CN108727615B - 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法 - Google Patents

一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法 Download PDF

Info

Publication number
CN108727615B
CN108727615B CN201810674134.XA CN201810674134A CN108727615B CN 108727615 B CN108727615 B CN 108727615B CN 201810674134 A CN201810674134 A CN 201810674134A CN 108727615 B CN108727615 B CN 108727615B
Authority
CN
China
Prior art keywords
ionic liquid
water
nano composite
solution
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810674134.XA
Other languages
English (en)
Other versions
CN108727615A (zh
Inventor
姚开胜
赵晨晨
赵海丽
卢伟伟
王键吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201810674134.XA priority Critical patent/CN108727615B/zh
Publication of CN108727615A publication Critical patent/CN108727615A/zh
Application granted granted Critical
Publication of CN108727615B publication Critical patent/CN108727615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3247Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing combinations of different heteroatoms other than nitrogen and oxygen or nitrogen and sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种离子液体‑水界面制备Ag‑聚合物纳米复合膜的方法,包括以下步骤:将AgNO3溶液与溶有吡咯或3,4‑乙烯二氧基噻吩的疏水性离子液体进行混合反应,然后从形成的两相界面处取出生成的薄膜,经清洗、纯化、晾干处理后,制得成品Ag‑聚合物纳米复合膜。本发明的一种离子液体与水的液‑液界面制备有序自支持Ag‑聚合物纳米复合膜的方法,方法本身步骤简单、操作方便,过程绿色、可控、无污染。制备得到的有序自支持Ag‑聚合物纳米复合膜。

Description

一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法
技术领域
本发明属于纳米复合材料制备技术领域,具体涉及一种离子液体-水界面制备有序自支持Ag-聚合物纳米复合膜的方法。
背景技术
纳米复合材料兴起于20世纪80年代,它是由材料的两相显微结构中至少有一相的一维尺度在1~100 nm范围之内的材料复合而成。因其处于纳米尺度范围内,纳米复合材料表现出许多与体相材料不同的性质,比如独特的光、电、磁和催化性能等。基于这些优良的特性,纳米复合材料作为一种新型的先进复合材料,在冶金、涂料、机械、光电、医疗等领域有着极广阔的应用前景。
以聚合物为支撑体的Ag-聚合物纳米复合膜是一种新型的纳米复合材料。因其具有优异的导电性,在电子以及微电子领域占有极其重要的地位,如导电胶,印刷电子器件的导电油墨、高性能的介电材料以及高档电子元件电极材料等。而且Ag 纳米颗粒(NPs)具有良好的催化特性,以Ag NPs为催化活性中心,聚合物为载体,制得的催化剂,既能发挥AgNPs催化的高效性和高选择性,又能通过高聚物的稳定分散作用使其具有长效稳定性,可以应用于醇燃料电池中的催化氧化、选择性氧化还原、环境催化及光催化降解等催化领域。此外,Ag NPs还具有神奇的杀菌功效,在抗菌类医药及医疗器械等领域有着巨大的应用空间。总之,Ag-聚合物纳米复合膜兼具金属粒子、聚合物及纳米材料的优良特性,具有良好的化学稳定性、耐热性、耐腐蚀性以及独特的光电性质,将在光电催化、仿生合成、医疗诊断等高新技术领域有广阔的发展空间,所以开发性能优良的自支持Ag-聚合物纳米复合膜已成为研究热点。
截止目前,已开发出很多用于制备自支持Ag-聚合物纳米复合膜的工艺,并实现了Ag NPs在聚合物中的分散。比如溶胶-凝胶法、原位生成法、插层复合法、液-液界面自组装法等。众所周知,Ag-聚合物纳米复合膜材料的性能与膜的厚度、平整度、致密性、稳定性及Ag NPs的分散度密切相关。传统的制备工艺中,一般采用机械混合的方法制备Ag-聚合物纳米复合材料,用这种方法制得的复合材料Ag NPs的分散度较低,材料的剪切强度偏低,应用范围严重受限。在工业生产中,为了增强材料的抗剪切性能,需要加入大量的偶联剂或表面活性剂,用以提高Ag NPs与聚合物的相容性,制备工艺较复杂,生产成本较高。近年来,Maet al 在聚(2-乙烯基吡啶)(P2VP,MW=121500)的氯仿溶液与AgNO3水溶液形成的液-液界面,制备出嵌有Ag+的聚合物自支持泡沫状复合平板薄膜,然后通过紫外光照射和硼氢化钾(KBH4)水溶液处理,将Ag+还原为Ag NPs(Ma H, Geng Y, Lee Y I, et al. Free-standingpoly(2-vinylpyridine) foam films doped with silver nanoparticles formed atthe planar liquid/liquid interface. Journal of Colloid & Interface Science,2013, 394: 223-230.)。然而,这种方法需要消耗大量的有机溶剂(氯仿),且制备工艺复杂。因此,开发一种简单、绿色、可控的工艺用于制备自支持Ag-聚合物纳米复合膜具有重要意义。
发明内容
为了解决上述技术问题,本发明提供了一种绿色、可控的离子液体与水的液-液界面制备有序自支持Ag-聚合物纳米复合膜的方法,这种方法步骤简单、操作方便,过程绿色、可控、无污染。制备得到的有序自支持Ag-聚合物纳米复合膜。
本发明为解决上述技术问题所采用的技术方案为:一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法,包括以下步骤:将AgNO3溶液与溶有吡咯或3,4-乙烯二氧基噻吩的疏水性离子液体进行混合反应,然后从形成的两相界面处取出生成的薄膜,经清洗、纯化、晾干处理后,制得成品Ag-聚合物纳米复合膜。
一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法,包括以下步骤:
步骤一、称取吡咯和3,4-乙烯二氧基噻吩中的至少一种作为溶质加入到疏水性离子液体中,配置成溶质浓度为0.05-0.20mol/L的离子液体相溶液,备用;
步骤二、称取AgNO3加入水中配置成浓度为0.01-0.10 mol/L AgNO3水相溶液,备用;
步骤三、按照体积比为1:(1-3)的比例,分别取步骤一制得的离子液体相溶液和步骤二制得的AgNO3水相溶液进行混合,并于室温下进行静置反应24-120 h,使离子液体和水的两相界面处生成悬浮的薄膜;
步骤四、用镊子将步骤三中生成的薄膜取出,并采用无水乙醇和水的混合溶液对薄膜进行冲洗3-5次,然后,将薄膜浸入无水乙醇溶液中进行去除离子液体残留处理3-5 h,之后,取出,于玻璃片上自然晾干后,即得成品Ag-聚合物纳米复合膜。
优选的,所述的疏水性离子液体为1-辛基-3-甲基咪唑六氟磷酸盐。
优选的,在步骤三中,所述离子液体相溶液与AgNO3水相溶液进行混合时,将AgNO3水相溶液倾倒至离子液体相溶液中。
优选的,在步骤四所述无水乙醇和水的混合溶液中,无水乙醇与水的体积比为(1-3):(2-5)。
优选的,在步骤二和步骤四中,所采用的水均为二次蒸馏水。
有益效果:
1、本发明采用较“绿色”、无污染的离子液体和水界面合成技术,一锅法制备有序、自支持的Ag-聚合物纳米复合膜。工艺过程均在室温、静置条件下进行,无需加入各类助剂(如稳定剂、偶联剂表面活性剂等),从而大大降低了工序复杂度和生产成本。制备得到的Ag-聚合物纳米复合膜较为均一,致密性好;Ag纳米颗粒分散度高。制备工艺本身方法简单、条件温和、能耗小、不需要载体、且相对绿色。这种一锅制备的Ag-聚合物纳米复合膜有望在电子器件、光电催化以及医疗器械领域中显示出广阔的应用前景。
2、本发明在Ag-聚合物纳米复合膜的制备过程中,选用离子液体和水的两相界面作为有机单体发生聚合以及Ag+被还原成纳米Ag颗粒的反应场所,疏水性离子液体作为一种潜在的“绿色”试剂,其具有的独特物化性质,如热稳定性、低表面能及可忽略的蒸气压等,能够使生成的复合薄膜具有更好的相容性、稳定性和致密性。该方法摒弃了易挥发性有毒有机溶剂(如氯仿、甲苯等)的使用,更为绿色环保。且离子液体可循环多次使用,利用率高,降低了成本和能耗。
附图说明
图1为本发明实施例1所制备的Ag-聚合物纳米复合膜的光学照片;
图2为本发明实施例1所制备的Ag-聚合物纳米复合膜的SEM图;
图3为本发明实施例1所制备的Ag-聚合物纳米复合膜的XRD图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案做进一步详细的阐述和说明。但本发明要保护的内容并不仅限于此,凡是基于上述内容和思想实现的类似反应,均属于本发明的保护范围。
一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法,其将AgNO3水溶液置于溶有吡咯(Py)或3,4-乙烯二氧基噻吩(EDOT)的疏水性离子液体1-辛基-3-甲基咪唑六氟磷酸盐([C8mim][PF6])之上,在两相界面处有机单体发生聚合,同时Ag+被还原,得到这种自支持Ag-聚合物纳米复合膜,其具体的制备过程如下:
步骤一、称取吡咯和3,4-乙烯二氧基噻吩中的至少一种作为溶质加入到疏水性离子液体中,配置成溶质浓度为0.05-0.20mol/L的离子液体相溶液,备用;
步骤二、称取AgNO3加入水中配置成浓度为0.01-0.10 mol/L AgNO3水相溶液,备用;
步骤三、按照体积比为1:(1-3)的比例,分别取步骤一制得的离子液体相溶液和步骤二制得的AgNO3水相溶液进行混合,并于室温下进行静置反应24-120 h,使离子液体和水的两相界面处生成悬浮的薄膜;
步骤四、用镊子将步骤三中生成的薄膜取出,并采用无水乙醇和水的混合溶液对薄膜进行冲洗3-5次,然后,将薄膜浸入无水乙醇溶液中进行去除离子液体残留处理3-5 h,之后,取出,于玻璃片上自然晾干后,即得成品Ag-聚合物纳米复合膜。
优选的,所述的疏水性离子液体为1-辛基-3-甲基咪唑六氟磷酸盐。
优选的,在步骤三中,所述离子液体相溶液与AgNO3水相溶液进行混合时,将AgNO3水相溶液倾倒至离子液体相溶液中。
优选的,在步骤四所述无水乙醇和水的混合溶液中,无水乙醇与水的体积比为(1-3):(2-5)。
优选的,在步骤二和步骤四中,所采用的水均为二次蒸馏水。
实施例1:
1)将一定量的Py溶于2 mL [C8mim][PF6]离子液体中,制得Py浓度为0.05 mol/L的A溶液,之后,将A溶液转移至10 mL的圆柱形反应容器内;
2)取一定量的AgNO3,配制成4 mL浓度为0.01 mol/L的AgNO3水溶液,作为B溶液;
3)将B溶液转移至步骤一1)中盛有A溶液的反应容器中,室温静置,反应72 h,在离子液体和水的两相界面处生成悬浮的薄膜;
4)用镊子将薄膜取出,先用无水乙醇和水混合液(体积比为1:1)反复冲洗3次,再将薄膜浸泡在盛有50 mL无水乙醇的烧杯中4 h,以便除去残留在膜表面的离子液体,之后,取出置于干净的玻璃片上,自然晾干,得到自支持Ag-PPy纳米复合膜。
本实施例制备的自支持Ag-PPy纳米复合膜的实物图片如附图1所示。即:图1为自支持Ag-PPy纳米复合膜的光学照片。从图1中可以看出在圆柱形反应器中有一层均一、致密的自支持薄膜。从本实施例中事先并没有采用任何任载体或支撑物,Ag-PPy薄膜在两相界面之间生成并稳定存在,这也间接表明这种膜本身具有自支持结构,无须需要任何载体或支撑物。图2为本实施例制备的自支持Ag-PPy纳米复合膜的SEM图,从图2中可以看到Ag NPs(图中的亮斑,根据其导电性不同判断)均匀地嵌入在PPy薄膜中,形成了Ag-PPy纳米复合膜。此外,从图2中可以观察到亮斑在膜中均匀分布,表明Ag NPs的分散性较好。
本实施例中制备的自支持Ag-PPy纳米复合膜的XRD图谱如附图3所示,从图3中看出衍射角2θ在20-30°范围内,有一个宽化的衍射峰,这是典型的聚合物的衍射峰,证明了聚合物PPy的存在。而图谱后面的一系列衍射峰则证明本实施例中制备出了具有fcc(面心立方)结构的Ag NPs (详情参照Ag的衍射卡片,JCPDS No. 04-0783)。实施例2:
1)将一定量的Py溶于2 mL [C8mim][PF6]离子液体中,制得Py浓度为0.15 mol/L的A溶液,之后将A溶液转移至10 mL的圆柱形反应容器内;
2)取一定量的AgNO3,配制成4 mL浓度为0.01 mol/L的AgNO3水溶液,作为B溶液;
3)将B溶液转移至1)盛有A溶液的称量瓶中,室温静置,反应72 h,在两相界面处生成悬浮的薄膜;
4)用镊子将薄膜取出,先用无水乙醇和水混合液(体积比为1:1)反复冲洗3次,再将薄膜浸泡在盛有50 mL无水乙醇的烧杯中4 h,以便除去残留在膜表面的离子液体。之后取出置于干净的玻璃片上,自然晾干,得到自支持Ag-PPy纳米复合膜。
实施例3:
1)将一定量的Py溶于2 mL [C8mim][PF6]离子液体中,制得Py浓度为0.20 mol/L的A溶液,之后,将A溶液转移至10 mL的圆柱形反应容器内;
2)取一定量的AgNO3,配制成4 mL浓度为0.01mol/L的AgNO3水溶液,作为B溶液;
3)将B溶液转移至1)盛有A溶液的称量瓶中,室温静置,反应72 h,在两相界面处生成悬浮的薄膜;
4)用镊子将薄膜取出,先用无水乙醇和水混合液(体积比为1:1)反复冲洗5次,再将薄膜浸泡在盛有50 mL无水乙醇的烧杯中4 h,以便除去残留在膜表面的离子液体。之后取出置于干净的玻璃片上,自然晾干,得到自支持Ag-PPy纳米复合膜。
实施例4:
1)将一定量的EDOT溶于2 mL [C8mim][PF6]离子液体中,制得EDOT浓度为0.05mol/L的A溶液,之后,将A溶液转移至10 mL的圆柱形反应容器内;
2)取一定量的AgNO3,配制成4 mL浓度为0.1 mol/L的AgNO3水溶液,作为B溶液;
3)将B溶液转移至1)盛有A溶液的反应容器内,室温静置,反应72 h,在两相界面处生成悬浮的薄膜;
4)用镊子将薄膜取出,先用无水乙醇和水混合液(体积比为1:1)反复冲洗4次,再将薄膜浸泡在盛有50 mL无水乙醇的烧杯中4 h,以便除去残留在膜表面的离子液体。之后取出置于干净的玻璃片上,自然晾干,得到自支持Ag-PEDOT纳米复合膜。
实施例5:
1)将一定量的EDOT溶于2 mL [C8mim][PF6]离子液体中,制得EDOT浓度为0.15mol/L的A溶液,之后,将A溶液转移至10 mL的圆柱形反应容器内;
2)取一定量的AgNO3,配制成4 mL浓度为0.07 mol/L的AgNO3水溶液,作为B溶液;
3)将B溶液转移至1)盛有A溶液的反应容器内, 室温静置,反应24 h,在两相界面处生成悬浮的薄膜;
4)用镊子将薄膜取出,先用无水乙醇和水混合液(体积比为3:2)反复冲洗3次,再将薄膜浸泡在盛有50 mL无水乙醇的烧杯中4 h,以便除去残留在膜表面的离子液体。之后取出置于干净的玻璃片上,自然晾干,得到自支持Ag-PEDOT纳米复合膜。
实施例6:
1)将一定量的EDOT溶于2 mL [C8mim][PF6]离子液体中,制得EDOT浓度为0.20mol/L的A溶液,之后,将A溶液转移至10 mL的圆柱形反应容器内;
2)取一定量的AgNO3,配制成2 mL浓度为0.01 mol/L的AgNO3水溶液,作为B溶液;
3)将B溶液转移至1)盛有A溶液的反应容器内, 室温静置,反应72 h,在两相界面处生成悬浮的薄膜;
4)用镊子将薄膜取出,先用无水乙醇和水混合液(体积比为1:2)反复冲洗4次,再将薄膜浸泡在盛有50 mL无水乙醇的烧杯中4 h,以便除去残留在膜表面的离子液体。之后取出置于干净的玻璃片上,自然晾干,得到自支持Ag-PEDOT纳米复合膜。
实施例7:
1)将一定量的Py和EDOT溶于2 mL [C8mim][PF6]离子液体中,制得Py浓度为0.10mol/L,EDOT浓度也为0.10 mol/L的A溶液,之后,将A溶液转移至10 mL的圆柱形反应容器内;
2)取一定量的AgNO3,配制成6 mL浓度为0.03 mol/L的AgNO3水溶液,作为B溶液;
3)将B溶液转移至1)盛有A溶液的反应容器内,室温静置,反应120 h,在两相界面处生成悬浮的薄膜;
4)用镊子将薄膜取出,先用无水乙醇和水混合液(体积比为1:5)反复冲洗3次,再将薄膜浸泡在盛有50 mL无水乙醇的烧杯中4 h,以便除去残留在膜表面的离子液体。之后取出置于干净的玻璃片上,自然晾干,得到有序自支持Ag-PPy-PEDOT纳米复合膜。

Claims (4)

1.一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法,其特征在于,包括以下步骤:
步骤一、称取吡咯和3,4-乙烯二氧基噻吩中的至少一种作为溶质加入到疏水性离子液体—1-辛基-3-甲基咪唑六氟磷酸盐中,配置成溶质浓度为0.05-0.20 mol/L的离子液体相溶液,备用;
步骤二、称取AgNO3加入水中配置成浓度为0.01-0.10 mol/L AgNO3水相溶液,备用;
步骤三、按照体积比为1:(1-3)的比例,分别取步骤一制得的离子液体相溶液和步骤二制得的AgNO3水相溶液进行混合,并于室温下进行静置反应24-120 h,使离子液体和水的两相界面处生成悬浮的薄膜;
步骤四、用镊子将步骤三中生成的薄膜取出,并采用无水乙醇和水的混合溶液对薄膜进行冲洗3-5次,然后,将薄膜浸入无水乙醇溶液中进行去除离子液体残留处理3-5 h,之后,取出,于玻璃片上自然晾干后,即得成品Ag-聚合物纳米复合膜。
2.根据权利要求1所述的一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法,其特征在于:在步骤三中,所述离子液体相溶液与AgNO3水相溶液进行混合时,将AgNO3水相溶液倾倒至离子液体相溶液中。
3.根据权利要求1所述的一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法,其特征在于:在步骤四所述无水乙醇和水的混合溶液中,无水乙醇与水的体积比为(1-3):(2-5)。
4.根据权利要求1所述的一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法,其特征在于:在步骤二和步骤四中,所采用的水均为二次蒸馏水。
CN201810674134.XA 2018-06-27 2018-06-27 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法 Active CN108727615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810674134.XA CN108727615B (zh) 2018-06-27 2018-06-27 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810674134.XA CN108727615B (zh) 2018-06-27 2018-06-27 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法

Publications (2)

Publication Number Publication Date
CN108727615A CN108727615A (zh) 2018-11-02
CN108727615B true CN108727615B (zh) 2021-05-04

Family

ID=63931064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810674134.XA Active CN108727615B (zh) 2018-06-27 2018-06-27 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法

Country Status (1)

Country Link
CN (1) CN108727615B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244511B (zh) * 2018-11-29 2021-05-18 中国科学院大连化学物理研究所 一种有序化碱性阴离子交换膜及其制备方法与应用
CN113461933B (zh) * 2021-06-01 2022-09-06 浙江大学 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用
CN113603912B (zh) * 2021-07-17 2024-01-19 河南师范大学 一种利用离子液体-水界面制备高结晶度共价有机框架膜的方法
CN114433867B (zh) * 2022-02-08 2023-05-23 河南科技大学 一种枝状对称八角Ag纳米结构及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631982A (zh) * 2004-11-17 2005-06-29 中国科学院上海光学精密机械研究所 制备银/聚吡咯复合纳米材料的方法
CN101575751A (zh) * 2009-06-02 2009-11-11 武汉工程大学 一种在离子液体/水界面制备导电高分子/氯化银复合纳米纤维的方法
CN104861189A (zh) * 2015-05-25 2015-08-26 华南理工大学 一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1951723B1 (en) * 2005-10-20 2017-08-30 Postech Academy-Industry Foundation The application using non-covalent bond between a cucurbituril derivative and a ligand

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631982A (zh) * 2004-11-17 2005-06-29 中国科学院上海光学精密机械研究所 制备银/聚吡咯复合纳米材料的方法
CN101575751A (zh) * 2009-06-02 2009-11-11 武汉工程大学 一种在离子液体/水界面制备导电高分子/氯化银复合纳米纤维的方法
CN104861189A (zh) * 2015-05-25 2015-08-26 华南理工大学 一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Tunable Synthesis of Ag Films at the Interface of Ionic Liquids and Water by Changing Cationic Structures of Ionic Liquids";Kaisheng Yao et al;《Crystal Growth & Design》;20170206;第17卷;第991页-996页 *

Also Published As

Publication number Publication date
CN108727615A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
CN108727615B (zh) 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法
Ma et al. Fe2O3 nanoparticles anchored on the Ti3C2T x MXene paper for flexible supercapacitors with ultrahigh volumetric capacitance
Chen et al. Pristine titanium carbide MXene hydrogel matrix
Nguyen et al. Recent advances in nanostructured conducting polymers: from synthesis to practical applications
Li et al. Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance
Yu et al. Recent advances in the synthesis and energy applications of TiO2-graphene nanohybrids
Xi et al. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications
Menon et al. Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils
Jung et al. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template
Bavykin et al. Elongated titanate nanostructures and their applications
Liu et al. Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers
Vaseem et al. Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties
Liu et al. A sol–gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors
Zhang et al. Nanostructures of polyaniline doped with inorganic acids
Tao et al. Fabrication of nickel hydroxide microtubes with micro-and nano-scale composite structure and improving electrochemical performance
Huang et al. Laser-printed in-plane micro-supercapacitors: from symmetric to asymmetric structure
Robbins et al. Monolithic gyroidal mesoporous mixed titanium–niobium nitrides
CN105271217A (zh) 一种氮掺杂的三维石墨烯的制备方法
Yang et al. Control of nucleation in solution growth of anatase TiO2 on glass substrate
Liu et al. Colloidal amphiphile-templated growth of highly crystalline mesoporous nonsiliceous oxides
Li et al. Facile fabrication of hollow silica and titania microspheres using plasma-treated polystyrene spheres as sacrificial templates
CN101347842B (zh) 一步法水相合成星形聚合物稳定的纳米金溶胶
CN102895963A (zh) 一种在钛丝网表面负载二氧化钛纳米棒阵列的方法
Katea et al. Low cost, fast solution synthesis of 3D framework ZnO nanosponges
Zhang et al. Oxidation− reduction reaction driven approach for hydrothermal synthesis of polyaniline hollow spheres with controllable size and shell thickness

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant