CN107964106A - 一种导电聚合物水凝胶的制备方法及其在超级电容器中的应用 - Google Patents

一种导电聚合物水凝胶的制备方法及其在超级电容器中的应用 Download PDF

Info

Publication number
CN107964106A
CN107964106A CN201711177697.XA CN201711177697A CN107964106A CN 107964106 A CN107964106 A CN 107964106A CN 201711177697 A CN201711177697 A CN 201711177697A CN 107964106 A CN107964106 A CN 107964106A
Authority
CN
China
Prior art keywords
conducting polymer
poly
preparation
edot
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711177697.XA
Other languages
English (en)
Inventor
郑俊
张翼
刘静静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201711177697.XA priority Critical patent/CN107964106A/zh
Publication of CN107964106A publication Critical patent/CN107964106A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种具有良好机械性能和优异电化学性能的聚(3,4‑乙撑二氧噻吩)水凝胶的制备方法及其在超级电容器中的应用。这种导电聚合物水凝胶的制备方法包括:冰浴条件下,将导电聚合物单体3,4‑乙撑二氧噻吩(EDOT)加入到海藻酸钠溶液中,搅拌均匀后,向混合溶液中加入过硫酸铵溶液,搅拌均匀后放置在4℃的环境中反应24~48h。本发明涉及到的聚(3,4‑乙撑二氧噻吩)凝胶的电极的制备方法:把上述最终得到的混合液涂覆于不锈钢网上,然后放置于4℃的环境中反应24~48h,然后依次用稀硫酸,乙醇和蒸馏水洗涤,烘干后得到凝胶电极。本发明避免了高分子粘结剂和导电活性剂的加入,提高了导电性和循环稳定性。

Description

一种导电聚合物水凝胶的制备方法及其在超级电容器中的 应用
技术领域
本发明涉及导电聚合物水凝胶的制备方法,尤其涉及高分子聚合物交联聚 (3,4-乙撑二氧噻吩)得到导电聚合物水凝胶的制备方法及应用。
背景技术
导电聚合物是通过掺杂和去掺杂过程来储存电荷的,是一种典型的法拉第赝 电容器电极材料。因其具有价格低廉,环境友好,较高的导电率,储存容量大等 优点,在超级电容器和电池等领域有巨大的应用潜力。但是,传统的导电聚合物 材料作为电极通常需要加入粘结剂和导电活性物质,这大大地降低了电极材料的 比表面积、能量密度和电子传输能力,导致了电极材料的电导率低,循环稳定和 可加工性差,这些缺点限制了其在高性能设备上的运用。因此,研究导电性能良 好,循环稳定性和加工性能优异的新型导电聚合物材料是十分重大和有意义的工 作。
导电聚合物水凝胶是由导电聚合物通过化学或物理交联形成的三维网络结 构。这类材料具有独特的力学性能、溶胀性能和三维连续的导电网络、较大的比 表面积,可以增加电极材料的循环使用寿命和产生优良的倍率性能。将其用作超 级电容器的电极可以代替传统电极中的粘结剂和导电剂,有利于电极材料的与电 解质溶液的充分接触,而且连通的导电网络为电子提供了快速的传输通道。可实 现电极材料的快速充放电性能。此外,导电聚合物水凝胶的可加工性强,可以通 过浇铸、旋涂和印刷等方式负载在集流体上或制备成各种形状的自支撑电极。这 使得导电聚合物水凝胶在柔性电子器件领域有潜在的应用前景。
聚(3,4-乙撑二氧噻吩)(PEDOT)具有良好的环境稳定性、较高的电导率 和对可见光较高的透过率,因此它在超级电容器、有机太阳能电池、生物医药材 料、电致变色器件等领域有广阔的运用前景。海藻酸钠(Sodium alginate,SA) 是来源于海藻的天然高分子材料,原料丰富易得,价格低廉。它是一种聚阴离子 电解质,可以与PEDOT聚阳离子电解质通过正负电荷相互作用形成聚电解质复 合物。
发明内容
本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提 供一种拥有良好的机械性能和优异的导电性的导电聚合物水凝胶及其制备方法 和应用。
为解决上述技术问题,本发明提出的技术方案为一种导电聚合物水凝胶,该 水凝胶为三维纳米结构,黑色,由海藻酸钠和EDOT在过量的过硫酸铵的条件 下通过静电相互作用形成。该导电水凝胶属于中等强度的凝胶,拥有良好的机械 性能和优异的导电性。同时本发明以聚(3,4-乙撑二氧噻吩)凝胶为电极材料, 用作超级电容器性能研究。本发明是将聚(3,4-乙撑二氧噻吩)凝胶直接涂覆在 集流体上作为超级电容器的电极,不需要添加导电剂和粘合剂,这大大降低了电 极中非活性物质的量。
上述的导电聚合物水凝胶,由过硫酸铵引发聚合物导电单体3,4-乙撑二氧噻 吩在海藻酸钠溶液中氧化原位聚合得到。
作为一个总的发明构思,本发明还提供一种上述的导电聚合物水凝胶制备方 法,包括以下几个步骤:
(1)配制一定浓度的海藻酸钠储备溶液;
(2)配制一定浓度的EDOT储备溶液;
(3)配制一定浓度的过硫酸铵储备溶液;
(4)将一定量的各组分储备溶液在冰浴(0~4℃)中搅拌均匀,然后置于 4℃下反应。
上述的制备方法步骤(1)中,所述的海藻酸钠储备液的溶剂为蒸馏水,在 搅拌器上搅拌溶解,搅拌时间为1~3h,海藻酸钠储备液的浓度为20~40mg/mL。
上述的制备方法步骤(2)中,所述的EDOT储备溶液的溶剂为乙醇,储备液 中EDOT的浓度为1~4M。
上述的制备方法步骤(3)中,所述的过硫酸铵储备液的溶剂为蒸馏水,过硫酸 铵储备液的浓度为1~4M。
上述的制备方法步骤(4)中,取0.5~1.0mL的海藻酸钠储备液加入至干净的5.0mL的螺口瓶中,置于冰浴(0~4℃)中,然后向海藻酸钠溶液中滴加入0.5~ 1mL的EDOT储备液,边加边搅拌,搅拌均匀,在加入0.5~2.0mL的过硫酸 铵溶液,搅拌均匀后放置于4℃的环境中反应24~48h。
本发明的导电聚合物水凝胶是通过正负电荷相互作用形成的,海藻酸钠属于 聚阴离子,导电聚合物单体EDOT在过量的氧化剂过硫酸铵的条件下氧化成 PEDOT聚阳离子,聚阴离子和聚阳离子相互作用得到聚合物水凝胶,该导电水 凝胶兼具水凝胶和导电聚合物的特性。
作为一个总的发明构思,本发明还提供导电聚合物凝胶电极的制备的方法: 将不绣钢网在1.0M的H2SO4溶液中浸泡30~60min,然后经蒸馏水和乙醇反复 冲洗2~5次后烘干备用,然后将上述步骤(4)得到的混合溶液涂覆于处理后不锈 钢网上,置于4℃的环境中反应24~48h。然后把得到的电极放入1.0M的H2SO4溶液中浸泡30~60min除去没有完全聚合的(3,4-乙撑二氧噻吩)单体,最后干 燥得到导电聚(3,4-乙撑二氧噻吩)凝胶电极。
作为一个总的技术构思,本发明还提供一种上述的导电聚合物水凝胶或由上 述制备方法得到的导电聚合物水凝胶在超级电容器中的应用。
与现有技术相比,本发明的优点在于:
(1)本发明的导电聚合物水凝胶以过硫酸铵为氧化剂和引发剂,利用海藻酸 钠聚合物交联聚(3,4-乙撑二氧噻吩)分子链合成聚(3,4-乙撑二氧噻吩)导电水凝胶, 其为三维纳米结构,提供了电子高速传输的通道。因此该导电水凝胶具有优异的 导电性兼具良好的机械性能
(2)本发明所用的材料来源丰富,无毒,对环境无污染。所采用的制备方法 简快速,成本低廉,可商品化,能够大规模生产。
(3)本发明所制备的导电聚(3,4-乙撑二氧噻吩)凝胶电极可以用于超级电容器,采用三电极体系在1.0M H2SO4中进行电化学性能测试,在-0.2~0.8V电势窗口, 在扫速为10~200mV/s下的循环伏安的结果显示聚(3,4-乙撑二氧噻吩)凝胶电极 有明显的氧化还原性能,表现出作为超级电容器电极的可行性;采用交流阻抗测 试电极的电阻,结构表明聚(3,4-乙撑二氧噻吩)凝胶电极的电阻较小;采用恒电 流充放电测试聚(3,4-乙撑二氧噻吩)凝胶电极在不同电流密度下的电容,结果显 示其有优异的倍率性能和循环稳定性,能够满足超级电容器电极生成技术提供有 力的指导。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例 或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的 附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳 动的前提下,还可以根据这些附图获得其他的附图。
图1为分别为本发明实施例1中导电聚(3,4-乙撑二氧噻吩)水凝胶凝胶前的 数码照片图(左),凝胶后的数码照片图(右)。
图2为本发明实施例1,2,3中导电聚(3,4-乙撑二氧噻吩)水凝胶的扫描电 子显微镜(SEM)图;EDOT与过硫酸铵的摩尔比为1:1(左);1:2(中);1:3(右)。
图3为本发明实施例3中导电聚(3,4-乙撑二氧噻吩)凝胶电极在扫数为10~200mV/s下的循环伏安图。
图4为本发明实施例3中导电聚(3,4-乙撑二氧噻吩)凝胶电极的交流阻抗图。
图5为本发明实施例3中导电聚(3,4-乙撑二氧噻吩)凝胶电极在不同电流密 度下的恒电流充放电图。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更 全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的 含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨 在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可 通过市场购买得到或者可通过现有方法制备得到。
实施例1
称取10mg的海藻酸钠溶于0.5mL的蒸馏水中。搅拌1h使其充分溶解, 然后将其置于0℃冰水浴;取2mmol的EDOT溶于0.5mL的乙醇中,然后置于 0℃冰水浴;将2mmol的过硫酸铵溶于0.5mL的蒸馏水中。然后在搅拌的条件 下把EDOT溶液逐滴滴加到海藻酸钠溶液中,搅拌均匀后,向混合溶液中加入 过硫酸铵溶液,快速搅拌均匀,整个过程都在冰浴中完成,搅拌均匀后放置于4℃ 环境中反应24~48h,形成聚(3,4-乙撑二氧噻吩)凝胶,将制备得到的凝胶用蒸 馏水和乙醇洗涤2-3次;然后冷冻干燥,得到的产品用于SEM测试。
实施例2
称取10mg的海藻酸钠溶于0.5mL的蒸馏水中。搅拌1h使其充分溶解, 然后将其置于0℃冰水浴;取2mmol的EDOT溶于0.5mL的乙醇中,然后置于 0℃冰水浴;将4mmol的过硫酸铵溶于0.5mL的蒸馏水中。然后在搅拌的条件 下把EDOT溶液逐滴滴加到海藻酸钠溶液中,搅拌均匀后,向混合溶液中加入 过硫酸铵溶液,快速搅拌均匀,整个过程都在冰浴中完成,搅拌均匀后放置于4℃ 环境中反应24~48h,形成聚(3,4-乙撑二氧噻吩)凝胶,将制备得到的凝胶用蒸 馏水和乙醇洗涤2-3次;然后冷冻干燥,得到的产品用于SEM测试。
实施例3
称取10mg的海藻酸钠溶于0.5mL的蒸馏水中。搅拌60min使其充分溶解, 然后将其0℃冰水浴;取1.5mmol的EDOT溶于0.5mL的乙醇中,然后置于0℃ 冰水浴;将4mmol的过硫酸铵溶于0.5mL的蒸馏水中。然后在搅拌的条件下把 EDOT溶液逐滴滴加到海藻酸钠溶液中,搅拌均匀后,向混合溶液中加入过硫酸 铵溶液,快速搅拌均匀,整个过程都在冰浴中完成,搅拌均匀后放置于4℃环境 中反应24~48h,形成聚(3,4-乙撑二氧噻吩)凝胶,将制备得到的凝胶用蒸馏水 和乙醇洗涤2-3次;然后冷冻干燥,得到的产品用于SEM测试。
图1为聚(3,4-乙撑二氧噻吩)凝胶前和凝胶后的数码照片图,溶液到凝胶的 过程,颜色发生了明显变化,由白色—黄色—绿色—墨绿色—黑色。图2为不同 比例的EDOT和过硫酸铵制备的聚(3,4-乙撑二氧噻吩)凝胶的SEM,左图中 EDOT与过硫酸铵的摩尔比=1:1,聚(3,4-乙撑二氧噻吩)凝胶由纳米粒子组成,纳 米粒子的直径约为300nm,而且纳米颗粒上均匀地分布着大量微孔。中图中 EDOT与过硫酸铵的摩尔比=1:2,在该条件下形成的凝胶的微观结构是纳米粒子 组成的连通的三维网络,纳米粒子的直径为100nm左右。右图中EDOT与过硫 酸铵的摩尔比=1:3,此时形成的导电聚合物凝胶的微观结构是三维纳米网络,在 结构上高度连通,纳米微粒上均匀地分布着大量的微孔。这些纳米网络可以提供 更多的表面活性位,从而有利于提升电极材料的导电率进而缩短离子扩散或传输 途径;另一方面所制备的样品具有孔结构,该结构特征可以进一步作为离子传输 的通道,大大提高电极表面的离子扩散速度,从而提高电极材料的电容性能。
实施例4
聚(3,4-乙撑二氧噻吩)凝胶电极的制备:首先将不绣钢网放入1.0M的H2SO4溶液中浸泡60min,然后用蒸馏水和乙醇冲洗3~5次后烘干备用。然后将实例3 中得到的混合溶液均匀地涂覆于处理后的不锈网上,将放置于4℃的环境中反应24~48h得到凝胶电极。最后对凝胶电极做后处理:把凝胶电极放入1.0M的 H2SO4溶液浸泡10min除去未参加反应的导电聚合物单体,然后用蒸馏水冲洗 干净后真空50℃干燥12h制得电极。该凝胶电极图层厚度约为20μm,活性物 质质量约为3mg。
聚(3,4-乙撑二氧噻吩)凝胶电极电化学性能测试:配制1M的H2SO4溶液作 为电解液,以10,20,50和100mV/s的扫速,在电压-0.2-0.8V下通过电化学 工作站测试聚(3,4-乙撑二氧噻吩)凝胶电极的循环伏安;在偏振为5mV,扫描频 率范围为0.01Hz~100KHz下测试聚(3,4-乙撑二氧噻吩)凝胶电极的电阻;在电 流密度0.5,1和1.5A/g下测试聚(3,4-乙撑二氧噻吩)凝胶电极在不同电流密度下 的电容。
图3为聚(3,4-乙撑二氧噻吩)凝胶电极材料在不同扫描速率(从10mV s-1到 100mVs-1)下的循环伏安曲线,如图所示,峰电流随着扫描速率的增加而增大, 凝胶电极显示了良好的可逆氧化还原性能。图4为凝胶电极的交流阻抗图谱,高 频区域中半圆包裹的是电极表面电荷转移电阻、电极材料与集流体之间接触电阻 以及电极材料和电解液自身的电阻,从图中可以看见,凝胶电极具有较小的截距 以及尺寸很小的半圆,这说明材料有较小的接触电阻和电荷转移电阻,这暗示着 所聚(3,4-乙撑二氧噻吩)凝胶电极有较高的电导率,同时低频区曲线的斜率远远 大于45℃,这些特征表明,凝胶电极的结构有利于电解质溶液的离子快速扩散, 所以凝胶电极最终表现出较好的倍率性能。图5为凝胶电极在不同电流密度下的 充放电曲线,在不同的电流密度下,聚(3,4-乙撑二氧噻吩)凝胶电极材料的充放电材料均保持良好的对称性,这说明电极材料具有很高的库伦效率和较低的极化 现象。由充放电曲线可以计算出不同电流密度下材料的比容。在电流密度分别为 0.5、1和1.5A/g时,对应凝胶的电极的比容量为582、572和565F g-1。从这些 结果可以看出凝胶电极具有较好的比容量与倍率性能。这些特征说明聚(3,4-乙撑 二氧噻吩)凝胶电极有良好的电化学性能,其在超级电容器及电子产品上具有潜 在的应用价值。

Claims (6)

1.一种导电聚合物水凝胶,为三维纳米结构,其特征在于,该导电聚合物水凝胶是由3,4-乙撑二氧噻吩(EDOT)在海藻酸溶液搅拌均匀,加入过硫酸铵引发剂引发原位氧化聚合得到。
2.一种如权利要求1所述的导电聚合物水凝胶的制备方法,其特征在于,包括以下步骤:将海藻酸钠溶于水中,搅拌溶解;把导电聚合物单体3,4-乙撑二氧噻吩加入乙醇溶液中超声分散均匀后得到储备液;在冰浴中,将储备液加入海藻酸钠溶液搅拌均匀,随后加入过硫酸铵引发剂引发导电聚合物单体3,4-乙撑二氧噻吩原位氧化聚合得到聚(3,4-乙撑二氧噻吩)阳离子,海藻酸钠聚阴离子和聚(3,4-乙烯二氧噻吩)阳离子通过静电相互作用,形成导电聚合物水凝胶。
3.根据权利要求2所述的制备方法,其特征在于,所述的海藻酸钠溶液的浓度为20~40mg/mL,储备液中导电聚合物单体EDOT的浓度为1~4M,引发剂过硫酸铵的浓度为1~4M。氧化聚合的温度为4~6℃,反应时间为24~48h。
4.根据权利要求2所述的制备方法,其特征在于,在导电聚合物单体EDOT与引发剂的摩尔比为1:1~1:3的条件下均能得到机械性能良好和导电性能优异的聚合物水凝胶。
5.一种导电聚合物聚(3,4-乙撑二氧噻吩)凝胶电极的制备方法,其特征在于,将不绣钢网在1.0M的H2SO4溶液中浸泡30~60min,然后经蒸馏水和乙醇反复冲洗2~5次后烘干备用,然后将权利要求1或2所制备的海藻酸钠,EDOT和过硫酸铵的混合液均匀地涂于处理后不锈钢网上,置于4℃的环境中反应24~48h。然后把得到的电极放入1.0M的H2SO4溶液中浸泡30~60min除去没有完全聚合的EDOT单体,最后干燥得到导电聚(3,4-乙撑二氧噻吩)凝胶电极。
6.一种如权利要求4所述的导电聚合物凝胶电极在超级电容器中的运用。
CN201711177697.XA 2017-11-23 2017-11-23 一种导电聚合物水凝胶的制备方法及其在超级电容器中的应用 Pending CN107964106A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711177697.XA CN107964106A (zh) 2017-11-23 2017-11-23 一种导电聚合物水凝胶的制备方法及其在超级电容器中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711177697.XA CN107964106A (zh) 2017-11-23 2017-11-23 一种导电聚合物水凝胶的制备方法及其在超级电容器中的应用

Publications (1)

Publication Number Publication Date
CN107964106A true CN107964106A (zh) 2018-04-27

Family

ID=62001579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711177697.XA Pending CN107964106A (zh) 2017-11-23 2017-11-23 一种导电聚合物水凝胶的制备方法及其在超级电容器中的应用

Country Status (1)

Country Link
CN (1) CN107964106A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110811604A (zh) * 2019-10-10 2020-02-21 杭州美善明康生物科技有限责任公司 一种柔性心电图电极贴片及制备方法
CN110862556A (zh) * 2019-10-09 2020-03-06 天津工业大学 纳米复合导电粘附水凝胶及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001040370A2 (en) * 1999-12-01 2001-06-07 The Regents Of The University Of Michigan Ionically crosslinked hydrogels with adjustable gelation time
CN104861189A (zh) * 2015-05-25 2015-08-26 华南理工大学 一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法
CN105244189A (zh) * 2015-10-21 2016-01-13 山东科技大学 一种碳纳米管增强导电聚合物水凝胶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001040370A2 (en) * 1999-12-01 2001-06-07 The Regents Of The University Of Michigan Ionically crosslinked hydrogels with adjustable gelation time
CN104861189A (zh) * 2015-05-25 2015-08-26 华南理工大学 一种原位合成聚3,4-乙撑二氧噻吩/纳米金属银透明导电涂层的方法
CN105244189A (zh) * 2015-10-21 2016-01-13 山东科技大学 一种碳纳米管增强导电聚合物水凝胶的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUABO HUANG ET AL.: "Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862556A (zh) * 2019-10-09 2020-03-06 天津工业大学 纳米复合导电粘附水凝胶及其制备方法与应用
CN110862556B (zh) * 2019-10-09 2021-01-05 天津工业大学 纳米复合导电粘附水凝胶及其制备方法与应用
CN110811604A (zh) * 2019-10-10 2020-02-21 杭州美善明康生物科技有限责任公司 一种柔性心电图电极贴片及制备方法

Similar Documents

Publication Publication Date Title
Zhao et al. High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries
Na et al. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors
Long et al. Self‐assembled biomolecular 1D nanostructures for aqueous sodium‐ion battery
Liu et al. Poly (3, 4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor
CN110323074B (zh) 一种不对称型全固态纤维状柔性超级电容器及其制备方法
CN107946091B (zh) 一种纸基柔性平面超级电容器制备方法
Pérez-Madrigal et al. Pastes and hydrogels from carboxymethyl cellulose sodium salt as supporting electrolyte of solid electrochemical supercapacitors
Lu et al. High performance electrospun Li+-functionalized sulfonated poly (ether ether ketone)/PVA based nanocomposite gel polymer electrolyte for solid-state electric double layer capacitors
CN103074007B (zh) 锂离子电池硅负极用水性粘合剂及硅负极的制备方法
Zhou et al. Polypyrrole doped with dodecyl benzene sulfonate electrodeposited on carbon fibers for flexible capacitors with high-performance
Wang et al. Enhanced electrochemical performance of polyaniline-based electrode for supercapacitors in mixed aqueous electrolyte
CN110148533A (zh) 一种导电水凝胶的制备方法及超级电容器
Wu et al. A high performance flexible recyclable supercapacitor with polyaniline by casting in unconventional proportion
CN110437444A (zh) 一种形貌可控的聚吡咯水凝胶及其制备方法和在超级电容器中的应用
Chen et al. Electrochemical capacitance of spherical nanoparticles formed by electrodeposition of intrinsic polypyrrole onto Au electrode
CN105295038A (zh) 导电聚苯胺凝胶的制备方法及其在超级电容器中的应用
CN106207096A (zh) 导电聚合物修饰的硫碳复合电极及制备方法
CN103093972A (zh) 应用于mems超级电容器的复合膜电极材料的制备方法
Rasouli et al. The influence of electrodeposited PPy film morphology on the electrochemical characteristics of Nafion-based energy storage devices
CN108682559B (zh) 一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法
CN105524336A (zh) 一种共聚物复合材料和复合电极材料及其制备方法
CN106229514A (zh) 石墨烯改性导电聚合物凝胶包覆金属纳米颗粒的制备方法与应用
CN102270761A (zh) 一种柔性一体化有机自由基电极的制备方法
Ji et al. Coaxial 3D-printing constructing all-in-one fibrous lithium-, sodium-, and zinc-ion batteries
CN106298254A (zh) 聚苯胺/多孔金属薄膜材料、复合正极极片、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180427

WD01 Invention patent application deemed withdrawn after publication