WO2016184237A1 - 一种汽车控制臂用6x82基复合材料的制备方法 - Google Patents

一种汽车控制臂用6x82基复合材料的制备方法 Download PDF

Info

Publication number
WO2016184237A1
WO2016184237A1 PCT/CN2016/076435 CN2016076435W WO2016184237A1 WO 2016184237 A1 WO2016184237 A1 WO 2016184237A1 CN 2016076435 W CN2016076435 W CN 2016076435W WO 2016184237 A1 WO2016184237 A1 WO 2016184237A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
nano
composite material
control arm
alloy
Prior art date
Application number
PCT/CN2016/076435
Other languages
English (en)
French (fr)
Chinese (zh)
Inventor
赵玉涛
怯喜周
陈刚
李其荣
浦俭英
Original Assignee
江苏大学
亚太轻合金(南通)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学, 亚太轻合金(南通)科技有限公司 filed Critical 江苏大学
Priority to DE112016000649.7T priority Critical patent/DE112016000649B8/de
Publication of WO2016184237A1 publication Critical patent/WO2016184237A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the invention relates to an aluminum-based composite material, in particular to a preparation method of a high-performance aluminum-based composite material for an automobile control arm.
  • the object of the present invention is to add nano-Aln whiskers, nano-ZrB 2 particles and sub-micron TiB 2 particles to the purified alloy melt based on the optimization of the alloy composition and the heat treatment process.
  • Multi-scale multi-scale nano-compositing fortifiers of nano-Al 2 O 3 particles and micro-Al 3 Ti particles through the mechanism of nanofiber bearing strengthening, nano-particle Orowan strengthening, nano-reinforcing toughening and fine grain strengthening and toughening, the largest Limiting the plastic toughness of the alloy matrix while increasing its strength and modulus.
  • the invention firstly combines "spiral magnetic field restraint control technology” and "high energy ultrasonic dispersion technology” to efficiently prepare multi-component multi-scale nano-compositing fortifier in situ; and then adds the composite strengthening agent to the 6X82 alloy melt which has been optimized and purified by composition. In the middle, low-frequency magnetic field stirring is used to promote the fusion and dispersion of the composite strengthening agent. Finally, the composite casting rod is obtained by optimizing the improved air-molding system for subsequent heat treatment, deformation and control arm member forming.
  • the nano composite reinforcing agent of the invention and the nano composite strengthening and toughening technology thereof can effectively solve the current alloy composition optimization
  • the method does not significantly improve the strength of the material, and can not improve the modulus of the alloy and the disadvantage of sacrificing plastic toughness; and effectively avoids the in-situ synthesis of the reinforcement directly in the alloy bath, the infiltration of the reactants is difficult, the by-product contamination of the alloy, and the equipment transformation cost is high.
  • 6X82-based composite materials for automotive control arms can be produced on a small-scale, low-cost, non-polluting, high-efficiency scale.
  • the preparation method of the invention comprises the following steps:
  • step 2 Preparation of 6X82-based composite material for automobile control arm: the composite strengthening agent prepared in step 1 is added to the alloy molten pool after degassing and slag removal in the 6X82 alloy semi-continuous casting production line for automobile control arm, and The mixture is uniformly mixed and then the composite bar is produced by optimizing the improved die casting system.
  • the 6X82 alloy is a special alloy optimized by our company according to the performance requirements of the automotive control arm supplier customers.
  • the Si content and the Mg content were adjusted from 1.05 to 1.12% and 0.82 to 0.95% of 6082 to 0.9 to 1.05% and 0.9 to 1.05%, respectively, and the Mg content was decreased while reducing the free silicon content (from 0.58% to 0.4%).
  • 2 Si content (from 1.4% to 1.5%), to improve the ductility and forgeability of the alloy on the basis of ensuring the strength; while controlling the composition of Cu between 0.5 and 0.6, improve the alloy Strength;
  • Zr is controlled as 0.03% in the additive element
  • Cr is controlled as an additive element in the range of 0.1 to 0.15%.
  • the 6082 alloy is further improved in terms of strong plasticity and malleability; the specific composition of the 6X82 alloy is calculated by weight percentage: Si: 0.9 to 1.05, Mg: 0.9 to 1.05, Cu: 0.5 to 0.6, Fe : 0.2, Cr: 0.1 to 0.15, Zr: 0.03, and other impurity elements including Pb, Sn, and Na are individually less than 0.05, total not more than 0.15, and the balance is Al.
  • the "spiral magnetic field-ultrasonic field combined composite device” comprises a crucible located in the thermal insulation layer, and a furnace cover is arranged on the crucible, characterized in that: an ultrasonic system composed of a double ultrasonic horn and a spiral stirring magnet The double ultrasonic horn extends into the crucible through the furnace cover and is symmetrically arranged along the central axis of the crucible; the spiral stirring magnet is installed on the surface of the thermal insulation layer, and the specific structure is shown in Fig.
  • the process parameters are: spiral stirring
  • the rotating magnetic field (circumferential) of the magnet and the traveling magnetic field (radial) can be adjusted separately, wherein the voltage is 380V, the current is 50-190A adjustable, the frequency is adjustable from 2 to 20Hz, the ultrasonic power is 500-2000W, and the wave speed is 1500m/ s, the ultrasonic frequency is 10 ⁇ 30kHz; through the adjustment of the magnetic field strength and frequency in two directions, the reactant and the aluminum melt can be effectively mixed uniformly, and the fine bubbles, molten salt droplets or powder generated by the high-energy ultrasonic crushing reactant are restrained. The floating and sinking of the body allows the aluminum melt to fully contact the reactants.
  • the rotating magnetic field current 50A, frequency 10Hz
  • traveling wave magnetic field current 90A, frequency 15Hz
  • ultrasound power 1500W, frequency 20kHz, 30min
  • composition of the reinforcement in the multi-component multi-scale nano-compositing enhancer is calculated as percentage by weight: nano AlN whiskers (1 to 2 wt.%), nano ZrB 2 particles (1 to 5 wt.%), nano Al 2 O 3 particles (0 to 10 wt.%) and submicron TiB 2 particles (1 to 5 wt.%), the balance being 6X82 alloy.
  • the amount of the composite strengthening agent added in the step (2) is 0.5 to 5 wt.% of the 6X82 alloy.
  • the gas reactant prepared by the preparation is N 2 or NH 3 , the purity is not less than 99.8 vol.%, and the flow rate is 1.5-3.5 L/min; the solid reactant is composed of K 2 ZrF 6 and ZrO 2 One of K 2 TiF 6 and TiO 2 is one of KBF 4 and B 2 O 3 , wherein the ratio of the solid reactants is based on the stoichiometric ratio of the reinforcement.
  • the optimized and improved gas mold casting system is as shown in Fig. 2, because after the composite strengthening agent is melted in the 6X82 alloy melt, the nano-reinforced body tends to agglomerate under the driving force of reduced free energy, which will eventually The agglomeration of the nano-reinforcing body in the composite material is not conducive to the strengthening effect; the present invention employs a rectangular diversion sleeve provided with an electromagnetic stirring magnet around the melt inflow end of the air-mold casting system, and is added in the center of the diversion sleeve.
  • High-energy ultrasonic device with power of 500W and frequency of 20kHz; high-energy ultrasonic can redistribute the agglomerated nano-reinforcement in the melt, and the high-intensity rotating magnetic field around the diversion sleeve, voltage 380V, current 25A, frequency 20Hz;
  • the melt in the sleeve rotates at a high speed and collides with the rectangular inner wall of the flow guiding sleeve to promote the dispersion and transmission of the nanoparticles.
  • the melt uniformly distributed in the nano-reinforced body of the flow guiding sleeve enters the crystallizer, it rapidly solidifies; thereby ensuring not only the composite material It has fine crystal grains, uniform distribution of nano-reinforcing bodies, and the composite melt solidifies in the process of spiral reduction under the action of magnetic field and gravity field, and can effectively reduce the cast rod Surface segregation.
  • the multi-scale multi-scale nano-composite strengthening technology and the preparation method thereof for the composite material proposed by the invention utilize nanometer increase
  • the nanoscale effect of the strong body significantly increases the strength and modulus of the material while maintaining the plastic toughness of the material.
  • the invention separates the preparation of the composite strengthening agent from the production of the composite material, and can effectively exert the convenience of the composite strengthening agent production device on the basis of minimally modifying the original production line.
  • Controllable and continuous continuous high-efficiency advantages of alloy continuous casting production line solve the problem of difficulty in infiltration of reinforcement reactant and aluminum melt in the direct reaction process, and low reaction efficiency, and avoid directly adding the reinforcement reactant directly to the alloy continuous casting production line.
  • the reaction by-products produced by the pool contaminate the melt and reduce the efficiency of the continuous casting line; thus, the invention can produce 6X82-based nano composite materials for automobile control arms in green, high efficiency, low cost and macro-quantity, and is energy-saving, environmentally friendly and lightweight for automobiles. And the improvement of mobility provides technical support.
  • 1 is a schematic structural view of a spiral magnetic field-ultrasound field combined composite device according to the present invention; 1. a furnace cover lifting device, 2. an ultrasonic device, 3. a vent pipe, 4. a feed port, 5, a furnace cover, 6, a crucible, 7 Ultrasonic horn, 8 induction heating coil, 9, spiral stirring magnet, 10, thermal insulation layer, 11, support frame, 12, discharge port.
  • FIG. 2 is a schematic structural view of an optimized and improved gas mold pouring system according to the present invention.
  • Figure 3 is a front elevational view showing the structure of the optimized and improved gas mold pouring system of the present invention.
  • Figure 5 is a structural diagram of a (ZrB 2 +AlN+TiB 2 )/6X82Al composite prepared according to the present invention.
  • Embodiments, as shown in FIG. 1 are schematic diagrams of a working place of a composite material preparation process.
  • the 500kg 6X82 alloy melt which has been filtered, slag-depleted and degassed by impurities is introduced into the spiral magnetic field-ultrasonic field combined composite device and the spiral magnetic field is started (rotating magnetic field: current 50A, frequency 10Hz; traveling magnetic field: current 90A, frequency 15Hz)
  • the powders K 2 ZrF 6 , K 2 TiF 6 and KBF 4 were added to the 6 ⁇ 82 through the inlet port according to the amount of 3wt.% nano ZrB 2 particles, 2wt.% submicron TiB 2 particles, 3wt.% micron Al 3 Ti particles.
  • TiB 2 )/6X82Al composite bar the Al 3 Ti mesophase particles dissolve in the alloy during the solidification process of the alloy, and generate a large amount of crystal nuclei and fine crystals. It disappears for subsequent homogenization heat treatment, extrusion, control arm forging and other processes; as shown in Figure 5, the (ZrB 2 + AlN + TiB 2 ) / 6X82Al composite material structure prepared by the present invention, from the figure See the prepared composite Fine grain size organizations, to enhance the uniformity distribution of body.
  • the mechanical properties sampling test shows that the composite control arm after forging has a tensile strength of 440 MPa, a yield strength of 380 MPa, an elongation of 14.3%, a modulus of 75 GPa, and an increase of 29.4%, 22.5%, and 19.1, respectively, relative to the 6X82 alloy matrix. % and 11.4%.
  • the (ZrB 2 +AlN+Al 2 O 3 +TiB 2 )/6X82Al composite was produced with NH 3 gas, ZrO 2 , TiO 2 and B 2 O 3 as the reactants, and the nano ZrB 2 particles in the final composite were 0.08wt. %, nano-Al 2 O 3 particles 0.248 wt.%, nano-AlN whiskers 0.05-0.1 wt.% and sub-micron TiB 2 particles 0.04 wt.%, and the balance is 6X82 alloy.
  • the mechanical property sampling test showed that the tensile strength of the composite control arm after forging was 442 MPa, the yield strength was 390 MPa, the elongation was 13.5%, and the modulus was 78 GPa.
  • the gas reactants for preparing the reinforcement are N 2 , K 2 ZrF 6 , K 2 TiF 6 and B 2 O 3 , rotating magnetic field: current 50 A, frequency 10 Hz; traveling wave magnetic field: current 90 A, frequency 15 Hz; ultrasound: power 1500W, frequency 20kHz, industrial N 2 gas purity is not less than 99.8vol.%, flow rate is 1.5-3.5L/min;
  • the solid reactant is composed of K 2 ZrF 6 , K 2 TiF 6 and B 2 O 3 , According to the amount of 4wt.% nano ZrB 2 particles, 4wt.% submicron TiB 2 particles, 5wt.% micron Al 3 Ti particles, the theoretical amount of nano-Al 2 O 3 in the composite strengthening agent melt is 6.3wt.
  • the fortifier melt is introduced into the molten alloy bath to be cast into the air mold, the specific steps are the same as in the first embodiment, and the final production is obtained (ZrB 2 + AlN + Al 2 O 3 +TiB 2 )/6X82Al composite.
  • the mechanical properties sampling test showed that the tensile strength of the composite control arm after forging was 455 MPa, the yield strength was 394 MPa, the elongation was 12.8%, and the modulus was 79 GPa.
PCT/CN2016/076435 2015-05-19 2016-03-16 一种汽车控制臂用6x82基复合材料的制备方法 WO2016184237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016000649.7T DE112016000649B8 (de) 2015-05-19 2016-03-16 Herstellungsverfahren für Verbundmaterial mit 6X82-Substrat für einen Fahrzeuglenker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510253544.3A CN104928542B (zh) 2015-05-19 2015-05-19 一种汽车控制臂用6x82基复合材料的制备方法
CN201510253544.3 2015-05-19

Publications (1)

Publication Number Publication Date
WO2016184237A1 true WO2016184237A1 (zh) 2016-11-24

Family

ID=54115963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076435 WO2016184237A1 (zh) 2015-05-19 2016-03-16 一种汽车控制臂用6x82基复合材料的制备方法

Country Status (3)

Country Link
CN (1) CN104928542B (de)
DE (1) DE112016000649B8 (de)
WO (1) WO2016184237A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626366A (zh) * 2020-12-04 2021-04-09 南昌航空大学 一种降低搅拌制备颗粒增强铝基复合材料孔隙率的方法
CN114289693A (zh) * 2022-01-06 2022-04-08 北京科技大学 一种用于生产gh4169镍基高温合金的装置
CN114642992A (zh) * 2022-02-28 2022-06-21 江苏大学 一种高体积分数颗粒增强铝基复合材料的制备装置和方法
CN114990369A (zh) * 2022-07-28 2022-09-02 鼎镁新材料科技股份有限公司 一种再生铝制备铝合金自行车轮圈的方法
CN115449657A (zh) * 2022-09-29 2022-12-09 昆明冶金研究院有限公司 一种有效控制TiB2颗粒尺寸和分布范围的铝钛硼合金制备方法
CN116005032A (zh) * 2022-12-13 2023-04-25 湖南文昌新材科技股份有限公司 金属基复合材料的制备装置、方法及材料
CN114642992B (zh) * 2022-02-28 2024-05-17 江苏大学 一种高体积分数颗粒增强铝基复合材料的制备装置和方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928542B (zh) * 2015-05-19 2017-05-03 江苏大学 一种汽车控制臂用6x82基复合材料的制备方法
CN105779915B (zh) * 2016-03-17 2018-04-24 江苏大学 一种高强韧铝基纳米复合材料的制备方法
CN107214309A (zh) * 2017-05-17 2017-09-29 东北大学秦皇岛分校 一种改善高硅铝合金组织性能的方法
CN110769952A (zh) * 2017-06-16 2020-02-07 麦格纳国际公司 具有用于提高熔融金属质量的超声波单元的压铸炉系统
CN109128058B (zh) * 2018-10-30 2023-07-18 辽宁科技大学 复合场铸造法生产ods钢的装置及方法
CN109504870B (zh) * 2018-11-21 2020-11-20 江苏大学 一种轻量化汽车防撞梁用原位纳米强化铝合金及制备方法
CN110042280B (zh) * 2019-06-05 2020-09-08 山东大学 一种原位内生多相颗粒增强铝基复合材料及其制备方法
CN111118329B (zh) * 2020-01-19 2021-11-23 江苏大学 一种高强韧高中子吸收铝基复合材料的制备方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409661A (en) * 1991-10-22 1995-04-25 Toyota Jidosha Kabushiki Kaisha Aluminum alloy
CN1352314A (zh) * 2001-11-03 2002-06-05 丁刚 硬质相增强金属基复合材料生产工艺
CN101391290A (zh) * 2008-11-05 2009-03-25 江苏大学 一种磁场与超声场耦合作用下熔体反应合成金属基复合材料的方法
CN102319756A (zh) * 2011-09-05 2012-01-18 西南铝业(集团)有限责任公司 一种铝合金棒材的制造方法
CN102994814A (zh) * 2012-11-22 2013-03-27 江苏大学 一种磁场下原位生成的混合颗粒增强耐磨铝基复合材料及其制备方法
CN104928542A (zh) * 2015-05-19 2015-09-23 江苏大学 一种汽车控制臂用6x82基复合材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376700C (zh) * 2005-01-19 2008-03-26 江苏大学 合成高性能铝基原位复合材料的Al-Zr-B-O反应体系及其合成的新材料
CN101956120B (zh) * 2010-10-12 2012-06-20 江苏大学 一种纳米颗粒增强铝基复合材料的制备方法及装置
CN102121075B (zh) * 2011-02-15 2013-03-13 江苏大学 高能超声与脉冲电场下合成颗粒增强铝基复合材料的方法
US20140123719A1 (en) * 2012-11-08 2014-05-08 Sapa Extrusions, Inc. Recrystallized 6XXX Aluminum Alloy with Improved Strength and Formability
CN103173664A (zh) 2013-04-19 2013-06-26 上海嘉朗实业有限公司 一种Al-Mg-Si-Cu合金材料及其在汽车铝制控制臂上的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409661A (en) * 1991-10-22 1995-04-25 Toyota Jidosha Kabushiki Kaisha Aluminum alloy
CN1352314A (zh) * 2001-11-03 2002-06-05 丁刚 硬质相增强金属基复合材料生产工艺
CN101391290A (zh) * 2008-11-05 2009-03-25 江苏大学 一种磁场与超声场耦合作用下熔体反应合成金属基复合材料的方法
CN102319756A (zh) * 2011-09-05 2012-01-18 西南铝业(集团)有限责任公司 一种铝合金棒材的制造方法
CN102994814A (zh) * 2012-11-22 2013-03-27 江苏大学 一种磁场下原位生成的混合颗粒增强耐磨铝基复合材料及其制备方法
CN104928542A (zh) * 2015-05-19 2015-09-23 江苏大学 一种汽车控制臂用6x82基复合材料的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626366A (zh) * 2020-12-04 2021-04-09 南昌航空大学 一种降低搅拌制备颗粒增强铝基复合材料孔隙率的方法
CN114289693A (zh) * 2022-01-06 2022-04-08 北京科技大学 一种用于生产gh4169镍基高温合金的装置
CN114642992A (zh) * 2022-02-28 2022-06-21 江苏大学 一种高体积分数颗粒增强铝基复合材料的制备装置和方法
CN114642992B (zh) * 2022-02-28 2024-05-17 江苏大学 一种高体积分数颗粒增强铝基复合材料的制备装置和方法
CN114990369A (zh) * 2022-07-28 2022-09-02 鼎镁新材料科技股份有限公司 一种再生铝制备铝合金自行车轮圈的方法
CN115449657A (zh) * 2022-09-29 2022-12-09 昆明冶金研究院有限公司 一种有效控制TiB2颗粒尺寸和分布范围的铝钛硼合金制备方法
CN116005032A (zh) * 2022-12-13 2023-04-25 湖南文昌新材科技股份有限公司 金属基复合材料的制备装置、方法及材料

Also Published As

Publication number Publication date
DE112016000649T5 (de) 2017-10-19
CN104928542A (zh) 2015-09-23
DE112016000649B4 (de) 2022-12-01
DE112016000649B8 (de) 2023-07-27
CN104928542B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2016184237A1 (zh) 一种汽车控制臂用6x82基复合材料的制备方法
CN109530468B (zh) 一种轻质车身用原位纳米强化铝合金挤压材及等温变速挤压制备方法
CN108559864B (zh) 一种新能源汽车用原位纳米强化铝合金轮毂及制造方法
Guan et al. A review on grain refinement of aluminum alloys: progresses, challenges and prospects
CN110016582B (zh) 一种原位纳米颗粒增强铝基复合材料的制备方法
WO2021143247A1 (zh) 一种高强韧高中子吸收铝基复合材料的制备方法和装置
WO2021114967A1 (zh) 一种原位三元纳米颗粒增强铝基复合材料的制备方法
CN101829777A (zh) 纳米颗粒增强金属基复合材料制备工艺及设备
TWI437100B (zh) 鎂基複合材料的製備方法
CN108085544B (zh) 紧固件用高强度铝合金材料及其制备方法
CN111041288B (zh) 一种高强韧、抗疲劳原位铝基复合材料及其制备方法
CN109234562B (zh) 一种调控制备原位二元纳米颗粒增强铝基复合材料的方法
Liu et al. In situ nanocrystals manipulate solidification behavior and microstructures of hypereutectic Al-Si alloys by Zr-based amorphous alloys
CN110129596B (zh) 薄带状纳米Al3(Sc,Zr)/Al复合孕育剂的制备方法
CN110144478B (zh) 一种高强韧纳米颗粒增强铝基复合材料的制备装置和方法
CN113373347B (zh) 5g基站用高强韧高导热易焊接铝基复合材料及制备方法
CN110229979B (zh) 一种晶内晶界分布微纳复相颗粒增强铝基复合材料及其制备方法
CN110004316B (zh) 原位纳米陶瓷颗粒增强铝基复合材料的制备方法
Bai et al. Microstructure evolution and mechanical properties of Al–Cu alloys inoculated by FeBSi metallic glass
CN109128058B (zh) 复合场铸造法生产ods钢的装置及方法
CN114000015B (zh) 原位多相颗粒耦合增强铝基复合材料及其制备方法
CN114182131A (zh) 一种制备高强高韧耐腐蚀的7085铝基复合材料的方法
CN112195358A (zh) 一种铝基合金、铝基复合材料及其制备方法与应用
CN219079617U (zh) 一种原位合成纳米颗粒增强铝基复合材料的系统
CN115976384B (zh) 具有优异高温力学性能的AlN/AE44复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795724

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016000649

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795724

Country of ref document: EP

Kind code of ref document: A1