 1.51% by mass of FeO, 5.98% by mass of SiO 2 , and 0.82% by mass of Al 2 O 3. And a hematite iron ore having a component composition containing 0.10% by mass of CaO and 0.07% by mass of MgO. T. mentioned above.
  • Fe and FeO contents values determined by the potassium nichromate titration method were adopted.
  • the iron oxide-containing substance is a hematite-based iron ore
  • FeO exists as magnetite (Fe 3 O 4 ) in iron (T.Fe) contained in the iron oxide-containing substance, and other irons are hematite (Fe 2 O 3 ) was assumed to exist. Based on this assumption, the mass% of magnetite (Fe 3 O 4 ) and hematite (Fe 2 O 3 ) was calculated by the following calculation formula.
  • the iron oxide contains 84.35% by mass of hematite (Fe 2 O 3 ) and 4.87% by mass of magnetite (Fe 3 O 4 ), and the mass of oxygen contained in these iron oxides
  • the rate (O FeO ) was calculated to be 26.7% by mass.
  • Table 2 is included in coals A-1 to A-7 and B-1 to B-4 measured under the following measurement conditions using a laser diffraction particle size distribution measuring device (Microtrack FRA 9220 manufactured by Leads and Northrup). The frequency (% by mass) with respect to each particle size ( ⁇ m). In the laser diffraction method, the particle size distribution is measured by volume%, and it is assumed that volume% is equal to mass%.
  • “Fixed carbon (C carbon )”, “volatile matter” and “ash” in Table 3 are the fixed carbon mass fraction calculation method, volatilization, and fixed carbon, volatile matter and distribution, respectively, defined in JIS M 8812. It is the value quantified by the fraction determination method and the ash determination method. Fixed carbon (C carbon ) was calculated by subtracting the mass of ash and volatiles from the whole (100).
  • the “amount of oxygen contained in iron oxide in coal” in Table 3 is (ash analysis value) ⁇ (analysis value of Fe 2 O 3 in ash) / 100 / (molecular weight of Fe 2 O 3 ) ⁇ oxygen atomic weight ⁇ 3 Is a value calculated by
  • ⁇ Limestone (melting point modifier)> As a melting point adjusting agent, a component composition containing 0.23% by mass of SiO 2 , 57.01% by mass of CaO, 0.16% by mass of Al 2 O 3 , and 0.17% by mass of MgO. Limestone was used. In addition, the component composition of melting
  • binder flour having an ingredient composition containing 71.77% by mass of total carbon, 9.32% by mass of fixed carbon, 90.02% by mass of volatile matter, and 0.66% by mass of ash is used. It was.
  • component composition of wheat flour was quantified by the same technique as that for the carbonaceous reducing agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

本発明の還元鉄の製造方法は、酸化鉄含有物質及び炭素質還元剤を含む混合物を塊成化することにより塊成物を作製する工程と、前記塊成物を加熱することにより、該塊成物中の酸化鉄を還元して還元鉄を作製する工程とを含み、前記塊成物中の酸化鉄に含まれる酸素量の質量率をOFeOとし、前記塊成物に含まれる全固定炭素量の質量率をCfixとし、前記炭素質還元剤を構成する粒子の全質量に対する、105μm以下の粒子径の粒子の質量率をXunder105とすると、下記の式(I)を満たすことを特徴とする。 Cfix×Xunder105/OFeO≦51 ・・・(I)

Description

還元鉄の製造方法
 本発明は、鉄鉱石等の酸化鉄源(「酸化鉄含有物質」とも記す)と、石炭等の炭素を含む炭素質還元剤と、を含む塊成物を加熱することにより、該塊成物中の酸化鉄を還元して還元鉄を製造する方法に関する。
 酸化鉄含有物質に含まれる酸化鉄を還元することにより還元鉄を製造する方法として直接還元製鉄法が開発されている。
 上記直接還元製鉄法を工業的規模で実施するために、操業安定性、経済性、還元鉄の品質等のように改善しなければならない課題も多い。このような課題を解決するための試みとして、特許文献1~9の技術が提案されている。
 上記課題の中でも、近年は還元鉄の歩留まりの向上が特に重要視されている。なぜなら歩留まりが悪ければコストが高くなって工業的規模で生産できないからである。還元鉄の歩留まりを向上する試みとして、特許文献10及び11の技術が提案されている。
 特許文献10(特開2014-62321号公報)は、平均粒子径が40~160μmであって粒子径が400μm以上の粒子を2質量%以上含む炭素質還元剤を用いることを開示している。
 また別の試みとして、例えば特許文献11(米国特許第8690988号)は、48メッシュ未満のサイズの第1炭素質還元剤と、3メッシュから48メッシュのサイズで第1炭素質還元剤の平均粒子径よりも大きな平均粒子径の第2炭素質還元剤とを含む塊成物を開示している。この第1炭素質還元剤は、酸化鉄含有物質を還元鉄にするために必要な化学量論比の65%~95%含まれており、かつ第2炭素質還元剤は、酸化鉄含有物質を還元鉄にするために必要な化学量論比の20%~60%含まれている。
特開2003-13125号公報 特開2004-285399号公報 特開2009-7619号公報 特開2009-270193号公報 特開2009-270198号公報 特開2010-189762号公報 特開2013-142167号公報 特開2013-174001号公報 特開2013-36058号公報 特開2014-62321号公報 米国特許第8690988号
 特許文献10に開示の塊成物は、400μm以上の粒子径の炭素質還元剤を含むことにより、粒子径の大きな還元鉄の歩留まりを向上させることができる。しかしながら、400μm以上の粒子径の炭素質還元剤を用いると、加熱前の塊成物を作製しにくくなることがある。
 特許文献11に開示の塊成物は、2種の粒子径の炭素質還元剤を準備する必要があるため、炭素質還元剤の粉砕設備を2台準備する必要がある。これにより製造設備のコストが高くなるというデメリットがある。
 本発明は、上記現状に鑑みてなされたものであり、その目的とするところは、生産性が高い還元鉄の製造方法を提供することである。
 本発明の還元鉄の製造方法は、酸化鉄含有物質及び炭素質還元剤を含む混合物を塊成化することにより塊成物を作製する工程と、前記塊成物を加熱することにより、該塊成物中の酸化鉄を還元して還元鉄を作製する工程とを含み、前記塊成物中の酸化鉄に含まれる酸素量の質量率をOFeOとし、前記塊成物に含まれる全固定炭素量の質量率をCfixとし、前記炭素質還元剤を構成する粒子の全質量に対する、105μm以下の粒子径の粒子の質量率をXunder105とすると、下記の式(I)を満たすことを特徴とする。
 Cfix×Xunder105/OFeO≦51   ・・・(I)
図1は、各実施例及び各比較例のCfix×Xunder105/OFeOと鉄歩留まり(質量%)との相関を示すグラフであり、縦軸は鉄歩留まり(質量%)であり、横軸はCfix×Xunder105/OFeOである。 図2は、各実施例及び各比較例のCfix×Xunder105/OFeOと粉発生率(質量%)との相関を示すグラフであり、縦軸は粉発生率(質量%)であり、横軸はCfix×Xunder105/OFeOである。 図3は、実施例3(A-5)、比較例1(A-1)及び比較例2(A-4)で用いる石炭の粒径分布であり、縦軸は頻度(質量%)であり、横軸は粒子径(μm)である。 図4は、実施例4(A-7)、比較例3(A-6)及び比較例4(B-1)で用いる石炭の粒径分布であり、縦軸は頻度(質量%)であり、横軸は粒子径(μm)である。 図5は、実施例1(A-2)、実施例2(A-3)、実施例7(B-3)、実施例8(B-4)及び比較例5(B-2)で用いる石炭の粒径分布であり、縦軸は頻度(質量%)であり、横軸は粒子径(μm)である。
 本発明者らは上記目的を達成するため、塊成物中の酸化鉄に含まれる酸素量と、塊成物中の炭素質還元剤の分量及び粒子径との関係を調べた。その結果、塊成物中の酸化鉄に含まれる酸素量に対して塊成物中の炭素質還元剤が過多である場合、つまり酸化鉄の還元に必要な炭素量を超えて固定炭素を含有する場合、還元鉄が十分に凝集せず、還元鉄の歩留まりが低下することが明らかとなった。
 また、従来は、炭素質還元剤が微粒化するほど得られる還元鉄の粒子径が大きくなるものと考えられていたが、炭素質還元剤の粒子径が小さい場合、炭素質還元剤の分量を調整しても、還元鉄が十分に凝集しにくくなることがわかった。この原因は、酸化鉄粒子間に粒子径の小さい炭素質還元剤が存在することにより、還元鉄が酸化鉄粒子間を浸透できなくなって還元鉄の凝集が阻害されることによるものと考えられる。
 そこで、炭素質還元剤の粒子径と、塊成物中に含まれる全固定炭素量と、塊成物中の酸化鉄に含まれる酸素量との関係について鋭意検討を重ねた。その結果、105μm以下の粒子径の炭素質還元剤の割合を低減させることで還元鉄が炭素質還元剤の粒子間を浸透しやすくなること、塊成物中に含まれる全固定炭素量の質量率を低減させることで還元鉄が凝集しやすくなること、及び塊成物中の酸化鉄に含まれる酸素量が多いほど還元鉄の歩留まりが向上することを見出し、以下に示す本発明を完成した。
 以下、本発明の還元鉄の製造方法を具体的に説明する。
 本発明の還元鉄の製造方法は、酸化鉄含有物質及び炭素質還元剤を含む混合物を塊成化することにより塊成物を作製する工程(以下「塊成化工程」とも記す)と、前記塊成物を加熱することにより、該塊成物中の酸化鉄を還元して還元鉄を作製する工程(以下、「還元工程」とも記す)とを含む。そして、塊成物中の酸化鉄に含まれる酸素量の質量率をOFeOとし、塊成物に含まれる全固定炭素量の質量率をCfixとし、炭素質還元剤を構成する粒子の全質量に対する、105μm以下の粒子径の粒子の質量率をXunder105とすると、下記の式(I)を満たすことを特徴とする。
 Cfix×Xunder105/OFeO≦51   ・・・(I)
 上記(I)を満たすことにより、炭素質還元剤の粒子間を還元鉄が浸透して還元鉄が凝集しやすくなる。これにより還元鉄同士が合体し、直径3.35mm以上の粗大な還元鉄の回収率を高めることができる。上記式(I)の左辺が45以下であることがより好ましく、さらに好ましくは40以下である。上記式(I)の左辺を51以下とする方法は、特に限定されず、塊成物に含まれる全固定炭素量の質量率Cfixを減少させてもよいし、塊成物中の酸化鉄に含まれる酸素量の質量率OFeOを増加させてもよいし、炭素質還元剤を構成する粒子のうちの105μm以下の粒子径の粒子の質量率Xunder105を下げてもよいし、これらの手法を組み合わせてもよい。また、式(I)の左辺を51以下とするために、炭素質還元剤の粒度分布に応じて酸化鉄含有物質及び炭素質還元剤の配合量を調整してもよい。
 式(I)中の「塊成物に含まれる全固定炭素量の質量率Cfix」は、炭素質還元剤に含まれる固定炭素量の質量率と、バインダーを含む場合はそのバインダーに含まれる固定炭素量の質量率との和によって算出される。炭素質還元剤に含まれる固定炭素量の質量率は、JIS M8812で規定される固定炭素質量分率算出方法によって算出した値を採用する。バインダーに含まれる固定炭素量の質量率は、炭素質還元剤に含まれる固定炭素量と同様の方法によって算出することができる。
 式(I)中の「塊成物中の酸化鉄に含まれる酸素量の質量率OFeO」は、酸化鉄含有物質中の酸化鉄に含まれる酸素量の質量率と、炭素質還元剤の成分のうちの灰分中の酸化鉄に含まれる酸素量の質量率との和によって算出される。塊成物中の酸化鉄は、マグネタイト(Fe34)又はヘマタイト(Fe23)として含まれるため、これらの含有割合を特定してからそれぞれの酸化鉄に含まれる酸素量の質量率に換算することによって酸化鉄に含まれる酸素量の質量率を算出する。炭素質還元剤に含まれる灰分の割合は、JIS M8812で規定される灰分定量法で定量した値を採用し、灰分中の酸化鉄の割合は高周波誘導結合(ICP:Inductively Coupled Plasma)発光分光分析法で定量した値を採用する。
 式(I)中の「炭素質還元剤を構成する粒子のうちの105μm以下の粒子径の粒子の質量率Xunder105」は、レーザー回折式粒度分布測定装置(Leads and Northrup製マイクロトラックFRA9220)を用いて炭素質還元剤の粒度分布を測定し、全粒子径の質量に対する体積平均粒子径が105μm以下の粒子径の質量の質量%を算出した値である。なお、上記測定装置による測定では体積率の値が算出されるが、体積率は質量率と等しいものとする。
 本発明の還元鉄の製造方法を構成する各工程を説明する。
 [塊成化工程]
 塊成化工程では、酸化鉄含有物質及び炭素質還元剤を含む混合物を塊成化することにより塊成物を製造する。
 混合物は、酸化鉄含有物質、炭素質還元剤等の原料粉末を混合機で混合することにより得ることができる。上記混合物に、融点調整剤及びバインダーのいずれか一方若しくは両方をさらに混合してもよい。
 上記混合物を作製する混合機は、回転容器形又は固定容器形のいずれを用いてもよい。回転容器形の混合機としては、例えば回転円筒形、二重円錐形、V形等が挙げられる。固定容器形の混合機としては、例えば内部に鋤等の回転羽を設けた混合槽が挙げられる。
 <塊成物>
 塊成物は、上記混合物を塊成化する塊成機を用いて作製される。塊成機としては、例えば、皿形造粒機、円筒形造粒機、双ロール型ブリケット成型機等を用いることができる。塊成物の形状は、特に限定されず、ペレット状、ブリケット状等であればよい。塊成物の成型方法としては、ペレット成型、ブリケット成型又は押し出し成型を用いることができる。
 塊成物の大きさは特に限定されないが、50mm以下の粒子径であることが好ましく。より好ましくは40mm以下の粒子径である。このような粒子径の塊成物を用いることにより、造粒効率を高めることができるし、加熱時に塊成物の全体に熱を行き渡らせやすい。一方、塊成物の大きさは5mm以上の粒子径であることが好ましく、より好ましくは10mm以上の粒子径である。このような粒子径であることにより塊成物が取り扱いやすくなる。
 <酸化鉄含有物質>
 酸化鉄含有物質は、マグネタイト(Fe34)、ヘマタイト(Fe23)等の酸化鉄を含有し、後の加熱工程で炭素質還元剤とともに加熱されることにより還元鉄を生成する。式(I)のOFeO(塊成物中の酸化鉄に含まれる酸素量の質量率)は、酸化鉄含有物質の割合を増減させることによって調整することができる。このような酸化鉄含有物質としては、鉄鉱石、砂鉄、製鉄ダスト、非鉄精錬残渣、製鉄廃棄物等を用いることができる。上記鉄鉱石としては、例えば、豪州産又はインド産のヘマタイト鉱石を用いることが好ましい。
 上記酸化鉄含有物質は、混合する前に予め粉砕することが好ましく、より好ましくは平均粒子径が10~60μmとなるように粉砕することが好ましい。上記酸化鉄含有物質の粉砕方法は特に限定されず、振動ミル、ロールクラッシャ、ボールミル等の公知の手段を採用することができる。
 <炭素質還元剤>
 炭素質還元剤は、酸化鉄含有物質に含まれる酸化鉄を還元するものであり、塊成物に固定炭素を供給するために添加される。式(I)のCfix(塊成物に含まれる全固定炭素量の質量率)は、炭素質還元剤の割合を増減させることによって調整することができる。上記炭素質還元剤としては、例えば、石炭、コークス、製鉄ダスト等を用いることができる。
 炭素質還元剤は、塊成物中に含まれる全固定炭素量Cfixに対する塊成物中の酸化鉄に含まれる酸素原子OFeOとの原子モル比(OFeO/Cfix)が0.8以上2以下になるようになるように添加されることが好ましい。上記原子モル比OFeO/Cfixの下限は0.9以上が好ましく、より好ましくは1.0以上、さらに好ましくは1.1以上である。また原子モル比OFeO/Cfixの上限は1.8以下であることが好ましく、より好ましくは1.7以下である。炭素質還元剤の添加量が多いと、加熱前の塊成物の強度が低下してハンドリング性が低下する。一方、炭素質還元剤の添加量が少ないと、酸化鉄の還元不足が生じて還元鉄の歩留まりが低下する。なお、還元鉄の歩留まりは、塊成物中に含まれる鉄の合計質量に対する直径が3.35mm以上の還元鉄の質量割合であり、[(直径が3.35mm以上の還元鉄の質量/塊成物中に含まれる鉄の合計質量)×100]で算出する。
 炭素質還元剤の平均粒子径の上限は1000μm以下であることが好ましく、より好ましくは700μm以下であり、さらに好ましくは500μm以下である。平均粒子径が1000μm以下であることにより、酸化鉄含有物質に含まれる酸化鉄の還元を万遍なく進行させることができる。平均粒子径の下限は100μm以上であることが好ましく、より好ましくは150μm以上であり、さらに好ましくは200μmである。上記平均粒子径は、50%体積粒子径を意味する。
 炭素質還元剤の粒子径が710μm以上の粒子は、JISに規定の標準篩を用いて粒度分布を測定した値を用い、粒子径が710μm未満の粒子は、レーザー回折式粒度分布測定装置(Leads and Northrup製マイクロトラックFRA9220)で測定した値を用いる。
 従来は炭素質還元剤の上記平均粒子径が還元鉄の生産性に影響すると考えられていたが、本発明者らは、炭素質還元剤の平均粒子径よりもむしろ粒径分布が還元鉄の生産性に影響することを見出した。つまり、本発明者らは、炭素質還元剤の平均粒子径が大きかろうが小さかろうが、そのことが還元鉄の歩留まりに大した影響を及ぼすわけではなく、それよりもむしろ炭素質還元剤に含まれる105μm以下の粒子の割合を減らすことこそが還元鉄の歩留まりを向上させることを見出した。この理由は、105μm以下の粒子の炭素質還元剤が炭素質還元剤の粒子間を埋めることで、3.35mm以上の粗大な大きさまで還元鉄が凝集しにくくなるからと考えている。
 このため、炭素質還元剤を構成する粒子の全質量に対する105μm以下の粒子径の粒子の質量率Xunder105が65質量%以下であることが好ましく、50質量%以下であることがより好ましく、さらに好ましくは25質量%以下である。一方、Xunder105は1質量%以上であることが好ましく、より好ましくは3質量%以上であり、さらに好ましくは5質量%以上である。上記炭素質還元剤の粒径分布は、その平均粒子径を測定した測定装置と同一のものを用いて得ることができる。
 また炭素質還元剤を構成する粒子の全質量に対する120μm以上250μm以下の粒子径の粒子の質量率X120~250は30質量%以上80質量%以下であることが好ましい。上記粒子径の粒子を上記質量率で含むことにより、炭素質還元剤の粒子間に適度な空隙が生まれる。そして、かかる空隙に還元鉄が流れこんで互いに凝集し、粗大な還元鉄を製造することができる。250μmを超える粒子径の粒子の質量率が増えると塊成物を塊成化しにくくなる。120μm未満の粒子径の粒子の割合が増えると還元鉄が微細化する傾向がある。X120~250は45質量%以上であることがより好ましく、さらに好ましくは50質量%以上である。またX120~250は75質量%以下であることが好ましい。
 <融点調整剤>
 融点調整剤は、酸化鉄含有物質中の脈石の融点及び炭素質還元剤中の灰分の融点を下げる作用を示す成分である。かかる融点調整剤を配合することにより、加熱時に脈石が溶融して溶融スラグとなる。この溶融スラグに酸化鉄の一部が溶解し、溶融スラグ中で還元されて金属鉄となる。この金属鉄は、固体のまま還元された金属鉄と接触して固体の金属鉄として凝集する。
 上記融点調整剤としては、CaO供給物質、MgO供給物質、SiO2供給物質等を用いることができる。CaO供給物質はCaO(生石灰)、Ca(OH)2(消石灰)、CaCO3(石灰石)及びCaMg(CO32(ドロマイト)からなる群より選ばれる1種以上を用いることができる。MgO供給物質としては、MgO粉末、天然鉱石又は海水等から抽出されるMg含有物質、MgCO3等が挙げられる。上記SiO2供給物質としては、例えばSiO2粉末、珪砂等が挙げられる。
 融点調整剤は、混合する前に予め粉砕することが好ましい。融点調整剤は平均粒子径が5μm以上90μm以下となるように粉砕することが好ましい。この粉砕方法は上記酸化鉄含有物質と同様の粉砕方法を用いることができる。
 <バインダー>
 バインダーとしては、例えば、コーンスターチや小麦粉等の澱粉などの多糖類を用いることができる。
 [加熱工程]
 加熱工程では、上記塊成化工程で得られた塊成物を加熱することにより還元鉄を作製する。
 加熱工程では、加熱炉に塊成物を装入し、炉内を昇温することにより塊成物を1300℃以上1500℃以下に加熱することが好ましい。上記加熱温度が1300℃以上であることにより、金属鉄が溶融しやすくなり、生産性を高めることができる。加熱温度が1500℃以下であることにより、排ガスの温度が高くなることを抑制し、排ガス処理設備のコストを抑制することができる。
 上記塊成物を加熱炉に装入する前に、炉床に床敷材を敷くことにより炉床を保護することが好ましい。床敷材としては、炭素質、耐火セラミックス、耐火性粒子、又は上述の炭素質還元剤に用いる材料が挙げられる。床敷材を構成する材料は0.5mm以上3mm以下の粒子径のものを用いることが好ましい。0.5mm以上であることにより床敷材が炉内のバーナーの燃焼ガスで飛ぶことを抑制することができる。3mm以下であることにより、塊成物やその溶融物が床敷材に潜り込みにくくなる。
 上記加熱炉としては、電気炉又は移動炉床式加熱炉を用いることが好ましい。移動炉床式加熱炉は、炉床がベルトコンベアのように炉内を移動する加熱炉であり、例えば、回転炉床炉、トンネル炉等が挙げられる。
 回転炉床炉は、炉床の外観形状が円形又はドーナツ状に設計されており、炉床の始点と終点が同じ位置になる。炉床上に装入された塊成物に含まれる酸化鉄は、炉内を一周する間に加熱還元されて還元鉄を生成する。従って、回転炉床炉には、回転方向の最上流側に塊成物を炉内に装入する装入手段が設けられ、回転方向の最下流側に排出手段が設けられる。なお、回転構造であるため、排出手段は装入手段の直上流側に設けられる。トンネル炉とは、炉床が直線方向に炉内を移動する加熱炉である。
 [その他]
 上記粒状化工程で得られた粒状金属鉄は、副生したスラグや、必要に応じて敷かれた床敷材等と共に炉内から排出される。このように排出された粒状金属鉄は、篩や磁選機等を用いて選別することにより所望の大きさの還元鉄を回収することができる。以上のようにして還元鉄を製造することができる。
 上記本発明の還元鉄の製造方法は、還元鉄の生産性が高い。
 本発明では、上記式(I)を満たすことにより、塊成物中の酸化鉄に含まれる酸素量の質量率OFeOと、塊成物に含まれる全固定炭素量の質量率Cfixと、105μm以下の粒子径の粒子の質量率をXunder105とが適正な割合で含まれるため、還元鉄の歩留まりを向上させることができ、還元鉄の生産性を高めることができる。
 本発明において、Xunder105が1質量%以上65質量%以下であることで、還元鉄が炭素質還元剤の粒子間を浸透しやすくなり、還元鉄の凝集を促進することができる。
 本発明において、炭素質還元剤を構成する粒子の全質量に対する、120μm以上250μm以下の粒子径の粒子の質量率が30質量%以上80質量%以下であることで、酸化鉄含有物質中の酸化鉄を効率よく還元することができ、かつ還元鉄同士が凝集して大型化しやすい。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 (実施例1~8及び比較例1~5)
 表1に示す配合比率で、鉄鉱石(酸化鉄含有物質)と、石炭(炭素質還元剤)と、石灰石(融点調整剤)と、小麦粉(バインダー)とを配合することにより混合物を作製した。石炭は、後掲の表2及び表3に示すように粒径分布及び組成が異なる11種(A-1~A-7及びB-1~B-4)を用いた。上記混合物に適量の水を加えてタイヤ型造粒機によってφ19mmの大きさの生ペレット(塊成物)を造粒した。この生ペレットを、乾燥機を用いて180℃で1時間加熱することにより乾燥させて、乾燥ペレットを得た。
 次に、加熱炉の炉床を保護するために加熱炉の炉床に最大粒子径が2mm以下の炭材(無煙炭)を配置し、その炭材上に乾燥ペレットを配置した。そして、加熱炉に40体積%の窒素ガスと60体積%の二酸化炭素ガスとを含む混合ガスを、220NL/ 分のガス流量で導入しながら加熱炉内を1450℃で11.5分間加熱することにより酸化鉄を還元して被加熱ペレットを作製した。なお、加熱炉に導入する混合ガスの成分及び流量を変えても、後述する歩留まり及び粉発生率の値は変化しないことを確認している。
 上記被加熱ペレットを加熱炉内から取り出して磁選した上で、3.35mmの目開きの篩を用いて篩分けし、直径3.35mm以上の大きさの還元鉄を回収した。
Figure JPOXMLDOC01-appb-T000001
 表1における「全固定炭素量の質量率Cfix」は、ペレット中の炭素質還元剤及びバインダーに含まれる固定炭素の合計質量率(%)である。炭素質還元剤及びバインダーに含まれる固定炭素は、JIS M8812で規定される固定炭素質量分率算出方法によって算出した値を採用した。
 表1における「酸化鉄中酸素量OFeO」は、酸化鉄含有物質中の酸化鉄に含まれる酸素量の質量率と、炭素質還元剤の成分のうちの灰分中の酸化鉄に含まれる酸素量の質量率との合計質量率(%)である。酸化鉄含有物質中の酸化鉄に含まれる酸素量の質量率は、酸化鉄含有物質中のマグネタイト(Fe34)及びヘマタイト(Fe23)のそれぞれに含まれる酸素量の質量率の和によって算出した。算出方法の詳細は後述する。炭素質還元剤に含まれる灰分の割合は、JIS M8812で規定される灰分定量法で定量した。
 表1における「105μm以下質量率(%)Xunder105」は、炭素質還元剤を構成する粒子の全質量に対する、105μm以下の粒子径の粒子の質量率(%)である。この質量率は、レーザー回折式粒度分布測定装置(Leads and Northrup製マイクロトラックFRA9220)を用いて炭素質還元剤を構成する粒子の粒度分布を測定することにより算出した。
 表1における「120~250μm質量率(%)X120~250」は、炭素質還元剤を構成する粒子の全質量に対する、120~250μmの粒子径の粒子の質量率(%)である。この質量率は、上記レーザー回析式粒度分布測定装置によって測定することにより算出した。
 表1における「式(I)Cfix×Xunder105/OFeO」は、全固定炭素量の質量率Cfix、酸化鉄に含まれる酸素量の質量率OFeO、及びXunder105をそれぞれ、式(I)に代入することによって算出された値である。
 表1における「鉄歩留り」は、加熱炉に装入したペレット中の鉄の合計質量に対する篩上の還元鉄の質量割合であり、以下の式で算出された値である。鉄歩留まりの値が高いほど生産性が高いことを示している。
 歩留まり(%)=(篩上の還元鉄の質量/加熱炉に装入したペレット中の鉄の合計質量)×100
 表1における「粉発生率」は、加熱炉に装入したペレット中の鉄の合計質量に対する、篩上に残留しなかった微粉鉄の質量割合であり、以下の式で算出された値である。粉発生率が低いほど生産性が高いことを示している。
 粉発生率(%)=((加熱炉に装入したペレット中の鉄の合計質量-篩上の還元鉄中の微粉鉄の質量)/加熱炉に装入したペレット中の鉄の合計質量)×100
 図1は、各実施例及び各比較例のCfix×Xunder105/OFeOと鉄歩留り(質量%)との相関を示すグラフであり、図2は、各実施例及び各比較例のCfix×Xunder105/OFeOと粉発生率(質量%)との相関を示すグラフである。
 図1及び図2並びに表1に示す結果から、式(I)の左辺の値が51以下である実施例1~8の製造方法では、鉄歩留りが90質量%以上であり、かつ粉発生率が10質量%以下であった。これに対し、式(I)の左辺の値が51を超える比較例1~5の製造方法では、鉄歩留りが80質量%未満であり、かつ粉発生率が20質量%を超えていた。この結果から、式(I)の左辺の値を51以下にすることにより、高い生産性で還元鉄を製造できることが明らかとなり、本発明の効果が示された。
 図3~図5は、A-1~A-7及びB-1~B-4の石炭の粒度分布のグラフである。図3は粒径分布が2山型となっている石炭の粒径分布であり、図4は、平均粒子径は異なるが粒径分布の山なりの形状が似ている石炭の粒径分布であり、図5は、平均粒子径が1山型となっている石炭の粒径分布である。図3~図5に示すように粒径分布の形状が1山型でも2山型でも還元鉄の生産性が高い場合もあるし低い場合もあることがわかる。このことから、粒径分布の形状が1山型であるか2山型であるかということよりも、炭素質還元剤を構成する粒子の全質量に対する、105μm以下の粒子径の粒子の質量率が重要であることが示された。
 なお、表1中の塊成物に含まれる各原料としては下記のものを用いた。
 <鉄鉱石(酸化鉄含有物質)>
 酸化鉄含有物質としては、62.52質量%の鉄(T.Fe)と、1.51質量%のFeOと、5.98質量%のSiO2と、0.82質量%のAl23と、0.10質量%のCaOと、0.07質量%のMgOとを含む成分組成のヘマタイト系鉄鉱石を用いた。上記T.Fe及びFeOの含有量は、ニクロム酸カリウム滴定法で定量した値を採用した。
 酸化鉄含有物質はヘマタイト系鉄鉱石であるため、酸化鉄含有物質に含まれる鉄(T.Fe)のうちFeOはマグネタイト(Fe34)として存在し、それ以外の鉄はヘマタイト(Fe23)として存在すると仮定した。この仮定に基づいてマグネタイト(Fe34)及びヘマタイト(Fe23)の質量%を下記の計算式によって算出した。
 マグネタイト(Fe34)量=(FeO分析値)/(FeO分子量)×(Fe34分子量)
 ヘマタイト(Fe23)量=((T.Fe分析値)-(Fe34量/Fe34分子量×鉄原子量×3))/(鉄原子量×2)×(Fe23分子量)
 酸化鉄に含まれる酸素量(OFeO)=Fe23量×酸素原子量×3+Fe34量×酸素原子量×4
 上記計算により、酸化鉄は、84.35質量%のヘマタイト(Fe23)と、4.87質量%のマグネタイト(Fe34)とを含み、これら酸化鉄に含まれる酸素量の質量率(OFeO)は26.7質量%と算出された。
 <石炭(炭素質還元剤)>
 炭素質還元剤としては、粒度分布及び組成が異なる11種(A-1~A-7及びB-1~B-4)の石炭を用いた。各石炭の粒度分布及び組成はそれぞれ表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2は、レーザー回折式粒度分布測定装置(Leads and Northrup製マイクロトラックFRA9220)を用いて下記の測定条件で測定したA-1~A-7及びB-1~B-4の石炭に含まれる各粒子径(μm)に対する頻度(質量%)である。なお、レーザー回折法では、粒度分布が体積%で測定されるが、体積%を質量%と等しいと仮定した。
 <測定条件>
 測定方式:レーザー回析/散乱式
 測定範囲:0.12~710μm
 溶媒:純水
 表3における「固定炭素(Ccarbon)」、「揮発分」及び「灰分」はそれぞれ、石炭中の固定炭素、揮発分及び配分をJIS M 8812で規定される固定炭素質量分率算出方法、揮発分定量方法及び灰分定量方法によって定量した値である。固定炭素(Ccarbon)は、全体(100)から灰分及び揮発分の質量を引くことによって算出した。
 表3における「灰分」の成分組成のうちのS以外(Fe23、SiO2、CaO、Al23、MgO)はICP発光分光分析法で定量し、Sは燃焼赤外線吸収法で定量した。なお、表3中の「全炭素(T.C)」も燃焼赤外線吸収法を用いて定量した。
 表3中の「石炭中の酸化鉄に含まれる酸素量」は、(灰分分析値)×(灰分中Fe23分析値)/100/(Fe23の分子量)×酸素原子量×3によって算出した値である。
 <石灰石(融点調整剤)>
 融点調整剤としては、0.23質量%のSiO2と、57.01質量%のCaOと、0.16質量%のAl23と、0.17質量%のMgOとを含む成分組成の石灰石を用いた。なお、融点調整剤の成分組成は、上記炭素質還元剤と同一の手法で定量した。
 <小麦粉(バインダー)>
 バインダーとしては、71.77質量%の全炭素と、9.32質量%の固定炭素と、90.02質量%の揮発分と、0.66質量%の灰分とを含む成分組成の小麦粉を用いた。なお、小麦粉の成分組成は、上記炭素質還元剤と同一の手法で定量した。
 今回開示された実施形態は全ての点で例示であって、制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲により示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。

Claims (3)

  1.  酸化鉄含有物質及び炭素質還元剤を含む混合物を塊成化することにより塊成物を作製する工程と、
     前記塊成物を加熱することにより、該塊成物中の酸化鉄を還元して還元鉄を作製する工程とを含み、
     前記塊成物中の酸化鉄に含まれる酸素量の質量率をOFeOとし、
     前記塊成物に含まれる全固定炭素量の質量率をCfixとし、
     前記炭素質還元剤を構成する粒子の全質量に対する、105μm以下の粒子径の粒子の質量率をXunder105とすると、下記の式(I)を満たすことを特徴とする還元鉄の製造方法。
     Cfix×Xunder105/OFeO≦51   ・・・(I)
  2.  前記Xunder105が1質量%以上65質量%以下である、請求項1に記載の還元鉄の製造方法。
  3.  前記炭素質還元剤を構成する粒子の全質量に対する、120μm以上250μm以下の粒子径の粒子の質量率は、30質量%以上80質量%以下である、請求項1又は2に記載の還元鉄の製造方法。
PCT/JP2016/062957 2015-05-28 2016-04-26 還元鉄の製造方法 WO2016190023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2017146087A RU2676378C1 (ru) 2015-05-28 2016-04-26 Способ получения восстановленного железа
CN201680029835.7A CN107614710B (zh) 2015-05-28 2016-04-26 还原铁的制造方法
UAA201712964A UA119292C2 (uk) 2015-05-28 2016-04-26 Спосіб одержання відновленого заліза
US15/577,151 US10683562B2 (en) 2015-05-28 2016-04-26 Reduced iron manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015108559A JP6460531B2 (ja) 2015-05-28 2015-05-28 還元鉄の製造方法
JP2015-108559 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016190023A1 true WO2016190023A1 (ja) 2016-12-01

Family

ID=57393080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062957 WO2016190023A1 (ja) 2015-05-28 2016-04-26 還元鉄の製造方法

Country Status (6)

Country Link
US (1) US10683562B2 (ja)
JP (1) JP6460531B2 (ja)
CN (1) CN107614710B (ja)
RU (1) RU2676378C1 (ja)
UA (1) UA119292C2 (ja)
WO (1) WO2016190023A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194165A1 (ja) * 2017-04-20 2018-10-25 住友金属鉱山株式会社 金属酸化物の製錬方法
WO2018216513A1 (ja) * 2017-05-24 2018-11-29 住友金属鉱山株式会社 酸化鉱石の製錬方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201706116D0 (en) 2017-04-18 2017-05-31 Legacy Hill Resources Ltd Iron ore pellets
JP6809377B2 (ja) * 2017-05-24 2021-01-06 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7255272B2 (ja) * 2019-03-25 2023-04-11 住友金属鉱山株式会社 ニッケル酸化鉱石の製錬方法、還元炉

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112626A (ja) * 1997-06-30 1999-01-19 Sumitomo Metal Ind Ltd 還元鉄の製造方法
JP2008095177A (ja) * 2006-09-11 2008-04-24 Nippon Steel Corp 高炉用含炭非焼成ペレットの製造方法
WO2014034589A1 (ja) * 2012-08-28 2014-03-06 株式会社神戸製鋼所 還元鉄塊成物の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130504A (ja) * 1974-09-09 1976-03-15 Showa Denko Kk
WO2002036836A1 (fr) * 2000-10-30 2002-05-10 Nippon Steel Corporation Granules verts contenant des oxydes metalliques pour four de reduction, procede de production de ces granules, procede de reduction de ces granules et installations de reduction
JP4654542B2 (ja) 2001-06-25 2011-03-23 株式会社神戸製鋼所 粒状金属鉄およびその製法
JP4167101B2 (ja) 2003-03-20 2008-10-15 株式会社神戸製鋼所 粒状金属鉄の製法
WO2009001663A1 (ja) 2007-06-27 2008-12-31 Kabushiki Kaisha Kobe Seiko Sho 粒状金属鉄の製造方法
JP5096810B2 (ja) 2007-06-27 2012-12-12 株式会社神戸製鋼所 粒状金属鉄の製造方法
JP2009024240A (ja) * 2007-07-23 2009-02-05 Nippon Steel Corp 溶融鉄製造方法
JP5420935B2 (ja) 2008-04-09 2014-02-19 株式会社神戸製鋼所 粒状金属鉄の製造方法
JP5384175B2 (ja) 2008-04-10 2014-01-08 株式会社神戸製鋼所 粒状金属鉄製造用酸化チタン含有塊成物
CN102272337A (zh) * 2009-01-23 2011-12-07 株式会社神户制钢所 粒状铁的制造方法
RU2430972C1 (ru) * 2010-01-11 2011-10-10 Общество с ограниченной ответственностью "Сибинженерпроект" (ООО "СибИП") Способ получения металлизированного продукта
US8287621B2 (en) 2010-12-22 2012-10-16 Nu-Iron Technology, Llc Use of bimodal carbon distribution in compacts for producing metallic iron nodules
JP5671426B2 (ja) 2011-08-03 2015-02-18 株式会社神戸製鋼所 粒状金属鉄の製造方法
JP2013142167A (ja) 2012-01-10 2013-07-22 Kobe Steel Ltd 粒状金属鉄の製造方法
JP2013174001A (ja) 2012-02-27 2013-09-05 Kobe Steel Ltd 粒状金属鉄の製造方法
CN103509940B (zh) * 2012-06-20 2015-04-08 鞍钢股份有限公司 一种用于制造低硫粒铁的含碳球团
CN103468848B (zh) * 2013-09-06 2015-05-06 鞍钢股份有限公司 一种高温铁浴处理高铁赤泥的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112626A (ja) * 1997-06-30 1999-01-19 Sumitomo Metal Ind Ltd 還元鉄の製造方法
JP2008095177A (ja) * 2006-09-11 2008-04-24 Nippon Steel Corp 高炉用含炭非焼成ペレットの製造方法
WO2014034589A1 (ja) * 2012-08-28 2014-03-06 株式会社神戸製鋼所 還元鉄塊成物の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194165A1 (ja) * 2017-04-20 2018-10-25 住友金属鉱山株式会社 金属酸化物の製錬方法
WO2018216513A1 (ja) * 2017-05-24 2018-11-29 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP2018197381A (ja) * 2017-05-24 2018-12-13 住友金属鉱山株式会社 酸化鉱石の製錬方法
CN110637101A (zh) * 2017-05-24 2019-12-31 住友金属矿山株式会社 氧化物矿石的冶炼方法
US10626480B2 (en) 2017-05-24 2020-04-21 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
CN110637101B (zh) * 2017-05-24 2021-07-20 住友金属矿山株式会社 氧化物矿石的冶炼方法

Also Published As

Publication number Publication date
RU2676378C1 (ru) 2018-12-28
CN107614710B (zh) 2019-05-17
JP6460531B2 (ja) 2019-01-30
JP2016222957A (ja) 2016-12-28
US20180209012A1 (en) 2018-07-26
US10683562B2 (en) 2020-06-16
UA119292C2 (uk) 2019-05-27
CN107614710A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2016190023A1 (ja) 還元鉄の製造方法
JP6075231B2 (ja) 焼結鉱の製造方法
JP4627236B2 (ja) 炭材内装塊成化物の製造方法
JP6421666B2 (ja) 焼結鉱の製造方法
JP2013209748A (ja) 還元鉄塊成物の製造方法
WO2013161653A1 (ja) 金属鉄含有焼結体
CN104334749A (zh) 还原铁和熔渣的混合物的制造方法
JP6294152B2 (ja) 粒状金属鉄の製造方法
JP6014009B2 (ja) 還元鉄の製造方法
EP1749894A1 (en) Semi-reduced sintered ore and method for production thereof
JP6235439B2 (ja) 粒状金属鉄の製造方法
JP6043271B2 (ja) 還元鉄の製造方法
JP2014181369A (ja) 還元鉄の製造方法
JP6294135B2 (ja) 還元鉄の製造方法
JP6887717B2 (ja) 焼結鉱製造用の炭材内装造粒粒子およびそれを用いた焼結鉱の製造方法
JP2014062321A (ja) 還元鉄塊成物の製造方法
US10017836B2 (en) Method for producing reduced iron
JP6250482B2 (ja) 粒状金属鉄の製造方法
JP2015196900A (ja) 還元鉄の製造方法
JP2015074809A (ja) 粒状金属鉄の製造方法
JP2015209570A (ja) 還元鉄の製造方法
JP2015101740A (ja) 還元鉄の製造方法
JP2014167150A (ja) 還元鉄塊成物の製造方法
JP2020084252A (ja) 焼結鉱の製造方法
JP2018053355A (ja) 含炭塊成鉱の製造方法及び含炭塊成鉱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15577151

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201712964

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2017146087

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 16799731

Country of ref document: EP

Kind code of ref document: A1