CN104861189A - 一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法 - Google Patents

一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法 Download PDF

Info

Publication number
CN104861189A
CN104861189A CN201510269149.4A CN201510269149A CN104861189A CN 104861189 A CN104861189 A CN 104861189A CN 201510269149 A CN201510269149 A CN 201510269149A CN 104861189 A CN104861189 A CN 104861189A
Authority
CN
China
Prior art keywords
silver
ethylene dioxythiophene
gathers
situ
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510269149.4A
Other languages
English (en)
Other versions
CN104861189B (zh
Inventor
李建雄
马亚晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510269149.4A priority Critical patent/CN104861189B/zh
Publication of CN104861189A publication Critical patent/CN104861189A/zh
Priority to PCT/CN2015/100040 priority patent/WO2016188114A1/zh
Priority to US15/822,257 priority patent/US10421873B2/en
Application granted granted Critical
Publication of CN104861189B publication Critical patent/CN104861189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/062Pretreatment
    • B05D3/063Pretreatment of polymeric substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/101Pretreatment of polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/104Pretreatment of other substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/96Applications coating of particles
    • C08G2261/964Applications coating of particles coating of inorganic particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Non-Insulated Conductors (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明公开了一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法。将附银盐氧化剂的透明基材浸入EDOT单体溶液,银盐在基材表面氧化EDOT单体聚合的同时,自身还原为纳米银,生成掺纳米银的PEDOT涂层,得到PEDOT/纳米银透明导电复合膜。本发明制得的PEDOT/纳米银涂层具有导电性、透明性、稳定性高的优点。

Description

一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法
技术领域
本发明涉及柔性透明导电膜技术领域,具体涉及原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法。
背景技术
柔性透明导电膜是柔性液晶显示面板、触控面板、电子书、太阳能电池等柔性光电产品发展的关键材料之一。目前,商业化的柔性透明导电膜主要是在透明聚合物膜上溅镀氧化铟锡(ITO)化合物的复合膜。一方面,铟为贵金属,资源稀少;另一方面,ITO膜脆性大,柔性差,ITO基透明导电薄膜的曲绕疲劳寿命短,很难满足市场发展的要求。许多研究机构和公司致力开发非ITO类柔性透明导电膜。
当银、金、铝等金属膜的厚度小于20纳米时,它们仍具有导电性。但随厚度减小,金属膜的电导率下降,但对可见光的吸收和反射急剧下降,纳米金属膜可呈现一定的透光性和导电性。然而,在聚合物表面制备纳米金属膜所费不菲,纳米金属膜柔性透明导电材料很难大规模生产和商业化。以纳米金属线或纳米金属颗粒构成导电网络是制备柔性透明导电膜的另一种选择。美国Cambrios 2008年开发出制备纳米银线及纳米银线油墨的ClearOhm技术,用于柔性透明导电膜制备。该银线的直径约100纳米,线径比大于300。将纳米银线油墨涂布于透明聚合物基材表面,无规取向的纳米银线构成网格,所得柔性膜的表面电阻可达50~300?/□,透光率约92%。以纳米金属线制备柔性透明导电膜的技术关键在于控制纳米金属线在基材表面的分布,构成所需的导电通路。Cambrios公司在推动纳米银线油墨在触控面板应用的同时,研究用激光烧蚀技术加工透明线路板的可行性。
聚3,4-乙撑二氧噻吩(PEDOT)是本征导电高分子,可表现出优异的导电性,透明性和环境稳定性,是取代ITO制备柔性透明导电薄膜的候选材料。然而,PEDOT材料不溶不熔,难以加工成膜。Bayer公司开发的PEDOT与聚对苯乙烯磺酸(PSS)络合物的水分散体,Baytron P,能涂布成膜,在一定程度上解决了PEDOT成膜难的问题。但绝缘的PSS层阻碍电荷的迁移,所得PEDOT/PSS膜的导电率低,吸湿性大。其导电性和可靠性不能满足市场的要求。许多科技工作者研究EDOT单体在基材表面的原位聚合,希望在解决成膜问题的同时,获得导电性、稳定性更好的透明PEDOT薄膜。已探索的方法包括直接聚合法、溶液聚合吸附法、化学气相沉积法(CVD)、气相沉积聚合法(VPP) 和液相沉降聚合法。
直接聚合法是将单体与氧化剂溶液混合后涂覆在基材表面,通过加热使单体氧化聚合。在直接聚合法中,反应中期几乎不含溶剂,EDOT多聚体的运动困难,所得PEDOT的聚合度和规整度不高,电导率可达100 S/cm量级。且一旦单体与氧化剂溶液混合,氧化聚合即已开始。尽管添加咪唑等抑制剂可延长混合液的适用期,但重复性并不理想,电导率可在几个数量级波动。
溶液聚合吸附法是将基材置于单体溶液中,再加入氧化剂溶液进行氧化聚合,使合成的PEDOT吸附沉积在基材表面形成PEDOT膜。溶液聚合吸附法所得PEDOT膜致密性差,附着力小,单体利用率低,尽管事先在基材表面引入磺酸基可提高PEDOT膜的附着力。
化学气相沉积法(CVD)是将气化的氧化剂和单体蒸汽同时导入反应室,使单体氧化聚合沉积于基材表面,经清洗除去氧化剂残余物和低分子齐聚物,可得电导率超过1000S/cm的透明PEDOT膜。但CVD需专用设备,工艺要求高,可选择的氧化剂品种有限,不适合大规模生产。
气相沉积聚合法(VPP)是将氧化剂附着在基材表面,然后使单体蒸汽在氧化剂表面沉积聚合。Kim等将氧化剂FeCl3与表面活性剂涂布在PET表面,经干燥后暴露于EDOT蒸汽中,使单体在PET上沉积聚合成膜,制得表面电阻为500 ?/□的透明PET复合膜。固态Fe+3盐氧化剂的酸性足以催化EDOT的加成聚合副反应,导致骨架链的共轭缺陷和非导电产物。在氧化剂中掺入挥发性弱碱可抑制加成聚合副反应。VPP需水分子夺取EDOT多聚体上的氢质子,构建PEDOT的共轭骨架链。但在高湿度环境下,固态氧化剂膜极易水化结晶而失去氧化活性,在PEDOT膜上造成空洞缺陷。气相沉积聚合对反应条件要求严格。
液相沉降聚合法是将覆氧化剂的基材悬于EDOT溶液中,使EDOT扩散到基材表面聚合。为弥补VPP的不足,李建雄等将覆氧化剂的基材浸入EDOT溶液,原位合成PEDOT涂层。并在基材表面引入过氧酸作为第二氧化剂,克服高浓度下铁盐氧化剂流失的问题,提高涂覆铁盐氧化剂的效率。
为提高PEDOT涂层的导电性,也有科技工作者将纳米银技术与PEDOT结合,在PEDOT分散液中混入纳米银线或纳米银颗粒,制备PEDOT/纳米银复合膜。
如上所叙,目前,市场上柔性透明导电薄膜以镀覆ITO膜的产品为主,存在价格高昂,原料稀缺,抗曲饶性差等不足。非ITO替代品正在研发中,尤以导电聚3,4-乙撑二氧噻吩膜和纳米银线油墨有较强的竞争力和市场渗透能力。本发明公开一种在透明基材表面原位合成导电PEDOT/纳米银涂层的技术和制备柔性透明导电膜的方法。
发明内容
本发明的目的克服现有技术存在的上述不足,提供一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,提高聚3,4-乙撑二氧噻吩涂层的导电性,制备高品质柔性透明导电膜。
本发明的目的通过如下技术方案实现。
一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,采用液相氧化-还原的方法,同时合成导电聚3,4-乙撑二氧噻吩和纳米银,在透明基材表面原位合成透明导电聚3,4-乙撑二氧噻吩/纳米银涂层。
进一步优化实施地,上述方法将涂布银盐复合氧化剂的透明基材,浸入3,4-乙撑二氧噻吩单体溶液,银盐复合氧化剂在基材表面氧化3,4-乙撑二氧噻吩单体聚合,形成透明导电聚3,4-乙撑二氧噻吩涂层;3,4-乙撑二氧噻吩单体还原银盐氧化剂为金属银,形成纳米银。
进一步优化实施地,所述银盐复合氧化剂中银盐氧化剂为对甲基苯磺酸银和硝酸银中的一种以上,银盐在复合氧化剂中的摩尔百分数为50-100 %;银盐复合氧化剂的非银盐组分为三价铁盐;银盐复合氧化剂在透明基材表面的浓度为0.5 -10 mmol/m2
进一步优化实施地,3,4-乙撑二氧噻吩单体溶液中溶有聚乙烯吡咯烷酮;聚乙烯吡咯烷酮的重均分子量为1 - 10万;聚乙烯吡咯烷酮在单体溶液中的质量百分数为0.01 - 2 %。
进一步优化实施地,所述3,4-乙撑二氧噻吩单体溶液中3,4-乙撑二氧噻吩的浓度为20-400mmol/L;所述单体溶液的溶剂为石油醚、己烷、庚烷、环己烷、苯、甲苯、氯仿、乙腈、甲醇、乙醇或丁醇的一种以上。
进一步优化实施地,所述三价铁盐为对甲基苯磺酸铁、三氯化铁和硫酸铁的一种以上;对甲基苯磺酸盐在复合氧化剂中的摩尔百分数大于40 %。
进一步优化实施地,所述氧化3,4-乙撑二氧噻吩单体聚合的氧化聚合温度为40-80℃,聚合时间为0.1-2小时;所得聚3,4-乙撑二氧噻吩涂层经三价铁盐稀溶液浸渍清洗。
进一步优化实施地,透明基材为玻璃、聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、环烯烃聚合物、聚酰亚胺、固化环氧树脂、有机硅树脂。
进一步优化实施地,透明基材为预先附有导电聚3,4-乙撑二氧噻吩涂层的透明基材。
进一步优化实施地,透明基材经表面处理后再制作复合氧化剂涂层;所述表面处理包括化学表面改性或真空紫外表面改性;化学表面改性为水解或磺化,真空紫外表面改性为172nm真空紫外光化学氧化。
与现有技术相比,本发明具有如下优点和技术效果:
本发明采用3,4-乙撑二氧噻吩单体的β位直接与氧相连,氧的给电子性增加了噻吩环上的电子云密度,降低噻吩环的氧化电位,在氧化剂作用下,它很容易氧化偶合聚合;且噻吩环的β位为氧化乙撑占据,氧化聚合时噻吩环只能采用α-α连接,生成结构规整的共轭链,得到导电性、透明性、稳定性高的高分子PEDOT。
当覆氧化剂膜的透明基材浸入3,4-乙撑二氧噻吩单体溶液,氧化剂溶入基材表面的滞留层,夺取噻吩环上的电子,将滞留层中的3,4-乙撑二氧噻吩单体逐步氧化成二聚体、三聚体、多聚体和齐聚物。由于3,4-乙撑二氧噻吩聚合物的不溶性,随3,4-乙撑二氧噻吩齐聚物聚合度的增大,在溶剂中的溶解性变差,会吸附沉降到基材表面。同时,溶液相中的3,4-乙撑二氧噻吩单体在浓差推动下扩散进入滞留层,弥补消耗的3,4-乙撑二氧噻吩单体,在氧化剂作用下与吸附于基材表面的3,4-乙撑二氧噻吩齐聚物反应,长成高分子链,在基材表面形成透明导电聚3,4-乙撑二氧噻吩涂层。
当覆含银盐氧化剂的基材浸入3,4-乙撑二氧噻吩溶液,银离子从噻吩环上夺取电子氧化3,4-乙撑二氧噻吩单体时,银离子还原为银原子。还原的银原子沉积到基材表面,聚集成银晶核。随3,4-乙撑二氧噻吩单体氧化聚合的进行,银晶核不断吸附还原的银原子而长大,在基材表面形成纳米金属银,增加聚3,4-乙撑二氧噻吩涂层的导电性。
对甲基苯磺酸银和硝酸银的溶解性好,能方便地将它们涂覆在基材表面制作氧化剂涂层,也有助银盐氧化剂涂层溶入滞留层,氧化3,4-乙撑二氧噻吩单体聚合。基材表面复合氧化剂的含量与合成聚3,4-乙撑二氧噻吩涂层的厚度正相关。但复合氧化剂含量增大,完全溶入滞留层的时间延长,可能影响聚3,4-乙撑二氧噻吩涂层与基材的附着力。复合氧化剂的吸附量以0.2-10 mmol/m2为宜。采用分次浸渍氧化剂和液相沉降聚合的方法,可达到合成聚3,4-乙撑二氧噻吩涂层的总厚度的要求。
银晶粒的100面表面能高,吸附性强。在3,4-乙撑二氧噻吩单体溶液中加入聚乙烯吡咯烷酮,聚乙烯吡咯烷酮可优先吸附于银晶粒的100面,阻碍银原子的沉积, 抑制银晶粒100面的增长,发挥银晶粒111面的增长优势,得到高结构的纳米金属银颗粒或纳米银线。分子量1-10万的聚乙烯吡咯烷酮的溶解性好,结构调整能力强,添加0.01- 2 %可起到调高银粒结构的作用。
稀释3,4-乙撑二氧噻吩单体的溶剂不但影响3,4-乙撑二氧噻吩单体和齐聚物的溶解度,也影响涂覆氧化剂溶入滞留层的速度和氧化剂的溶剂化。溶剂的溶解能力和溶剂化能力强,有利生成高聚合度和规整度的3,4-乙撑二氧噻吩聚合链,也有利提高聚3,4-乙撑二氧噻吩膜的氧化掺杂度和载流子浓度;氧化剂的吸附量大,在所用溶剂中的溶解度高,氧化剂溶入滞留层的速度就快。可在石油醚、己烷、庚烷、环己烷、苯、甲苯、氯仿、乙腈、甲醇、乙醇或丁醇中挑选和配制混合溶剂,控制氧化剂溶入滞留层速度与氧化消耗速度的匹配,防止高价氧化态离子扩散出滞留层,确保氧化聚合发生在滞留层内;同时,调节合成聚3,4-乙撑二氧噻吩的链结构、掺杂度和聚集态结构,优化导电性、透光性和附着力。
3,4-乙撑二氧噻吩单体的氧化电位低,三价铁盐等高价态金属盐都能夺取噻吩环上的电子,使3,4-乙撑二氧噻吩单体氧化聚合。三氯化铁、硫酸铁、对甲基苯磺酸铁原料易得,其阴离子又具有掺杂能力,经它们氧化3,4-乙撑二氧噻吩所得聚3,4-乙撑二氧噻吩涂层的导电性好。可根据市场供应选用上述铁盐的一种以上。氧化剂吸附量在0.5 mmol/m2以上,即可制备表面电阻小于103Ω/□的均匀透明膜。随氧化剂吸附量增加,所得聚3,4-乙撑二氧噻吩膜厚度增加。但吸附量过大,氧化剂易在基材表面聚集成团,多种氧化剂并用可在保持氧化剂总量的同时,减少氧化剂在基材表面团聚的趋势。对甲基苯磺酸根阴离子可作为掺杂剂,平衡聚3,4-乙撑二氧噻吩氧化链节的正电荷,提高聚3,4-乙撑二氧噻吩膜的掺杂度和载流子浓度。对甲基苯磺酸根的体积适中,作为聚3,4-乙撑二氧噻吩的掺杂剂,有利聚3,4-乙撑二氧噻吩链的结构调整和堆砌,在复合氧化剂中,对甲基苯磺酸盐的摩尔百分数应占40 %以上,保证有足够的对甲基苯磺酸根阴离子平衡氧化聚3,4-乙撑二氧噻吩的正电荷。
当复合氧化剂浓度0.5-10 mmol/m2,3,4-乙撑二氧噻吩单体浓度20-400mmol/L的溶液,附氧化剂的基材浸入单体溶液在40-80℃反应0.2-2小时,可于基材表面原位合成聚3,4-乙撑二氧噻吩/纳米银涂层。然而,涂层表层的3,4-乙撑二氧噻吩聚合物可能反应不完全,聚合度和氧化态偏低。将合成的复合膜从单体溶液取出后浸入同温三价铁盐稀溶液,消除聚3,4-乙撑二氧噻吩涂层表面层的低聚合度和低氧化态组份,进一步提高聚3,4-乙撑二氧噻吩/纳米银涂层的光电性能。
透明基材的性能显著影响所得柔性透明导电复合膜的性能。常用的光学透明塑料有聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、固化环氧树脂、有机硅树脂等。环烯烃聚合物是新开发的光学透明塑料,具有表面能、透气性和吸水率低的特点,有突出的化学惰性和抗老化能力。聚对萘二甲酸乙二醇酯、透明聚酰亚胺是专为光电产品开发的耐热透明塑料,尺寸稳定性和可靠性高。可按产品要求和目标成本挑选透明基材。
光学透明塑料的表面能低,对极性氧化剂溶液的湿润性差,需对透明基材表面作亲水处理,提高基材表面与氧化剂溶液的浸润性,改善涂覆复合氧化剂层的均匀性。表面化学改性、高能辐射处理、表面活性剂处理都可在聚合物表面引入极性基团,提高聚合物的表面能和湿润性。表面化学改性可利用溶液化学的水解或磺化,引入羧基或磺酸基,但易导致多相结晶基材的非均匀刻蚀。以氙准分子172nm真空紫外辐射表面改性,不会导致结晶基材的非均匀刻蚀,保持基材表面的平滑性,能在短时间内在聚合物表面引入极性基团,将聚合物基材与水的接触角降到30°以下,基材表面由疏水变为亲水。
具体实施方式
以下是结合实施例对本发明的进一步说明,但本发明不仅限于如下实施实例。
实施实例1
将乙醇、异丙醇和乙腈按3:1:1的体积比混合,配制乙醇混合溶剂。将对甲基苯磺酸铁和对甲基苯磺酸银按1:1的摩尔比溶入乙醇混合溶剂,配制80 mmol/L的对甲基苯磺酸铁和对甲基苯磺酸银的混合溶液,并按对甲基苯磺酸盐摩尔数的5%添加咪唑到单体溶液。
在环己烷中加入质量百分数为0.3 %的乙腈和0.01%(质量百分数)的聚乙烯吡咯烷酮,配制环己烷混合溶剂。将EDOT单体溶入配制的环己烷混合溶剂,配制100 mmol/L 的EDOT溶液。
将PET薄膜置于172nm氙准分子真空紫外光源光窗前2mm处,以8 mW/m2 的真空紫外在大气下照射PET膜2分钟,将辐射处理的PET膜立即浸入对甲基苯磺酸铁和对甲基苯磺酸银的混合溶液4分钟。取出后于45 oC干燥2分钟,PET膜表面涂布1.5 mmol/m2的复合氧化剂。将涂覆复合氧化剂的PET膜悬于60 oC的EDOT溶液中反应30分钟,取出后悬于60 oC的20 mmol/L 对甲基苯磺酸铁异丙醇溶液2分钟,用无水乙醇和去离子水清洗薄膜并用氮气吹干,即得覆PEDOT/纳米银涂层的PET膜测得覆PEDOT/纳米银涂层的PET复合膜在550 nm 透光率:85%;四探针表面电阻:100 Ω/□。
实施实例2
将乙醇、异丙醇和乙腈按2:1:2的体积比混合,配制乙醇混合溶剂。将对甲基苯磺酸铁、对甲基苯磺酸银和硝酸银按1:1:1的摩尔比溶入乙醇混合溶剂,配制120 mmol/L的对甲基苯磺酸铁、对甲基苯磺酸银和硝酸银的混合溶液,并按对甲基苯磺酸盐摩尔数的10%添加咪唑。
在环己烷中加入质量百分数为0.3 %乙的腈和0.01%的聚乙烯吡咯烷酮,配制环己烷混合溶剂。将EDOT单体溶入配制的环己烷溶剂,配制100 mmol/L 的EDOT溶液。
将PET薄膜置于172nm氙准分子真空紫外光源光窗前2mm处,以8 mW/m2 的真空紫外辐射透过大气照射PET膜2分钟,将辐射处理的PET膜立即浸入对甲基苯磺酸铁、对甲基苯磺酸银和硝酸银的混合溶液4分钟。取出后于45oC干燥2分钟,PET表面涂覆1.9 mmol/m2的复合氧化剂。将涂覆复合氧化剂的PET膜悬于60 oC的EDOT溶液中反应40分钟,取出后悬于60 oC的20 mmol/L 对甲基苯磺酸铁异丙醇溶液2分钟,用无水乙醇和去离子水清洗并用氮气吹干,即得覆PEDOT/纳米银涂层的PET膜。测得覆PEDOT/纳米银涂层的PET复合膜在550 nm 透光率:85 %;四探针表面电阻:80 Ω/□。
实施实例3
将乙醇、异丙醇和乙腈按3:1:1的体积比混合,配制乙醇混合溶剂。将对甲基苯磺酸铁和对甲基苯磺酸银按1:1的摩尔比溶入乙醇混合溶剂,配制100 mmol/L的对甲基苯磺酸铁和对甲基苯磺酸银的混合溶液,并按对甲基苯磺酸盐摩尔数的5%添加咪唑。
将环己烷和甲苯按1:1的体积比混合,并按质量添加1 %的乙腈和0.02%的聚乙烯吡咯烷酮,配制环己烷混合溶剂。将EDOT单体溶入配制的环己烷混合溶液剂,配制100 mmol/L 的EDOT溶液。
将PET薄膜置于172nm氙准分子真空紫外光源光窗前2mm处,以8 mW/m2 的真空紫外透过大气照射PET膜2分钟,将辐射处理的PET膜立即浸入对甲基苯磺酸铁和对甲基苯磺酸银的混合溶液4分钟。取出后于45oC干燥2分钟,PET表面涂布1.8 mmol/m2的复合氧化剂。将涂覆复合氧化剂的PET膜悬于70 oC的EDOT溶液中反应20分钟,取出后悬于70 oC的20 mmol/L 对甲基苯磺酸铁异丙醇溶液2分钟,用无水乙醇和去离子水清洗薄膜并用氮气吹干,即得覆PEDOT/纳米银涂层的PET膜测得覆PEDOT/纳米银涂层的PET复合膜在550 nm 透光率:88%;四探针表面电阻:80 Ω/□。

Claims (10)

1.一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征为在透明基材表面原位合成聚3,4-乙撑二氧噻吩和纳米银。
2.根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于将涂布银盐复合氧化剂的透明基材,浸入3,4-乙撑二氧噻吩单体溶液,银盐复合氧化剂在基材表面氧化3,4-乙撑二氧噻吩单体聚合,形成透明导电聚3,4-乙撑二氧噻吩涂层;3,4-乙撑二氧噻吩单体还原银盐氧化剂为金属银,形成纳米银。
3.根据权利要求2所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于所述银盐复合氧化剂中银盐氧化剂为对甲基苯磺酸银和硝酸银中的一种以上,银盐在复合氧化剂中的摩尔百分数为50-100 %;银盐复合氧化剂的非银盐组分为三价铁盐;银盐复合氧化剂在透明基材表面的浓度为0.5 -10 mmol/m2
4.根据权利要求2所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于3,4-乙撑二氧噻吩单体溶液中溶有聚乙烯吡咯烷酮;聚乙烯吡咯烷酮的重均分子量为1 - 10万;聚乙烯吡咯烷酮在单体溶液中的质量百分数为0.01 - 2 %。
5.根据权利要求2所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于所述3,4-乙撑二氧噻吩单体溶液中3,4-乙撑二氧噻吩的浓度为20-400mmol/L;所述单体溶液的溶剂为石油醚、己烷、庚烷、环己烷、苯、甲苯、氯仿、乙腈、甲醇、乙醇或丁醇的一种以上。
6.根据权利要求3所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于所述三价铁盐为对甲基苯磺酸铁、三氯化铁和硫酸铁的一种以上;对甲基苯磺酸盐在复合氧化剂中的摩尔百分数大于40 %。
7.根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于所述氧化3,4-乙撑二氧噻吩单体聚合的氧化聚合温度为40-80℃,聚合时间为0.1-2小时;所得聚3,4-乙撑二氧噻吩涂层经三价铁盐稀溶液浸渍清洗。
8.根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于透明基材为玻璃、聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、环烯烃聚合物、聚酰亚胺、固化环氧树脂、有机硅树脂。
9.根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于透明基材为预先附有导电聚3,4-乙撑二氧噻吩涂层的透明基材。
10.根据权利要求1所述原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法,其特征在于,透明基材经表面处理后再制作复合氧化剂涂层;所述表面处理包括化学表面改性或真空紫外表面改性;化学表面改性为水解或磺化,真空紫外表面改性为172nm真空紫外光化学氧化。
CN201510269149.4A 2015-05-25 2015-05-25 一种原位合成聚3,4‑乙撑二氧噻吩/纳米金属银透明导电涂层的方法 Active CN104861189B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510269149.4A CN104861189B (zh) 2015-05-25 2015-05-25 一种原位合成聚3,4‑乙撑二氧噻吩/纳米金属银透明导电涂层的方法
PCT/CN2015/100040 WO2016188114A1 (zh) 2015-05-25 2015-12-31 一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法
US15/822,257 US10421873B2 (en) 2015-05-25 2017-11-27 Method for in-site synthesis of transparent conductive coating of poly(3,4-ethylenedioxythiophene)/nano silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510269149.4A CN104861189B (zh) 2015-05-25 2015-05-25 一种原位合成聚3,4‑乙撑二氧噻吩/纳米金属银透明导电涂层的方法

Publications (2)

Publication Number Publication Date
CN104861189A true CN104861189A (zh) 2015-08-26
CN104861189B CN104861189B (zh) 2018-04-13

Family

ID=53907402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510269149.4A Active CN104861189B (zh) 2015-05-25 2015-05-25 一种原位合成聚3,4‑乙撑二氧噻吩/纳米金属银透明导电涂层的方法

Country Status (3)

Country Link
US (1) US10421873B2 (zh)
CN (1) CN104861189B (zh)
WO (1) WO2016188114A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188114A1 (zh) * 2015-05-25 2016-12-01 华南理工大学 一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法
CN107964106A (zh) * 2017-11-23 2018-04-27 中南大学 一种导电聚合物水凝胶的制备方法及其在超级电容器中的应用
CN108193499A (zh) * 2017-12-20 2018-06-22 苏州禾川化学技术服务有限公司 一种纤维导电化处理方法
CN108550697A (zh) * 2017-10-30 2018-09-18 上海幂方电子科技有限公司 柔性有机太阳能电池及其全印刷制备方法
CN108727615A (zh) * 2018-06-27 2018-11-02 河南科技大学 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法
CN108766666A (zh) * 2018-06-07 2018-11-06 乐凯华光印刷科技有限公司 一种低阻值、高透光率的纳米银线透明导电膜及其制备方法
CN109232863A (zh) * 2018-07-19 2019-01-18 华侨大学 一种银纳米棒/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法
CN113292826A (zh) * 2021-04-26 2021-08-24 中国海洋大学 一种聚3,4-乙撑二氧噻吩纳米纤维/金纳米粒子复合材料及其制备方法和应用
CN114373584A (zh) * 2022-03-22 2022-04-19 浙江大华技术股份有限公司 银纳米线透明导电薄膜及其制备方法和应用
US11655379B2 (en) 2018-10-24 2023-05-23 University Of Electronic Science And Technology Of China Composite conductive polymers, preparation method and application thereof
CN116622039A (zh) * 2023-07-26 2023-08-22 上海宇昂水性新材料科技股份有限公司 一种乙烯基吡咯烷酮嵌段共聚物及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210069633A (ko) * 2018-10-05 2021-06-11 도레이 카부시키가이샤 수지 필름 및 그 제조 방법
CN114388197B (zh) * 2021-07-29 2023-09-12 江苏穿越光电科技有限公司 基于对氨基苯甲酸衍生物的聚酯、透明导电膜制备及用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087836A1 (de) * 2004-03-11 2005-09-22 H. C. Starck Gmbh Funktionsschichten für optische anwendungen auf basis von polythiophenen
US20070246689A1 (en) * 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
CN103665409A (zh) * 2013-11-12 2014-03-26 华南理工大学 一种导电聚3,4-乙撑二氧噻吩复合膜的制备方法
CN104194013A (zh) * 2014-08-29 2014-12-10 华南理工大学 一种柔性透明导电复合膜的制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936426B1 (ko) * 2001-12-04 2010-01-12 아그파-게바에르트 폴리티오펜 또는 티오펜 공중합체의 수성 또는 비수성의용액 또는 분산액을 제조하는 방법
CN101238528B (zh) * 2005-07-01 2011-12-07 新加坡国立大学 导电复合材料及制备方法、包括导电复合材料的存储器件
EP3595016A1 (en) 2006-10-12 2020-01-15 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and method of making them
JP5612814B2 (ja) * 2008-09-22 2014-10-22 信越ポリマー株式会社 導電性高分子溶液、導電性塗膜および入力デバイス
CN104861189B (zh) * 2015-05-25 2018-04-13 华南理工大学 一种原位合成聚3,4‑乙撑二氧噻吩/纳米金属银透明导电涂层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087836A1 (de) * 2004-03-11 2005-09-22 H. C. Starck Gmbh Funktionsschichten für optische anwendungen auf basis von polythiophenen
US20070246689A1 (en) * 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
CN103665409A (zh) * 2013-11-12 2014-03-26 华南理工大学 一种导电聚3,4-乙撑二氧噻吩复合膜的制备方法
CN104194013A (zh) * 2014-08-29 2014-12-10 华南理工大学 一种柔性透明导电复合膜的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EUNYU PARK ET AL.: "One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application", 《JOURNAL OF MATERIALS CHEMISTRY》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188114A1 (zh) * 2015-05-25 2016-12-01 华南理工大学 一种原位合成聚3, 4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法
CN108550697A (zh) * 2017-10-30 2018-09-18 上海幂方电子科技有限公司 柔性有机太阳能电池及其全印刷制备方法
CN107964106A (zh) * 2017-11-23 2018-04-27 中南大学 一种导电聚合物水凝胶的制备方法及其在超级电容器中的应用
CN108193499A (zh) * 2017-12-20 2018-06-22 苏州禾川化学技术服务有限公司 一种纤维导电化处理方法
CN108766666A (zh) * 2018-06-07 2018-11-06 乐凯华光印刷科技有限公司 一种低阻值、高透光率的纳米银线透明导电膜及其制备方法
CN108727615B (zh) * 2018-06-27 2021-05-04 河南科技大学 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法
CN108727615A (zh) * 2018-06-27 2018-11-02 河南科技大学 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法
CN109232863A (zh) * 2018-07-19 2019-01-18 华侨大学 一种银纳米棒/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法
CN109232863B (zh) * 2018-07-19 2021-04-30 华侨大学 一种银纳米棒/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法
US11655379B2 (en) 2018-10-24 2023-05-23 University Of Electronic Science And Technology Of China Composite conductive polymers, preparation method and application thereof
CN113292826A (zh) * 2021-04-26 2021-08-24 中国海洋大学 一种聚3,4-乙撑二氧噻吩纳米纤维/金纳米粒子复合材料及其制备方法和应用
CN114373584A (zh) * 2022-03-22 2022-04-19 浙江大华技术股份有限公司 银纳米线透明导电薄膜及其制备方法和应用
CN114373584B (zh) * 2022-03-22 2022-06-17 浙江大华技术股份有限公司 银纳米线透明导电薄膜及其制备方法和应用
CN116622039A (zh) * 2023-07-26 2023-08-22 上海宇昂水性新材料科技股份有限公司 一种乙烯基吡咯烷酮嵌段共聚物及其制备方法和应用
CN116622039B (zh) * 2023-07-26 2023-10-24 上海宇昂水性新材料科技股份有限公司 一种乙烯基吡咯烷酮嵌段共聚物及其制备方法和应用

Also Published As

Publication number Publication date
WO2016188114A1 (zh) 2016-12-01
CN104861189B (zh) 2018-04-13
US20180072896A1 (en) 2018-03-15
US10421873B2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
CN104861189A (zh) 一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法
Lu et al. Metal‐based flexible transparent electrodes: challenges and recent advances
Fagiolari et al. Poly (3, 4‐ethylenedioxythiophene) in dye‐sensitized solar cells: toward solid‐state and platinum‐free photovoltaics
Nie et al. Progress in synthesis of conductive polymer poly (3, 4-ethylenedioxythiophene)
Zhou et al. Copper mesh templated by breath-figure polymer films as flexible transparent electrodes for organic photovoltaic devices
Wei et al. A review on PEDOT‐based counter electrodes for dye‐sensitized solar cells
Laforgue et al. Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization
Wu et al. Highly efficient inverted perovskite solar cells with sulfonated lignin doped PEDOT as hole extract layer
Lee et al. Effects of mesoscopic poly (3, 4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells
Fu et al. Polyaniline nanorod arrays as a cathode material for high-rate zinc-ion batteries
Wang et al. Study of H2SO4 concentration on properties of H2SO4 doped polyaniline counter electrodes for dye-sensitized solar cells
CN104194013A (zh) 一种柔性透明导电复合膜的制作方法
CN104992781B (zh) 一种石墨烯基三元复合材料的制备方法
TW200915641A (en) Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
Collier et al. Electrochromic polymers processed from environmentally benign solvents
Tai et al. Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells
Chiang et al. High-efficient dye-sensitized solar cell based on highly conducting and thermally stable PEDOT: PSS/glass counter electrode
CN103665409A (zh) 一种导电聚3,4-乙撑二氧噻吩复合膜的制备方法
CN101781094A (zh) 在导电玻璃表面直接制备聚(3,4)二氧乙基-噻吩薄膜的方法
Carbas et al. Hydrogen sulphate-based ionic liquid-assisted electro-polymerization of PEDOT catalyst material for high-efficiency photoelectrochemical solar cells
TW200814339A (en) Method for forming an electrode comprising an electrocatalyst layer thereon and electrochemical device comprising the same
Nguyen et al. Exploring conducting polymers as a promising alternative for electrochromic devices
CN102263203A (zh) 一种有机太阳能电池及其制作方法
CN112786790A (zh) 一种钙钛矿太阳能电池、其界面修饰层及修饰层制备方法
Zhao et al. An eco-friendly water-assisted polyol method to enhance the aspect ratio of silver nanowires

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared