CN108682559B - 一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法 - Google Patents

一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法 Download PDF

Info

Publication number
CN108682559B
CN108682559B CN201810443028.0A CN201810443028A CN108682559B CN 108682559 B CN108682559 B CN 108682559B CN 201810443028 A CN201810443028 A CN 201810443028A CN 108682559 B CN108682559 B CN 108682559B
Authority
CN
China
Prior art keywords
mwcnts
pss
mos
pedot
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810443028.0A
Other languages
English (en)
Other versions
CN108682559A (zh
Inventor
岳根田
姜奇伟
李福民
张粟垚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201810443028.0A priority Critical patent/CN108682559B/zh
Publication of CN108682559A publication Critical patent/CN108682559A/zh
Application granted granted Critical
Publication of CN108682559B publication Critical patent/CN108682559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法,属于电化学领域,其中,PEDOT:PSS/PPy导电有机共聚体溶液的制备包括如下步骤:(1)PEDOT:PSS溶液制备:在保护气氛下,将15~20wt%的PSS水溶液加入去离子水,搅拌均匀,得到A溶液;然后将回流过的EDOT和硫酸铁加入A溶液,常温下搅拌5~10小时,然后再加入Na2S2O8反应10~15小时,即得PEDOT:PSS水溶液;(2)将回流过的Py加入到步骤(2)的PEDOT:PSS水溶液,搅拌至少10小时,便得到PEDOT:PSS/PPy导电有机共聚体溶液,其中,Py代表吡咯。

Description

一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制 备方法
技术领域
本发明属于电化学领域,具体涉及一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法。
背景技术
电极材料是决定超级电容器比电容大小的重要因素。而比电容大小和电极材料导电性能以及电解质接触的比表面积紧密相关。许多文献都指出通过制备多元复合材料可以提高电极的导电性和催化性能;增加复合材料的比表面积可以提高材料的活性基质,增加材料的利用率。超级电容器的电极材料经常利用多孔结构的碳质材料,这是因为电容器的电容是由于电极与电解质表面电荷的排布而产生的。多孔结构电极使其与电解质有效接触面积增加,促进更多的电解质离子与电极表面接触,从而产生更好的电化学性能。所以碳纳米管(CNTs)和活性碳球比较适合用做超级电容器的电极材料。具有高度纵横比的碳纳米材料不仅能够提供大量的有效接触面积,同时还表现出了高导电性和化学稳定性。
同时,为了进一步提高电容器电容,一些过渡金属硫化物如CoS、NiS、VS2和MoS2.也被用作提供赝电容的电极材料,因为他们具有高的能量密度以及可逆的氧化还原反应。和其它过渡金属硫化物相比,MoS2具有类石墨烯结构,易于制备,成本低而且制备方法多样。因此,有必要对MoS2和碳纳米管得到的电极作进一步的探讨和研究。
发明内容
本发明的目的在于提供一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法,本发明提供的方法简单易行,比电容高。
基于上述目的,本发明采取如下技术方案:
一种PEDOT:PSS/PPy 导电有机共聚体溶液的制备方法,包括如下步骤:
(1)PEDOT:PSS溶液制备:在保护气氛下,将15~20wt%的PSS水溶液加入去离子水,搅拌均匀,得到A溶液;然后将回流过的EDOT和硫酸铁加入A溶液,常温下搅拌5~10小时,然后再加入Na2S2O8反应10~15小时,即得PEDOT:PSS水溶液;其中,PSS代表聚(4-苯乙烯磺酸钠),EDOT代表3, 4-乙撑二氧噻吩;
(2)将回流过的Py加入到步骤(2)的PEDOT:PSS水溶液,搅拌10~15小时,便得到PEDOT:PSS/PPy 导电有机共聚体溶液,其中,Py代表吡咯。
进一步地,所述步骤(1)中PSS水溶液、EDOT、硫酸铁、Na2S2O8的质量比为(6.90~7.0)︰0.5︰0.007︰0.163,去离子水的体积为70~80mL。
所述回流过的EDOT是指EDOT在200℃回流2~5小时;回流过的Py是指将Py在150℃回流2~5小时。
上述方法制得的PEDOT:PSS/PPy 导电有机共聚体溶液。
利用PEDOT:PSS/PPy 导电有机共聚体溶液制备导电共聚体修饰的MWCNTs/MoS2三元复合材料的方法,其特征在于,过程如下:将Na2MoO4·2H2O、硫脲、葡糖糖和PEG 2000 溶解在PEDOT:PSS/PPy导电有机共聚体溶液中,搅拌直至形成均相溶液,然后加入MWCNTs超声直至得到均相溶液,将得到的均相溶液160~200℃水热反应20~30 h,抽滤,取固体洗涤,干燥,得到导电共聚体修饰的MWCNTs/MoS2(以下简称为Co-P-MWCNTs/MoS2,Co-P-代表共聚体)三元复合材料。
具体地,Na2MoO4·2H2O用量为4.84g,硫脲用量为6.12g,葡糖糖用量为1.0g、PEG2000用量为0.5g,PEDOT:PSS/PPy导电有机共聚体溶液体积为80mL,MWCNTs用量为0.05g。
上述制备方法制得的Co-P-MWCNTs/MoS2三元复合材料。
一种Co-P-MWCNTs/MoS2三元复合电极的制备方法,制备过程如下:按照Co-P-MWCNTs/MoS2三元复合材料、乙炔黑和PVDF质量比 8:1:1的比例,以NMP为溶剂搅拌12小时以上制备Co-P-MWCNTs/MoS2超级电容器电极浆料,以洁净的泡沫镍为基底,利用刮涂法制备活性面积为Co-P-MWCNTs/MoS2电极,干燥,即得,其中PVDF代表聚偏氟乙烯,NMP代表N-甲基-2吡咯烷酮。
进一步地,所述Co-P-MWCNTs/MoS2三元复合材料、乙炔黑和PVDF在泡沫镍上的负载量为0.052g/cm2
上述制备方法制得的Co-P-MWCNTs/MoS2三元复合电极。
具体地,本发明的技术方案如下:
1. PEDOT:PSS/PPy 导电有机共聚体的制备:
(1)将EDOT和Py单体分别在200℃、150℃回流3小时,保存待用。
(2)PEDOT:PSS溶液制备:在氮气保护下,将6.95g质量分数为18wt.%的PSS水溶液加入75ml去离子水,搅拌30分钟得到溶液A。然后0.5g EDOT和0.007g硫酸铁加入A溶液,在常温下搅拌7小时,然后再加入0.163g Na2S2O8反应14小时,即得到PEDOT:PSS水溶液。
(3)将回流过的Py单体加入到制备的PEDOT:PSS水溶液,常温下搅拌12小时,便得到均相共聚体溶液。
2. Co-P-MWCNTs/MoS2电极制备
(1)4.84 g Na2MoO4·2H2O,6.12 g硫脲,1.0 g葡糖糖和0.5 g PEG 2000 溶解在80 ml PEDOT:PSS/PPy导电有机共聚体溶液,超声搅拌30分钟直至形成均相溶液。然后加入0.05g MWCNTs 进一步超声30分钟,将得到的均相溶液移入100ml的反应釜内胆,180℃水热反应24 h。抽滤得到的黑色产物用无水乙醇和去离子水清洗5遍以除去杂质,并在干燥箱中100℃加热12 h便得到Co-P-MWCNTs/MoS2三元复合材料。
(2)按照Co-P-MWCNTs/MoS2三元复合材料、乙炔黑和PVDF质量比 8:1:1的比例,以NMP为溶剂搅拌12小时制备Co-P-MWCNTs/MoS2超级电容器电极浆料,在洁净的泡沫镍刮涂法制备活性面积为1 cm2Co-P-MWCNTs/MoS2电极,在干燥箱中 100℃加热4h,所述Co-P-MWCNTs/MoS2三元复合材料、乙炔黑和PVDF在泡沫镍上的负载量为0.052g/cm2
本发明利用水热法制备一种导电共聚体协助修饰的多壁碳纳米管/MoS2(Co-P-MWCNTs/MoS2)超级电容器三元复合电极,采用循环伏安法、恒流充放电、交流阻抗等电化学手段对MWCNTs/MoS2复合材料进行电化学测试表征。实验数据表明,充放电时间较短,能够在900s左右完成充电,其比电容量为202.72F/g,与相同材料其他的实验值相比明显提高。组成的超级电容器在反复充放电过程中表现出很好的可逆性和循环稳定性,理论上不需要进行维护。
附图说明
图1为实施例1和对比例1制备的MWCNTs/MoS2 电极材料的SEM图: (a,b) 去离子水作为溶剂,(c,d) PEDOT:PSS/PPy共聚体作为溶剂,其中a和c为低倍率下的SEM图,a是2000倍,c是1000倍,b和d为高倍率下(均为6000倍)的SEM图;
图2 为实施例1和对比例1制备的MWCNTs/MoS2 电极材料XRD图;
图3为实施例1和对比例1制备的MWCNTs/MoS2 电极材料EIS图;
图4为实施例1和对比例1制备的MWCNTs/MoS2 电极材料在电流为5 mA时的充放电曲线。
具体实施方式
以下具体实施例对本发明的技术方案做进一步详细说明,但本发明的保护范围并不局限于此。
实验药品和仪器
钼酸钠(Na2MoO4·2H2O)、硫脲、聚乙二醇2000,葡萄糖、N-甲基-2吡咯烷酮(NMP)、聚偏氟乙烯(PVDF)、吡咯单体(Py)、3, 4-乙撑二氧噻吩 (EDOT)、MWCNTs(羧基化多壁碳纳米管,购自于北京博宇高科新材料技术有限公司,TNMC1,纯度98%)、聚(4-苯乙烯磺酸钠)(PSS,18wt%水溶液,分析纯,中国医药集团上海化学试剂公司),泡沫镍(孔隙度98%,3mm*300mm*200mm,隆圣宝电子泡沫金属)、可控温磁力搅拌器(C–MAG HS4,德国IKA);扫描电子显微镜(SEM)7006F(日本日立公司);电化学分析仪/工作站CHI660E(上海辰华仪器有限公司)。
实施例1
1. PEDOT:PSS/PPy 导电有机共聚体的制备:
(1)将EDOT和Py单体分别在200℃、150℃回流3小时,保存待用。
(2)PEDOT:PSS溶液制备:在氮气保护下,将6.95g质量分数为18wt.%的PSS水溶液加入75ml去离子水,搅拌30分钟得到溶液A。然后0.5g EDOT和0.007g硫酸铁加入A溶液,在常温下搅拌7小时,然后再加入0.163g Na2S2O8反应14小时,即得到蓝色的PEDOT:PSS水溶液。
(3)将回流过的Py单体加入到制备的PEDOT:PSS水溶液,常温下搅拌12小时,便得到一种灰黑色的均相共聚体溶液。该导电共聚体在13000转速离心仍为均聚相。
2. Co-P-MWCNTs/MoS2电极制备
(1)4.84 g Na2MoO4·2H2O, 6.12 g硫脲,1.0 g葡糖糖和0.5 g PEG 2000 溶解在80 ml PEDOT:PSS/PPy 导电有机共聚体溶液,超声搅拌30分钟直至形成均相溶液。然后加入0.05g MWCNTs 进一步超声30分钟,将得到的均相溶液移入100ml的反应釜内胆,180℃水热反应24 h。抽滤得到的黑色产物用无水乙醇和去离子水清洗5遍以除去杂质,并在干燥箱中100℃加热12 h便得到Co-P-MWCNTs/MoS2三元复合材料。
(2)按照Co-P-MWCNTs/MoS2三元复合材料、乙炔黑和PVDF质量比 8:1:1的比例,以NMP为溶剂搅拌12小时制备Co-P-MWCNTs/MoS2超级电容器电极浆料,在洁净的泡沫镍刮涂法制备活性面积为1 cm2Co-P-MWCNTs/MoS2电极,在干燥箱中 100℃加热4h,所述Co-P-MWCNTs/MoS2三元复合材料、乙炔黑和PVDF三种物质在泡沫镍上的负载量为0.052g/cm2
对比例1
和实施例1的区别在于MWCNTs/MoS2电极制备中,4.84 g Na2MoO4·2H2O, 6.12 g硫脲,1.0 g葡糖糖和0.5 g PEG 2000 溶解在80 ml 纯水中得到复合材料,其他同实施例1。
如图1所示,通过SEM图对比,可以明显看出,使用PEDOT:PSS/PPy共聚体溶液作为溶剂,水热得到的超级电容器材料粒径比采用纯水作为溶剂减小。从侧面说明PEDOT:PSS/PPy共聚体作为溶剂可以提高材料的比表面积。
从图2可以看出,用PEDOT:PSS/PPy共聚体作为溶剂替代去离子水没有改变材料的结构和晶型。
图3为不同溶剂下制备的MWCNTs/MoS2 电极材料阻抗图。在高频区,曲线为不规则的半圆,从图中可以看出,溶剂为PEDOT:PSS/Ppy溶液时,不规则半圆的直径较小,说明其内阻R ct 较小(0.11 Ω),具有良好的电化学导电和催化活性。反之,采用去离子水作溶剂得到不规则半圆的直径较大(0.23 Ω),说明其内阻R ct 较大。在中低频区,曲线为一条斜线,而斜线的斜率越大,表明其电化学性能越好:从图中可知,溶剂为PEDOT:PSS/PPy时斜线的斜率很大,表明样品的电化学性能良好。
图4 为不同溶剂下制备的复合电极组装的超级电容器在电流为5mA时的充放电曲线,从图中可以看出虽然以去离子水为溶剂制备的材料的放电时间(1165 s)比以PEDOT:PSS/PPy共聚体为溶剂所得材料放电时间(1045 s)稍长一些,但在充放电效率上不如后者,并且电压降较为明显,说明内阻也较大。而以PEDOT:PSS/PPy共聚体为溶剂制备的材料充放电曲线线性较为明显,在充放电电压−0.5 V到0.5 V间较为对称,库伦效率较好。根据公式(1)可计算出其放电电容为202.72 F g-1,其库伦效率接近百分之百,显示了优越的电容性能。
比电容(specific capacitance,C s ,F·g-1),即单位质量电极材料的电容,它是衡量超级电容器性能其中最重要的一个指标。在双电层电容体系下,超级电容器的比电容C s 计算如式(1)下:
(1)
I是充电电时的电流,单位是安培(A),m ac 是电极中活性材料(即Co-P-MWCNTs/MoS2三元复合材料)的质量,单位是克(g),Δt是充放电时的放电时间,单位是秒(s),ΔV是放电过程中电压降(iRdrop)之后的电压值,单位是伏(V)。
采用循环伏安法、恒流充放电、交流阻抗等电化学手段对MWCNTs/MoS2复合材料进行电化学测试表征。实验数据表明,充放电时间较短,能够在900s左右完成充电,其比电容量为202.72 F/g,与相同材料其他的实验值相比明显提高。

Claims (7)

1. 一种利用PEDOT:PSS/PPy 导电有机共聚体溶液制备导电共聚体修饰的MWCNTs/MoS2三元复合材料的方法,其特征在于,过程如下:将Na2MoO4·2H2O、硫脲、葡糖糖和PEG 2000溶解在PEDOT:PSS/PPy导电有机共聚体溶液中,搅拌直至形成均相溶液,然后加入MWCNTs超声直至得到均相溶液,将得到的均相溶液160~200℃水热反应20~30 h,抽滤,取固体洗涤,干燥,得到MWCNTs/MoS2三元复合材料;其中,所述PEDOT:PSS/PPy 导电有机共聚体溶液的制备过程如下:
(1)PEDOT:PSS溶液制备:在保护气氛下,将15~20wt%的PSS水溶液加入去离子水,搅拌均匀,得到A溶液;然后将回流过的EDOT和硫酸铁加入A溶液,常温下搅拌5~10小时,然后再加入Na2S2O8反应10~15小时,即得PEDOT:PSS水溶液;其中,PSS代表聚(4-苯乙烯磺酸钠),EDOT代表3, 4-乙撑二氧噻吩;
(2)将回流过的Py加入到步骤(2)的PEDOT:PSS水溶液,搅拌10~15小时,便得到PEDOT:PSS/PPy 导电有机共聚体溶液,其中,Py代表吡咯。
2.根据权利要求1所述制备导电共聚体修饰的MWCNTs/MoS2三元复合材料的方法,其特征在于,所述步骤(1)中PSS水溶液、EDOT、硫酸铁、Na2S2O8的质量比为(6.90~7.0)︰0.5︰0.007︰0.163,去离子水的体积为70~80mL。
3.根据权利要求1所述制备导电共聚体修饰的MWCNTs/MoS2三元复合材料的方法,其特征在于,所述回流过的EDOT是指EDOT在200℃回流2~5小时;回流过的Py是指将Py在150℃回流2~5小时。
4. 根据权利要求1所述制备导电共聚体修饰的MWCNTs/MoS2三元复合材料的方法,其特征在于,Na2MoO4·2H2O用量为4.84g,硫脲用量为6.12g,葡糖糖用量为1.0g、PEG 2000用量为0.5g,PEDOT:PSS/PPy 导电有机共聚体溶液体积为80mL,MWCNTs用量为0.05g。
5.利用权利要求1至4任一所述的制备方法制得的导电共聚体修饰的MWCNTs/MoS2三元复合材料。
6. 权利要求5所述导电共聚体修饰的MWCNTs/MoS2三元复合材料在制备MWCNTs/MoS2三元复合电极中的应用,其特征在于,按照导电共聚体修饰的MWCNTs/MoS2三元复合材料、乙炔黑和PVDF质量比 8:1:1的比例,以NMP为溶剂搅拌12小时以上制得超级电容器电极浆料,以洁净的泡沫镍为基底,利用刮涂法制备活性面积为导电共聚体修饰的MWCNTs/MoS2电极,干燥,即得,其中PVDF代表聚偏氟乙烯,NMP代表N-甲基-2吡咯烷酮。
7.根据权利要求6所述的应用,其特征在于,所述导电共聚体修饰的MWCNTs/MoS2三元复合材料、乙炔黑和PVDF三种物质在泡沫镍上的负载量为0.052g/cm2
CN201810443028.0A 2018-05-10 2018-05-10 一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法 Active CN108682559B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810443028.0A CN108682559B (zh) 2018-05-10 2018-05-10 一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810443028.0A CN108682559B (zh) 2018-05-10 2018-05-10 一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法

Publications (2)

Publication Number Publication Date
CN108682559A CN108682559A (zh) 2018-10-19
CN108682559B true CN108682559B (zh) 2019-09-10

Family

ID=63805736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810443028.0A Active CN108682559B (zh) 2018-05-10 2018-05-10 一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法

Country Status (1)

Country Link
CN (1) CN108682559B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853935A (zh) * 2019-11-21 2020-02-28 北京协同创新研究院 一种硫化钼超级电容器电极及其制备方法
CN110841660B (zh) * 2019-11-26 2022-10-14 福建农林大学 一种三元仿生复合可见光催化剂及其制备方法
CN115295320A (zh) * 2022-09-09 2022-11-04 南京工业大学 一种碳布电沉积聚吡咯超级电容器负极材料的制备方法
CN115888766B (zh) * 2022-11-09 2024-05-14 福州大学 一种花状结构二硫化钼/碳复合催化剂的制备及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149991A1 (en) * 2010-05-24 2011-12-01 The Regents Of The University Of California Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices
CN104448256B (zh) * 2014-12-02 2017-04-12 浙江中科立德新材料有限公司 高导电pedot:pss水溶液的制备方法
CN106601498B (zh) * 2017-01-20 2018-07-03 清华大学深圳研究生院 一种贴片式超级电容器及其制备方法
CN106910884A (zh) * 2017-05-12 2017-06-30 中国科学院过程工程研究所 一种硫化钼/碳复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108682559A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
CN108682559B (zh) 一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法
Long et al. Self‐assembled biomolecular 1D nanostructures for aqueous sodium‐ion battery
Yang et al. Ultrafast‐charging supercapacitors based on corn‐like titanium nitride nanostructures
Ferris et al. 3D RuO2 microsupercapacitors with remarkable areal energy
Wang et al. NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors
Wu et al. Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template
Zhu et al. Two‐dimensional titanium carbide MXene as a capacitor‐type electrode for rechargeable aqueous Li‐ion and Na‐ion capacitor batteries
Yuan et al. Nickel foam-supported porous Ni (OH) 2/NiOOH composite film as advanced pseudocapacitor material
Xu et al. Structural and chemical synergistic effect of NiCo2S4 nanoparticles and carbon cloth for high performance binder-free asymmetric supercapacitors
Ujjain et al. Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors
Qin et al. Ni (OH) 2/CNTs hierarchical spheres for a foldable all-solid-state supercapacitor with high specific energy
CN105723482A (zh) 增强聚合物混合型超级电容器的稳定性和电容的多组分方法
Chahal et al. Novel manganese oxide decorated polyaniline/graphitic carbon nitride nanohybrid material for efficient supercapacitor application
Ye et al. In-situ growth of Se-doped NiTe on nickel foam as positive electrode material for high-performance asymmetric supercapacitor
Shendkar et al. Polyaniline-cobalt hydroxide hybrid nanostructures and their supercapacitor studies
Jiang et al. Growth of Ni 3 Se 2 nanosheets on Ni foam for asymmetric supercapacitors
Luo et al. Fixing graphene-Mn3O4 nanosheets on carbon cloth by a poles repel-assisted method to prepare flexible binder-free electrodes for supercapacitors
Vijayakumar et al. Electrode mass ratio impact on electrochemical capacitor performance
Malik et al. Electrochemical behavior of composite electrode based on sulphonated polymeric surfactant (SPEEK/PSS) incorporated polypyrrole for supercapacitor
CN108597893A (zh) 一种基于泡沫镍上的超级电容器复合电极材料的制备方法
CN109637819A (zh) 一种集成化平面型超级电容器及其制备方法
Chang et al. A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance
Cai et al. Iodine/β-cyclodextrin composite cathode for rechargeable lithium-iodine batteries
Chen et al. Electrochemical capacitance of spherical nanoparticles formed by electrodeposition of intrinsic polypyrrole onto Au electrode
CN109637846A (zh) 一种高电压平面型超级电容器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant