WO2016184433A1 - Panneau composite de pur et/ou pir et procédé de production continue de ce dernier - Google Patents

Panneau composite de pur et/ou pir et procédé de production continue de ce dernier Download PDF

Info

Publication number
WO2016184433A1
WO2016184433A1 PCT/CN2016/082983 CN2016082983W WO2016184433A1 WO 2016184433 A1 WO2016184433 A1 WO 2016184433A1 CN 2016082983 W CN2016082983 W CN 2016082983W WO 2016184433 A1 WO2016184433 A1 WO 2016184433A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
blowing agent
hfc
pentane
hfo
Prior art date
Application number
PCT/CN2016/082983
Other languages
English (en)
Inventor
Heng Huang
Raymond Chen
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Publication of WO2016184433A1 publication Critical patent/WO2016184433A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to the technical field of a polyurethane or polyisocyanurate composite panel. Specifically, the present invention relates to a polyurethane or polyisocyanurate composite panel produced by a continuous production line having improved dimensional stability, and a method for the continuous line production of the polyurethane or polyisocyanurate composite panel.
  • PUR composite panels generally comprise an upper layer, a bottom layer, and a foam layer between the upper and bottom layers. These panels are widely applied in the construction materials field, due to their advantages such as low cost and good heat insulation and sound insulation effects. In view of the higher flame retardant standards and requirements for the PUR composite panel, the use of PUR modified polyisocyanate (PIR) foamed plastic is particularly favored, due to its low combustion and better fire resistant performance than common PUR.
  • PUR modified polyisocyanate (PIR) foamed plastic is particularly favored, due to its low combustion and better fire resistant performance than common PUR.
  • composite panels comprising PUR or PIR, in particular PIR, produced by a continuous production line, exhibit uneven compressive strength distribution in each direction, especially relatively low compressive strength in the thickness direction, which results in the PUR or PIR composite panel having poor dimensional stability as a result of the tendency of the foam to shrink in thickness direction under the effect of the atmospheric pressure during the service cycle.
  • Adjusting the reaction formulation such as adjusting the ratio of polyol or polyol mixture, silicon surfactant, catalysts, blowing agents, and other isocyanate components;
  • blowing agent in the continuous production of the PUR composite panel 141b and pentane are common physical blowing agents.
  • An environmental friendly composite material was also disclosed in Chinese Patent Publication CN102532456B, wherein the physical blowing agent is a blowing agent blend comprising 365mfc/134a in which 365mfc accounts for 93 wt%of the mixture; however, the focus of this application relates to environmental protection and is not directed to improving the properties of PUR composite panels produced in a continuous production line.
  • the object of the present invention is to improve the compressive strength of the a composite panel comprising PUR and/or PIR produced by a continuous production line, thereby further improving the dimensional stability of the PUR and/or PIR composite panel.
  • a PUR and/or PIR composite panel at least comprising an upper layer, a bottom layer, and an inner layer between the upper and bottom layers, wherein the inner layer comprises a PUR and/or PIR foam which is produced using a blowing agent composition to produce the foam in a continuous composite panel production line, the components of the blowing agent composition are selected such that the ratio of the rising height H T of the foam at the contact time when the foam is contacting the upper layer to the maximum free rising height H max is equal to or above 65%, preferably equal to or above 75%.
  • the blowing agent composition comprises two components, component I and component II, wherein the component I is selected from a group of HFC-245fa, HFO-1233zd (E) , HFO-1233zd (Z) , HFO-1234ze (E) , HFO-1234ze (Z) , HCFC-22, HCFC-142b, CO 2 , HFC-227ea, HFC-134a, and the component II is selected from a group of HCFC-141b, HFC-365mfc, 1336mzzm (Z) , HFO-1336mzzm (E) , methyl formate, methylal, n-pentane, cyclo-pentane and iso-pentane.
  • component I is selected from a group of HFC-245fa, HFO-1233zd (E) , HFO-1233zd (Z) , HFO-1234ze (E) , HFO-1234ze (Z) , HCFC-22, HC
  • the weight percentage of the component I in the blowing agent composition can be 20%or greater, or from 20%to 80%, or from 20%to 75%, or from 20%to 50%; preferably 25%or greater, or from 25 to 80%, more preferably from 25%to 75%, or from 25%to 50%, or from 25 to 38%.
  • the oxygen index of the inner layer can be above 23.
  • the ratio of the compressive strength in thickness direction (C x ) of the inner layer to the total compressive strength in three directions (C x+y+z ) can be greater than28%, preferably greater than 30%.
  • the PURand/or PIR foams are prepared from a foamable composition which generally includes one or more components capable of forming a foam.
  • the PUR and/or PIR foam can be prepared by adding the blowing agent of the invention (either directly or indirectly) to a foamable composition and reacting the foamable composition under conditions to form a foam, as is well known in the art.
  • the foam is produced by combining an isocyanate, a polyol or polyol mixture and the blowing agent of the invention.
  • the composition can comprise catalysts, surfactants and other optional components such as a flame retardant and a colorant and the like.
  • the foam formulation can be provided in two components, the “A” component and the “B” component.
  • the “A” component comprises the isocyanate.
  • the “A” component may additionally and optionally comprise additional components such as surfactants or blowing agents.
  • the “B” component comprises the polyol or polyol mixture, the catalyst and the blowing agent. It may also comprise a surfactant, a flame retardant and other isocyanate reactive components.
  • the “A” component and the “B” component can be provided separately or can be preblended.
  • the ” A” and “B” components are poured into the panel to produce the PURand /orPIR foam layer, wherein any organic polyisocyanate, preferably aromatic polyisocyanate, can be used for the synthesis of the PURand/orPIR foams.
  • the polyol can be polyester polyol, polyether polyol, and other examples include copolyol.
  • the aromatic polyester polyol can be used.
  • a method for the continuous production of the PUR and/or PIR composite panel at least comprising an upper layer, a bottom layer, and an inner layer between the upper and bottom layers, wherein the inner layer comprises PUR and/or PIR foams said method including using a blowing agent composition to produce the foam in a continuous composite panel production line to produce the inner layer, the components of the blowing agent composition are selected such that the ratio of the rising height H T of the foam at the contact time when the foam is contacting the upper layer to the maximum free rising height H max is equal to or above 65%, and preferably equal to or above 75%.
  • the blowing agent composition can comprise two components, component I and component II, wherein the component I is selected from a group of HFC-245fa, HFO-1233zd (E) , HFO-1233zd (Z) , HFO-1234ze (E) , HFO-1234ze (Z) , HCFC-22, HCFC-142b, CO 2 , HFC-227ea, HFC-134a, and the component II is selected from a group of HCFC-141b, HFC-365mfc, 1336mzzm (Z) , HFO-1336mzzm (E) , methyl formate, methylal, n-pentane, cyclo-pentane and iso-pentane.
  • component I is selected from a group of HFC-245fa, HFO-1233zd (E) , HFO-1233zd (Z) , HFO-1234ze (E) , HFO-1234ze (Z) , HCFC-22,
  • the weight percentage of the component I in the blowing agent composition can be 20%or greater, or from 20%to 80%, or from 20%to 75%, or from 20%to 50%; preferably 25%or greater, or from 25 to 80%, more preferably from 25%to 75%, or from 25%to 50%, or from 25 to 38%.
  • the blowing agent composition comprises component I and component II, wherein the component I is HFC-245fa and the component II is HCFC-141b, or the component I is HFO-1233zd and the component II is selected from n-pentane, cyclo-pentane or iso-pentane.
  • the weight percentage of the component I in the blowing agent composition can be in the range of from 25%to 50%.
  • the blowing agent composition comprises component I and component II, wherein the component I is HFC-245fa and the component II is HCFC-141b, and the weight percentage of the component I in the blowing agent composition is in the range of from 25%to 38%.
  • the oxygen index of the inner layer can be above 23.
  • a method for continuous production of the PUR and/or PIR composite panel at least comprising an upper layer, a bottom layer, and an inner layer between the upper and bottom layers, wherein the inner layer comprises PUR and/or PIR foams said method including using a blowing agent composition to produce the foam in a continuous composite panel production line to produce the inner layer, the components of the blowing agent composition are selected and the amount of the foamable composition and the speed of the continuous panel production line are adjusted such that the ratio of the rising height H T of the foam at the contact time when the foam is contacting the upper layer to the maximum free rising height H max is equal to or above 65%, and preferably equal to or above 75%.
  • the above method further comprises adjusting the pour-in density of the foamable composition, such that the ratio of the rising height H T of the foam at the contact time when the foam is contacting the upper layer to the maximum free rising height H max is equal to or above 65%, and preferably equal to or above 75%.
  • the blowing agent composition comprises component I and component II, wherein the component I is selected from the group consisting of HFC-245fa, HFO-1233zd, HCFC-22, HCFC-142b, CO 2 , HFC-227ea, and HFC-134a, and the component II is selected from the group consisting of HCFC-141b, HFC-365mfc, 1336mzzm, n-pentane, cyclo-pentane, and iso-pentane.
  • the weight percentage of the component I in the blowing agent composition can be 20%or greater, or from 20%to 80%, or from 20%to 75%, or from 20%to 50%; or 25%or greater, or from 25 to 80%, or from 25%to 75%, or from 25%to 50%, or from 25 to 38%.
  • the ratio of the rising height H T of the foam at the contact time when the foam is contacting the upper layer to the maximum free rising height H max is equal to or above 65%, preferably equal to or above 75%; and alternatively, below or equal to 95%or 90%.
  • water can be added as an additional blowing agent.
  • the method for continuous production of the PUR and/or PIR composite panel in the present invention is particularly suitable for the production of PUR and/or PIR foams originally blown and prepared with component II solely comprising HCFC-141b, HFC-365mfc, 1336mzzm, n-pentane, cyclo-pentane, and iso-pentane as the blowing agent, thereby significantly improving the compressive strength distribution in three directions, in particular the compressive strength in thickness direction.
  • the term “free rising” refers to foamable composition growing and expanding freely without restriction (compression) until the end of the blowing process
  • the term “maximum free rising height” refers to the maximum height to be achieved by the foamable composition under conditions of “free rising”
  • the term “contact time” refers to the time for the foamable composition to contact the upper layer in the continuous production line
  • the gel time refers to the time for the foamable composition to be converted into a solid gel.
  • the dimensional stability is tested according to GB/T8811-2008 standard; the compressive strength is tested according to GB/T8813-2008 standard; the oxygen index is tested according to GB/T2406-2008; the density is tested according to GB/T6343-2009 standard; and the thermal conductivity is tested according to GB/T10294-2008 standard.
  • the higher ratio of the foam rising height at contact time (contact the upper layer of composite panel) to the free rising height the more tendency for foam cell to be isotropic, which result in increasing the total compressive strength of the PUR composite panel, in particular, the compressive strength in thickness direction.
  • the compressive strength distribution is significantly improved, and an increase in compressive strength in thickness direction renders an increase in the ratio of the compressive strength in thickness direction to the total compressive strength in three directions.
  • the isotropic foams are also good for avoiding foam cell deformation. Therefore, the dimensional stability of the composite panel is improved.
  • the observed faster rate of foam rise is particularly preferred for a continuous PUR and/or PIR composite panel line, especially for PIR thicker plate (>100mm) in a high speed production line.
  • Figure 1 represents the relationship between the rising height of the foamable composition and time in the PUR system and the PIR system
  • Figure 2 represents the possible cell foam orientation in a cubic mould
  • Figure 3 diagrammatically represents a continuous PUR composite panel production line
  • Figure 4 represents the possible cell foam orientation in a continuous PUR composite panel production line
  • Figure 5 represents various directions of the PUR composite panel in a continous production line and the production line directions
  • Figure 6 diagrammatically represents, the relationship between the reaction time and the height ratio (i.e. the ratio of the rising height to the maximum free rising height) in the 141b blowing agent system and the 141b/245fa blowing agent composition system with the same feeding conditions;
  • Figure 7 diagrammatically represents, the relationship between the reaction time and the rising height in the 141b blowing agent and the 141b/245fa blowing agent composition with the same contact time;
  • Figure 8 represents a simulated mould in a laboratory
  • Figure 9 represents, the ratio of the rising height at contact time to the maximum foam rising height in the 141b/235fa blowing agent composition system with different amount of 245fa, and
  • Figure 10 represents, the ratio of the rising height at contact time to the maximum foam rising height in the HFO-1233zd/cyclopentane blowing agent composition system with different amount of HFO-1233zd.
  • reaction There are generally three kinds of reaction in PUR foam production: reaction which are: (1) between polyol and isocyanate to generate polyurethane groups, which is also called PUR reaction; reaction (2) between isocyanate and water to generate polyurea groups and CO 2 , which releases great amount of heat, gasifies the physical blowing agent, makes the reacting liquid expanding, and this is also called “cream or elicitation” in the art; and the trimerization reaction (3) between isocyanates to generate polyisocyanate groups, which is also called PIR reaction.
  • the composites and methods of the present application comprising foam produced using reactions (1) and/or (3) as set out above.
  • the blowing agent composition further comprises water as an additional blowing agent
  • the composites and methods of the present application may additionally comprise foam produced using reaction (2) as set out above.
  • the–NCO/-OH ratio is usually 1.0 to ensure that the isocyanate reacts completely with the polyol and water.
  • the–NCO/-OH ratio is usually 1.5 to 4.0 to leave more–NCO group for trimerization reaction and to provide more PIR groups.
  • the PIR reaction produces a foam having better fire resistant performance and compressive strength.
  • water is generally controlled to prevent consumption of the isocyanates by excess water.
  • the water content is generally controlled at a lower level in the PIR system, so that the early phase reaction is quite slow and the late phase reaction is suddenly faster in the PIR system.
  • Figure 1 shows a schematic view of the relationship between the rising height of the foamable composition and time in the PUR system and the PIR system, wherein the dotted line shows the gel time.
  • the observed foam rise height is lower in the PIR system than the PUR system at the same gel time. As described herein below, this renders the problems of compressive strength in thickness direction and the dimensional stability more prominent in the PIR system, during the continuous composite panel production.
  • the mould is without a covering.
  • the foam cell is substantially in the ellipsoidal shape during the formation and growth of the foam cell. Since the foam cell is affected by the mould at both sides, the foam cell is substantially in the ellipsoidal shape before contacting the top panel (because both sides are restricted and thus the foam cell mainly rises upward) .
  • the main rising direction is along the arrow D, and thus the long axis of the ellipsoidal foam cell 2 is along the thickness direction X.
  • the compressive strength is the greatest in the long axis direction (the compressive strength can be tested according to GB/T8813-2008) . It can be presumed that the direction of the maximum compressive strength is in the long axis direction of foam cell. Thus, it shall be noted that a method of increasing the compressive strength in thickness direction can be conceived to increase the amount or ratio of the foam cell in the longitudinal orientation.
  • Figure 3 illustrates a schematic view of a polyurethane composite panel production line, wherein the upper layer 32 is supported by a plurality of support rollers 31, the bottom layer 33 is spread on-site; the upper layer 31 and the bottom layer 33 are synchronously driven by a conveyor and translated in the right direction to go through the laminating roller 34.
  • the foamable composition 35 is continuously poured to the space between the upper layer and the bottom layer by a foaming equipment distributor 36.
  • T 2 is the time when the foamable composition rises and contacts the upper layer 31, which is also called the contact time in the text
  • T 1 is the gel time.
  • the laminating effect on the upper layer occurs simultaneously with the expanding of the foam forming components of the foamable composition.
  • the foamable composition is poured to the bottom surface of the composite panel, and the foaming reactions take place simultaneously or sequentially.
  • the heat generated by the exothermic reaction will result in the expansion of the blowing agent, causing the foamable composition to rise up until it contacts the upper layer.
  • Figure 4 illustrates the possible microstructure of the inner layer of the PUR composite panel produced by a continuous production line.
  • Figure 5 illustrates each direction of the composite panel.
  • M or Y direction is the direction of the production line
  • X is the thickness direction
  • Z is the width direction.
  • the compressive strengths of the PUR composite panel produced by a common continuous production line vary greatly in different directions.
  • the compressive strength is greater in the Y direction.
  • Figure 6 diagrammatically shows that under equivalent processing conditions , the relationship between the reaction time and the height ratio (the height ratio is the ratio of the actual rising height to the maximum free rising height H max ) in the HCFC-141b (referred to as 141b) blowing agent and 141b blended with HFC-245fa (referred to as 245fa) blowing agent (hereinafter referred to as the 141b/245fa system) , without considering contacting the upper layer.
  • the foam freely rises and expands without restriction (compressing) until the end of the foaming process when the maximum height that can be achieved is the maximum free rising height H max .
  • T point where foams blown by the 141b+245fa blowing agent system have a significant higher rise than that of the 141b blowing agent system.
  • the 141b/245fa system at the same contact time can also achieve the same rising height of the 141 system even with less feeding rate.
  • the amount of the foam forming components in the foamable composition can be reduced .
  • the upward expanding height H1 of the 141b/245fa blowing agent system after the contact time T 2 is lower than H2 in the 141b system.
  • the foam cell maintaining the X orientation in the 141b/245fa is greater in amount or proportion, and accordingly the strength in the X direction is also greater.
  • the foam was produced by firstly, opening the ACDB and ACGE sides and pouring in the blowing agents and foamable compositions as defined below. It will be noted from table 1 below that the amounts of the components of the foamable composition, specifically the K15 metal catalyst and the blowing agent were adjusted to ensure that the gel time is almost the same for each composition, and the contact time is set as 5 seconds before the gel time. Subsequently, the ACDB side is closed and the ACGE side remains open and then blow the reaction and test the final product.
  • the four groups of formulations use substantially the same proportions of 245fa in replacement of 141b, which account for 0%, 25%, 50%and 75%of the total blowing agent, and are marked as samples #1, #2, #3 and #4, respectively.
  • the total weight of the blowing agent and the weight of the catalyst are adjusted to obtain the similar gel time and core or inner layer density.
  • the instrument FOAMAT was used to record the relation between the 245fa ratio in the blowing agent composition and the foam rising height ratio (i.e. the H/H max ratio of the foam rising height H to the maximum free rising height H max ) , wherein the rising height H T at contact time T 2 which is 5 seconds before the gel time, is marked.
  • the figure shows that when 25%245fa is used, the H T /H max ratio of the foamable composition's rising height at contact time to the maximum free rising height is 65%. With the increase of the amount of 245fa, the ratio of the rising height at the contact time to the maximum free rising height is further increased.
  • Compressive strength was measured according to the GB/T8813-2008 standard
  • Table 4 The total compressive strength in three directions and the ratio of the compressive strength in thickness direction to the total compressive strength
  • the dimensional stability was tested according to GB/T8811-2008 standard, the sample was placed under the experimental condition of 70 degrees Celsius, with 95%relative humidity for 24 hours and the dimensional difference of the sample has been tested.
  • the dimensional stability is better when the 245fa ratio is above 25%and preferably 50%.
  • the four groups of formulations use substantially the same proportions of HFO-1233zd in replacement of cyclopentane, which account for 0%, 25%, 50%and 75%of the total blowing agent, and are marked as samples #1, #2, #3 and #4, respectively. Likewise, the weight of the blowing agent and the weight of the catalyst were adjusted to obtain the similar gel time and core density.
  • the instrument FOAMAT was used to record the relation between the HFO-1233zd ratio in the blowing agent composition and the foam rising height ratio (i.e. the H/H max ratio of the foam rising height H to the maximum free rising height H max ) , wherein the rising height H T at the contact time which is 5 seconds before the gel time, is marked.
  • the figure shows that when 25%HFO-1233zd is blended with cyclopentane, the H T /H max ratio of the foamable composition's rising height at contact time to the maximum free rising height is 65%.
  • the ratio of the rising height at the contact time to the maximum free rising height is further increased.
  • Compressive strength was measured according to the GB/T8813-2008 standard
  • Table 9 The total compressive strength in three directions and the ratio of the compressive strength in thickness direction to the total compressive strength
  • the dimensional stability was tested according to GB/T8811-2008 standard, the sample was placed under the experimental condition of 70 degrees Celsius, with 95%relative humidity for 24 hours and the dimensional difference of the sample has been tested.
  • the dimensional stability is better when the HFO-1233zd ratio is above 25%and preferably round 50%.
  • the blowing agent comprises component I and component II.
  • component I include, but are not limited to, HFC-245fa, HFO-1233zd, trans HFO-1233zd, cis-HFO-1233zd, trans-HFO-1234ze, cis-HFO-1234ze, HCFC-22, HCFC-142b, CO 2 , HFC-227ea, and HFC-134a; and the examples of component II include, but are not limited to, HCFC-141b, HFC-365mfc, HFO-1336mzzm, trans-HFO-1336mzzm, cis-HFO-1336mzzm, methyl formate, methylal, n-pentane, cyclo-pentane, and iso-pentane.
  • any combination of the above components in component I and component II at suitable proportions as the blowing agent composition resulting in the ratio of the rising height H T of the foamable composition in the inner layer at the contact time when the foamable composition is contacting the upper layer and the maximum free rising height H max is equal to or above 65%, preferably equal to or above 75%, can effectively improve the dimensional stability in thickness direction.
  • the experimental study has found out that when the weight percentage of component I in the blowing agent composition is 20%or greater, preferably from 20%to 75%, more preferably from 20%to 50%, the compressive strength distribution in each direction is more satisfactory, and the dimensional stability is better. Therefore, with respect to the blowing agent composition not verified by experiments, the components of the blowing agent can be set in reference to above proportions.
  • one or more of the foamable composition content, the pour-in density of the foamable composition, and the production line speed can be adjusted so that the foamable composition sufficiently rises before the contact time, thereby achieving the purpose that the ratio of the rising height H T at the contact time to the maximum free rising height H max is equal to or above 65%, preferably equal to or above 75%.
  • the selection of the foamable composition content, the pour-in density of the foamable composition, and the production line speed are selected based on the purpose of achieving the same contact time.
  • the parameters such as the foamable composition content, the pour-in density of the foamable composition, and the production line speed can be adjusted to obtain the similar contact time, and the ratio of the rising height H T at the contact time to the maximum free rising height H max is equal to or above 65%, preferably equal to or above 75%.
  • the applicant has surprisingly found out that even though the foamable composition content is reduced and the production line speed is increased in the case of the blowing agent composition, it can also achieve greater compressive strength in thickness direction.
  • the upper layer and the bottom layer of the composite panel of the present invention can be made of any commonly used materials in the art.
  • the materials more suitable for the upper layer and the bottom layer in the present invention include, but are not limited to, steel, aluminum, paper or plywood.
  • the inner layer of the present invention is more preferably composed of fire resistant material with an oxygen index of greater than 23. Further, water in the above various formulations is used as an additional blowing agent to promote the foaming process.
  • the blowing agent components other than the increase of the compressive strength in thickness direction, it should also be taken into consideration of the compressive strength in other directions not being substantially affected.
  • the compressive strength in thickness direction is desirable, it shall be noted that when the C x /C x+y+z ratio of the compressive strength in thickness direction to the total compressive strength in three directions is over 28%, preferably over 30%, in the experiments, the dimensional stability in each direction tends to be reasonable, thereby significantly improving the anisotropy.
  • the improvement of the dimensional stability of the blowing agent in the present invention may also be resulted from for example, the release of more internal stress or internal pressure during the foaming process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

La présente invention concerne un panneau composite de PUR et/ou PIR et son procédé de préparation. Les constituants de la composition sont sélectionnés de sorte que le rapport de la hauteur d'élévation de la mousse au temps de contact lorsque la mousse est mise en contact avec la couche supérieure jusqu'à la hauteur maximale d'élévation libre soit égal ou supérieur à 65 %, de préférence égal ou supérieur à 75 %, ce qui permet d'améliorer l'anisotropie et la stabilité dimensionnelle du panneau composite produit dans une chaîne de production continue.
PCT/CN2016/082983 2015-05-21 2016-05-23 Panneau composite de pur et/ou pir et procédé de production continue de ce dernier WO2016184433A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510262403.8A CN105440302A (zh) 2015-05-21 2015-05-21 聚氨酯或聚异氰脲酸酯复合板以及其连续生产线生产方法
CN201510262403.8 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016184433A1 true WO2016184433A1 (fr) 2016-11-24

Family

ID=55550973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082983 WO2016184433A1 (fr) 2015-05-21 2016-05-23 Panneau composite de pur et/ou pir et procédé de production continue de ce dernier

Country Status (2)

Country Link
CN (1) CN105440302A (fr)
WO (1) WO2016184433A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381229A1 (en) * 2020-06-05 2021-12-09 Johns Manville Non-wicking underlayment board
WO2021260069A1 (fr) 2020-06-25 2021-12-30 Basf Se Mousse de résine de polyisocyanurate ayant une résistance à la compression élevée, une faible conductivité thermique et une qualité de surface élevée

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105440302A (zh) * 2015-05-21 2016-03-30 霍尼韦尔国际公司 聚氨酯或聚异氰脲酸酯复合板以及其连续生产线生产方法
EP3521331A1 (fr) 2018-02-06 2019-08-07 Covestro Deutschland AG Panneau composite en mousse de polyuréthane
WO2019096763A1 (fr) 2017-11-17 2019-05-23 Covestro Deutschland Ag Panneau composite à base de mousse de polyuréthane
US11685140B2 (en) * 2020-06-05 2023-06-27 Johns Manville Non-wicking underlayment board
CN112612772B (zh) * 2020-12-01 2023-07-18 中车长江车辆有限公司 一种聚氨酯发泡仿真的数据库构建方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160074A (en) * 1975-09-12 1979-07-03 Nihon Soflan Chemical & Engineering Co., Ltd. Polyisocyanate foam having isotropic cells and method and apparatus for preparing same
US20150004864A1 (en) * 2012-02-02 2015-01-01 Bayer Intellectual Property Gmbh Method for continuously producing a sandwich composite elements
CN105440302A (zh) * 2015-05-21 2016-03-30 霍尼韦尔国际公司 聚氨酯或聚异氰脲酸酯复合板以及其连续生产线生产方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647178B1 (fr) * 1992-06-01 1997-02-26 Prefoam Ag Dispositif de production continue de mousse de polyurethane en plaques
CA2459990A1 (fr) * 2001-09-12 2003-03-20 Apache Products Company Produits de mousse composites et procede associe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160074A (en) * 1975-09-12 1979-07-03 Nihon Soflan Chemical & Engineering Co., Ltd. Polyisocyanate foam having isotropic cells and method and apparatus for preparing same
US20150004864A1 (en) * 2012-02-02 2015-01-01 Bayer Intellectual Property Gmbh Method for continuously producing a sandwich composite elements
CN105440302A (zh) * 2015-05-21 2016-03-30 霍尼韦尔国际公司 聚氨酯或聚异氰脲酸酯复合板以及其连续生产线生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381229A1 (en) * 2020-06-05 2021-12-09 Johns Manville Non-wicking underlayment board
US11773586B2 (en) * 2020-06-05 2023-10-03 Johns Manville Non-wicking underlayment board
WO2021260069A1 (fr) 2020-06-25 2021-12-30 Basf Se Mousse de résine de polyisocyanurate ayant une résistance à la compression élevée, une faible conductivité thermique et une qualité de surface élevée

Also Published As

Publication number Publication date
CN105440302A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2016184433A1 (fr) Panneau composite de pur et/ou pir et procédé de production continue de ce dernier
CN104628978B (zh) 组合物、硬质聚氨酯泡沫材料及制冷设备
EP2513023B1 (fr) Compositions et utilisations de cis-1,1,1,4,4,4-hexafluorobut-2-ène
CN102229697B (zh) 一种太阳能聚氨酯保温材料
US20200231774A1 (en) Foaming agent compositions containing 1,2,2-trifluor-1-trifluoromethylcyclobutane, and methods of foaming
JP2016531196A (ja) 混合発泡剤を使用して独立気泡硬質ポリウレタンフォームを作製するための真空支援方法
JP2015502429A (ja) Z−1,1,1,4,4,4−ヘキサフルオロ−2−ブテンを含有する泡膨張剤組成物ならびにポリウレタンおよびポリイソシアヌレートポリマー発泡体の製造におけるその使用
JPH08509512A (ja) 硬質ポリウレタンフォームの製造方法
CN110105520B (zh) 一种保温硬质聚氨酯泡沫及其制备方法
CN105461882B (zh) 一种组合聚醚、聚氨酯泡沫及其原料组合物和制备方法
CN104497254A (zh) 组合物、硬质聚氨酯泡沫材料及制冷设备
CN107163221A (zh) 一种用于冰箱的优质聚氨酯发泡体系及基于其的冰箱
US20170152364A1 (en) Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
CN104262670A (zh) 发泡剂组合物、聚氨酯泡沫及其制造方法
JP3700499B2 (ja) 冷蔵庫
CN104530361A (zh) 组合物、硬质聚氨酯泡沫材料及制冷设备
CN101016364A (zh) 第三代发泡剂制造的硬质聚氨酯泡沫塑料
WO2018218102A1 (fr) Compositions et utilisations de cis-1,1,1,4,4,4-hexafluoro-2-butène et de cyclopentane
US20170355893A1 (en) Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene and cyclopentane
CN104530360A (zh) 组合物、硬质聚氨酯泡沫材料及制冷设备
CN101016367A (zh) 一种硬质聚氨酯泡沫塑料
CN106700119A (zh) 发泡剂组合物和聚氨酯硬质泡沫
US9868839B2 (en) Process for the production of crosslinked PVC foams and compositions used for the embodiment of said process
CN102532453A (zh) 用于冰箱的正戊烷发泡的聚氨酯硬质泡沫组合聚醚
CN101974220B (zh) 一种利用化工醇的副产物树脂c制备的聚氨酯发泡保温材料及制法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795920

Country of ref document: EP

Kind code of ref document: A1