WO2016188114A1 - 一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法 - Google Patents

一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法 Download PDF

Info

Publication number
WO2016188114A1
WO2016188114A1 PCT/CN2015/100040 CN2015100040W WO2016188114A1 WO 2016188114 A1 WO2016188114 A1 WO 2016188114A1 CN 2015100040 W CN2015100040 W CN 2015100040W WO 2016188114 A1 WO2016188114 A1 WO 2016188114A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylenedioxythiophene
silver
nano
poly
transparent conductive
Prior art date
Application number
PCT/CN2015/100040
Other languages
English (en)
French (fr)
Inventor
李建雄
马亚晓
刘安华
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2016188114A1 publication Critical patent/WO2016188114A1/zh
Priority to US15/822,257 priority Critical patent/US10421873B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/062Pretreatment
    • B05D3/063Pretreatment of polymeric substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/101Pretreatment of polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/104Pretreatment of other substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/96Applications coating of particles
    • C08G2261/964Applications coating of particles coating of inorganic particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the invention relates to the technical field of flexible transparent conductive films, in particular to in situ synthesis of poly(3,4-ethylenedioxythiophene) / A method of nano metallic silver transparent conductive coating.
  • the flexible transparent conductive film is one of the key materials for the development of flexible optoelectronic products such as flexible liquid crystal display panels, touch panels, e-books, and solar cells.
  • commercial flexible transparent conductive films are mainly sputtered with indium tin oxide on a transparent polymer film ( Composite film of ITO) compound.
  • indium is a precious metal with scarce resources; on the other hand, ITO film is brittle and has poor flexibility, ITO The flexural fatigue life of the base transparent conductive film is short, and it is difficult to meet the requirements of market development.
  • Many research institutes and companies are committed to the development of non-ITO flexible transparent conductive films.
  • the silver wire has a diameter of about 100 nm and a wire diameter ratio is larger than 300.
  • the nano silver wire ink is coated on the surface of the transparent polymer substrate, and the randomly oriented nano silver wire forms a mesh, and the surface resistance of the obtained flexible film can reach 50-300 ⁇ / ⁇ , and the light transmittance is about 92%. .
  • the key to preparing a flexible transparent conductive film from nanowires is to control the distribution of nanowires on the surface of the substrate to form the desired conductive path.
  • Cambrios While promoting the application of nano silver ink in touch panels, the company studied the feasibility of processing transparent circuit boards with laser ablation technology.
  • PEDOT Poly 3,4-ethylenedioxythiophene
  • PSS poly(p-styrenesulfonic acid
  • the direct polymerization method is a method in which a monomer is mixed with an oxidizing agent solution and then coated on a surface of a substrate, and the monomer is oxidatively polymerized by heating.
  • the medium is almost solvent-free in the middle of the reaction, and the movement of the EDOT polymer is difficult.
  • the degree of polymerization and regularity of PEDOT is not high, and the conductivity can reach the order of 100 S/cm.
  • the solution polymerization adsorption method is to place the substrate in a monomer solution, and then add an oxidizing agent solution for oxidative polymerization to synthesize the PEDOT. Adsorption deposition on the surface of the substrate forms a PEDOT film.
  • the PEDOT film obtained by solution polymerization adsorption method has poor compactness, low adhesion and low monomer utilization, although the introduction of sulfonic acid groups on the surface of the substrate can improve PEDOT. Adhesion of the film.
  • CVD Chemical vapor deposition
  • the gasification oxidant and monomer vapor are simultaneously introduced into the reaction chamber, and the monomer is oxidatively polymerized and deposited on the surface of the substrate, and the oxidant residue and the low molecular oligomer are removed by washing to obtain a transparent conductivity exceeding 100 0 S/cm. PEDOT film.
  • CVD requires special equipment, high process requirements, and a limited variety of oxidants to choose from, which is not suitable for large-scale production.
  • Vapor Deposition Polymerization is the attachment of an oxidant to the surface of a substrate and then the deposition of monomeric vapor on the surface of the oxidant.
  • Kim et al. applied the oxidant FeCl 3 and surfactant to the surface of PET, dried it and exposed it to EDOT vapor, and deposited the monomer on PET to form a transparent PET composite film with surface resistance of 500 ⁇ / ⁇ . .
  • the acidity of the solid Fe +3 salt oxidant is sufficient to catalyze the addition polymerization side reaction of EDOT, resulting in conjugated defects and non-conductive products of the backbone chain.
  • the addition of a volatile weak base to the oxidizing agent inhibits the addition polymerization side reaction.
  • VPP water-requiring molecule captures the hydrogen protons on the EDOT polymer and constructs a conjugated backbone chain of PEDOT.
  • the solid oxidant film is highly hydrated and crystallized to lose oxidation activity, causing void defects on the PEDOT film.
  • Vapor deposition polymerization requires strict reaction conditions.
  • the substrate coated with the oxidizing agent is suspended in the EDOT solution to diffuse the EDOT to the surface of the substrate for polymerization.
  • Li Jianxiong et al. immersed the oxidant substrate in EDOT solution and synthesized PEDOT coating in situ. . And introducing peroxyacid as the second oxidant on the surface of the substrate, overcoming the problem of loss of the iron salt oxidant at a high concentration, and improving the efficiency of coating the iron salt oxidant.
  • nano silver technology In order to improve the conductivity of PEDOT coatings, some scientists have combined nano silver technology with PEDOT in PEDOT. A nano-silver wire or nano-silver particles were mixed into the dispersion to prepare a PEDOT/nano-silver composite film.
  • the object of the present invention overcomes the above-mentioned deficiencies of the prior art and provides an in situ synthesis of poly 3,4-ethylenedioxythiophene /
  • the nano metal silver transparent conductive coating method improves the conductivity of the poly 3,4-ethylenedioxythiophene coating to prepare a high quality flexible transparent conductive film.
  • the reduction method simultaneously synthesizes conductive poly 3,4-ethylenedioxythiophene and nano-silver, and synthesizes a transparent conductive poly(3,4-ethylenedioxythiophene/nano-silver coating) in situ on the surface of the transparent substrate.
  • the above method applies a transparent substrate coated with a silver salt composite oxidant, and is immersed in 3,4- Ethylene dioxythiophene monomer solution, silver salt composite oxidant oxidizes 3,4-ethylenedioxythiophene monomer on the surface of the substrate to form a transparent conductive poly 3,4-ethylenedioxythiophene coating; 3,4 - The ethylene dioxythiophene monomer reduces the silver salt oxidant to metallic silver to form nanosilver.
  • the silver salt oxidizing agent in the silver salt composite oxidizing agent is one or more of silver p-toluenesulfonic acid and silver nitrate, and the molar percentage of the silver salt in the composite oxidizing agent is 50-100%; the silver salt composite oxidizing agent
  • the non-silver salt component is a ferric salt; the silver salt composite oxidant has a concentration of 0.5 -10 mmol/m 2 on the surface of the transparent substrate.
  • the solution of 3,4-ethylenedioxythiophene monomer is dissolved in polyvinylpyrrolidone; the weight average molecular weight of polyvinylpyrrolidone is 1 - 100,000; the mass percentage of polyvinylpyrrolidone in the monomer solution is 0.01 - 2 %.
  • the concentration of 3,4-ethylenedioxythiophene in the 3,4-ethylenedioxythiophene monomer solution is 2 0-400 mmol/L;
  • the solvent of the monomer solution is at least one of petroleum ether, hexane, heptane, cyclohexane, benzene, toluene, chloroform, acetonitrile, methanol, ethanol or butanol.
  • the ferric salt is iron p-toluenesulfonate, More than one type of ferric chloride and iron sulfate; the molar percentage of p-toluenesulfonate in the composite oxidant is more than 40%.
  • the oxidative polymerization temperature of the oxidized 3,4-ethylenedioxythiophene monomer is The polymerization time is from 0.1 to 2 hours at 40-80 ° C; the obtained poly 3,4-ethylenedioxythiophene coating is impregnated and washed with a dilute iron salt dilute solution.
  • the transparent substrate is glass, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polyimide, cured epoxy resin. , silicone resin.
  • the transparent substrate is a transparent substrate previously coated with a conductive poly 3,4-ethylenedioxythiophene coating.
  • the transparent substrate is surface-treated to form a composite oxidant coating; the surface treatment includes chemical surface modification or vacuum ultraviolet surface modification; chemical surface modification to hydrolysis or sulfonation, vacuum ultraviolet surface modification It is chemically oxidized by vacuum ultraviolet light at 172 nm.
  • the present invention has the following advantages and technical effects:
  • the ⁇ position of the 3,4-ethylenedioxythiophene monomer is directly connected with oxygen, and the electron donating property of oxygen increases the electron cloud density on the thiophene ring and lowers the oxidation potential of the thiophene ring.
  • the oxidant it Oxidative coupling polymerization is easy; and the ⁇ -position of the thiophene ring is occupied by oxidized ethylene.
  • the thiophene ring can only be connected by ⁇ - ⁇ during oxidative polymerization to form a structurally conjugated chain, which gives conductivity, transparency and stability.
  • Polymer PEDOT Polymer PEDOT.
  • the oxidant dissolves into the retention layer on the surface of the substrate, captures electrons on the thiophene ring, and gradually oxidizes the 3,4-ethylenedioxythiophene monomer in the retention layer to a dimer, three Polymers, polymers and oligomers.
  • the insolubility of the 3,4-ethylenedioxythiophene polymer decreases with the polymerization degree of the 3,4-ethylenedioxythiophene oligomer, and the solubility in the solvent is deteriorated, and the precipitate is adsorbed and settled on the surface of the substrate.
  • the ethylenedioxythiophene monomer diffuses into the retention layer under the influence of concentration, and compensates for the consumed 3,4-ethylenedioxythiophene monomer, which is adsorbed on the surface of the substrate by the oxidant and 3,4-
  • the ethylenedioxythiophene oligomer reacts to form a polymer chain, and a transparent conductive poly 3,4-ethylenedioxythiophene coating is formed on the surface of the substrate.
  • the silver ions take electron oxidation from the thiophene ring.
  • 3,4- In the case of an ethylenedioxythiophene monomer, the silver ion is reduced to a silver atom. The reduced silver atoms are deposited on the surface of the substrate and aggregated into a silver crystal nucleus. With 3,4- Oxidation polymerization of ethylene dioxythiophene monomer, the silver crystal nucleus continuously adsorbs and reduces the silver atom and grows, forming nano metal silver on the surface of the substrate, increasing the conductivity of the poly 3,4-ethylenedioxythiophene coating. .
  • the solubility of silver p-toluenesulfonate and silver nitrate is good, and they can be conveniently coated on the surface of the substrate to form an oxidant coating. It also helps the silver salt oxidant coating to dissolve into the retention layer and oxidize 3,4-ethylene.
  • the dioxythiophene monomer is polymerized.
  • the content of the composite oxidant on the surface of the substrate is positively correlated with the thickness of the synthetic poly(3,4-ethylenedioxythiophene) coating. However, the composite oxidant content increases and the time of complete dissolution into the retention layer is prolonged, which may affect the adhesion of the poly 3,4-ethylenedioxythiophene coating to the substrate.
  • the adsorption amount of the composite oxidizing agent is preferably 0.2 to 10 mmol/m 2 .
  • the requirements for the total thickness of the synthetic poly 3,4-ethylenedioxythiophene coating can be achieved by fractional impregnation of the oxidant and liquid phase precipitation polymerization.
  • the surface of the silver grain has a high surface energy and high adsorption.
  • 3,4- Polyvinylpyrrolidone is added to the ethylenedioxythiophene monomer solution, and polyvinylpyrrolidone is preferentially adsorbed on the 100 faces of the silver crystal grains, hindering the deposition of silver atoms, suppressing the growth of the silver crystal grains, and exhibiting the silver crystal grains 111
  • the advantage of surface growth is to obtain high-structured nano-metal silver particles or nano-silver wires.
  • Polyvinylpyrrolidone with a molecular weight of 1-10 million has good solubility and strong structural adjustment ability, adding 0.01-2% It can play a role in heightening the structure of silver particles.
  • Diluting the solvent of 3,4-ethylenedioxythiophene monomer not only affects 3,4- The solubility of the ethylenedioxythiophene monomer and oligomer also affects the rate at which the coating oxidant dissolves into the retention layer and the solvation of the oxidant.
  • the solvent has high solubility and solvation ability, which is favorable for the formation of high degree of polymerization and regularity.
  • 3,4- The ethylene dioxythiophene polymer chain also enhances the oxidation doping degree and carrier concentration of the poly 3,4-ethylenedioxythiophene film; the oxidant adsorption amount is large, the solubility in the solvent used is high, and the oxidizing agent is dissolved.
  • the retention layer is fast.
  • the oxidation potential of the 3,4-ethylenedioxythiophene monomer is low, and the high-valent metal salt such as the trivalent iron salt can capture electrons on the thiophene ring and oxidatively polymerize the 3,4-ethylenedioxythiophene monomer.
  • Ferric chloride, ferric sulfate, iron p-toluenesulfonic acid are readily available, and their anions have doping ability.
  • the coating has good electrical conductivity. More than one of the above iron salts may be selected according to market supply.
  • the oxidant adsorption amount is 0.5 mmol/m 2 or more, a uniform transparent film having a surface resistance of less than 10 3 ⁇ / ⁇ can be prepared.
  • the thickness of the resulting poly 3,4-ethylenedioxythiophene film increases.
  • the amount of adsorption is too large, the oxidant tends to aggregate on the surface of the substrate, and a plurality of oxidants can reduce the tendency of the oxidant to agglomerate on the surface of the substrate while maintaining the total amount of the oxidant.
  • the p-toluenesulfonate anion can be used as a dopant to balance the positive charge of the oxidized chain of poly(3,4-ethylenedioxythiophene) and increase the doping and current carrying of the poly(3,4-ethylenedioxythiophene) film. Subconcentration. The volume of p-toluenesulfonate is moderate. As a dopant of poly 3,4-ethylenedioxythiophene, it is advantageous to adjust and stack the poly 3,4-ethylenedioxythiophene chain.
  • the mole percentage of toluene sulfonate should be more than 40%, ensuring sufficient positive charge of the equilibrium oxidation of poly(3,4-ethylenedioxythiophene) to p-toluenesulfonate anion.
  • the concentration of the composite oxidant is 0.5-10 mmol/m 2
  • the concentration of 3,4-ethylenedioxythiophene monomer is 20-400 mmol/L
  • the substrate with oxidizing agent is immersed in the monomer solution to react at 40-80 ° C for 0.2-2.
  • a poly 3,4-ethylenedioxythiophene/nanosilver coating can be synthesized in situ on the surface of the substrate.
  • the surface layer of the 3,4-ethylenedioxythiophene polymer may be incompletely reacted with a low degree of polymerization and oxidation.
  • the synthesized composite membrane is taken out from the monomer solution and immersed in a dilute solution of the isothermal ferric salt to eliminate the low degree of polymerization and the low oxidation state component of the surface layer of the poly 3,4-ethylenedioxythiophene coating, thereby further increasing the aggregation.
  • the performance of the transparent substrate significantly affects the properties of the resulting flexible transparent conductive composite film.
  • Commonly used optically transparent plastics are available Polymethyl methacrylate, polycarbonate, polyethylene terephthalate, cured epoxy resin, silicone resin, and the like.
  • the cycloolefin polymer is a newly developed optically transparent plastic with surface energy, gas permeability and low water absorption, and has outstanding chemical inertness and anti-aging ability.
  • Polyethylene naphthalate and transparent polyimide are heat-resistant transparent plastics developed for optoelectronic products with high dimensional stability and reliability. Transparent substrates can be selected for product requirements and target costs.
  • Optically transparent plastic The surface energy is low, the wettability to the polar oxidizing agent solution is poor, and the surface of the transparent substrate needs to be hydrophilicized, the wettability of the surface of the substrate and the oxidizing agent solution is improved, and the uniformity of the coated composite oxidizing agent layer is improved.
  • Surface chemical modification, high-energy radiation treatment, and surfactant treatment can introduce polar groups on the surface of the polymer to improve the surface energy and wetness of the polymer. Sex.
  • Ethanol, isopropanol and acetonitrile were mixed in a volume ratio of 3:1:1 to prepare an ethanol mixed solvent.
  • Iron p-toluenesulfonate and silver p-toluenesulfonate A molar ratio of 1:1 was dissolved in an ethanol mixed solvent to prepare a mixed solution of 80 mmol/L of iron p-toluenesulfonate and silver p-toluenesulfonate, and 5 moles of p-toluenesulfonate.
  • % Add imidazole to the monomer solution.
  • the PET film was placed 2 mm in front of the 172 nm ⁇ excimer vacuum ultraviolet light source window, and the PET film was irradiated to the atmosphere for 2 minutes with a vacuum ultraviolet of 8 mW/m 2 to immediately immerse the irradiated PET film in p-toluenesulfonic acid.
  • the PET film coated with the composite oxidant was suspended in an EDOT solution at 60 ° C for 30 minutes, and then taken out at 60 ° C in a 20 mmol / L solution of iron isopropanol p-toluenesulfonate for 2 minutes, using absolute ethanol and The film was washed with deionized water and blown dry with nitrogen to obtain a PEDOT/nanosilver coated PET film .
  • the PEDOT/nano-silver coated PET composite film was measured at 550 nm transmittance: 85%; four probe surface resistance: 100 ⁇ / ⁇ .
  • Ethanol, isopropanol and acetonitrile were mixed in a volume ratio of 2:1:2 to prepare an ethanol mixed solvent.
  • the iron p-toluenesulfonate, silver p-toluenesulfonate and silver nitrate were dissolved in an ethanol mixed solvent at a molar ratio of 1:1:1 to prepare 120 mmol/L of iron p-toluenesulfonate and p-methyl.
  • Mixture of silver benzene sulfonate and silver nitrate The solution was added with imidazole at 10% of the moles of p-toluenesulfonate.
  • a cyclohexane mixed solvent was prepared by adding a mass percentage of 0.3% ethyl nitrile and 0.01% polyvinylpyrrolidone to cyclohexane.
  • the EDOT monomer was dissolved in the prepared cyclohexane solvent to prepare a 100 mmol/L EDOT solution.
  • the PET film was placed 2 mm in front of the 172 nm ⁇ excimer vacuum ultraviolet light source window, and the PET film was irradiated through the atmosphere for 2 minutes with vacuum ultraviolet radiation of 8 mW/m 2 to immediately immerse the irradiated PET film in p-methylbenzenesulfonate.
  • the PET film coated with the composite oxidant was suspended in an EDOT solution at 60 ° C for 40 minutes, and then taken out at 60 ° C for 20 minutes in an iron isopropanol solution of p-toluenebenzenesulfonate for 2 minutes, using absolute ethanol and
  • the PEDOT/nano-silver coated PET film was obtained by washing with deionized water and drying with nitrogen.
  • the PEDOT/nano-silver coated PET composite film was measured at 550 nm transmittance: 85 %; four probe surface resistance: 80 ⁇ / ⁇ .
  • Ethanol, isopropanol and acetonitrile were mixed in a volume ratio of 3:1:1 to prepare an ethanol mixed solvent.
  • Iron p-toluenesulfonate and silver p-toluenesulfonate A molar ratio of 1:1 was dissolved in an ethanol mixed solvent to prepare a mixed solution of 100 mmol/L of iron p-toluenesulfonate and silver p-toluenesulfonate, and 5 moles of p-toluenesulfonate.
  • the PET film was placed 2 mm in front of the 172 nm ⁇ excimer vacuum ultraviolet light source window, and the PET film was irradiated with a vacuum of 8 mW/m 2 through the atmosphere for 2 minutes to immediately immerse the irradiated PET film in p-toluenesulfonic acid. A mixed solution of iron and silver p-toluenesulfonate for 4 minutes. After removal, it was dried at 45 ° C for 2 minutes. The PET surface was coated with a composite oxidizing agent of 1.8 mmol/m 2 .
  • the PET film coated with the composite oxidant was suspended in an EDOT solution at 70 ° C for 20 minutes, and then taken up in a 20 mmol/L solution of iron isopropanol p-toluenesulfonate at 70 ° C for 2 minutes, using absolute ethanol and Wash the film with deionized water and blow dry with nitrogen.
  • PEDOT/nano-silver coated PET film was measured at 550 nm transmittance: 88%; four probe surface resistance: 80 ⁇ / ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Non-Insulated Conductors (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明公开了一种原位合成聚 3, 4- 乙撑二氧噻吩 / 纳米金属银透明导电涂层的方法。本发明将附银盐氧化剂的透明基材浸入 EDOT 单体溶液,银盐在基材表面氧化 EDOT 单体聚合的同时,自身还原为纳米银,生成掺纳米银的 PEDOT 涂层,得到 PEDOT/ 纳米银透明导电复合膜。本发明制得的 PEDOT/ 纳米银涂层具有导电性、透明性、稳定性高的优点。

Description

一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法
技术领域
本发明涉及柔性透明导电膜 技术领域,具体涉及原位合成聚 3, 4- 乙撑二氧噻吩 / 纳米金属银透明导电涂层的方法。
背景技术
柔性透明导电膜是柔性液晶显示面板、触控面板、电子书、太阳能电池等柔性光电产品发展的关键材料之一。目前,商业化的柔性透明导电膜主要是在透明聚合物膜上溅镀氧化铟锡( ITO )化合物的复合膜。一方面,铟为贵金属,资源稀少;另一方面, ITO 膜 脆性大,柔性差, ITO 基透明导电薄膜的曲绕疲劳寿命短,很难满足市场发展的要求。许多研究机构和公司致力开发非 ITO 类 柔性透明导电膜。
当银、金、铝等金属膜的厚度小于 20 纳米时,它们仍具有导电性。但随厚度减小,金属膜的电导率下降,但对可见光的吸收和反射急剧下降,纳米金属膜可呈现一定的透光性和导电性。然而,在聚合物表面制备纳米金属膜所费不菲,纳米金属膜柔性透明导电材料很难大规模生产和商业化。以纳米金属线或纳米金属颗粒构成导电网络是制备柔性透明导电膜的另一种选择。美国 Cambrios 2008 年开发出制备纳米银线及纳米银线油墨的 ClearOhm 技术,用于柔性透明导电膜制备。该银线的直径约 100 纳米,线径比大于 300 。将纳米银线油墨涂布于透明聚合物基材表面,无规取向的纳米银线构成网格,所得柔性膜的表面电阻可达 50~300Ω/□ ,透光率约 92% 。以纳米金属线制备柔性透明导电膜的技术关键在于控制纳米金属线在基材表面的分布,构成所需的导电通路。 Cambrios 公司在推动纳米银线油墨在触控面板应用的同时,研究用激光烧蚀技术加工透明线路板的可行性。
聚 3,4- 乙撑二氧噻吩( PEDOT )是本征导电高分子,可表现出优异的导电性,透明性和环境稳定性,是取代 ITO 制备柔性透明导电薄膜的候选材料。 然而, PEDOT 材料不溶不熔,难以加工成膜。 Bayer 公司开发的 PEDOT 与聚对苯乙烯磺酸( PSS )络合物的水分散体, Baytron P ,能涂布成膜,在一定程度上解决了 PEDOT 成膜难的问题。但绝缘的 PSS 层阻碍电荷的迁移,所得 PEDOT/PSS 膜的导电率低,吸湿性大。其导电性和可靠性不能满足市场的要求。许多科技工作者研究 EDOT 单体在基材表面的原位聚合,希望在解决成膜问题的同时,获得导电性、稳定性更好的透明 PEDOT 薄膜。已探索的方法包括直接聚合法、溶液聚合吸附法、化学气相沉积法( CVD )、气相沉积聚合法( VPP ) 和液相沉降聚合法。
直接聚合法是将单体与氧化剂溶液混合后涂覆在基材表面,通过加热使单体氧化聚合。在直接聚合法中,反应中期几乎不含溶剂, EDOT 多聚体的运动困难,所得 PEDOT 的聚合度和规整度不高,电导率可达 100 S/cm 量级。且一旦单体与氧化剂溶液混合,氧化聚合即已开始。尽管添加 咪唑等抑制 剂可延长混合液的适用期,但重复性并不理想,电导率可在几个数量级波动。
溶液聚合吸附法是将基材置于单体溶液中,再加入氧化剂溶液进行氧化聚合,使合成的 PEDOT 吸附沉积在基材表面形成 PEDOT 膜。溶液聚合吸附法所得 PEDOT 膜致密性差,附着力小,单体利用率低,尽管事先在基材表面引入磺酸基可提高 PEDOT 膜的附着力。
化学气相沉积法 (CVD) 是将气化的氧化剂和单体蒸汽同时导入反应室,使单体氧化聚合沉积于基材表面,经清洗除去氧化剂残余物和低分子齐聚物,可得电导率超过 100 0S/cm 的透明 PEDOT 膜。但 CVD 需专用设备,工艺要求高,可选择的氧化剂品种有限,不适合大规模生产。
气相沉积聚合法 (VPP) 是将氧化剂附着在基材表面,然后使单体蒸汽在氧化剂表面沉积聚合。 Kim 等将氧化剂 FeCl3 与表面活性剂涂布在 PET 表面,经干燥后暴露于 EDOT 蒸汽中,使单体在 PET 上沉积聚合成膜,制得表面电阻为 500 Ω/□ 的透明 PET 复合膜。固态 Fe+3 盐氧化剂的酸性足以催化 EDOT 的加成聚合副反应,导致骨架链的共轭缺陷和非导电产物。在氧化剂中掺入挥发性弱碱可抑制加成聚合副反应。 VPP 需水分子夺取 EDOT 多聚体上的氢质子,构建 PEDOT 的共轭骨架链。但在高湿度环境下,固态氧化剂膜极易水化结晶而失去氧化活性,在 PEDOT 膜上造成空洞缺陷。气相沉积聚合对反应条件要求严格。
液相沉降聚合法是将覆氧化剂的基材悬于 EDOT 溶液中,使 EDOT 扩散到基材表面聚合。为弥补 VPP 的不足,李建雄等将覆氧化剂的基材浸入 EDOT 溶液,原位合成 PEDOT 涂层 。并在基材表面引入过氧酸作为第二氧化剂,克服高浓度下铁盐氧化剂流失的问题,提高涂覆铁盐氧化剂的效率。
为提高 PEDOT 涂层的导电性,也有科技工作者将纳米银技术与 PEDOT 结合,在 PEDOT 分散液中混入纳米银线或纳米银颗粒,制备 PEDOT/ 纳米银复合膜。
如上所叙,目前,市场上柔性透明导电薄膜以镀覆 ITO 膜 的产品 为主,存在价格高昂,原料稀缺,抗曲饶性差等不足。非 ITO 替代品正在研发中,尤以导电聚 3,4- 乙撑二氧噻吩膜和纳米银线油墨有较强的竞争力和市场渗透能力。本发明公开一种在透明基材表面原位合成导电 PEDOT/ 纳米银涂层的技术和制备柔性透明导电膜的方法。
发明内容
本发明的目的克服现有技术存在的上述不足,提供一种原位合成聚 3, 4- 乙撑二氧噻吩 / 纳米金属银透明导电涂层的方法,提高聚 3,4- 乙撑二氧噻吩涂层的导电性,制备高品质柔性透明导电膜。
本发明的目的通过如下技术方案实现 。
一种原位合成聚 3, 4- 乙撑二氧噻吩 / 纳米金属银透明导电涂层的方法, 采用液相氧化 - 还原的方法,同时 合成导电聚 3,4- 乙撑二氧噻吩和纳米银, 在透明基材表面原位合成透明导电聚 3,4- 乙撑二氧噻吩 / 纳米银涂层 。
进一步优化实施地,上述方法将涂布银盐复合氧化剂的透明基材,浸入 3,4- 乙撑二氧噻吩单体溶液,银盐复合氧化剂在基材表面氧化 3,4- 乙撑二氧噻吩单体聚合,形成透明导电聚 3,4- 乙撑二氧噻吩涂层; 3,4- 乙撑二氧噻吩单体还原银盐氧化剂为金属银,形成纳米银。
进一步优化实施地,所述 银盐复合氧化剂中 银盐 氧化剂为对甲基苯磺酸银和硝酸银中的一种以上, 银盐在复合氧化剂中的摩尔百分数为 50-100 % ;银盐 复合氧化剂的非银盐组分为 三价铁盐;银盐复合 氧化剂在透明基材表面的浓度为 0.5 -10 mmol/ m2
进一步优化实施地, 3,4- 乙撑二氧噻吩单体溶液中溶有聚乙烯吡咯烷酮;聚乙烯吡咯烷酮的重均分子量为 1 - 10 万;聚乙烯吡咯烷酮在单体溶液中的质量百分数为 0.01 - 2 % 。
进一步优化实施地,所述 3,4- 乙撑二氧噻吩单体溶液中 3,4- 乙撑二氧噻吩的浓度为 2 0-400mmol/L ;所述单体溶液的溶剂为石油醚、己烷、庚烷、环己烷、苯、甲苯、氯仿、乙腈、甲醇、乙醇或丁醇的一种以上。
进一步优化实施地,所述三价铁盐为 对甲基苯磺酸铁、 三氯化铁和硫酸铁的一种以上;对甲基苯磺酸盐在复合氧化剂中的 摩尔百分数大于 40 % 。
进一步优化实施地,所述氧化 3,4- 乙撑二氧噻吩单体聚合的氧化聚合温度为 40-80℃,聚合时间为0.1-2 小时;所得聚 3,4- 乙撑二氧噻吩涂层经 三价铁盐 稀溶液浸渍清洗。
进一步优化实施地, 透明基材为玻璃、聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、环烯烃聚合物、聚酰亚胺、固化环氧树脂、有机硅树脂。
进一步优化实施地, 透明基材为预先附有导电 聚 3,4- 乙撑二氧 噻吩涂层的透明基材。
进一步优化实施地,透明基材经表面处理后再制作复合氧化剂涂层;所述表面处理包括化学表面改性或真空紫外表面改性;化学表面改性为水解或磺化,真空紫外表面改性为172nm真空紫外光化学氧化。
与现有技术相比,本发明具有如下优点和技术效果:
本发明采用3,4-乙撑二氧噻吩单体的β位直接与氧相连,氧的给电子性增加了噻吩环上的电子云密度,降低噻吩环的氧化电位,在氧化剂作用下,它很容易氧化偶合聚合;且噻吩环的β位为氧化乙撑占据,氧化聚合时噻吩环只能采用α-α连接,生成结构规整的共轭链,得到导电性、透明性、稳定性高的高分子 PEDOT 。
当覆氧化剂膜的透明基材浸入 3,4- 乙撑二氧噻吩单体溶液,氧化剂溶入基材表面的滞留层,夺取噻吩环上的电子,将滞留层中的 3,4- 乙撑二氧噻吩单体逐步氧化成二聚体、三聚体、多聚体和齐聚物。由于 3,4- 乙撑二氧噻吩 聚合物 的不溶性,随 3,4- 乙撑二氧噻吩齐聚物聚合度的增大,在溶剂中的溶解性变差,会吸附沉降到基材表面。同时,溶液相中的 3,4- 乙撑二氧噻吩单体在浓差推动下扩散进入滞留层,弥补消耗的 3,4- 乙撑二氧噻吩单体,在氧化剂作用下与吸附于基材表面的 3,4- 乙撑二氧噻吩齐聚物反应,长成高分子链,在基材表面形成透明导电聚 3,4- 乙撑二氧噻吩涂层。
当覆含银盐氧化剂的基材浸入 3,4- 乙撑二氧噻吩溶液,银离子从噻吩环上夺取电子氧化 3,4- 乙撑二氧噻吩单体时,银离子还原为银原子。还原的银原子沉积到基材表面,聚集成银晶核。随 3,4- 乙撑二氧噻吩单体氧化聚合的进行,银晶核不断吸附还原的银原子而长大,在基材表面形成纳米金属银,增加聚 3,4- 乙撑二氧噻吩涂层的导电性。
对甲基苯磺酸银和硝酸银的溶解性好,能方便地将它们涂覆在基材表面制作氧化剂涂层,也有助银盐氧化剂涂层溶入滞留层,氧化 3,4- 乙撑二氧噻吩单体聚合。基材表面 复合 氧化剂的含量与合成聚 3,4- 乙撑二氧噻吩涂层的厚度正相关。但复合 氧化剂含量增大,完全溶入滞留层的时间延长,可能影响聚 3,4- 乙撑二氧噻吩涂层与基材的附着力。复合氧化剂的吸附量以 0.2-10 mmol/ m2 为宜。采用分次浸渍氧化剂和液相沉降聚合的方法,可达到合成 聚 3,4- 乙撑二氧噻吩涂层的总厚度的要求。
银晶粒的 100 面表面能高,吸附性强。在 3,4- 乙撑二氧噻吩单体溶液中加入聚乙烯吡咯烷酮,聚乙烯吡咯烷酮可优先吸附于银晶粒的 100 面,阻碍银原子的沉积, 抑制银晶粒 100 面的增长,发挥银晶粒 111 面的增长优势,得到高结构的纳米金属银颗粒或纳米银线。分子量 1-10 万的聚乙烯吡咯烷酮的溶解性好,结构调整能力强,添加 0.01- 2 % 可起到调高银粒结构的作用。
稀释 3,4- 乙撑二氧噻吩单体的溶剂不但影响 3,4- 乙撑二氧噻吩单体和齐聚物的溶解度,也影响涂覆氧化剂溶入滞留层的速度和氧化剂的溶剂化。溶剂的溶解能力和溶剂化能力强,有利生成高聚合度和规整度的 3,4- 乙撑二氧噻吩聚合链,也有利提高聚 3,4- 乙撑二氧噻吩膜的氧化掺杂度和载流子浓度;氧化剂的吸附量大,在所用溶剂中的溶解度高,氧化剂溶入滞留层的速度就快。可在 石油醚、己烷、庚烷、环己烷、苯、甲苯、氯仿、乙腈、甲醇、乙醇或丁醇 中挑选和配制混合溶剂,控制氧化剂溶入滞留层速度与氧化消耗速度的匹配,防止高价氧化态离子扩散出滞留层,确保氧化聚合发生在滞留层内;同时,调节合成聚 3,4- 乙撑二氧噻吩的链结构、掺杂度和聚集态结构,优化导电性、透光性和附着力。
3,4- 乙撑二氧噻吩单体的氧化电位低,三价 铁盐等高价态金属盐都能夺取噻吩环上的电子,使 3,4- 乙撑二氧噻吩单体氧化聚合。 三氯化铁、硫酸铁、 对甲基苯磺酸铁原料易得,其阴离子又具有掺杂能力,经它们氧化 3,4- 乙撑二氧噻吩 所得聚 3,4- 乙撑二氧噻吩涂层的导电性好。 可根据市场供应选用上述铁盐的一种以上。氧化剂吸附量在 0.5 mmol/m2 以上,即可制备表面电阻小于 103Ω/□ 的均匀透明膜。随氧化剂吸附量增加,所得 聚 3,4- 乙撑二氧噻吩膜厚度增加。但吸附量过大,氧化剂易在基材表面聚集成团, 多种氧化剂并用可在保持氧化剂总量的同时,减少氧化剂在基材表面团聚的趋势。 对甲基苯磺酸根阴离子可作为掺杂剂,平衡聚 3,4- 乙撑二氧噻吩 氧化 链节的正电荷,提高聚 3,4- 乙撑二氧噻吩膜的掺杂度和载流子浓度。 对甲基苯磺酸根的体积适中,作为聚 3,4- 乙撑二氧噻吩的 掺杂剂,有利聚 3,4- 乙撑二氧噻吩链的结构调整和堆砌,在复合氧化剂中, 对甲基苯磺酸盐的 摩尔百分数应占 40 % 以上, 保证有足够的对甲基苯磺酸根阴离子平衡氧化聚 3,4- 乙撑二氧噻吩的正电荷 。
当复合氧化剂浓度 0.5-10 mmol/m2 , 3,4- 乙撑二氧噻吩单体浓度 20-400mmol/L 的溶液,附氧化剂的基材浸入单体溶液在 40-80℃反应0.2-2 小时,可于基材表面原位合成 聚 3,4- 乙撑二氧噻吩 / 纳米银涂层。然而,涂层表层的 3,4- 乙撑二氧噻吩聚合物可能反应不完全,聚合度和氧化态偏低。将合成的复合膜从单体溶液取出后浸入同温 三价铁盐 稀溶液,消除 聚 3,4- 乙撑二氧噻吩涂层表面层的低聚合度和低氧化态组份,进一步提高 聚 3,4- 乙撑二氧噻吩 / 纳米银涂层的光电性能。
透明基材的性能显著影响所得柔性透明导电复合膜的性能。常用的光学透明塑料有 聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、固化环氧树脂、有机硅树脂等。环烯烃聚合物是新开发的光学透明塑料,具有表面能、透气性和吸水率低的特点,有突出的化学惰性和抗老化能力。聚对萘二甲酸乙二醇酯、透明聚酰亚胺是专为光电产品开发的耐热透明塑料,尺寸稳定性和可靠性高。可按产品要求和目标成本挑选透明基材。
光学透明塑料 的表面能低,对极性氧化剂溶液的湿润性差,需对透明基材表面作亲水处理,提高基材表面与氧化剂溶液的浸润性,改善涂覆复合氧化剂层的均匀性。 表面化学改性、高能辐射处理、表面活性剂处理都可在聚合物表面引入极性基团,提高聚合物的表面能和 湿润 性。表面化学改性可利用溶液化学的水解或磺化,引入羧基或磺酸基,但易导致多相结晶基材的非均匀刻蚀。以氙准分子 172nm 真空紫外辐射表面改性,不会导致结晶基材的非均匀刻蚀,保持基材表面的平滑性,能在短时间内在聚合物表面引入极性基团,将聚合物基材与水的接触角降到 30 °以下,基材表面由疏水变为亲水。
具体实施方式
以下是结合实施例对本发明的进一步说明,但本发明不仅限于如下实施实例。
实施实例 1
将乙醇、异丙醇和乙腈按 3:1:1 的体积比混合,配制乙醇混合溶剂。将 对甲基苯磺酸铁和对甲基苯磺酸银按 1:1 的摩尔比溶入乙醇混合溶剂,配制 80 mmol/L 的 对甲基苯磺酸铁和对甲基苯磺酸银的混合 溶液,并按 对甲基苯磺酸盐摩尔数的 5% 添加咪唑到单体溶液。
在环己烷中加入质量百分数为 0.3 % 的乙腈和 0.01% (质量百分数)的聚乙烯吡咯烷酮,配制环己烷混合溶剂。将 EDOT 单体溶入配制的环己烷混合溶剂,配制 100 mmol/L 的 EDOT 溶液。
将 PET 薄膜置于 172nm 氙准分子真空紫外光源 光窗前 2mm 处 ,以 8 mW/m2 的真空紫外在大气下照射 PET 膜 2 分钟,将辐射处理的 PET 膜立即浸入 对甲基苯磺酸铁和对甲基苯磺酸银的混合溶液 4 分钟。取出后于 45 ℃干燥 2 分钟, PET 膜表面涂布 1.5 mmol/m2 的复合氧化剂。将涂覆复合氧化剂的 PET 膜悬于 60 ℃的 EDOT 溶液中反应 30 分钟,取出后悬于 60 ℃的 20 mmol/L 对甲基苯磺酸铁异丙醇溶液 2 分钟, 用无水乙醇和去离子水清洗薄膜并用氮气吹干,即得覆 PEDOT/ 纳米银涂层的 PET 膜测得覆 PEDOT/ 纳米银涂层的 PET 复合膜在 550 nm 透光率: 85% ;四探针表面电阻: 100 Ω/□。
实施实例 2
将乙醇、异丙醇和乙腈按 2:1:2 的体积比混合,配制乙醇混合溶剂。将 对甲基苯磺酸铁、对甲基苯磺酸银和硝酸银按 1:1:1 的摩尔比溶入乙醇混合溶剂,配制 120 mmol/L 的 对甲基苯磺酸铁、对甲基苯磺酸银和硝酸银的混合 溶液,并按 对甲基苯磺酸盐摩尔数的 10% 添加咪唑。
在环己烷中加入质量百分数为 0.3 % 乙的腈和 0.01% 的聚乙烯吡咯烷酮,配制环己烷混合溶剂。将 EDOT 单体溶入配制的环己烷溶剂,配制 100 mmol/L 的 EDOT 溶液。
将 PET 薄膜置于 172nm 氙准分子真空紫外光源 光窗前 2mm 处 ,以 8 mW/m2 的真空紫外辐射透过大气照射 PET 膜 2 分钟,将辐射处理的 PET 膜立即浸入 对甲基苯磺酸铁、对甲基苯磺酸银和硝酸银的混合溶液 4 分钟。取出后于 45℃ 干燥 2 分钟, PET 表面涂覆 1.9 mmol/m2 的复合氧化剂。将涂覆复合氧化剂的 PET 膜悬于 60 ℃的 EDOT 溶液中反应 40 分钟,取出后悬于 60 ℃ 的 20 mmol/L 对甲基苯磺酸铁异丙醇溶液 2 分钟, 用无水乙醇和去离子水清洗并用氮气吹干,即得覆 PEDOT/ 纳米银涂层的 PET 膜。测得覆 PEDOT/ 纳米银涂层的 PET 复合膜在 550 nm 透光率: 85 % ;四探针表面电阻: 80 Ω/□。
实施实例 3
将乙醇、异丙醇和乙腈按 3:1:1 的体积比混合,配制乙醇混合溶剂。将 对甲基苯磺酸铁和对甲基苯磺酸银按 1:1 的摩尔比溶入乙醇混合溶剂,配制 100 mmol/L 的 对甲基苯磺酸铁和对甲基苯磺酸银的混合 溶液,并按 对甲基苯磺酸盐摩尔数的 5% 添加咪唑。
将环己烷和甲苯按 1:1 的体积比混合,并按质量添加 1 % 的乙腈和 0.02% 的聚乙烯吡咯烷酮,配制环己烷混合溶剂。将 EDOT 单体溶入配制的环己烷混合溶液剂,配制 100 mmol/L 的 EDOT 溶液。
将 PET薄膜置于172nm氙准分子真空紫外光源光窗前2mm处,以8 mW/m2 的真空紫外透过大气照射PET膜2分钟,将辐射处理的PET膜立即浸入对甲基苯磺酸铁和对甲基苯磺酸银的混合溶液4分钟。取出后于45℃干燥2分钟 PET表面涂布1.8 mmol/m2 的复合氧化剂。将涂覆复合氧化剂的PET膜悬于70 ℃的EDOT溶液中反应20分钟,取出后悬于70 ℃的20 mmol/L对甲基苯磺酸铁异丙醇溶液2分钟,用无水乙醇和去离子水清洗薄膜并用氮气吹干,即得覆
PEDOT/纳米银涂层的PET膜测得覆PEDOT/纳米银涂层的PET复合膜在550 nm透光率:88%;四探针表面电阻:80Ω/□。

Claims (10)

  1. 一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征为在透明基材表面原位合成聚3,4-乙撑二氧噻吩和纳米银。
  2. 根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于将涂布银盐复合氧化剂的透明基材,浸入3,4-乙撑二氧噻吩单体溶液,银盐复合氧化剂在基材表面氧化3,4-乙撑二氧噻吩单体聚合,形成透明导电聚3,4-乙撑二氧噻吩涂层;3,4-乙撑二氧噻吩单体还原银盐氧化剂为金属银,形成纳米银。
  3. 根据权利要求2所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于所述银盐复合氧化剂中银盐氧化剂为对甲基苯磺酸银和硝酸银中的一种以上,银盐在复合氧化剂中的摩尔百分数为50-100 %;银盐复合氧化剂的非银盐组分为三价铁盐;银盐复合氧化剂在透明基材表面的浓度为0.5 -10 mmol/m2。
  4. 根据权利要求2所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于3,4-乙撑二氧噻吩单体溶液中溶有聚乙烯吡咯烷酮;聚乙烯吡咯烷酮的重均分子量为1 - 10万;聚乙烯吡咯烷酮在单体溶液中的质量百分数为0.01 - 2 %。
  5. 根据权利要求2所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于所述3,4-乙撑二氧噻吩单体溶液中3,4-乙撑二氧噻吩的浓度为20-400mmol/L;所述单体溶液的溶剂为石油醚、己烷、庚烷、环己烷、苯、甲苯、氯仿、乙腈、甲醇、乙醇或丁醇的一种以上。
  6. 根据权利要求3所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于所述三价铁盐为对甲基苯磺酸铁、三氯化铁和硫酸铁的一种以上;对甲基苯磺酸盐在复合氧化剂中的摩尔百分数大于40 %。
  7. 根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于所述氧化3,4-乙撑二氧噻吩单体聚合的氧化聚合温度为40-80℃,聚合时间为0.1-2小时;所得聚3,4-乙撑二氧噻吩涂层经三价铁盐稀溶液浸渍清洗。
  8. 根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于透明基材为玻璃、聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、环烯烃聚合物、聚酰亚胺、固化环氧树脂、有机硅树脂。
  9. 根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于透明基材为预先附有导电聚3,4-乙撑二氧噻吩涂层的透明基材。
  10. 根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于,透明基材经表面处理后再制作复合氧化剂涂层;所述表面处理包括化学表面改性或真空紫外表面改性;化学表面改性为水解或磺化,真空紫外表面改性为172nm真空紫外光化学氧化。
PCT/CN2015/100040 2015-05-25 2015-12-31 一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法 WO2016188114A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/822,257 US10421873B2 (en) 2015-05-25 2017-11-27 Method for in-site synthesis of transparent conductive coating of poly(3,4-ethylenedioxythiophene)/nano silver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510269149.4A CN104861189B (zh) 2015-05-25 2015-05-25 一种原位合成聚3,4‑乙撑二氧噻吩/纳米金属银透明导电涂层的方法
CN201510269149.4 2015-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/822,257 Continuation US10421873B2 (en) 2015-05-25 2017-11-27 Method for in-site synthesis of transparent conductive coating of poly(3,4-ethylenedioxythiophene)/nano silver

Publications (1)

Publication Number Publication Date
WO2016188114A1 true WO2016188114A1 (zh) 2016-12-01

Family

ID=53907402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100040 WO2016188114A1 (zh) 2015-05-25 2015-12-31 一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法

Country Status (3)

Country Link
US (1) US10421873B2 (zh)
CN (1) CN104861189B (zh)
WO (1) WO2016188114A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104861189B (zh) * 2015-05-25 2018-04-13 华南理工大学 一种原位合成聚3,4‑乙撑二氧噻吩/纳米金属银透明导电涂层的方法
CN108550697A (zh) * 2017-10-30 2018-09-18 上海幂方电子科技有限公司 柔性有机太阳能电池及其全印刷制备方法
CN107964106A (zh) * 2017-11-23 2018-04-27 中南大学 一种导电聚合物水凝胶的制备方法及其在超级电容器中的应用
CN108193499A (zh) * 2017-12-20 2018-06-22 苏州禾川化学技术服务有限公司 一种纤维导电化处理方法
CN108766666B (zh) * 2018-06-07 2021-10-15 乐凯华光印刷科技有限公司 一种低阻值、高透光率的纳米银线透明导电膜及其制备方法
CN108727615B (zh) * 2018-06-27 2021-05-04 河南科技大学 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法
CN109232863B (zh) * 2018-07-19 2021-04-30 华侨大学 一种银纳米棒/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法
KR20210069633A (ko) * 2018-10-05 2021-06-11 도레이 카부시키가이샤 수지 필름 및 그 제조 방법
CN111171356B (zh) 2018-10-24 2021-06-22 电子科技大学 一种制备复合型导电聚合物的方法
CN113292826A (zh) * 2021-04-26 2021-08-24 中国海洋大学 一种聚3,4-乙撑二氧噻吩纳米纤维/金纳米粒子复合材料及其制备方法和应用
CN114388197B (zh) * 2021-07-29 2023-09-12 江苏穿越光电科技有限公司 基于对氨基苯甲酸衍生物的聚酯、透明导电膜制备及用途
CN114373584B (zh) * 2022-03-22 2022-06-17 浙江大华技术股份有限公司 银纳米线透明导电薄膜及其制备方法和应用
CN116622039B (zh) * 2023-07-26 2023-10-24 上海宇昂水性新材料科技股份有限公司 一种乙烯基吡咯烷酮嵌段共聚物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950421A (zh) * 2004-03-11 2007-04-18 H.C.施塔克股份有限公司 以聚噻吩为基础的用于光学应用的功能层
CN101238528A (zh) * 2005-07-01 2008-08-06 新加坡国立大学 导电复合材料
EP2082436A2 (en) * 2006-10-12 2009-07-29 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
CN104861189A (zh) * 2015-05-25 2015-08-26 华南理工大学 一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049744B2 (ja) * 2001-12-04 2008-02-20 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ ポリチオフェンまたはチオフェン共重合体の水性もしくは非水性溶液または分散液の製造方法
US20070246689A1 (en) * 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
JP5612814B2 (ja) * 2008-09-22 2014-10-22 信越ポリマー株式会社 導電性高分子溶液、導電性塗膜および入力デバイス
CN103665409B (zh) * 2013-11-12 2018-04-27 华南理工大学 一种导电聚3,4-乙撑二氧噻吩复合膜的制备方法
CN104194013A (zh) * 2014-08-29 2014-12-10 华南理工大学 一种柔性透明导电复合膜的制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950421A (zh) * 2004-03-11 2007-04-18 H.C.施塔克股份有限公司 以聚噻吩为基础的用于光学应用的功能层
CN101238528A (zh) * 2005-07-01 2008-08-06 新加坡国立大学 导电复合材料
EP2082436A2 (en) * 2006-10-12 2009-07-29 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
CN104861189A (zh) * 2015-05-25 2015-08-26 华南理工大学 一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法

Also Published As

Publication number Publication date
US20180072896A1 (en) 2018-03-15
CN104861189A (zh) 2015-08-26
US10421873B2 (en) 2019-09-24
CN104861189B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2016188114A1 (zh) 一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法
Chen et al. Sequential solution polymerization of poly (3, 4-ethylenedioxythiophene) using V2O5 as oxidant for flexible touch sensors
Babel et al. A review on polyaniline composites: Synthesis, characterization, and applications
Ma et al. Optical–electrical–chemical engineering of PEDOT: PSS by incorporation of hydrophobic nafion for efficient and stable perovskite solar cells
JP5719096B2 (ja) ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
Nie et al. Progress in synthesis of conductive polymer poly (3, 4-ethylenedioxythiophene)
Xia et al. Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells
Liu et al. Enhancements in conductivity and thermal and conductive stabilities of electropolymerized polypyrrole with caprolactam-modified clay
CN102604334B (zh) 自支撑透明高导电pedot薄膜及其制备方法
WO2016029586A1 (zh) 一种柔性透明导电复合膜的制作方法
JP5435436B2 (ja) 複合導電性ポリマー組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途
Li et al. A facile process to produce highly conductive poly (3, 4-ethylenedioxythiophene) films for ITO-free flexible OLED devices
Polat Genlik et al. All-solution-processed, oxidation-resistant copper nanowire networks for optoelectronic applications with year-long stability
Jon et al. Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes
Khodakarimi et al. Effects of process and post-process treatments on the electrical conductivity of the PEDOT: PSS films
Das et al. Preparation, characterization and properties of newly synthesized SnO2-polycarbazole nanocomposite via room temperature solution phase synthesis process
Nguyen et al. Exploring conducting polymers as a promising alternative for electrochromic devices
Fakharan et al. Nd: YAG pulsed laser production of reduced-graphene oxide as hole transporting layer in polymer solar cells and the influences of solvent type
Li et al. Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride–ethyl ether as the electrolyte
Cogal et al. RF plasma-enhanced graphene–polymer composites as hole transport materials for perovskite solar cells
Choi et al. Electronic structure modification of polymeric PEDOT: PSS electrodes using the nonionic surfactant Brij C10 additive for significant sheet resistance reduction
Hazra et al. Studies on the photo-electrochemical behaviour of Bi 2 S 3 NPs embedded in a PANINFs matrix
Bai et al. Synthesis and Micropatterning of Semiconducting Polypyrrole Nanofilms by a Two‐Step Deposition/Polymerization Process
Jouybar et al. Electrochemically Engineered Lanthanum Nickelate as a Promising Transparent Hole-Transport Layer for Bulk Heterojunction Polymer Solar Cells: An Experimental and DFT Study
Goyal et al. Synthesis and characterization of poly [(3, 4‐ethylenedioxy) thiophene]: polystyrene sulfonate (PEDOT: PSS) for energy storage device application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC. EPO FORM 1205A DATED 15.05.18.

122 Ep: pct application non-entry in european phase

Ref document number: 15893182

Country of ref document: EP

Kind code of ref document: A1