WO2016186095A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016186095A1
WO2016186095A1 PCT/JP2016/064550 JP2016064550W WO2016186095A1 WO 2016186095 A1 WO2016186095 A1 WO 2016186095A1 JP 2016064550 W JP2016064550 W JP 2016064550W WO 2016186095 A1 WO2016186095 A1 WO 2016186095A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bus bar
case
phase
power module
Prior art date
Application number
PCT/JP2016/064550
Other languages
English (en)
French (fr)
Inventor
文洋 岡崎
元 奥塚
祐一郎 野村
雅春 永野
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015101089A external-priority patent/JP5919421B1/ja
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to CN201680028935.8A priority Critical patent/CN107710587B/zh
Priority to DE112016002272.7T priority patent/DE112016002272T5/de
Priority to US15/575,060 priority patent/US10298145B2/en
Publication of WO2016186095A1 publication Critical patent/WO2016186095A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof

Definitions

  • the present invention relates to a power converter mounted on an electric vehicle, a hybrid vehicle or the like.
  • JP2013-233052A discloses an inverter device disposed above a motor generator for driving in an electric car, a hybrid car or the like.
  • the inverter device includes a power module for supplying battery power to the motor generator and charging the battery with regenerative power of the motor generator, and three AC bus bars for connecting the motor generator to the power module.
  • the three AC bus bars protrude through the opening to the outside of the housing.
  • the present invention has been made in view of the above problems, and an object thereof is to improve the workability in assembling a power conversion device.
  • a power converter converts a DC power into a three-phase AC power, and outputs a three-phase AC power from the three-phase AC terminal, and a plurality of connection terminals connected to the power module.
  • a three-phase bus bar having a load terminal formed in a direction intersecting the plurality of connection terminals and connected to an external load; a bus bar holder for holding the three-phase bus bar; and a through hole through which the three-phase bus bar penetrates
  • the corresponding connection terminals of the three-phase bus bar are positioned on the three-phase AC terminals of the power module only by housing the three-phase bus bar and the power module in the case. It can be assembled to the three-phase AC terminal as it is. Therefore, the connection between the three-phase bus bar and the power module can be easily performed, and the workability in assembling the power conversion device can be improved.
  • FIG. 1 is a block diagram for explaining the function of the power conversion device according to the embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a plane illustrating the configuration of the power conversion device according to the embodiment of the present invention.
  • FIG. 3 is a side cross-sectional view for explaining the configuration of the power conversion device according to the embodiment of the present invention.
  • FIG. 4 is a configuration diagram for explaining a circulation channel of the cooling water.
  • FIG. 5 is a diagram for explaining the cooling water flow path, and is a cross-sectional view taken along the line VV in FIG.
  • FIG. 6 is a diagram for explaining the cooling water flow path, and is a cross-sectional view taken along the line VI-VI in FIG.
  • FIG. 7 is a perspective view of an output bus bar in the power converter.
  • FIG. 8 is a plan view of an output bus bar in the power converter.
  • FIG. 9A is a perspective view of the power conversion device before the bus bar holder for holding the output bus bar is disposed in the case.
  • FIG. 9B is a perspective view of the power conversion device after the bus bar holder for holding the output bus bar is disposed in the case.
  • FIG. 10 is a cross-sectional view of the case and the bus bar holder along the line XX in FIG. 9B.
  • FIG. 11 is a cross-sectional view of a case and a bus bar holder according to a modification of the embodiment of the present invention.
  • FIG. 1 is a block diagram for explaining the function of the power conversion device 1.
  • the power conversion device 1 is electrically connected to a battery (electric storage device) 5 and a motor generator (external load) 6 as a rotating electric machine.
  • the power conversion device 1 is provided, for example, in an electric vehicle or a plug-in hybrid vehicle.
  • the power conversion device 1 supplies drive power to the motor generator 6 by converting DC power of the battery 5 into AC power suitable for driving the motor generator 6. Further, the power conversion device 1 supplies power for charging to the battery 5 by converting the regenerative power (three-phase AC power) of the motor generator 6 into DC power. Furthermore, the power conversion device 1 can also supply power for charging to the battery 5 from the outside via an external connector (not shown) for charging provided in the vehicle.
  • the battery 5 is formed of, for example, a lithium ion secondary battery.
  • the battery 5 supplies DC power to the power conversion device 1 and is charged by the DC power supplied from the power conversion device 1.
  • the voltage of the battery 5 fluctuates, for example, between 240 V and 400 V, and is charged when a higher voltage is input.
  • the motor generator 6 is configured of, for example, a permanent magnet synchronous motor. Motor generator 6 is driven by AC power supplied from power conversion device 1. By driving the motor generator 6, the drive wheels of the vehicle (not shown) are rotationally driven and the vehicle travels. The motor generator 6 functions as a generator when the vehicle decelerates, and generates regenerative power.
  • FIG. 2 is a cross-sectional view of a plane illustrating the configuration of the power conversion device 1
  • FIG. 3 is a cross-sectional view of a side surface illustrating the configuration of the power conversion device 1.
  • the power conversion device 1 includes a capacitor module 10, a power module 20, a DC / DC converter 30, a charging device 40, a charging / DC / DC controller 50, and an inverter controller 70. And a box-shaped case 2 for housing them. These parts are electrically connected by bus bars or wires.
  • the case 2 is formed in a box shape by a lower case 2 b having a bottom portion 2 c and open at the upper side, and an upper case 2 a closing an opening of the lower case 2 b.
  • capacitor module 10 is arranged to straddle the upper side of DC / DC converter 30.
  • the driver substrate 21 is disposed on the upper surface of the power module 20, and the inverter controller 70 is disposed above the driver substrate 21.
  • the charging / DC / DC controller 50 is disposed above the charging device 40.
  • the capacitor module 10 has a leg part which is not shown in figure, and the said leg part is attached in the case 2 by being attached to lower case 2b.
  • a cooling water channel 4 (cooling medium channel) is formed inside the bottom 2c of the lower case 2b. Cooling water (cooling medium) flows through the cooling water flow path 4, and the cooling water cools the power module 20 placed directly above the cooling water flow path 4, the DC / DC converter 30, and the charging device 40.
  • the cooling water flow path 4 will be described with reference to FIGS. 4 to 6.
  • FIG. 4 is a configuration diagram for explaining the circulation channel 7 of the cooling water.
  • the cooling water having flowed through the cooling water flow path 4 is discharged to the circulation flow path 7 connected to the outside via the discharge flow path 95.
  • the cooling water discharged to the circulation passage 7 is cooled by the sub radiator 8 disposed at the front of the vehicle.
  • the cooling water cooled by the sub radiator 8 is supplied to the cooling water flow path 4 through the supply flow path 94.
  • a water pump 9 for circulating the cooling water through the circulation flow path 7 and the cooling water flow path 4 is provided.
  • the supply flow path 94 and the discharge flow path 95 are disposed in the case 2 so as to face the front of the vehicle. Thereby, the distance between the sub radiator 8 and the cooling water flow path 4 can be made shortest.
  • FIG. 5 is a view for explaining the cooling water flow path 4, and is a cross-sectional view taken along the line VV in FIG.
  • the cooling water flow path 4 includes a power module cooling unit 91 formed along the power module 20, a DC / DC converter cooling unit 92 formed along the DC / DC converter 30, and charging. And a charging device cooling unit 93 formed along the device 40.
  • the power module cooling unit 91, the DC / DC converter cooling unit 92, and the charging device cooling unit 93 are arranged in series in the cooling water flow path 4.
  • the cooling water flowing through the cooling water flow path 4 is supplied from the supply flow path 94, cools the power module 20, cools the DC / DC converter 30, and cools the charging device 40. It is discharged to the external circulation channel 7.
  • the cooling water discharged from the discharge flow path 95 to the circulation flow path 7 is cooled by the sub radiator 8 shown in FIG. 4 and supplied again from the supply flow path 94 to the cooling water flow path 4.
  • the power module 20 operates when the vehicle travels, whereas the charging device 40 operates when the vehicle stops. Therefore, when it is necessary to cool the charging device 40, the cooling of the power module 20 can be prevented from having a high temperature. Therefore, even if the power module cooling unit 91 and the charging device cooling unit 93 are arranged in series in the cooling water flow path 4, the cooling water can sufficiently cool both the power module 20 and the charging device 40. In addition, since the power module cooling unit 91 and the charging device cooling unit 93 are arranged in series in the cooling water flow channel 4, there is no need to provide a plurality of cooling water flow channels individually, and a simple cooling water flow channel 4 configuration The power converter 1 can be cooled.
  • the DC / DC converter 30 operates at the same time as the power module 20 and the charging device 40, the amount of heat generation is smaller compared to the power module 20 and the charging device 40. Therefore, even if the DC / DC converter cooling unit 92 is arranged in series in the cooling water flow path 4, there is no influence on the cooling efficiency of the power conversion device 1.
  • FIG. 6 is a diagram for explaining the cooling water flow path 4, and is a cross-sectional view taken along the line VI-VI in FIG.
  • the power module cooling unit 91 is supplied from the upper cooling unit 91 a that directly cools the power module 20 by the cooling water that is formed by opening the surface facing the power module 20 and flowing from the supply channel 94. And the downward connection portion 91c for guiding the cooling water flowing through the upper cooling portion 91a to the lower DC / DC converter cooling portion 92.
  • the flow passage area of the supply flow passage 94 is smaller than the flow passage area of the power module cooling unit 91.
  • the cooling water supplied from the supply flow path 94 spreads completely in the width direction (the left and right direction in FIG. 5) of the power module cooling portion 91 when rising against the wall portion of the rising connection portion 91b. Therefore, by providing the rising connection portion 91b, the cooling water is prevented from being biased to a part of the upper cooling portion 91a, so that the entire power module 20 can be uniformly cooled.
  • a plurality of heat sinks 20 a are provided on the lower surface of the power module 20 in a protruding manner.
  • the cooling water flowing through the upper cooling unit 91 a contacts the lower surface of the power module 20 and the heat sink 20 a to directly cool the power module 20.
  • the cooling water guided from the supply flow path 94 is first supplied to the power module cooling unit 91. Therefore, the cooling water flows through the power module cooling unit 91 at the lowest temperature in the cooling water flow path 4. Thereby, power module 20 with the largest calorific value among power conversion devices 1 can be cooled efficiently.
  • the DC / DC converter cooling unit 92 is folded back from the power module cooling unit 91 via the first connection unit 96. As a result, the flow direction of the cooling water in the power module cooling unit 91 and the flow direction of the cooling water in the DC / DC converter cooling unit 92 are opposite to each other.
  • the DC / DC converter cooling section 92 is divided into four flow paths by three ribs 2 e formed along the flow direction of the cooling water. This prevents the cooling water from being biased in the DC / DC converter cooling unit 92, so that the entire DC / DC converter 30 can be uniformly cooled.
  • the charging device cooling unit 93 further includes a first cooling unit 93 a turned back in the reverse direction from the DC / DC converter cooling unit 92 via the second connection unit 97, and a reverse direction from the first cooling unit 93 a toward the discharge flow path 95. And a second cooling unit 93b that is folded back in the direction.
  • the flow direction of the cooling water in the DC / DC converter cooling unit 92 and the flow direction of the cooling water in the first cooling unit 93 a are in directions opposite to each other.
  • the flow direction of the cooling water in the first cooling portion 93a and the flow direction of the cooling water in the second cooling portion 93b are in directions opposite to each other.
  • the first cooling unit 93 a and the second cooling unit 93 b are respectively formed along the arrangement of electronic components (not shown) having a large amount of heat generation mounted on the charging device 40.
  • the first cooling portion 93a is divided into two flow paths by a rib 2f formed along the flow direction of the cooling water.
  • the second cooling portion 93b is also divided into two flow paths by the rib 2g formed along the flow direction of the cooling water.
  • the outer surface of the bottom 2c of the lower case 2b faces the motor generator 6, as shown in FIG.
  • the bottom 2c of the lower case 2b has a through hole 3 through which an output bus bar (three-phase bus bar) 24 described later is inserted.
  • the through hole 3 is formed outside the area where the cooling water flow path 4 is formed in the lower case 2 b. Therefore, as compared with the case where the through hole 3 is formed in the region where the cooling water flow path 4 is formed, there is no need to provide a seal or the like for the through hole 3, so the lower case 2 b can be miniaturized and cooling Water sealability can be secured.
  • the capacitor module 10 is configured of a plurality of capacitor elements (capacitors), and includes a first bus bar 11, a second bus bar 12, and a power wiring 13.
  • the first bus bar 11, the second bus bar 12, and the power wiring 13 share the positive electrode and the negative electrode inside the capacitor module 10.
  • the capacitor module 10 smoothes, for example, the voltage of the DC power supplied from the battery 5 and the voltage of the regenerated power regenerated from the motor generator 6 via the power module 20.
  • the capacitor module 10 removes noise and suppresses voltage fluctuations by smoothing the voltage.
  • the power module 20 has a driver substrate 21 and a plurality of power elements (not shown).
  • the driver substrate 21 controls ON / OFF of the power element of the power module 20 based on a signal from an inverter controller 70 described later.
  • the power module 20 is connected to the current sensor 22 and the output bus bar 24.
  • the current sensor 22 is a sensor attached to the output bus bar 24 to detect the current of the output bus bar 24.
  • the output bus bar 24 is directly connected to each of the U-phase, V-phase and W-phase three-phase AC terminals of the power module 20 as a three-phase bus bar consisting of U-phase, V-phase and W-phase. Output phase AC power.
  • the power module 20 converts DC power from the battery 5 or AC power from the motor generator 6 by controlling ON / OFF of the power element in the driver substrate 21.
  • the DC / DC converter 30 is connected to the vehicle side connector 82 via the bus bar 31.
  • the vehicle side connector 82 is connected to a harness or the like that supplies DC power output from the DC / DC converter 30 to each part of the vehicle.
  • the DC / DC converter 30 converts the voltage of the DC power supplied from the battery 5 and supplies it to other devices.
  • the DC / DC converter 30 steps down DC power (for example, 400 V) of the battery 5 to 12 V DC power.
  • the stepped-down DC power is supplied as a power supply for a controller provided in the vehicle, lighting, a fan, and the like.
  • the DC / DC converter 30 is connected to the capacitor module 10 and the battery 5 via the second bus bar 12.
  • Charging device 40 converts AC power (for example, 200 V AC) of commercial power supplied from the outside of the vehicle via normal charging connector 81 into DC power (for example, 500 V DC).
  • the direct current power converted by the charging device 40 is supplied from the power wiring 13 to the battery 5 via the capacitor module 10. Thereby, the battery 5 is charged.
  • power module 20, DC / DC converter 30, and charging device 40 are arranged adjacent to capacitor module 10, and first bus bar 11, second bus bar 12, and They are connected by the power wires 13 respectively.
  • the distances between the power module 20, the DC / DC converter 30, and the charging device 40 and the capacitor module 10 can be shortened. Therefore, resistance (R [ ⁇ ]) and inductance (L [H]) in the path of direct current power can be reduced, and power loss can be reduced.
  • the capacitor module 10 is disposed between the power module 20 that generates a large amount of heat and the charging device 40. Therefore, it is possible to suppress the influence of heat on the power module 20 and the charging device 40.
  • the operation of power module 20 (powering and regeneration of motor generator 6) and the operation of charging device 40 (charging of battery 5 from the external connector connected via ordinary charging connector 81) are simultaneously performed. It is possible to eliminate the influence of heat between them since there is no
  • the charge / DC / DC controller 50 controls the drive of the motor generator 6 by the power conversion device 1 and the charge of the battery 5 based on an instruction from a controller (not shown) of the vehicle. For charging of the battery 5, charging from the normal charging connector 81 via the charging device 40 or charging from the rapid charging connector 63 not via the charging device 40 is selected by the charging / DC / DC controller 50.
  • the inverter controller 70 operates the power module 20 based on an instruction from the controller (not shown) of the vehicle and the current value of the output bus bar 24 of the power module 20 detected by the current sensor 22 described later. Are output to the driver substrate 21.
  • the inverter controller 70, the power module 20, and the capacitor module 10 constitute an inverter module that mutually converts DC power and AC power.
  • a relay controller 60 is disposed on the side of the inverter controller 70, as shown in FIG.
  • the relay controller 60 is controlled by the charging / DC / DC controller 50 to open / close the contacts of the relay 61.
  • the relay 61 is composed of a positive relay 61 a and a negative relay 61 b.
  • the relay 61 is connected when the quick charge connector 63 is connected to a charging external connector (not shown), and the DC power (eg, 500 V) supplied from the quick charge connector 63 is supplied to the second bus bar 12. Supply.
  • the battery 5 is charged by the supplied DC power.
  • the first bus bar 11 of the capacitor module 10 protrudes laterally from one side surface of the capacitor module 10 and is directly connected to the power module 20 by screwing or the like.
  • the first bus bar 11 is composed of three sets of bus bars each having a positive electrode and a negative electrode.
  • the second bus bar 12 of the capacitor module 10 protrudes downward from the bottom surface of the capacitor module 10, and is directly connected to the DC / DC converter 30 by screwing or the like.
  • the second bus bar 12 is a pair of bus bars having a positive electrode and a negative electrode, and the positive and negative electrodes are connected to the positive relay 61a and the negative relay 61b of the relay 61, respectively. Be done.
  • the second bus bar 12 is connected via the bus bar 14 to the battery side connector 51 connected to the battery 5 and the compressor side connector 52 connected to the electric compressor.
  • the power wiring 13 of the capacitor module 10 is a flexible flexible cable drawn from the opposite surface of the side from which the first bus bar 11 in the capacitor module 10 protrudes as shown in FIGS. 2 and 3 and is connected to the charging device 40 Be done.
  • the charging device 40 is connected to the normal charging connector 81 via the bus bar 41.
  • the charging / DC / DC controller 50 and the signal line connector 65 are connected by a signal line 55 as shown in FIGS. 2 and 3.
  • the signal line connector 65 enables the signal line 55 connected to the DC / DC converter 30, the charging device 40, the charging / DC / DC controller 50, and the inverter controller 70 to be connected to the outside of the case 2.
  • the charging / DC / DC controller 50 and the relay controller 60 are connected by a signal line 62 bundled with the signal line 55.
  • the signal line 55 and the signal line 62 pass through the top surface of the capacitor module 10 and are connected to the connector 56 of the charging / DC / DC controller 50.
  • a plurality of guide portions 58 supporting the signal lines 55 and the signal lines 62 are formed on the top surface of the capacitor module 10.
  • the output bus bar 24 of the power module 20 has a power module terminal (connection terminal) 25 and a motor terminal (load terminal) 26.
  • a plurality of power module terminals 25 of the output bus bar 24 are connected to the opposite surface of the side of the power module 20 facing the DC / DC converter 30.
  • Power module 20 is located on the side of output bus bar 24.
  • co-fastening holes 25 a are formed in the power module terminals 25.
  • Motor terminal 26 of output bus bar 24 is connected to motor generator 6 located below output bus bar 24 as shown in FIG. 3.
  • the motor terminals 26 are formed to intersect the power module terminals 25 at a right angle.
  • the tip of the motor terminal 26 is inserted through the through hole 3 of the bottom 2 c of the case 2 and exposed to the outside.
  • the motor terminal 26 can be connected to the motor generator 6 via a harness or the like (not shown).
  • the case 2 accommodating the power module 20 and the output bus bar 24 has the through holes 3 through which the output bus bar 24 is inserted, the power module 20 and the output bus bar 24 and the case 2 from which the upper case 2 a is removed
  • the output bus bar 24 is inserted through the through hole 3 and protrudes from the case 2 only by assembling. Therefore, since it is not necessary to reverse case 2, the workability at the time of the assembly of the power converter device 1 can be improved.
  • FIG. 7 is a perspective view of output bus bar 24 in power conversion device 1
  • FIG. 8 is a plan view of output bus bar 24 in power conversion device 1.
  • the output bus bar 24 is held by the bus bar holder 23 as shown in FIG.
  • the bus bar holder 23 includes a bus bar holding portion 23 a for holding the output bus bar 24 and a sensor portion 23 b engaged with the inside of the bus bar holding portion 23 a when the current sensor 22 is mounted inside.
  • the power module terminals 25 and the motor terminals 26 of the output bus bar 24 are electrically connected inside the bus bar holder 23 as shown by a broken line in FIG. 7.
  • the bus bar holding portion 23 a includes leg portions 23 c as a pair of attachment portions attached to the case 2.
  • the leg portion 23c is formed to protrude to both sides of the leg portion 23c as shown in FIG. 8, as shown in FIG. 8, with a bottom surface 23d contacting the case 2, a fastening hole 23e for fastening the output bus bar 24 to the case 2.
  • the guide 23 f is formed in a rib shape extending in the direction in which the output bus bar 24 penetrates.
  • FIG. 9A is a perspective view of the power conversion device 1 before the bus bar holder 23 for holding the output bus bar 24 is disposed in the case 2, and FIG. 9B shows the bus bar holder 23 for holding the output bus bar 24 in the case 2. It is a perspective view of the power converter device 1 after arrange
  • positioning. 10 is a cross-sectional view of the case 2 and the bus bar holder 23 along the line XX in FIG. 9B. 9A and 9B, the configurations of the power conversion device 1 other than the case 2, the bus bar holder 23 for holding the output bus bar 24, and the power module 20 are omitted.
  • the bus bar holder 23 is inserted from above between the power module 20 and the side of the case 2 Ru.
  • the insertion of the bus bar holder 23 is performed until the bottom surface 23 d of the leg 23 c abuts on the bottom 2 c of the case 2 as shown in FIG. 10.
  • the power module 20, the output bus bar 24 and the bus bar holder 23 are provided at the bottom 2c of the case 2
  • the position is defined by being guided by the two sets of guides 23 f formed on the legs 23 c.
  • the position of the bus bar holder 23 is defined with respect to the case 2 by the guide projecting toward the case 2 out of the set of guides 23 f, and the position relative to the power module 20 by the guide projecting toward the power module 20. Is defined. Since guide 23 f is formed in a rib shape extending in the direction in which output bus bar 24 penetrates, bus bar holder 23 may be inserted into case 2 without hooking guide 23 f to the side portion or the like of case 2. it can. Therefore, the bus bar holder 23 can be stably disposed in a fixed place in the case 2 by the guide 23 f.
  • the power module terminals 25 of the output bus bar 24 abut and overlap the upper portions of the three-phase AC terminals of the power module 20. Thereafter, the power module terminal 25 and the three-phase AC terminal are fastened by a screw (not shown) which is inserted through the co-clamping hole 25 a of the power module terminal 25. Therefore, connection between output bus bar 24 and power module 20 can be easily performed.
  • the bus bar holder 23 After the bus bar holder 23 is inserted, the bus bar holder 23 is fastened to the case 2 by a screw (not shown) passing through the fastening hole 23 e.
  • the case 2 accommodating the power module 20 and the output bus bar 24 has the through holes 3 through which the output bus bar 24 is inserted, the power module 20 and the output bus bar 24 and the case 2 from which the upper case 2 a is removed The output bus bar 24 is inserted through the through hole 3 and protrudes from the case 2 only by assembling.
  • the corresponding power module terminals 25 of the output bus bar 24 are respectively positioned on the three-phase AC terminals of the power module 20. Can be assembled to the three-phase alternating current terminal as it is. Therefore, the output bus bar 24 and the power module 20 can be easily connected, and the workability at the time of assembling the power conversion device 1 can be improved.
  • the bus bar holder 23 has legs 23 c attached to the bottom 2 c of the case 2 to fix the plurality of power module terminals 25 and the motor terminals 26 to the case 2.
  • the plurality of power module terminals 25 are located on the three-phase AC terminal of the power module 20 when the leg 23 c is attached to the bottom 2 c of the case 2.
  • the insertion of the bus bar holder 23 is performed until the bottom surface 23 d of the leg 23 c abuts on the bottom 2 c of the case 2, but not limited to the leg 23 c, a part of the bus bar holder 23 is the case It may be performed until it abuts on part of 2.
  • FIG. 11 is a cross-sectional view of a case 202 and a bus bar holder 223 according to a modification of the embodiment of the present invention.
  • the bus bar holder 223 is provided with a wide arm portion 223g as a mounting portion, and the case 202 is provided with a step portion 202d into which the arm portion 223g can be inserted.
  • the bus bar holder 223 is fixed to the case 202 by attaching the arm 223g to the step 202d. .
  • the power module terminals 25 of the output bus bar 24 abut and overlap the upper portions of the three-phase AC terminals of the power module 20.
  • the mounting position of the bus bar holder 223 with respect to the case 202 can be adjusted by the arm portion 223g instead of the leg portion 23c, so that the same effect as that of the embodiment described above can be obtained.
  • a groove corresponding to the guide 23 f of the bus bar holder 23 may be provided on the side of the case 2 or the side of the power module 20. Also in such an aspect, the bus bar holder 23 can be positioned at a certain position in the case 2.

Abstract

電力変換装置1は、直流電力を三相交流電力に変換し、三相交流端子から三相交流電力を出力するパワーモジュール20と、パワーモジュール20に接続される複数のパワーモジュール端子25と、モータ端子26と、有する出力バスバー24と、出力バスバー24を保持するバスバーホルダ23と、出力バスバー24が貫通する貫通孔3を有し、パワーモジュール20、出力バスバー24及びバスバーホルダ23を収容するケース2と、を備える。三相交流端子は、パワーモジュール20上に並んで配置される。複数のパワーモジュール端子25は、三相交流端子に対応するように出力バスバー24にそれぞれ形成され、ケース2内に出力バスバー24とパワーモジュール20とを収容した際に三相交流端子上に位置する。

Description

電力変換装置
 本発明は、電動自動車やハイブリッド自動車等に搭載される電力変換装置に関するものである。
 JP2013-233052Aには、電動自動車やハイブリッド自動車等にて、駆動用のモータジェネレータの上方に配置されるインバータ装置が開示されている。このインバータ装置は、モータジェネレータへバッテリ電力を供給すると共に、モータジェネレータの回生電力をバッテリに充電するパワーモジュールと、パワーモジュールにモータジェネレータを接続するための三本の交流バスバーと、を備える。3本の交流バスバーは、開口を貫通して筐体外部に突出している。
 しかしながら、特許文献1のインバータ装置では、複雑に入り組んでいるインバータ装置の端子に3本の交流バスバーを溶接等によって一つずつ組み付けなければならず、組み立ての際の作業性を向上させることが困難である。
 本発明は、上記の問題点に鑑みてなされたものであり、電力変換装置の組み立ての際の作業性を向上させることを目的とする。
 本発明のある態様による電力変換装置は、直流電力を三相交流電力に変換し、三相交流端子から三相交流電力を出力するパワーモジュールと、前記パワーモジュールに接続される複数の接続端子と、前記複数の接続端子と交差する方向に形成され外部負荷に接続される負荷端子と、を有する三相バスバーと、前記三相バスバーを保持するバスバーホルダと、前記三相バスバーが貫通する貫通孔を有し、前記パワーモジュール、前記三相バスバー及び前記バスバーホルダを収容するケースと、を備え、前記三相交流端子は、前記パワーモジュール上に並んで配置され、前記複数の接続端子は、前記三相交流端子に対応するように前記三相バスバーにそれぞれ形成され、前記ケース内に前記三相バスバーと前記パワーモジュールとを収容した際に前記三相交流端子上に位置する。
 上記態様によれば、ケース内に三相バスバーとパワーモジュールとを収容するだけで、パワーモジュールの三相交流端子上に三相バスバーの対応する接続端子がそれぞれ位置するので、複数の接続端子を三相交流端子にそのまま一度に組み付けることができる。したがって、三相バスバーとパワーモジュールとの接続を容易に行うことができ、電力変換装置の組み立ての際の作業性を向上させることができる。
図1は、本発明の実施形態に係る電力変換装置の機能を説明するブロック図である。 図2は、本発明の実施形態に係る電力変換装置の構成を説明する平面の断面図である。 図3は、本発明の実施形態に係る電力変換装置の構成を説明する側面の断面図である。 図4は、冷却水の循環流路について説明する構成図である。 図5は、冷却水流路を説明する図であり、図3におけるV-V線に沿う断面図である。 図6は、冷却水流路を説明する図であり、図3におけるVI-VI線に沿った断面図である。 図7は、電力変換装置における出力バスバーの斜視図である。 図8は、電力変換装置における出力バスバーの平面図である。 図9Aは、出力バスバーを保持するバスバーホルダをケース内に配置する前の電力変換装置の斜視図である。 図9Bは、出力バスバーを保持するバスバーホルダをケース内に配置した後の電力変換装置の斜視図である。 図10は、図9BのX-X線に沿うケース及びバスバーホルダの断面図である。 図11は、本発明の実施形態の変形例に係るケース及びバスバーホルダの断面図である。
 以下、図面を参照して、本発明の実施形態に係る電力変換装置1について説明する。
 まず、図1から図7を参照して、電力変換装置1の全体構成について説明する。
 図1は、電力変換装置1の機能を説明するブロック図である。
 電力変換装置1は、図1に示すように、バッテリ(蓄電装置)5と、回転電機としてのモータジェネレータ(外部負荷)6と、に電気的に接続される。電力変換装置1は、例えば、電動自動車又はプラグインハイブリッド自動車に設けられる。
 電力変換装置1は、バッテリ5の直流電力をモータジェネレータ6の駆動に適した交流電力に変換することで、モータジェネレータ6に駆動用の電力を供給する。また、電力変換装置1は、モータジェネレータ6の回生電力(三相交流電力)を直流電力に変換することで、バッテリ5に充電用の電力を供給する。さらに、電力変換装置1は、車両に設けられる図示しない充電用の外部コネクタを介して、外部からバッテリ5に充電用の電力を供給することもできる。
 バッテリ5は、例えばリチウムイオン二次電池で構成される。バッテリ5は、電力変換装置1に直流電力を供給し、電力変換装置1から供給される直流電力によって充電される。バッテリ5の電圧は、例えば240V~400Vの間で変動し、それよりも高い電圧が入力されることで充電される。
 モータジェネレータ6は、例えば永久磁石同期電動機で構成される。モータジェネレータ6は、電力変換装置1から供給される交流電力によって駆動される。モータジェネレータ6が駆動することで、図示しない車両の駆動輪が回転駆動して車両が走行する。モータジェネレータ6は、車両が減速するときには発電機として機能し、回生電力を発生させる。
 図2は、電力変換装置1の構成を説明する平面の断面図であり、図3は、電力変換装置1の構成を説明する側面の断面図である。
 電力変換装置1は、図2及び図3に示すように、コンデンサモジュール10と、パワーモジュール20と、DC/DCコンバータ30と、充電装置40と、充電・DC/DCコントローラ50と、インバータコントローラ70と、これらを収容する箱型のケース2内と、を備える。これらの各部は、バスバー又は配線により電気的に接続される。
 ケース2は、図3に示すように、底部2cを有し上方が開口する下ケース2bと、下ケース2bの開口を閉塞する上ケース2aと、によって箱型に構成される。
 下ケース2b内には、パワーモジュール20,DC/DCコンバータ30,及び充電装置40が底部2cに当接するように設けられ、DC/DCコンバータ30は、パワーモジュール20と充電装置40との間に配置される。下ケース2b内には、DC/DCコンバータ30の上方を跨ぐようにコンデンサモジュール10が配置される。パワーモジュール20の上面にはドライバ基板21が配置され、ドライバ基板21の上方にはインバータコントローラ70が配置される。充電装置40の上方には、充電・DC/DCコントローラ50が配置される。なお、コンデンサモジュール10は、図示しない脚部を有し、当該脚部が下ケース2bに取り付けられることでケース2内に取り付けられる。
 下ケース2bの底部2cの内部には、冷却水流路4(冷却媒体流路)が形成される。冷却水流路4には冷却水(冷却媒体)が流通し、冷却水は、冷却水流路4の直上に載置されるパワーモジュール20,DC/DCコンバータ30,及び充電装置40を冷却する。ここで、図4から図6を参照して冷却水流路4について説明する。
 図4は、冷却水の循環流路7について説明する構成図である。
 ケース2には、図4に示すように、冷却水流路4に外部から冷却水を供給する供給流路94と、充電装置冷却部93から外部に冷却水を排出する排出流路95と、が設けられる。
 冷却水流路4を流通した冷却水は、排出流路95を介して外部に接続された循環流路7に排出される。循環流路7に排出された冷却水は、車両の最前部に配設されるサブラジエータ8によって冷却される。サブラジエータ8によって冷却された冷却水は、供給流路94を介して冷却水流路4に供給される。循環流路7におけるサブラジエータ8と供給流路94との間には、循環流路7及び冷却水流路4に冷却水を循環させるウォーターポンプ9が設けられる。
 供給流路94及び排出流路95は、車両の前方を向くようにケース2に配置される。これにより、サブラジエータ8と冷却水流路4との距離を最短にすることができる。
 図5は、冷却水流路4を説明する図であり、図3におけるV-V線に沿う断面図である。
 図5に示すように、冷却水流路4は、パワーモジュール20に沿って形成されるパワーモジュール冷却部91と、DC/DCコンバータ30に沿って形成されるDC/DCコンバータ冷却部92と、充電装置40に沿って形成される充電装置冷却部93と、を有する。パワーモジュール冷却部91と、DC/DCコンバータ冷却部92と、充電装置冷却部93とは、冷却水流路4に直列に配列される。
 冷却水流路4を流通する冷却水は、供給流路94から供給され、パワーモジュール20を冷却して、DC/DCコンバータ30を冷却して、充電装置40を冷却した後に、排出流路95から外部の循環流路7へと排出される。排出流路95から循環流路7へと排出された冷却水は、図4に示すサブラジエータ8によって冷却され、供給流路94から冷却水流路4へと再度供給される。
 ここで、パワーモジュール20は車両の走行時に動作するのに対して、充電装置40は車両の停止時に動作する。そのため、充電装置40の冷却が必要である場合に、パワーモジュール20の冷却によって冷却水が高温となることを回避できる。したがって、パワーモジュール冷却部91及び充電装置冷却部93が冷却水流路4に直列に配置されていても、冷却水は、パワーモジュール20及び充電装置40の両方を十分に冷却できる。また、パワーモジュール冷却部91及び充電装置冷却部93は、冷却水流路4に直列に配列されるので、冷却水の流路を個別に複数設ける必要がなく、簡素な冷却水流路4の構成で電力変換装置1を冷却することができる。
 なお、DC/DCコンバータ30は、パワーモジュール20や充電装置40と同時に動作するものであるが、パワーモジュール20や充電装置40と比較すると発熱量が小さい。そのため、DC/DCコンバータ冷却部92が冷却水流路4に直列に配列されていても、電力変換装置1の冷却効率への影響はない。
 図6は、冷却水流路4を説明する図であり、図3におけるVI-VI線に沿った断面図である。
 図6に示すように、パワーモジュール冷却部91は、パワーモジュール20に臨む面が開口して形成され流通する冷却水によってパワーモジュール20を直接冷却する上部冷却部91aと、供給流路94から供給される冷却水を上方の上部冷却部91aに導く上昇接続部91bと、上部冷却部91aを流通した冷却水を下方のDC/DCコンバータ冷却部92に導く下降接続部91cと、を有する。
 図5及び図6に示すように、供給流路94の流路面積はパワーモジュール冷却部91の流路面積と比較して小さい。しかしながら、供給流路94から供給された冷却水は、上昇接続部91bの壁部にぶつかって上昇する際に、パワーモジュール冷却部91の幅方向(図5では左右方向)いっぱいに拡がる。よって、上昇接続部91bが設けられることで、上部冷却部91aの一部に冷却水が偏ることが防止されるので、パワーモジュール20全体を満遍なく冷却することができる。
 図6に示すように、パワーモジュール20の下面には、複数のヒートシンク20aが突設される。上部冷却部91aを流通する冷却水は、パワーモジュール20の下面とヒートシンク20aとに接触して、パワーモジュール20を直接冷却する。また、パワーモジュール冷却部91には、供給流路94から導かれた冷却水が最初に供給される。よって、パワーモジュール冷却部91には、冷却水流路4の中で最も低温の状態で冷却水が流通する。これにより、電力変換装置1の中でも最も発熱量の大きなパワーモジュール20を効率的に冷却することができる。
 図5に示すように、DC/DCコンバータ冷却部92は、パワーモジュール冷却部91から第1接続部96を介して逆方向に折り返される。これにより、パワーモジュール冷却部91における冷却水の流れ方向とDC/DCコンバータ冷却部92における冷却水の流れ方向とは、互いに対向する向きになる。
 DC/DCコンバータ冷却部92は、冷却水の流れ方向に沿って形成される3つのリブ2eによって4つの流路に分割される。これにより、DC/DCコンバータ冷却部92内で冷却水が偏ることが防止されるので、DC/DCコンバータ30全体を満遍なく冷却することができる。
 充電装置冷却部93は、DC/DCコンバータ冷却部92から第2接続部97を介して逆方向に折り返される第1冷却部93aと、第1冷却部93aから排出流路95に向けて更に逆方向に折り返される第2冷却部93bと、を有する。これにより、DC/DCコンバータ冷却部92における冷却水の流れ方向と第1冷却部93aにおける冷却水の流れ方向とは、互いに対向する向きになる。また、第1冷却部93aにおける冷却水の流れ方向と第2冷却部93bにおける冷却水の流れ方向とは、互いに対向する向きになる。
 第1冷却部93aと第2冷却部93bとは、充電装置40上に実装される発熱量の大きな電子部品(図示省略)の配列に沿ってそれぞれ形成される。第1冷却部93aは、冷却水の流れ方向に沿って形成されるリブ2fによって2つの流路に分割される。第2冷却部93bも同様に、冷却水の流れ方向に沿って形成されるリブ2gによって2つの流路に分割される。これにより、充電装置冷却部93内で冷却水が偏ることが防止されるので、充電装置40全体を満遍なく冷却することができる。
 また、第1冷却部93aから第2冷却部93bが逆方向に折り返されるので、供給流路94と排出流路95とを、ケース2の同一の側面に形成することができる。よって、供給流路94と排出流路95とのサブラジエータ8に対する距離を短くできるので、冷却水の供給と排出とを短い循環流路7で行うことができる。
 図2及び図3に戻って、電力変換装置1の構成の説明を続ける。
 下ケース2bの底部2cの外面は、図3に示すように、モータジェネレータ6に臨む。下ケース2bの底部2cは、後述する出力バスバー(三相バスバー)24が挿通する貫通孔3を有する。貫通孔3は、下ケース2bにおける冷却水流路4が形成される領域の外に形成される。よって、冷却水流路4が形成される領域内に貫通孔3を形成する場合と比較して、貫通孔3のためにシール等を設ける必要がないので、下ケース2bを小型化できると共に、冷却水の密封性を確保できる。
 コンデンサモジュール10は、複数のコンデンサ素子(コンデンサ)によって構成され、第1バスバー11,第2バスバー12,及び電力配線13を備える。第1バスバー11,第2バスバー12,及び電力配線13は、コンデンサモジュール10の内部にて、正極と負極とを共用する。コンデンサモジュール10は、例えばバッテリ5から供給される直流電力の電圧やモータジェネレータ6からパワーモジュール20を介して回生される回生電力の電圧を平滑化する。このように、コンデンサモジュール10は、電圧を平滑化することで、ノイズの除去や電圧変動の抑制を行う。
 パワーモジュール20は、ドライバ基板21と、図示しない複数のパワー素子と、を有する。ドライバ基板21は、後述するインバータコントローラ70からの信号に基づいて、パワーモジュール20のパワー素子のON/OFFを制御する。また、パワーモジュール20は、電流センサ22と、出力バスバー24と、に接続される。電流センサ22は、出力バスバー24に取り付けられて出力バスバー24の電流を検出するセンサである。出力バスバー24は、U相、V相、W相からなる三相のバスバーとしてパワーモジュール20のU相、V相、W相からなる三相交流端子のそれぞれに直接接続され、モータジェネレータ6に三相交流電力を出力する。パワーモジュール20は、ドライバ基板21にパワー素子のON/OFFが制御されることによって、バッテリ5からの直流電力、又はモータジェネレータ6からの交流電力をそれぞれ変換する。
 DC/DCコンバータ30は、バスバー31を介して車両側コネクタ82に接続される。車両側コネクタ82には、車両の各部にDC/DCコンバータ30が出力する直流電源を供給するハーネス等が接続される。DC/DCコンバータ30は、バッテリ5から供給される直流電力の電圧を変換して、他の機器へと供給する。DC/DCコンバータ30は、バッテリ5の直流電力(例えば400V)を12Vの直流電力に降圧する。降圧された直流電力は、車両に設けられるコントローラや、照明,ファン等の電源として供給される。DC/DCコンバータ30は、第2バスバー12を介してコンデンサモジュール10及びバッテリ5に接続される。
 充電装置40は、普通充電コネクタ81を介して車両の外部から供給される商用電源の交流電力(例えば交流200V)を直流電力(例えば直流500V)に変換する。充電装置40により変換された直流電力は、電力配線13からコンデンサモジュール10を介してバッテリ5に供給される。これによりバッテリ5が充電される。
 以上のように構成される電力変換装置1では、パワーモジュール20,DC/DCコンバータ30,及び充電装置40が、コンデンサモジュール10に隣接して配置され、第1バスバー11,第2バスバー12,及び電力配線13によりそれぞれ接続される。よって、パワーモジュール20,DC/DCコンバータ30,及び充電装置40とコンデンサモジュール10とのそれぞれの距離を短くできる。したがって、直流電力の経路での抵抗(R[Ω])やインダクタンス(L[H])を小さくすることができ、電力の損失を少なくすることができる。
 また、コンデンサモジュール10は、発熱量が多いパワーモジュール20と充電装置40との間に配置される。よって、パワーモジュール20と充電装置40とで互いに熱による影響を与えることを抑制できる。特に、パワーモジュール20の動作(モータジェネレータ6の力行及び回生)と、充電装置40の動作(普通充電コネクタ81を介して接続される外部コネクタからのバッテリ5の充電)と、は同時に実行されることがないので、これらの間における熱による影響を排除することができる。
 充電・DC/DCコントローラ50は、車両の図示しないコントローラからの指示に基づいて、電力変換装置1によるモータジェネレータ6の駆動及びバッテリ5の充電を制御する。バッテリ5の充電には、充電装置40を介した普通充電コネクタ81からの充電、又は充電装置40を介さない急速充電コネクタ63からの充電が、充電・DC/DCコントローラ50によって選択される。
 インバータコントローラ70は、図1に示すように、車両の図示しないコントローラからの指示及び後述する電流センサ22で検出したパワーモジュール20の出力バスバー24の電流値に基づいて、パワーモジュール20を動作させる信号をドライバ基板21に出力する。
 これらのインバータコントローラ70,パワーモジュール20,及びコンデンサモジュール10によって、直流電力と交流電力とを相互に変換するインバータモジュールが構成される。
 インバータコントローラ70の側方には、図2に示すように、リレーコントローラ60が配置される。リレーコントローラ60は、充電・DC/DCコントローラ50によって制御され、リレー61の接点を開閉制御する。リレー61は、正側リレー61aと負側リレー61bとによって構成される。リレー61は、急速充電コネクタ63に図示しない充電用の外部コネクタが接続された場合に接点が開いて接続され、急速充電コネクタ63から供給される直流電力(例えば500V)を第2バスバー12へと供給する。供給された直流電力によりバッテリ5が充電される。
 コンデンサモジュール10の第1バスバー11は、図2及び図3に示すように、コンデンサモジュール10の一方の側面から側方に突出し、直接螺合等によってパワーモジュール20に接続される。第1バスバー11は、正極と負極とを一対とする三組のバスバーからなる。
 コンデンサモジュール10の第2バスバー12は、図3に示すように、コンデンサモジュール10の底面から下方に突出し、直接螺合等によってDC/DCコンバータ30に接続される。また、第2バスバー12は、図2に示すように、正極と負極とを一対とする一組のバスバーからなり、リレー61の正側リレー61a及び負側リレー61bに正極と負極とがそれぞれ接続される。さらに、第2バスバー12は、バッテリ5に接続されるバッテリ側コネクタ51と、電動コンプレッサに接続されるコンプレッサ側コネクタ52と、にバスバー14を介して接続される。
 コンデンサモジュール10の電力配線13は、図2及び図3に示すようにコンデンサモジュール10における第1バスバー11が突出する側面の反対面から引き出される柔軟な可撓性ケーブルであり、充電装置40に接続される。充電装置40は、普通充電コネクタ81にバスバー41を介して接続される。
 充電・DC/DCコントローラ50及び信号線コネクタ65は、図2及び図3に示すように、信号線55によって接続される。信号線コネクタ65は、DC/DCコンバータ30,充電装置40,充電・DC/DCコントローラ50,及びインバータコントローラ70に接続される信号線55を、ケース2の外部との間で接続可能にする。
 また、充電・DC/DCコントローラ50及びリレーコントローラ60は、信号線55とともに同梱される信号線62によって接続される。
 信号線55及び信号線62は、コンデンサモジュール10の上面を通過して充電・DC/DCコントローラ50のコネクタ56に接続される。コンデンサモジュール10の上面には、信号線55及び信号線62を支持する複数のガイド部58が形成される。
 パワーモジュール20の出力バスバー24は、図3に示すように、パワーモジュール端子(接続端子)25と、モータ端子(負荷端子)26と、を有する。
 出力バスバー24のパワーモジュール端子25は、パワーモジュール20のDC/DCコンバータ30と対向する側面の反対面に複数接続される。パワーモジュール20は、出力バスバー24の側方に位置する。パワーモジュール端子25には、図7に示すように、共締め孔25aが形成される。
 出力バスバー24のモータ端子26は、図3に示すように、出力バスバー24の下方に位置するモータジェネレータ6に接続される。モータ端子26は、パワーモジュール端子25に対して直角に交差するように形成される。モータ端子26の先端は、ケース2の底部2cの貫通孔3を挿通して外部に露出する。これにより、モータ端子26が図示しないハーネス等を介してモータジェネレータ6に接続可能になる。
 このように、パワーモジュール20と出力バスバー24とを収容するケース2は、出力バスバー24が挿通する貫通孔3を有するので、上ケース2aが取り外されたケース2にパワーモジュール20と出力バスバー24とを組み付けるだけで、出力バスバー24が貫通孔3を挿通してケース2から突出する。したがって、ケース2を反転させる必要がないので、電力変換装置1の組み立ての際の作業性を向上させることができる。
 図7は、電力変換装置1における出力バスバー24の斜視図であり、図8は、電力変換装置1における出力バスバー24の平面図である。
 出力バスバー24は、図7に示すように、バスバーホルダ23によって保持される。バスバーホルダ23は、出力バスバー24を保持するバスバー保持部23aと、電流センサ22が内部に取り付けられた状態でバスバー保持部23a内に係合されるセンサ部23bと、から構成される。出力バスバー24のパワーモジュール端子25及びモータ端子26は、図7に破線で示すように、バスバーホルダ23の内部で電気的に接続される。
 バスバー保持部23aは、ケース2に取り付けられる一対の取付部としての脚部23cを有する。脚部23cは、ケース2に当接する底面23dと、出力バスバー24をケース2に締結するための締結孔23eと、図8に示すように脚部23cの両側側方にそれぞれ突出するように形成された二組のガイド23fと、を有する。ガイド23fは、出力バスバー24が貫通する方向に延在するリブ状に形成される。
 図9Aは、出力バスバー24を保持するバスバーホルダ23をケース2内に配置する前の電力変換装置1の斜視図であり、図9Bは、出力バスバー24を保持するバスバーホルダ23をケース2内に配置した後の電力変換装置1の斜視図である。また、図10は、図9BのX-X線に沿うケース2及びバスバーホルダ23の断面図である。なお、図9A及び図9Bでは、ケース2,出力バスバー24を保持するバスバーホルダ23,及びパワーモジュール20以外の電力変換装置1の構成を省略している。
 図9A及び図9Bに示すように、パワーモジュール20がケース2の底部2cに当接するように配置された後、バスバーホルダ23がパワーモジュール20とケース2の側部との間に上方から挿入される。バスバーホルダ23の挿入は、図10に示すように、脚部23cの底面23dがケース2の底部2cに当接するまで行われる。このように、ケース2の底部2cには、パワーモジュール20,出力バスバー24及びバスバーホルダ23が設けられる
 バスバーホルダ23は、ケース2内に挿入される際に、脚部23cに形成された二組のガイド23fに案内されることによって位置が規定される。具体的には、バスバーホルダ23は、一組のガイド23fのうちケース2に向かって突出するガイドによってケース2に対する位置が規定され、パワーモジュール20に向かって突出するガイドによって、パワーモジュール20に対する位置が規定される。ガイド23fは、出力バスバー24が貫通する方向に延在するリブ状に形成されているので、ガイド23fをケース2の側部等に引っ掛けることなく、バスバーホルダ23をケース2内に挿入することができる。そのため、ガイド23fによって、バスバーホルダ23をケース2内の一定の場所に安定して配置することができる。
 バスバーホルダ23の挿入が完了すると、出力バスバー24のパワーモジュール端子25は、パワーモジュール20の三相交流端子の上部に当接し重なる。その後、パワーモジュール端子25と三相交流端子とは、パワーモジュール端子25の共締め孔25aを挿通する図示しないねじによって締結される。したがって、出力バスバー24とパワーモジュール20との接続を容易に行うことができる。
 バスバーホルダ23の挿入後、バスバーホルダ23は、締結孔23eを挿通する図示しないねじによってケース2に締結される。
 このように、パワーモジュール20と出力バスバー24とを収容するケース2は、出力バスバー24が挿通する貫通孔3を有するので、上ケース2aが取り外されたケース2にパワーモジュール20と出力バスバー24とを組み付けるだけで、出力バスバー24が貫通孔3を挿通してケース2から突出する。
 以上の実施形態によれば、以下に示す効果を奏する。
 ケース2内に出力バスバー24とパワーモジュール20とを収容するだけで、パワーモジュール20の三相交流端子上に出力バスバー24の対応するパワーモジュール端子25がそれぞれ位置するので、複数のパワーモジュール端子25を三相交流端子にそのまま一度に組み付けることができる。したがって、出力バスバー24とパワーモジュール20との接続を容易に行うことができ、電力変換装置1の組み立ての際の作業性を向上させることができる。
 また、バスバーホルダ23は、ケース2の底部2cに取り付けられて複数のパワーモジュール端子25とモータ端子26とをケース2に固定する脚部23cを有する。複数のパワーモジュール端子25は、脚部23cがケース2の底部2cに取り付けられた際に、パワーモジュール20の三相交流端子上に位置する。これによって、出力バスバー24をケース2に取り付け、互いに重なったパワーモジュール端子25と三相交流端子とを接続するだけで、出力バスバー24とパワーモジュール20との接続が完了する。したがって、出力バスバー24とパワーモジュール20との組み立て性を向上させることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記した実施形態では、バスバーホルダ23の挿入は、脚部23cの底面23dがケース2の底部2cに当接するまで行われたが、脚部23cに限らずバスバーホルダ23の一部がケース2の一部に当接するまで行われることとしてもよい。
 図11は、本発明の実施形態の変形例に係るケース202及びバスバーホルダ223の断面図である。
 図11に示すように、バスバーホルダ223は取付部としての幅広な腕部223gを備え、ケース202は、腕部223gを挿入可能な段部202dを備える。腕部223gがケース202の段部202dの上面に当接するまでバスバーホルダ223の挿入が行われた後、腕部223gが段部202dに取り付けられことで、バスバーホルダ223はケース202に固定される。バスバーホルダ223の挿入が完了すると、出力バスバー24のパワーモジュール端子25は、パワーモジュール20の三相交流端子の上部に当接し重なる。
 このような態様によっても、脚部23cの代わりに腕部223gによって、バスバーホルダ223のケース202に対する取付位置を調節することができるので、上記した実施形態と同様の効果を得ることができる。
 また、バスバーホルダ23のガイド23fに対応する溝をケース2の側部やパワーモジュール20の側部に設けることとしてもよい。このような態様によっても、バスバーホルダ23をケース2内の一定の場所に位置させることができる。
 なお、上記実施形態は、適宜組み合わせ可能である。
 本願は、2015年5月18日に日本国特許庁に出願された特願2015-101089及び2016年4月27日に日本国特許庁に出願された特願2016-089224に基づく優先権を主張し、これらの出願の全ての内容は参照により本明細書に組み込まれる。

Claims (11)

  1.  直流電力を三相交流電力に変換し、三相交流端子から三相交流電力を出力するパワーモジュールと、
     前記パワーモジュールに接続される複数の接続端子と、前記複数の接続端子と交差する方向に形成され外部負荷に接続される負荷端子と、を有する三相バスバーと、
     前記三相バスバーを保持するバスバーホルダと、
     前記三相バスバーが貫通する貫通孔を有し、前記パワーモジュール、前記三相バスバー及び前記バスバーホルダを収容するケースと、を備え、
     前記三相交流端子は、前記パワーモジュール上に並んで配置され、
     前記複数の接続端子は、前記三相交流端子に対応するように前記三相バスバーにそれぞれ形成され、前記ケース内に前記三相バスバーと前記パワーモジュールとを収容した際に前記三相交流端子上に位置する電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記バスバーホルダは、前記ケースの一部に取り付けられて前記複数の接続端子と前記負荷端子とを前記ケースに固定する取付部をさらに有し、
     前記複数の接続端子は、前記取付部が前記ケースの前記一部に取り付けられた際に、前記三相交流端子上に位置する電力変換装置。
  3.  請求項2に記載の電力変換装置であって、
     前記取付部は、前記バスバーホルダの前記ケースに対する位置を規定するガイドを有する電力変換装置。
  4.  請求項3に記載の電力変換装置であって、
     前記ガイドは、前記三相バスバーが貫通する方向に延在するリブである電力変換装置。
  5.  請求項1から請求項4のいずれか一つに記載の電力変換装置であって、
     前記負荷端子は、前記三相バスバーが前記貫通孔を挿通して前記ケースの外部に露出する電力変換装置。
  6.  請求項5に記載の電力変換装置であって、
     前記ケースは、前記パワーモジュールを冷却するための冷却媒体が流通する冷却媒体流路を有し、
     前記貫通孔は、前記ケースの前記冷却媒体流路が設けられる領域の外に形成される電力変換装置。
  7.  請求項6に記載の電力変換装置であって、
     前記ケースは、前記パワーモジュール、前記三相バスバー及び前記バスバーホルダが設けられる底部を有する箱型に形成され、
     前記冷却媒体流路は、前記底部の内部に形成される電力変換装置。
  8.  請求項6又は請求項7に記載の電力変換装置であって、
     前記パワーモジュールを挟んで前記三相バスバーと対向して設けられ、蓄電装置から供給される直流電圧を変換するDC/DCコンバータと、
     前記DC/DCコンバータを挟んで前記パワーモジュールと対向して設けられ、外部コネクタを介して供給される三相交流電力を直流電力に変換して前記蓄電装置に充電させる充電装置と、を更に備える電力変換装置。
  9.  請求項8に記載の電力変換装置であって、
     前記冷却媒体流路を流通する冷却媒体は、前記パワーモジュールを冷却して前記DC/DCコンバータを冷却して前記充電装置を冷却した後に外部へと排出される電力変換装置。
  10.  請求項8又は9に記載の電力変換装置であって、
     前記DC/DCコンバータの上方を跨ぐように前記ケースに取り付けられ前記蓄電装置から供給される電圧を平滑化するコンデンサを有するコンデンサモジュールを更に備える電力変換装置。
  11.  請求項5から請求項10のいずれか一つに記載の電力変換装置であって、
     前記貫通孔が形成される前記ケースの外面は前記外部負荷に臨む電力変換装置。
PCT/JP2016/064550 2015-05-18 2016-05-17 電力変換装置 WO2016186095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680028935.8A CN107710587B (zh) 2015-05-18 2016-05-17 电力转换装置
DE112016002272.7T DE112016002272T5 (de) 2015-05-18 2016-05-17 Leistungswandler
US15/575,060 US10298145B2 (en) 2015-05-18 2016-05-17 Power converter capable of converting direct-current electric power or three-phase alternating-current power

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-101089 2015-05-18
JP2015101089A JP5919421B1 (ja) 2015-05-18 2015-05-18 電力変換装置
JP2016-089224 2016-04-27
JP2016089224 2016-04-27

Publications (1)

Publication Number Publication Date
WO2016186095A1 true WO2016186095A1 (ja) 2016-11-24

Family

ID=57319898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064550 WO2016186095A1 (ja) 2015-05-18 2016-05-17 電力変換装置

Country Status (4)

Country Link
US (1) US10298145B2 (ja)
CN (1) CN107710587B (ja)
DE (1) DE112016002272T5 (ja)
WO (1) WO2016186095A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205063A1 (de) * 2018-04-04 2019-10-10 Continental Automotive Gmbh Leistungselektronikmodul und Fahrzeugbordnetz
CN109217636B (zh) * 2018-09-18 2024-02-02 上海蔚来汽车有限公司 一种通用封装的功率装置
FR3091141B1 (fr) * 2018-12-21 2021-06-25 Valeo Siemens Eautomotive France Sas Ensemble électrique d’une barre de connexion électrique et d’un module de refroidissement
KR102598320B1 (ko) * 2019-02-18 2023-11-06 현대자동차주식회사 전력변환 장치
JP2020167877A (ja) * 2019-03-29 2020-10-08 日本電産エレシス株式会社 コネクタモジュール及び電力変換装置
JP7425718B2 (ja) * 2020-12-14 2024-01-31 本田技研工業株式会社 電動装置
CN218243274U (zh) * 2022-08-18 2023-01-06 比亚迪股份有限公司 电动总成和具有其的车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013233052A (ja) * 2012-05-01 2013-11-14 Hitachi Automotive Systems Ltd インバータ装置
JP2014087124A (ja) * 2012-10-22 2014-05-12 Hitachi Automotive Systems Ltd 電力変換装置
JP2014113053A (ja) * 2014-03-20 2014-06-19 Hitachi Automotive Systems Ltd 電力変換装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3513846B2 (ja) 1995-10-31 2004-03-31 株式会社デンソー 電気自動車用放熱装置
JP3643525B2 (ja) 2000-09-08 2005-04-27 株式会社東芝 インバータ装置
US8346419B2 (en) * 2007-09-26 2013-01-01 Tesla Motors, Inc. Operation of a range extended electric vehicle
JP4274282B1 (ja) * 2008-02-07 2009-06-03 トヨタ自動車株式会社 車両用駆動装置の制御装置およびプラグインハイブリッド車両
US20110116235A1 (en) * 2009-11-13 2011-05-19 Lg Electronics Inc. Motor drive unit and vehicle including the same
JP3172122U (ja) 2011-05-30 2011-12-08 株式会社オズコーポレーション 内燃機関自動車の電動化ユニット
JP5502805B2 (ja) * 2011-06-08 2014-05-28 日立オートモティブシステムズ株式会社 パワーモジュールおよびそれを用いた電力変換装置
JP5855899B2 (ja) * 2011-10-27 2016-02-09 日立オートモティブシステムズ株式会社 Dc−dcコンバータ及び電力変換装置
JP5265825B1 (ja) 2011-11-30 2013-08-14 本田技研工業株式会社 パワーコントロールユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013233052A (ja) * 2012-05-01 2013-11-14 Hitachi Automotive Systems Ltd インバータ装置
JP2014087124A (ja) * 2012-10-22 2014-05-12 Hitachi Automotive Systems Ltd 電力変換装置
JP2014113053A (ja) * 2014-03-20 2014-06-19 Hitachi Automotive Systems Ltd 電力変換装置

Also Published As

Publication number Publication date
US10298145B2 (en) 2019-05-21
DE112016002272T5 (de) 2018-02-15
CN107710587B (zh) 2020-06-19
CN107710587A (zh) 2018-02-16
US20180262122A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2016186095A1 (ja) 電力変換装置
US10512198B2 (en) Power converter
JP6651406B2 (ja) 電力変換装置
JP5508357B2 (ja) 電力変換装置
JP5265825B1 (ja) パワーコントロールユニット
JP5815063B2 (ja) 電力変換装置
US10381922B2 (en) Power converter
JP2007282369A (ja) 電力変換装置
US20150340934A1 (en) Inverter Device and Inverter Device Integrated with Motor
US20190115848A1 (en) Power converter
JP2013046447A (ja) 電力変換装置
WO2013015371A1 (ja) 電力変換装置のケース分割構造
JP5919423B1 (ja) 電力変換装置
JP5919421B1 (ja) 電力変換装置
JP2011234488A (ja) 電力変換装置
WO2013081097A1 (ja) パワーコントロールユニット
JP5919419B1 (ja) 電力変換装置
JP2018022731A (ja) パワーモジュール及びパワーコントロールユニット
JP6898767B2 (ja) 電力変換装置
WO2016186101A1 (ja) 電力変換装置
JP5919424B1 (ja) コンデンサモジュール
JP2019122064A (ja) 電力変換装置
JP2014150215A (ja) 冷却装置およびそれを備えるモータ制御装置
JP5919422B1 (ja) 電力変換装置
JP7211337B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016002272

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15575060

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16796488

Country of ref document: EP

Kind code of ref document: A1