WO2016175534A1 - 소화 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조 - Google Patents

소화 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조 Download PDF

Info

Publication number
WO2016175534A1
WO2016175534A1 PCT/KR2016/004351 KR2016004351W WO2016175534A1 WO 2016175534 A1 WO2016175534 A1 WO 2016175534A1 KR 2016004351 W KR2016004351 W KR 2016004351W WO 2016175534 A1 WO2016175534 A1 WO 2016175534A1
Authority
WO
WIPO (PCT)
Prior art keywords
extinguishing water
concrete
fire
fire extinguishing
building
Prior art date
Application number
PCT/KR2016/004351
Other languages
English (en)
French (fr)
Inventor
안승한
Original Assignee
주식회사 룸스타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 룸스타 filed Critical 주식회사 룸스타
Priority to CN201680024965.1A priority Critical patent/CN107567523A/zh
Priority to JP2017557117A priority patent/JP2018520278A/ja
Priority to US15/570,337 priority patent/US10709917B2/en
Publication of WO2016175534A1 publication Critical patent/WO2016175534A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/58Pipe-line systems
    • A62C35/60Pipe-line systems wet, i.e. containing extinguishing material even when not in use
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/11Permanently-installed equipment with containers for delivering the extinguishing substance controlled by a signal from the danger zone
    • A62C35/15Permanently-installed equipment with containers for delivering the extinguishing substance controlled by a signal from the danger zone with a system for topping-up the supply of extinguishing material automatically
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/58Pipe-line systems
    • A62C35/68Details, e.g. of pipes or valve systems
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/08Control of fire-fighting equipment comprising an outlet device containing a sensor, or itself being the sensor, i.e. self-contained sprinklers
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/36Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device
    • A62C37/38Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device by both sensor and actuator, e.g. valve, being in the danger zone
    • A62C37/42Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device by both sensor and actuator, e.g. valve, being in the danger zone with mechanical connection between sensor and actuator, e.g. rods, levers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/8209Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only sound absorbing devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/04Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/26Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated with filling members between the beams
    • E04B5/261Monolithic filling members
    • E04B5/265Monolithic filling members with one or more hollow cores
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/28Cross-ribbed floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/29Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated the prefabricated parts of the beams consisting wholly of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/48Special adaptations of floors for incorporating ducts, e.g. for heating or ventilating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/08Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0604Prismatic or cylindrical reinforcement cages composed of longitudinal bars and open or closed stirrup rods
    • E04C5/0622Open cages, e.g. connecting stirrup baskets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7608Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B2001/949Construction elements filled with liquid, e.g. water, either permanently or only in case of fire
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements
    • E04C2003/0491Truss like structures composed of separate truss elements the truss elements being located in one single surface or in several parallel surfaces
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G11/00Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs
    • E04G11/36Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs for floors, ceilings, or roofs of plane or curved surfaces end formpanels for floor shutterings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Definitions

  • the present invention relates to a concrete construction for floor construction of a building and a floor construction structure of a building including the same, and more particularly, fire water is stored in the concrete structure for constructing the floor of the building itself to prevent fire.
  • the present invention relates to a concrete structure for floor construction of a building having a fire extinguishing function and a floor construction structure of a building including the same that can be suppressed initially.
  • multi-story buildings such as multi-family houses or apartments
  • high-rise buildings such as some apartments may be a prefabricated method using a precast (PC) method.
  • PC precast
  • a sprinkler facility in general, includes a main pipe connected to a fire extinguishing tank as a fire fighting pipe, a standing pipe connected to the main pipe, a plurality of branch pipes branched from the standing pipe, and a sprinkler head provided in each branch pipe.
  • Branch pipe is branched into each household, and sprinkler head is opened by the heat generated in the fire to inject extinguishing water.
  • the sprinkler head is normally sealed by a hot melt portion formed of lead (Pb), and in the event of a fire, the hot melt portion is opened while melting the hot melt portion.
  • Republic of Korea Patent No. 10-0810750, Republic of Korea Patent No. 10-1395776, Republic of Korea Patent Publication No. 10-2013-0118723 and Republic of Korea Patent Publication No. 10-2015-0019107, such as the above technology is presented It is.
  • the conventional sprinkler equipment has a problem that it is difficult to suppress the initial fire, or the installation cost and energy consumption of the related equipment.
  • initial response may be possible, but this requires a large amount of initial installation cost because heat insulation or heating wire must be installed in the fire pipe to prevent freezing.
  • heating piping is generally embedded in the interior of the finished mortar layer.
  • this has a problem that the energy consumption (heating cost, etc.) is a lot of heat conductivity is low.
  • the present invention is to solve the problems of the prior art as described above, to form a floor foundation of the building to facilitate the construction of the floor of the building while being able to extinguish the fire initially, for the construction of the floor having a building fire extinguishing function
  • An object of the present invention is to provide a concrete construction and floor construction of a building including the same.
  • an object of the present invention is to provide a floor construction structure of the building excellent in absorbing and buffering the impact applied to the floor of the building excellent sound insulation between floors.
  • an object of the present invention is to provide a floor construction structure of a building that can reduce the energy consumption by excellent thermal conductivity by the improved heating structure.
  • It provides a concrete structure for the floor construction of a building including a concrete body in which extinguishing water for fire extinguishing is stored.
  • It provides a concrete construction floor construction of the building comprising a fire extinguishing water spray unit for spraying the fire extinguishing water stored in the concrete body.
  • the concrete body comprises a base plate; An isolation wall protruding from an upper portion of the base plate; And a plurality of fire extinguishing water cells formed by the separating wall.
  • the fire extinguishing water spraying unit includes a fire extinguishing water container which is embedded in the fire extinguishing water cell of the concrete body and stores the extinguishing water; A fire extinguishing water discharge pipe through which the fire extinguishing water stored in the fire extinguishing water container is discharged; And it is installed at the end of the extinguishing water discharge pipe, and includes a fire extinguishing water injection port for injecting extinguishing water.
  • a protection member may be installed on an upper portion of the fire extinguishing water cell.
  • the present invention provides a floor construction structure of a building including the concrete structure.
  • the floor construction structure of the building according to the present invention is an impact absorbing unit installed on the concrete structure; A thermally conductive metal plate installed on the shock absorbing unit; A heat insulator installed on the concrete structure; And a heating pipe installed between the heat insulator and the heat conductive metal plate.
  • the shock absorbing unit comprises a first substrate fixed on the concrete structure; A plurality of support bars installed on the first substrate; An elastic buffer member inserted into the support rod; And a second substrate provided on the buffer member, and the second substrate is formed with a guide hole into which the upper end of the support rod is inserted.
  • the fire water is stored in the concrete structure itself, which forms the floor of the building, and has an effect of initially extinguishing the fire.
  • the floor construction of the building is easy and has excellent interlayer sound insulation.
  • the improved heating structure it is possible to reduce the energy consumption (heating cost) by having an excellent thermal conductivity.
  • FIG. 1 is a perspective view of a concrete structure for floor construction of a building according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional configuration diagram of the concrete structure for floor construction of a building according to the first embodiment of the present invention, a cross-sectional view taken along the line A-A of FIG.
  • FIG. 3 is a cross-sectional configuration diagram of a concrete structure for floor construction of a building according to a first embodiment of the present invention, which is a cross-sectional configuration taken along line B-B in FIG. 1.
  • FIG. 9 is a view for explaining a method for manufacturing a concrete body according to the present invention.
  • FIG. 10 is a perspective view showing an embodiment of a forming mold for forming a fire extinguishing water cell according to the present invention.
  • FIG. 11 is a perspective view showing another embodiment of a mold used in the present invention.
  • FIG. 12 is a perspective view of a concrete structure for floor construction of a building according to a second embodiment of the present invention.
  • FIG. 13 is a cross-sectional configuration diagram of a concrete structure for floor construction of a building according to a second embodiment of the present invention, which is taken along line C-C in FIG. 12.
  • FIG. 14 is a cross-sectional configuration diagram of a concrete structure for floor construction of a building according to a second embodiment of the present invention, which is a cross-sectional configuration diagram of the D-D line of FIG. 12.
  • 15 is a perspective view of a concrete structure for floor construction of a building according to a third embodiment of the present invention.
  • FIG. 16 is a cross-sectional configuration diagram of a concrete structure for floor construction of a building according to a third embodiment of the present invention, and is a cross-sectional configuration diagram of the E-E line of FIG. 15.
  • 17 is a cross-sectional view illustrating a process of installing a concrete structure for floor construction of a building according to the present invention.
  • 18 is a plan view for explaining the installation process of the concrete construction for floor construction of the building according to the present invention.
  • FIG. 19 is a cross-sectional configuration diagram of a building floor construction structure according to the first embodiment of the present invention.
  • FIG. 20 is a cross-sectional view showing an embodiment of the fire extinguishing water injector used in the present invention.
  • 21 is a cross-sectional configuration diagram of the building floor construction structure according to the second embodiment of the present invention.
  • FIG. 23 is an exploded perspective view showing the first embodiment of the shock absorbing unit according to the present invention.
  • FIG. 24 is a cross-sectional configuration view showing an embodiment of a shock absorbing member that constitutes the shock absorbing unit according to the present invention.
  • 25 is a cross-sectional configuration view showing a first embodiment of the shock absorbing unit according to the present invention.
  • Fig. 26 is a sectional configuration view showing the second embodiment of the shock absorbing unit according to the present invention.
  • the term “and / or” is used in a sense including at least one or more of the components listed before and after.
  • the term “one or more” as used herein means one or two or more. In this specification, terms such as “first”, “second”, “third”, “one side” and “other side” are used to distinguish one component from another component, and each component is the term. It is not limited by them.
  • the terms “formed on”, “formed on top (top)”, “formed on bottom (bottom)”, “installed on top”, “installed on top (top)” and “bottom (bottom) “Installation in” and the like does not only mean that the components are in direct contact with each other to be laminated (installed), but also includes the meaning that other components are further formed (installed) between the components.
  • “formed (installed) on” means that the second component is directly formed (installed) on the first component, as well as between the first component and the second component. It includes the meaning that the third component can be further formed (installed).
  • connection As used herein, the terms “connection”, “installation”, “bonding” and “fastening” and the like, as well as the two elements are detachably coupled (combined and separated), as well as the meaning of the integral structure. do.
  • connection As used herein, the terms “connection”, “installation”, “engagement” and “fastening” and the like as used herein include, for example, a forced fit method (an interference fit method); Fitting method using grooves and protrusions; And through the fastening method using fastening members such as screws, bolts, pieces, rivets, etc., the two members are combined to be coupled and separated, as well as welding, adhesive, cement or mortar casting, or integral molding, or the like. After the two members are coupled through, it includes a meaning configured to be separated.
  • the "installation” also includes the meaning that two members are laminated (seated) without a separate bonding force.
  • the present invention provides a concrete construction 100 for building floors having a function of fire extinguishing (fire suppression) (hereinafter, abbreviated as "concrete structure”) and the floor construction structure of a building including the same.
  • the present invention includes fire water for extinguishing fire in the interior of the concrete structure 100 itself, which constructs the floor of the building, so that the construction of the floor of the building is easy to extinguish the fire initially.
  • Concrete structure 100 and provides a floor construction structure of the building constructed using the concrete structure (100).
  • FIG. 1 is a perspective view of a concrete structure 100 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line A-A of FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line B-B of FIG.
  • the concrete structure 100 according to the present invention is a structure forming a floor foundation of a building, which includes at least a concrete body 100A according to the first aspect of the present invention.
  • the concrete structure 100 according to the present invention includes the concrete body 100A and a fire water injection unit 100B according to the second aspect of the present invention.
  • the fire water (FW) for extinguishing the fire is stored in the concrete body (100A)
  • the fire water spray unit (100B) is the fire water (FW) stored in the interior of the concrete body (100A) Spray it.
  • the concrete body (100A) is in the shape of a panel (panel) or block (block), etc., which forms the floor foundation of the building.
  • the concrete body 100A replaces the existing concrete slab, for example.
  • the concrete body (100A) is to form a floor structure (floor foundation) of the building, which replaces the existing slab to separate each floor of the building, and forms a floor foundation.
  • each layer includes a ground layer as well as a ground layer.
  • the size (length, width and / or thickness, etc.) of the concrete body 100A is not limited.
  • the concrete body 100A may be fastened and assembled to one or more than two pieces according to the size (scale) of the building and / or the size of the concrete body 100A itself to form the floor of the building.
  • the concrete body 100A may have a size capable of forming a floor of any one layer by two or more fastenings in consideration of transportation and installation work, etc. according to one embodiment.
  • the concrete body 100A has a plate shape as, for example, a rectangular parallelepiped.
  • the concrete body 100A includes a base plate 10, a separation wall 20 protruding from the base plate 10, and a plurality of fire extinguishing water cells capable of storing fire extinguishing water FW. water cell) 30.
  • the base plate 10 is, for example, a plate shape having a rectangular parallelepiped shape.
  • the isolation wall 20 is integrally extended to protrude from the upper portion of the base plate 10. More specifically, the concrete body 100A includes a base plate 10 having a rectangular parallelepiped plate, and an isolation wall 20 integrally protruding from the base plate 10.
  • the isolation wall 20 includes outer isolation walls 20 and 21 formed at an edge of the base plate 10, and inner isolation walls 20 and 22 formed inside the outer isolation walls 20 and 21. (24).
  • the base plate 10 and the isolation wall 20 are made of concrete, and they may be integrally formed simultaneously by pouring and curing concrete through a mold 110 (see FIG. 9).
  • the isolation wall 20 may have a lattice structure and / or a honeycomb structure (honeycomb structure).
  • the grid structure as well as a grid structure in which the isolation wall 20 is formed in the longitudinal direction (horizontal direction) and the width direction (vertical direction) of the concrete body 100A and arranged in a rectangular shape
  • the isolation wall 20 includes a waffle structure formed in a diagonal direction and arranged in a rhombus (or parallelogram).
  • the honeycomb structure is a honeycomb shape, which includes pentagonal, hexagonal, octagonal and / or circular shapes.
  • the isolation wall 20 is illustrated as having a rectangular lattice structure.
  • the isolation wall 20 includes a plurality of outer walls 21 protruding from the edge of the base plate 10 and protruding in the longitudinal direction (horizontal direction) of the base plate 10.
  • the 22 and the vertical wall 24 may have a rectangular lattice structure at right angles to each other.
  • the fire extinguishing water cell 30 stores fire extinguishing water (FW) for extinguishing the fire.
  • the extinguishing water cell 30 may be any type of extinguishing water (FW) can be stored.
  • the fire extinguishing water cell 30 may be directly injected and stored in the fire extinguishing water FW into the fire extinguishing water cell 30 according to one embodiment.
  • the extinguishing water cell 30 stores the extinguishing water FW through a fire water container 150 (see FIGS. 12 to 14).
  • the fire extinguishing water container 30 is inserted and installed in the fire extinguishing water cell 30, and the fire extinguishing water FW is injected into and stored in the fire extinguishing water container 150.
  • the extinguishing water cell 30 is a groove-shaped space provided on the base plate 10, which is formed by the separating wall 20.
  • the extinguishing water cell 30 may have various shapes depending on the shape of the isolation wall 20, which may have, for example, a cross-sectional shape such as a square, a pentagon, a hexagon, an octagon, and / or a circle.
  • the fire extinguishing water cell 30 is plural, which is a space partitioned by the plurality of horizontal walls 22 and the plurality of vertical walls 24. The number of the extinguishing water cells 30 is not limited.
  • the fire extinguishing water cells 30 may be arranged in, for example, 2 rows to 20 rows in the horizontal direction (length direction) of the concrete body 100A, and 1 row to 10 rows in the vertical direction (width direction).
  • the fire water cells 30 are arranged in four rows in the horizontal direction (length direction) and in two rows in the vertical direction (width direction), thereby illustrating a state in which eight pieces are formed.
  • the concrete body 100A may further include a through hole 40.
  • the through holes 40 may be formed in plural in one or more directions selected from a horizontal direction (length direction) and a vertical direction (width direction) of the concrete body 100A.
  • the through hole 40 is preferably formed in at least the longitudinal direction (width direction) of the concrete body 100A.
  • the through hole 40 is formed in the longitudinal direction (width direction) of the concrete body 100A, and may be formed in the base plate 10.
  • the through hole 40 is usefully used when fastening the plurality of concrete bodies 100A according to the present invention. Specifically, the through hole 40 is inserted into the tension line (TW, see Fig. 17) for fastening with the adjacent concrete body (100A), it can be firmly assembled between the concrete body (100A).
  • the concrete body 100A may further include an insert 50 installed on the side surface.
  • One side of the insert 50 is embedded in the side of the concrete body (100A), the other side is exposed to the outside.
  • the insert 50 is used to connect with the reinforcing bar (F) built in the wall (W, Fig. 17) of the building.
  • the insert 50 and the reinforcing bar (F) is firmly connected through, for example, welding.
  • the concrete body (100A) can have a firm coupling force with the wall (W) of the building.
  • the concrete body 100A may further include a ring member 60 installed on the side. As shown in Figure 1, one side of the ring member 60 is embedded in the side of the concrete body (100A), the other side is exposed to the outside.
  • the ring member 60 may be used when carrying or installing the concrete body 100A. Specifically, when carrying or installing the concrete main body 100A, the hook member 60 may be held, or a device such as a crane may be connected to the hook member 60 to be transported and / or installed. Accordingly, the ring member 60 can facilitate the transport or installation work of the concrete body (100A).
  • the ring member 60 may be removed after its use. That is, after completing the transport or installation of the concrete body (100A), the ring member 60 may be separated and removed from the concrete body (100A).
  • the fire extinguishing water spraying unit 100B sprays fire extinguishing water FW at the time of fire to extinguish the fire.
  • the extinguishing water spraying unit (100B) may spray the extinguishing water (FW) stored in the interior of the concrete body (100A) as described above.
  • the extinguishing water (FW) is injected and stored in the extinguishing water cell 30, and the extinguishing water spraying unit 100B includes the extinguishing water stored in the extinguishing water cell 30 ( FW).
  • the fire extinguishing water injection unit 100B includes a fire extinguishing water discharge pipe 160 through which the fire extinguishing water FW is discharged, and a fire extinguishing water spray port 180 for spraying the fire extinguishing water FW.
  • the extinguishing water (FW) may be directly injected and stored in the extinguishing water cell 30 as described above. At this time, the extinguishing water (FW) stored in each of the extinguishing water cells 30 is discharged through the extinguishing water discharge pipe 160, and then sprayed toward the fire point through the extinguishing water injection port 180.
  • the base plate 10 is formed with a discharge hole (10B) in communication with each extinguishing water cell (30).
  • the discharge hole 10B is equal to or greater than the number of fire extinguishing water cells 30.
  • one or two or more discharge holes 10B may be communicated with one extinguishing water cell 30.
  • the extinguishing water discharge pipe 160 is inserted and installed in the discharge hole 10B. Specifically, as shown in Figures 2 and 3, one side (upper side in the drawing) of the extinguishing water discharge pipe 160 is inserted and installed in the discharge hole (10B), the other side of the extinguishing water discharge pipe 160 Exposed to the bottom of the base plate 10 is coupled to the extinguishing water injection port 180. As described above, a plurality of fire extinguishing water cells 30 are formed in the concrete body 100A. At this time, one or two or more extinguishing water discharge pipes 160 are installed in one extinguishing water cell 30.
  • the extinguishing water injection port 180 is installed at the end of each extinguishing water discharge pipe 160.
  • the extinguishing water injection port 180 is exposed to the outside through the ceiling finishing material 600, which sprays the extinguishing water (FW) toward the fire point.
  • the extinguishing water injection port 180 is not particularly limited as long as it can inject extinguishing water (FW) discharged from the extinguishing water discharge pipe 160.
  • the extinguishing water injection port 180 may be selected from a sprinkler head or the like used in a conventional sprinkler facility.
  • the concrete body 100A may further include a digestion water flow passage 20B and 162 that communicate with each other between the extinguishing water cells 30.
  • the flow passages 20B and 162 are formed in the isolation wall 20, which may be formed in at least the horizontal wall 22 and / or the vertical wall 24.
  • the extinguishing water flow passages 20B and 162 are not limited as long as the extinguishing water FW can flow, and for example, grooves and / or separating walls formed on top of the separating wall 20. 20 may be selected from the communication hole 20B formed through the perforation.
  • the digestion water flow passage 20B, 162 may further include a communication pipe 162 inserted into and installed in the communication hole 20B.
  • the concrete body 100A may further include a fire extinguishing water inlet 164 for injecting fire extinguishing water (FW) into the fire extinguishing water cell 30.
  • the extinguishing water inlet 164 is formed on one side of the concrete body (100A).
  • the extinguishing water inlet 164 may be formed in the isolation wall 20 of the concrete body 100A, and may be formed in the outer wall 21 provided at the edge of the concrete body 100A.
  • an insertion hole 21a may be formed in the outer wall 21, and a digestion water injection hole 164 may be inserted into and installed in the insertion hole 21a.
  • the concrete body 100A may optionally further include an air exhaust port 166 for discharging air existing in the extinguishing water cell 30 to the outside.
  • the air exhaust port 166 is formed at one side of the concrete body 100A.
  • the air exhaust port 166 may be formed in the isolation wall 20 of the concrete body 100A, and may be formed in the outer wall 21 provided at the edge of the concrete body 100A.
  • an insertion hole (not shown) may be formed in the outer wall 21, and an air exhaust port 166 may be inserted and installed in the insertion hole.
  • the extinguishing water (FW) in the case of injecting and storing the extinguishing water (FW) in the extinguishing water cell 30, it may be injected after constructing the concrete body 100A in the building. At this time, the extinguishing water (FW) may be injected into the extinguishing water cell 30 through the extinguishing water inlet 164 formed on one side of the concrete body (100A). In addition, when the extinguishing water (FW) is injected, the air present in the extinguishing water cell 30 is discharged to the outside through the air exhaust port 166 to facilitate the injection of the extinguishing water (FW).
  • the extinguishing water (FW) when the extinguishing water (FW) is filled in any one of the extinguishing water cells 30 through the extinguishing water inlet 164, and then the extinguishing water flow passage (20B) 162 formed in the separation wall 20 Fire extinguishing water (FW) can be continuously filled in the adjacent extinguishing water cell 30 through.
  • the extinguishing water (FW) stored in the extinguishing water cell 30 is exhausted by the fire extinguishing, the extinguishing water (FW) can be replenished and filled in each extinguishing water cell 30 through the above process. have. Therefore, the injection and replenishment of the extinguishing water FW may be easily performed by the extinguishing water flow passage 20B and 162, the extinguishing water inlet 164, and / or the air exhaust port 166.
  • the waterproof layer 35 may be formed on the wall surface of the extinguishing water cell 30.
  • a waterproof layer 35 may be formed on the upper surface of the base plate 10 and the wall surface of the isolation wall 20 for forming the fire extinguishing water cell 30.
  • the waterproof layer 35 may have a waterproof property to prevent penetration of the extinguishing water (FW).
  • the waterproof layer 35 may be formed by, for example, attaching a waterproof film or by coating a waterproof agent.
  • the waterproofing agent may be selected from, for example, waterproof organic materials and / or organic-inorganic composites, and the like, and specific waterproofing compositions including one or more resins selected from, for example, silicone, urethane, and epoxy may be used.
  • the concrete body 100A may further include a reinforcing core.
  • the reinforcing core material may be one capable of improving the strength of the concrete body 100A, which is embedded in the concrete body 100A.
  • the reinforcing core material may be selected from, for example, metal mesh, metal perforated plate, rebar, truss girder and / or fiber sheet, and the like. This reinforcing core material may be embedded in the base plate 10 and / or the isolation wall 20 of the concrete body 100A.
  • one or more selected from the metal mesh 70, the metal porous plate, and the fiber sheet may be embedded in the base plate 10 as a reinforcing core.
  • Can be. 2 and 3 one or more selected from reinforcing bars 80 (see FIG. 2) and / or truss girders 90 (see FIG. 3) may be embedded in the isolation wall 20.
  • the reinforcing bar 80 may be embedded in the vertical wall 24 of the isolation wall 20, and the truss girder 90 may be embedded in the horizontal wall 22.
  • the truss girder 90 has a three-dimensional structure in which three or more main bars 92 are connected, which is advantageous for reinforcing strength of the concrete body 100A.
  • the truss girder 90 has a three-dimensional structure including at least three or more main bars 92 and a steel wire 94 connecting the main bars 92.
  • the main bar 92 and the steel wire 94 may be used, such as steel pipes, rebar and / or wire (wire), the steel wire 94 is used that is smaller than the diameter of the main bar (92).
  • the truss girder 90 has a three-dimensional structure of various forms according to the number and location arrangement of the main bar 92. 4 and 5 show the truss girder 90 in the form of a triangular structure having three main bars 92, Figure 6 has four main bars 92, the steel wire 94 is X-shaped It shows the structure connected by. 7 illustrates a truss girder 90 having a cross-sectional shape in the form of a square structure and FIG. 8 in the form of a trapezoidal structure.
  • the truss girder 90 having such a three-dimensional structure can effectively support the load by improving the support strength and tensile strength of the concrete body 100A.
  • the truss girder 90 may be selected from a three-dimensional structure as shown in FIG. 4.
  • the truss girder 90 includes a plurality of main bars 92 and steel wires 94 connecting the plurality of main bars 92. It may have a structure for connecting the main bar 92 of.
  • the truss girder 90 having such a structure is very effective for reinforcing support strength and tensile strength of the concrete body 100A.
  • 4 illustrates a truss girder 90 composed of three main bars 92 and two steel wires 94. As shown in FIG.
  • each of the steel wires 94 connects two main bars 92, and has a structure of continuously connecting the main bars 92 while being bent at the bent portion 94a.
  • the steel wire 94 may be coupled to the main bar 92 at the bent portion 94a through welding or connection.
  • the concrete body 100A may be manufactured (molded) by various methods, for example, may be manufactured by the following method.
  • 9 is a view for explaining the manufacturing method of the concrete body (100A).
  • 10 illustrates a mold 120 for forming the fire extinguishing water cell 30, and
  • FIG. 11 shows another embodiment of the mold 110 for forming the concrete body 100A.
  • the concrete body (100A) the first step of installing a reinforcing core material in the mold (1); A second step of installing a forming mold (2) for forming a fire extinguishing water cell (30) on the reinforcing core material; And a third step of pouring and curing concrete in the mold 1.
  • the metal mesh 70 may be installed inside the mold 1, and the reinforcing bar 80 and the truss girder 90 may be installed on the metal mesh 70.
  • the reinforcement 80 is installed in the vertical direction (width direction) to be embedded in the vertical wall 24, the truss girder 90 is in the horizontal direction (length direction) to be embedded in the horizontal wall 22 ) Can be installed.
  • the reinforcing cores, that is, the metal mesh 70, the rebar 80, and the truss girder 90 may be connected to each other.
  • the connection means to weave the members together using a wire such as a wire.
  • the manufacturing of the concrete body 100A may further include a fourth step of installing the hollow tube 4 inside the mold 1.
  • the hollow tube 4 is to form a through hole 40, which is removed after curing of concrete.
  • the hollow tube 4 is not particularly limited as long as it is hollow, and for example, the hollow tube 4 may be selected from a metal tube or a synthetic resin tube.
  • the fourth step of installing the hollow tube 4 may be performed between the first step and the second step, or between the second step and the third step.
  • the mold 1 includes a bottom plate 1a and four wall portions 1b formed on side surfaces of the bottom plate 1a. At this time, at least one or more of the four wall parts (b) may be separated to facilitate the removal of the concrete body (100A).
  • a through hole 1c through which the hollow tube 4 penetrates may be formed in the wall portion 1b of the mold 1.
  • an insertion hole (not shown) may be formed in the wall portion 1b of the mold 1 to embed the insert 50 and the ring member 60 as described above.
  • the mold 2 is for forming the fire extinguishing water cell 30, which includes at least a cell forming mold 2a having a shape corresponding to that of the fire extinguishing water cell 30.
  • the cell forming frame (2a) is a shape corresponding to the digestion water cell 30, it may have a variety of shapes.
  • the cell forming frame 2a may have various cross-sectional shapes, for example, triangular, square, pentagonal, hexagonal, rhombus and / or circular.
  • the mold 2 includes a plurality of cell forming frames 2a for forming a fire extinguishing water cell 30 as illustrated in FIG. 10 according to one embodiment; It may include a connection frame (2b) for connecting the plurality of cell forming frame (2a).
  • fastening holes 2c for fitting fasteners such as bolts may be formed at both ends of the connecting frame 2b. Therefore, in installing the mold 2 to the mold 1, both ends of the connecting frame 2b are seated on the wall portion 1b of the mold 1, and then bolted through the fastening hole 2c. By fastening the mold 1 with the fastener such as the above, the mold 2 can be firmly fixed to the mold 1.
  • the concrete body (100A) according to another embodiment, the step of installing a mold 2 to the bottom plate (1a) of the mold (1); Installing a reinforcing core on the mold 2; And it can be produced by a process comprising the step of pouring, curing the concrete inside the mold (1). That is, the concrete body 100A shown in FIG. 1 may be manufactured in an inverted form.
  • the mold 2 includes at least a plurality of cell forming molds 2a having a shape corresponding to at least the extinguishing water cell 30. Specifically, a plurality of cell forming molds 2a are arranged at predetermined intervals as the forming mold 2 on the bottom plate 1a of the mold 1, and then the reinforcing core material is installed, concrete pouring and curing can be performed. have.
  • first embodiment may include the configuration of the second and third embodiments described below, and if there is a part not described in the first embodiment, this is the following second and third embodiments. As described above.
  • FIG. 12 is a perspective view of the concrete structure 100 according to the second embodiment of the present invention.
  • FIG. 13 is a cross-sectional view taken along the line C-C of FIG. 12, and
  • FIG. 14 is a cross-sectional view taken along the line D-D of FIG.
  • the concrete body 100A is formed on the base plate 10, the isolation wall 20 formed on the base plate 10, and the isolation wall 20 as described above. It comprises a plurality of extinguishing water cell 30 formed by.
  • the extinguishing water spraying unit 100B further includes a fire water container 150 installed and installed in the extinguishing water cell 30. At this time, the fire extinguishing water (FW) is injected and stored in the fire extinguishing water container 150.
  • the fire extinguishing water injection unit 100B is installed in the fire extinguishing water cell 30 of the concrete body 100A and installed, and the fire extinguishing water FW is stored.
  • the fire extinguishing water container 150 is waterproof, which is not particularly limited as long as it can store fire extinguishing water (FW).
  • the extinguishing water container 150 may be formed of, for example, a synthetic resin material, a metal material, and / or a fiber material.
  • the extinguishing water container 150 may be a hard material or a soft material, and in one example, may be made of a flexible material.
  • the fire water container 150 is a plurality, it is embedded in each of the fire water cell 30, it is installed.
  • the fire extinguishing water container 150 includes a container body 151 and a fire extinguishing water discharge part 152 formed under the container body 151 according to an exemplary embodiment.
  • the extinguishing water (FW) is injected and stored in the container body 151.
  • the fire extinguishing water discharge part 152 is connected to the fire extinguishing water discharge pipe 160, which discharges the fire extinguishing water (FW) stored in the container body 151 downward to the fire extinguishing water discharge pipe 160.
  • the digestion water container 150 may include one or more digestion water inlet 154a.
  • the extinguishing water inlet 154a is formed at the side of the container body 151, and the extinguishing water FW may be introduced into and stored in the container body 151 through the extinguishing water inlet 154a.
  • the digestion water container 150 may include one or more digestion water supply units 154b and 154c.
  • the extinguishing water supply parts 154b and 154c are formed on the side of the container body 151 and through the extinguishing water supply parts 154b and 154c, the extinguishing water (FW) to another adjacent extinguishing water container 150. Can be discharged and supplied.
  • the extinguishing water supply unit 154b and 154c may be one or more than two.
  • the extinguishing water container 150 includes a first supply part 154b as one extinguishing water supply part 154b, or as two extinguishing water supply parts 154b and 154c, and includes a first supply part 154b and It may include a second supply unit 154c.
  • the first supply unit 154b is connected to the fire extinguishing water flow passage 20B and 162 installed on the isolation wall 20, that is, the horizontal wall 22, to extinguish the water to the adjacent fire extinguishing water container 150. FW) can be supplied.
  • the second supply unit 154c is connected to the fire extinguishing water flow passage 20B and 162 provided on the isolation wall 20, that is, the serpentine wall 24, and the extinguishing water ( FW) can be supplied.
  • the extinguishing water (FW) may be injected into the container body 151 through the extinguishing water inlet 154a, and the other extinguishing adjoining through the first supply part 154b and the second supply part 154c.
  • Digestion water (FW) is supplied to the water container 150 may be filled.
  • any one or more extinguishing water container 150 of the plurality of extinguishing water container 150 may be connected through the extinguishing water inlet 164 and the extinguishing water inlet 154a installed at one side of the concrete body 100A.
  • any one or more fire extinguishing water container 150 among the plurality of fire extinguishing water containers 150 may include an air exhaust port 166 and a fire extinguishing water inlet 154a and / or extinguishing water installed at one side of the concrete body 100A. It may be connected through the supply unit (154b) 154c.
  • the extinguishing water (FW) may be injected and stored after constructing the concrete body 100A in the building. At this time, the extinguishing water (FW) is injected through the extinguishing water inlet 164 formed on one side of the concrete body (100A), is injected into the container body 151 through the extinguishing water inlet (154a) is stored. .
  • the extinguishing water FW is injected, the air present in the container body 151 passes through the extinguishing water supply parts 154b and 154c and then through the air exhaust port 166 of the concrete body 100A. Exhausted to the outside, the injection of the extinguishing water (FW) is facilitated.
  • the extinguishing water (FW) when the extinguishing water (FW) is filled in any one container body 151 through the extinguishing water inlet 164 and the extinguishing water inlet 154a, and then through the extinguishing water supply unit (154b, 154c)
  • the extinguishing water FW may be continuously filled in another extinguishing water container 150 adjacent to the flow passage 20B.
  • the extinguishing water (FW) stored in the extinguishing water container 150 is exhausted by the fire extinguishing, the extinguishing water (FW) may be filled and supplemented in each extinguishing water container 150 through the above process. .
  • the extinguishing water container 150 when the extinguishing water container 150 as described above is included, it is preferable in the injectability / dischargeability of the extinguishing water FW, the storage property of the extinguishing water FW, and / or the water resistance.
  • the extinguishing water (FW) in the case of storing the extinguishing water (FW) by installing the extinguishing water container 150 as described above, compared to the case of directly storing the extinguishing water (FW) in the extinguishing water cell 30, the extinguishing water (FW)
  • the injection and discharge of the smooth, and can be filled in the container body 151 can store a large amount of fire extinguishing water (FW), it is preferable because it can be guaranteed waterproof.
  • the extinguishing water container 150 may be fastened to have an airtightness with the communication pipe 162 and / or the extinguishing water inlet 164 through the fastening member 170.
  • the second supply part 154c of the fire water container 150 may be coupled through the communication pipe 162 and the fastening member 170 installed in the isolation wall 20.
  • the fastening member 170 is not particularly limited, and may be any one capable of joining two members by, for example, a screw structure.
  • reference numeral S denotes a thread
  • reference numeral 172 denotes a sealing material for airtightness.
  • the sealing material 172 may be selected from, for example, a waterproof rubber material, a silicone material and / or a fiber material, and the like, and may be selected from, for example, an O-ring of a rubber material.
  • the fastening member 170 may be coupled as described above. Can be.
  • the extinguishing water discharge unit 152 and the extinguishing water discharge pipe 160 may be coupled to have an airtightness through the fastening member 170 as described above.
  • 15 is a perspective view of the concrete structure 100 according to the third embodiment of the present invention. 16 is a cross-sectional view taken along the line E-E of FIG.
  • Concrete structure 100 according to the present invention, according to the third embodiment may further include a protection member 130 installed on the upper portion of the fire water cell 30.
  • the protective member 130 is installed to protect the fire extinguishing water cell 30 and / or the fire extinguishing water container 150.
  • the protection member 130 is installed to protect the fire extinguishing water cell 30 and / or fire extinguishing water container 150 from foreign matter or load applied from the upper portion.
  • a stack (see FL, 19) of lightweight concrete, insulation, heating piping and / or floor finish may be installed on top of the fire water cell 30 and / or fire water container 150. have.
  • the protection member 130 protects the fire extinguishing water cell 30 and / or the fire extinguishing water container 150 from the stack FL.
  • the protective member 130 is not particularly limited as long as it can protect the fire extinguishing water cell 30 and / or the fire extinguishing water container 150, and preferably has good support strength.
  • the protective member 130 may be made of, for example, a material such as a metal material, concrete material, and / or ceramic material, and may support a load applied from the upper side.
  • the protection member 130 may be a metal material, and may have a plate shape, a strip shape, a bar shape, and / or the like.
  • one protection member 130 may be installed at an upper portion of each digestion water cell 30.
  • the protection member 130 may be selected from a metal material having a curved plate shape as illustrated in FIGS. 15 and 16.
  • the protection member 130 may be formed of a metal plate-like material including the curved portion 132 of the central region and the fastening portion 134 of the edge region.
  • the protection member 130 has a strip shape including the curved portion 132 and the fastening portion 134 as described above, the strip-shaped protection member 130 is each fire extinguishing
  • a plurality of water cells 30 may be installed at the top.
  • the curved portion 132 means a convex upward shape than the fastening portion 134.
  • the fastening part 134 is located on the isolation wall 20.
  • the fastening part 134 may be fixed on the isolation wall 20 through a fastener 135 such as, for example, an anchor bolt.
  • a fastener 135 such as, for example, an anchor bolt.
  • One or more fastening holes 134a through which the fastener 135 passes may be formed in the fastening part 134.
  • floor construction structure of the building according to the present invention
  • floor construction structure of the building according to the present invention
  • another embodiment of the concrete structure 100 according to the present invention can be described.
  • the floor construction structure according to the present invention may include one or two or more concrete structures 100 of the present invention as described above. 17 to 19 illustrate the floor construction structure according to the present invention, Figure 17 is a cross-sectional view for explaining the process of installing the concrete structure 100, Figure 18 is a plan view. 19 is a cross-sectional view of the floor construction structure according to the first embodiment of the present invention.
  • a wall W of a building may be constructed through a form C as usual, or may be constructed by a precast (PC) method through a prefabricated block.
  • Figure 17 illustrates the state built through the form (C). Specifically, for the construction of the wall (W), the inner formwork (C) and the outer formwork (C) are provided. A plurality of reinforcing bars (F) is provided between the inner formwork (C) and the outer formwork (C), the reinforcing bars (F) are connected. Thereafter, concrete is poured between the inner and outer formwork (C) to cure and construct the wall (W). At this time, between the left wall (W) and the right wall (W), a concrete structure 100 for constructing the floor is installed.
  • a plurality of concrete structures 100 are provided in plural so as to be horizontal.
  • a horizontal holding plate 6 supporting the plurality of concrete structures 100 to be horizontal and a supporting frame 7 for supporting the horizontal holding plate 6 may be installed.
  • the leveling plate 6 is installed on the lower portion of the concrete structure 100, the support frame 7 can be installed to support the lower side of the leveling plate (7). have.
  • the plurality of concrete structures 100 are fastened to each other through a tension wire (TW).
  • TW tension wire
  • the through-hole 40 is formed in the concrete structure 100
  • the tension line (TW) is inserted into the through-hole 40, and then tightened by applying a tension from either side do. That is, as shown in FIG. 17, one end (left side in FIG. 17) of the left concrete structure 100 is fixed by fixing one end of the tension line TW with a fixing member 8 such as a tension cone.
  • a fixing member 8 such as a tension cone.
  • the tension line (TW) is not limited as long as it has an appropriate strength, it may be used for example, using a reinforcing bar, or preferably a plurality of twisted steel wires.
  • the end of the tensile line (TW), it may be firmly fastened by welding, such as reinforcing bars (F) embedded in the wall (W).
  • the insert 50 installed on the side of the concrete structure 100 is welded to the reinforcing bars F of the wall W or separately. By fastening with the fastener of, it is possible to have a more firm coupling force.
  • the installation process of the concrete structure 100 described above will be described taking the case of constructing a floor of two or three floors of the building as an example.
  • the mounting structure of the leveling plate 6 and the supporting frame 7 can be omitted.
  • the concrete structure 100 constructed as described above is a floor for the occupants living in the upper floor, the ceiling becomes a tenant living in the lower floor.
  • FIG. 18 illustrates a plan view in which two concrete structures 100, 100-1, and 100-2 are fastened.
  • the fire extinguishing water inlet 164 and / or the air exhaust port 166 may be installed at the sides of the concrete structures 100, 100-1, 100-2.
  • fire extinguishing water inlets 164 are installed in the first structures 100-1 and 100.
  • the two structures 100-2 and 100 may be provided with an air exhaust port 166.
  • the extinguishing water injection port 164 and / or the air exhaust port 166 may be exposed to the outside through the wall (W).
  • the plurality of concrete structures 100, 100-1, 100-2 may communicate with each other.
  • the first structures 100-1 and 100 and the second structures 100-2 and 100 may be communicated through the communication passage 165.
  • the communication flow path 165 is any one of the fire extinguishing water installed in any one of the water container 150 and the second structure (100-2) (100) installed in the first structure (100-1) (100).
  • the container 150 is connected.
  • the fire extinguishing water (FW) is the first structure (100-1) (100)
  • the fire extinguishing water container 150 is filled into the second structure (100-2) (100) along the communication flow path 165 to continuously extinguish each of the second structure (100-2) (100)
  • the water container 150 is filled.
  • arrows indicated by reference numeral L-FW indicate the flow of digestive water (FW).
  • each extinguishing water container 150 is discharged to the outside through the air exhaust port 166 installed in the second structure (100-2) (100).
  • the extinguishing water inlet 164 and / or the air exhaust port 166 is sealed (not shown). This can be combined and finished.
  • each extinguishing water container 150 may be supplemented with the extinguishing water (FW).
  • the extinguishing water (FW) may be supplemented through the extinguishing water supply line 168.
  • One side of the extinguishing water supply line 168 is connected through the extinguishing water inlet 164 and the fastening member 170.
  • An open / close valve 168a may be installed in the fire extinguishing water supply line 168.
  • the fire extinguishing water supply line 168 is connected to the fire extinguishing tank 169 is installed on the roof, can supplement the fire extinguishing water container (150) (FW) stored in the fire extinguishing tank (169). have.
  • the floor construction structure includes a concrete structure 100 installed in the above structure, and further includes a laminate (FL) installed on the concrete structure 100.
  • the laminate FL may be selected from lightweight concrete, insulation, heating piping, mortar layers, plastering layers and / or floor finishes, and the like.
  • the laminate (FL) is a heat insulating material installed on the concrete structure 100, a mortar layer formed on the heat insulating material, a heating pipe embedded in the mortar layer, a plaster layer formed on the mortar layer, and It may include a floor finishing material (such as jangpan) installed on the plastering layer.
  • the fire extinguishing water spraying unit 100B installed in the concrete structure 100 sprays fire extinguishing water FW toward a fire point.
  • the injection of the extinguishing water FW that is, the operation of the extinguishing water spraying unit 100B is not particularly limited, which includes automatic and / or manual.
  • the extinguishing water FW may be sprayed by the operation (opening) of the on / off valve V installed in the extinguishing water discharge pipe 160 and / or the operation (opening) of the extinguishing water injection port 180. have.
  • the extinguishing water spray unit 100B may be sprayed according to a conventional fire extinguishing facility.
  • the fire extinguishing water spraying unit 100B may be sprayed with the fire extinguishing water FW in association with a fire detector (heat detector and / or smoke detector), an alarm, and / or a control unit installed in a general fire extinguishing facility.
  • a fire detector heat detector and / or smoke detector
  • the operation of the fire extinguishing water injection unit 100B that is, the operation (opening) of the open / close valve V, and / or the operation (opening) of the fire extinguishing water injection port 180 is, for example, a control station (building). It can be controlled (operated or opened) remotely from a station or fire station).
  • the fire extinguishing water discharge pipe 160 is provided with an on-off valve (V), the on-off valve (V) may be operated automatically and / or manually.
  • the on-off valve V may be selected from a solenoid valve and electrically operated.
  • a serrated or chained actuator 194 is connected to the on / off valve V, and the actuator 194 may be operated by the motor 196.
  • the motor 196 is controlled by the operation switch 198, when the operation switch 198 in the event of a fire, the actuator 194 is operated by the motor 196, opening and closing by the actuator 194
  • the valve V may be opened to extinguish the extinguishing water FW through the extinguishing water injection hole 180.
  • the fire extinguishing water (FW) may be sprayed for each layer, or may be sprayed for each occupant generation occupied in each layer.
  • the fire extinguishing water (FW) may be independently sprayed on the concrete structure 100 and / or the fire extinguishing water container 150, respectively.
  • the extinguishing water injection port 180 is not particularly limited as long as it can inject extinguishing water (FW).
  • the fire extinguishing water injection port 180 may be selected from the sprinkler head used in a conventional sprinkler facility as described above.
  • the extinguishing water injection hole 180 includes, for example, a thermal reaction unit 185 (see FIG. 20), and the thermal reaction unit 185 is melted or broken by heat generated at the time of fire, thereby extinguishing water (FW). It may have a structure capable of spraying.
  • 20 is a configuration diagram showing an exemplary embodiment of the extinguishing water injection port 180.
  • the extinguishing water injection port 180 may include an adapter 181 coupled to the extinguishing water discharge pipe 160, and a support formed below the adapter 181.
  • a support member 188 may be installed below the thermal reaction part 185.
  • the thermal reaction unit 185 may be made of, for example, a heat melt selected from a metal having a low melting point (eg, lead (Pb), etc.), which may be melted by heat, or may be broken by heat. ) And the like. Therefore, when a fire occurs, the heat reaction part 185 melts or breaks due to heat caused by the fire, so that the valve 187 is separated, and the extinguishing water FW is injected by the hydraulic pressure.
  • a heat melt selected from a metal having a low melting point (eg, lead (Pb), etc.
  • the thermal reaction unit 185 may be provided with electrical wiring, and the electrical wiring may be connected to a fire detector and / or a controller. And when a fire occurs, the fire information detected by the fire detector is transmitted to the control unit, the control unit is so that the electricity is applied to the thermal reaction unit 185 through the electrical wiring, the thermal reaction unit 185 is applied to the electrical resistance heat By extinguishing or breaking by the fire extinguishing water (FW) can be sprayed.
  • FW fire extinguishing water
  • Fig. 21 is a sectional view showing the main parts of a second embodiment of the floor construction structure according to the present invention
  • Fig. 22 is a sectional view of the main part showing a third embodiment of the floor construction structure according to the present invention.
  • the floor construction structure according to the present invention may include a concrete structure 100 as described above and a thermally conductive metal plate 500 spaced apart from the concrete structure 100.
  • the concrete structure 100 and the thermally conductive metal plate 500 may be spaced apart by a predetermined interval by the shock absorbing unit 200.
  • the concrete structure 100 and the thermally conductive metal plate 500 may have a structure in which the heat insulator 300 and / or the heating pipe 400 is installed.
  • the floor construction according to the present invention is a concrete structure 100, a plurality of shock absorbing unit 200 installed on the concrete structure 100, on the shock absorbing unit 200 It includes a thermally conductive metal plate 500 installed, a heat insulating material 300 provided on the concrete structure 100, and a heating pipe 400 installed between the heat insulating material 300 and the thermal conductive metal plate 500.
  • the shock absorbing unit 200 may be installed in direct contact with the upper surface of the concrete structure 100 (see FIG. 21), or may be installed in direct contact with the upper surface of the heat insulating material 300 (see FIG. 22).
  • the shock absorbing unit 200 is installed in direct contact with the upper surface of the concrete structure 100, and the heat insulating material 300 is directly connected to the concrete structure 100 around the shock absorbing unit 200. It can be installed in contact.
  • the shock absorbing unit 200 may be installed in direct contact with the upper surface of the heat insulating material (300).
  • the heat insulating material 300 may be installed in direct contact with the upper surface of the concrete structure 100, and the shock absorbing unit 200 may be installed in direct contact with the upper surface of the heat insulating material 300.
  • a separate packing material may be filled in the empty space S provided between the heating pipes 400, or in some cases, the empty space S may be maintained as an air layer.
  • the packing material is for insulation and / or sound insulation, and the like, for example, a commonly used heat insulating material may be used, or may be a filler having a pore structure.
  • the filler of the pore structure has a plurality of pores, which may be selected, for example, from aerated concrete and / or synthetic foam foam.
  • the shock absorbing unit 200 is installed between the concrete structure 100 and the thermally conductive metal plate 500, which spaces the concrete structure 100 and the thermally conductive metal plate 500 at predetermined intervals.
  • the shock absorbing unit 200 spaces apart the thermally conductive metal plate 500 and absorbs and cushions the shock applied from the upper side to effectively block noise and vibration.
  • the shock absorbing unit 200 may be fixed to the isolation wall 20 of the concrete structure 100.
  • the shock absorbing unit 200 includes a first substrate 210; A support rod 220 installed on the first substrate 210; An elastic buffer member 230 inserted into the support rod 220; And a second substrate 240 installed on the buffer member 230.
  • the shock absorbing unit 200 includes a plurality of support rods 220 for a sense of stability.
  • the shock absorbing unit 200 configured as described above effectively absorbs and cushions the shock applied from the top to block noise and vibration.
  • Each component constituting the shock absorbing unit 200 may be selected from, for example, a metal material and / or a plastic material, but modification thereof is not particularly limited.
  • the first substrate 210 is in the form of a plate, such as a circle or polygon (square, etc.), which is fixed on the concrete structure (100). Specifically, referring to FIGS. 21 through 23, the first substrate 210 may be fixed to the isolation wall 20 of the concrete structure 100.
  • the first substrate 210 may be fixed to, for example, an anchor bolt 142 to the concrete structure 100.
  • a bolt hole 210a into which the anchor bolt 142 may be inserted may be formed in the first substrate 210. More specifically, at least one bolt hole 210a is formed in the first substrate 210, and an anchor insert 144 is embedded in the isolation wall 20 of the concrete structure 100, thereby anchor bolt 142.
  • the first substrate 210 may be fixed to the concrete structure 100 by passing through the provision bolt hole 210a and then being fastened to the anchor insert 144.
  • the support rod 220 is a plurality of for the stability. That is, a plurality of support rods 220 are installed on the first substrate 210. For example, three to six support rods 220 may be installed on the first substrate 210. In the drawing, four support rods 220 are arranged and installed at predetermined intervals.
  • the support rod 220 may have, for example, a cylindrical shape or a polygonal column shape.
  • the shock absorbing member 230 has elasticity, which is inserted into and installed in the support bar 220 to provide a shock absorbing force for shock absorption.
  • the buffer member 230 is not limited as long as it has elasticity.
  • the length of the contraction (buffering) of the buffer member 230 is preferably about 0.1mm to 4mm. More specifically, when an impact is applied from the upper (upper layer), the shock absorbing member 230 is contracted (buffered), wherein the shock absorbing member 230 has a contraction force (buffer force) of about 0.1 mm to 4 mm by the impact load. It is desirable to have.
  • the shock absorbing member 230 is applied by the impact load applied from the top.
  • the 230 is contracted to about 0.1 mm to 4 mm, and the length (height) after contraction is preferably about 46 mm to 49.9 mm.
  • the shock absorbing function buffer function
  • the shock absorbing function may be insignificant.
  • the contracted length (constriction force) is overshrunk in excess of 4mm, it may not be preferable because a buffer (shrinkage) shake can be felt by a person.
  • the contracted length of the buffer member 230 is preferably 0.5mm to 3.5mm, or 1mm to 3mm.
  • the impact load is any impact load that can be applied from the top after the floor construction, which is not particularly limited, and in one example may be an impact load that can be applied by jumping to a height of about 30cm from the floor of a person weighing 100kg. .
  • the buffer member 230 is not limited as long as it can have a contraction force in the above range, which may include, for example, a coiled spring (spring structure), or a plurality of shade members 235. have. According to a preferred embodiment, the buffer member 230 is selected from a plurality of shade members 235. 24, the cross-sectional block diagram of the buffer member 230 containing the some shade member 235 is illustrated as a preferable embodiment of the buffer member 230. As shown in FIG.
  • the buffer member 230 is an elastic body formed by stacking a plurality of shade members 235.
  • the shade member 235 is an elastic metal member or an elastic plastic member, which may be formed of a metal material such as carbon steel, stainless steel (SUS), aluminum alloy steel, and steel.
  • a buffer hole 235a is formed in the center of the shade member 235, and a support rod 220 is inserted into the buffer hole 235a. More specifically, the shade member 235, the center of the buffer hole 235a to which the support rod 220 is fitted, and a paddle-shaped elastic disk 235b formed in the circumferential direction based on the buffer hole 235a. It includes. At this time, the lampshade-shaped elastic disk 235b is inclined at a predetermined angle () from the horizontal reference line (L) as shown in FIG. 24 to have a hat shape.
  • the elastic disk 235b is not particularly limited, but may be inclined from the horizontal reference line L so as to have an angle of about 2 degrees to about 45 degrees.
  • the buffer member 230 may be configured by stacking a plurality of shade members 235 as described above.
  • two lampshade members 235 are stacked in opposite directions to form one elastic set, and one or two or more such elastic sets may be stacked to constitute a buffer member 230.
  • two shaded members 235 stacked in opposite directions form one elastic set, and four elastic sets are stacked up and down, and a total of eight shaded members 235 are stacked to form a buffer member ( 230).
  • the lampshade-shaped lampshade member 235 that is, the lampshade-shaped elastic disk 235b formed to be inclined at a predetermined angle (a) is spread (spread) to absorb and cushion the shock.
  • This shade member 235 implements shock absorption (buffering) in a more stable manner than a coiled spring, which is also structurally robust and is preferred for the present invention.
  • the second substrate 240 is installed on the buffer member 230 as described above to support the thermally conductive metal plate 500.
  • the second substrate 240 is a plate shape such as a circle or polygon (square, etc.), and the guide hole 245 is formed therein. That is, the second substrate 240 is formed with a guide hole 245 into which the upper end 221 of the support rod 220 is inserted.
  • the guide hole 245 is a plurality, which may be the same as the number of the support rod 220. For example, as illustrated in FIG. 23, when the support rods 220 are four, the guide holes 245 may also be four. Therefore, when an impact is applied from the upper side, the second substrate 240 may flow up and down along the support rod 220.
  • the upper end 221 of the support rod 220 is inserted into the guide hole 245 of the first substrate 240, it is preferably inserted to have a step (d).
  • the upper end 221 of the support rod 220 is preferably positioned with a step (d) of a predetermined distance from the end 245a of the guide hole 245.
  • a strong impact is applied to the upper portion of the second substrate 240
  • the upper end 221 of the support rod 220 is released from the guide hole 245 by the contraction of the buffer member 230,
  • the thermally conductive metal plate 500 may be compressed.
  • the step (d) can prevent this phenomenon.
  • the step d may be formed, for example, at a distance of 0.2 mm to 6 mm.
  • the step d may be formed at a distance of 0.5 mm to 4 mm, for example.
  • the upper end 221 of the support rod 220 may flow in the range of 0.2mm ⁇ 6mm (or 0.5mm ⁇ 4mm) in the interior of the guide hole 245.
  • the shock absorbing unit 200 may further include a height adjusting member 250.
  • the height adjusting member 250 is installed at one or more selected between the first substrate 210 and the buffer member 230, and between the second substrate 240 and the buffer member 230.
  • the height adjusting member 250 is used to adjust the horizontality between the shock absorbing unit 200.
  • the shock absorbing unit 200 may be installed in plural on the concrete structure 100. In some cases, the concrete structures 100 may not be horizontal to each other. In this case, at least the horizontal level between the shock absorbing units 200 may be adjusted through the height adjusting member 250.
  • the height adjusting member 250 is, for example, a ring shape, which is fitted to the support rod 220. To this end, the height adjustment member 250 may be fitted with a fitting hole 255 in the center of the support rod 220 is fitted. In one example, the height adjusting member 250 may be one or more than two. The number of the height adjusting member 250 may be determined according to the height deviation. That is, according to the height deviation between the shock absorbing unit 200, between the first substrate 210 and the shock absorbing member 230, and / or between the second substrate 240 and the shock absorbing member 230 ( The height can be adjusted by installing an appropriate number of 250).
  • 26 shows another embodiment of the shock absorbing unit 200.
  • support portions 212 and 242 may be formed on surfaces of the first and second substrates 210 and 240 that contact the buffer member 230. That is, the first support part 210 may be formed on the upper surface of the first substrate 210, and the second support part 242 may be formed on the lower surface of the second substrate 240. In addition, the support parts 212 and 242 may be integrally formed from the first substrate 210 and the second substrate 240, respectively. In addition, the support 212, 242 has a ring shape, which may have the same outer diameter as the shade member 235 constituting the buffer member 230. At this time, the second support portion 242 formed on the second substrate 240 has a communication hole in communication with the guide hole 245, the upper end of the support rod 220 is fitted into the communication hole.
  • the buffer member 230 may be stably adhered to the first substrate 210 and the second substrate 240 by the support parts 212 and 242 as described above, and the support parts 212 and 242 may be in some cases. It can also function as a height adjustment.
  • the length of the guide hole 245 may be extended to guide the upper end 221 of the support rod 220 with stability. Can be. More specifically, the communication hole as described above is formed in the second support portion 242, the length of the guide hole 245 formed in the second substrate 240 may be extended. Accordingly, the upper end 221 of the support bar 220 can be effectively prevented from being separated from the guide hole 245 of the second substrate 240.
  • the heat insulator 300 is not particularly limited as long as it has heat insulation, it can be used that is commonly used.
  • the heat insulator 300 may have thermal insulation as well as sound insulation.
  • the insulation 300 is, for example, synthetic resin foam (polystyrene foam, polyurethane foam, polyethylene foam, polypropylene foam, etc.), iso pink (compressed synthetic resin foam, in the present invention, iso pink is compressed compression styrofoam as well as compressed polyethylene foam , Compressed polypropylene, and the like), gypsum board, glass wool, mineral wool, rock wool, and fiber aggregates (cotton, etc.) and the like, but are not limited thereto.
  • the thermally conductive metal plate 500 is not particularly limited as long as it is a metal plate having thermal conductivity.
  • the thermally conductive metal plate 500 may be composed of, for example, a single metal selected from iron (Fe), copper (Cu), aluminum (Al), or an alloy thereof.
  • the thermally conductive metal plate 500 may be selected as an iron plate in consideration of a price, or may be selected from an aluminum plate or an iron-aluminum alloy plate in consideration of thermal conductivity with weight.
  • the heating pipe 400 is installed between the heat insulating material 300 and the thermally conductive metal plate 500.
  • the heating pipe 400 may be installed in a structure that is as close as possible to the lower surface of the thermal conductive metal plate 500.
  • the heat generated from the heating pipe 400 rises and is conducted to the thermally conductive metal plate 500.
  • the thermal conductive metal plate 500 is installed as described above.
  • the thermal conductivity is effectively improved.
  • the metal plate 500 having a higher thermal conductivity than the conventional finishing mortar effectively conducts and releases heat, thereby realizing a high heating effect even with a low energy consumption.
  • the heat insulating material 300 is installed below the heating pipe 400 so that the heat of the heating pipe 400 can be transmitted only to the upper part by heat insulation.
  • the floor construction structure according to the present invention may further include a buffer pad (450).
  • a buffer pad 450 may be installed at a contact interface between the shock absorbing unit 200 and the thermal conductive metal plate 500.
  • the buffer pad 450 is for cushioning between the shock absorbing unit 200 and the thermally conductive metal plate 500, and may be formed of, for example, rubber, synthetic resin, or fiber.
  • the floor construction structure according to the present invention may further include other components in addition to the components as described above.
  • a finish may be installed on the top of the thermally conductive metal plate 500.
  • Such finishes may be selected from commonly used floor finishes.
  • the finish may be selected from, for example, printed decorative sheets, sheets, tiles, natural slabs (marble, etc.), artificial marble (such as marble-patterned synthetic resin sheets), and / or ocher.
  • the floor construction structure according to the present invention may further include a variety of functional layers in addition to the finish. For example, an ocher layer, a deodorizing layer, a sterilization layer, a far infrared ray emitting layer, and / or a separate sound insulating material layer may be further selectively formed.
  • the concrete body 100A is robust in terms of its structure. That is, the concrete body 100A includes a base plate 10 made of concrete, and has a strong supporting force by the separating wall 20 of the lattice structure and / or honeycomb structure protruding from the base plate 10.
  • the fire extinguishing water cells 30 are formed between the isolation walls 20 to ensure lightness, while noise and vibration are absorbed and exhausted (dispersed) by the fire extinguishing water cells 30, thereby providing excellent light weight.
  • the shock absorbing unit 200 as described above achieves excellent sound insulation.
  • the present invention in the construction of the floor of the building, by the fastening of the concrete structure 100 through the tension line (TW), rather than by the installation of formwork and concrete pouring, as in the prior art The floor is easy to work with.
  • the fire extinguishing water (FW) is stored in the concrete structure 100 itself, the fire extinguishing water (FW) can be sprayed quickly in the event of a fire can extinguish the fire initially.
  • the energy consumption heatating cost, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Building Environments (AREA)

Abstract

본 발명은 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조에 관한 것이다. 본 발명은 건축물의 바닥 기초를 형성하는 건축물의 바닥 시공용 콘크리트 구조체로서, 화재 진압을 위한 소화용수가 저장되는 콘크리트 본체; 및 상기 콘크리트 본체에 저장된 소화용수를 분사하는 소화용수 분사 유닛을 포함하는 건축물의 바닥 시공용 콘크리트 구조체, 및 이를 포함하는 건축물의 바닥 시공구조를 제공한다. 본 발명에 따르면, 건축물의 바닥을 형성하는 콘크리트 구조체 자체에 소화용수(fire water)가 저장되어 화재를 초기에 진압할 수 있으며, 건축물의 바닥 시공이 용이하고, 우수한 층간 차음성 등을 갖는다.

Description

소화 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조
본 발명은 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조에 관한 것으로, 보다 상세하게는 건축물의 바닥을 시공하기 위한 콘크리트 구조체의 자체에 소화용수(fire water)가 저장되어 화재를 초기에 진압할 수 있는, 소화 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조에 관한 것이다.
다세대 주택이나 아파트 등의 다층 건축물을 건축함에 있어서는 시공 현장에서 거의 모든 작업이 이루어지는 것이 보편적이다. 또한, 일부 아파트 등의 고층 건축물은 프리캐스트(PC) 공법을 이용한 조립식 방법이 이루어지기도 한다.
대부분의 건축물은 화재 진압을 위한 소화 설비를 의무적으로 설치하도록 되어 있다. 특히, 아파트 등의 고층 건축물에는 자동 소화 설비의 설치를 의무화하고 있다. 자동 소화 설비로는 대부분의 경우 스프링클러(sprinkler) 설비가 사용되며, 이는 화재가 발생되면 열이나 연기를 감지하여 경보를 울리면서 화재 발생 지점에 소화용수(fire water)를 분사하여 화재를 진압한다.
일반적으로, 스프링클러 설비는 소화 배관으로서 소화용 수조에 연결된 주관과, 주관에 연결된 입상관과, 입상관에서 분기된 복수의 지관과, 각 지관에 설치된 스프링클러 헤드를 갖는다. 지관은 각 세대로 분기되어 있으며, 화재 시에 발생된 열에 의해 스프링클러 헤드가 개방되면서 소화용수를 분사한다. 스프링클러 헤드는 평상시에는 납(Pb) 성분으로 형성된 열 용융부에 의해 밀폐되어 있다가 화재 발생 시에는 열에 의해 열 용융부가 녹으면서 개방되도록 되어 있다.
예를 들어, 대한민국 등록특허 제10-0810750호, 대한민국 등록특허 제10-1395776호, 대한민국 공개특허 제10-2013-0118723호 및 대한민국 공개특허 제10-2015-0019107호 등에는 위와 관련한 기술이 제시되어 있다.
화재는 초기 진압이 대단히 중요하다. 그러나 종래의 스프링클러 설비는 화재의 초기 진압이 어렵거나, 관련 설비의 설치비용 및 에너지 소비량 등이 많은 문제점이 있다. 예를 들어, 건식 스프링클러 설비의 경우에는 화재 발생과 동시에 소화용수의 분사가 어렵다. 즉, 건식 스프링클러 설비의 경우, 소화 배관에 소화용수가 채워져 있지 않다. 이에 따라, 소화 배관에 소화용수가 채워질 때까지의 소정 시간을 필요로 하여 화재의 초기 진압이 어렵다. 습식 스프링클러 설비의 경우에는 초기 대응은 가능할 수 있으나, 이는 소화 배관에 동파 방지를 위한 보온재나 열선을 설치해야 하므로 초기 설치비용이 많다.
또한, 건식 및 습식을 포함하는 대부분의 스프링클러 설비는, 예를 들어 15층 이상의 고층에 소화용수를 분사하는 압력이 부족하여, 고층의 경우 초기 화재 진압이 어렵거나, 높은 분사 압력을 위해서는 펌프 등의 작동을 위한 전기 에너지의 소비가 많다.
한편, 건축물의 바닥을 시공함에 있어서, 층간(아래층과 위층)의 소음과 진동의 차단은 중요하다. 바닥에 가해지는 충격, 특히 아파트 등과 같은 건축물에서 어린이들의 심한 요동으로 인한 충격은 아래층에 거주하는 입주자에게 심한 피해를 준다. 이에 따라, 충격 흡수를 위한 충격 흡수재(소음재)의 설치는 건축물의 바닥 시공 공사에 필수적이라 할 수 있다. 상기 충격 흡수재(소음재)로는 주로 고무재나 발포재가 사용되고 있다. 그러나 이는 상층에서 가해지는 충격을 효과적으로 흡수, 차단하지 못하는 문제점이 있다.
또한, 건축물의 바닥 난방을 도모에 있어서는, 일반적으로 마감 모르타르층의 내부에 난방 배관을 매입하여 도모하고 있다. 그러나 이는 열전도율이 떨어져 에너지 소비량(난방비용 등)이 많은 문제점이 있다.
이에, 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 건축물의 바닥 기초를 형성하여 건축물의 바닥 시공이 용이하면서 화재를 초기에 진압할 수 있는, 소화 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조를 제공하는 데에 그 목적이 있다.
또한, 본 발명은 건축물의 바닥에 가해지는 충격을 효과적으로 흡수, 완충시켜 층간 차음성 등이 우수한 건축물의 바닥 시공구조를 제공하는 데에 목적이 있다.
이에 더하여, 본 발명은 개선된 난방 구조에 의해 열전도율이 우수하여 에너지 소비를 절감할 수 있는 건축물의 바닥 시공구조를 제공하는 데에 목적이 있다.
본 발명은 제1형태에 따라서,
건축물의 바닥을 형성하는 콘크리트 구조체로서,
화재 진압을 위한 소화용수가 저장되는 콘크리트 본체를 포함하는 건축물의 바닥 시공용 콘크리트 구조체를 제공한다.
또한, 본 발명은 제2형태에 따라서,
건축물의 바닥을 형성하는 콘크리트 구조체로서,
화재 진압을 위한 소화용수가 저장되는 콘크리트 본체; 및
상기 콘크리트 본체에 저장된 소화용수를 분사하는 소화용수 분사 유닛을 포함하는 건축물의 바닥 시공용 콘크리트 구조체를 제공한다.
바람직한 실시 형태에 따라서, 상기 콘크리트 본체는 베이스 판; 상기 베이스 판의 상부에 돌출 형성된 격리벽; 및 상기 격리벽에 의해 형성된 복수의 소화용수 셀을 포함한다.
바람직한 실시 형태에 따라서, 상기 소화용수 분사 유닛은 콘크리트 본체의 소화용수 셀에 내입되고, 소화용수가 저장되는 소화용수 컨테이너; 상기 소화용수 컨테이너에 저장된 소화용수가 배출되는 소화용수 배출관; 및 상기 소화용수 배출관의 말단에 설치되고, 소화용수를 분사하는 소화용수 분사구를 포함한다. 또한, 상기 소화용수 셀의 상부에는 보호 부재가 설치될 수 있다.
이에 더하여, 본 발명은, 상기 콘크리트 구조체를 포함하는 건축물의 바닥 시공구조를 제공한다. 바람직한 실시 형태에 따라서, 본 발명에 따른 건축물의 바닥 시공구조는 상기 콘크리트 구조체 상에 설치된 충격 흡수 유닛; 상기 충격 흡수 유닛 상에 설치된 열전도성 금속 플레이트; 상기 콘크리트 구조체 상에 설치된 단열재; 및 상기 단열재와 열전도성 금속 플레이트의 사이에 설치된 난방 배관을 포함한다.
바람직한 실시 형태에 따라서, 상기 충격 흡수 유닛은 콘크리트 구조체 상에 고정된 제1기판; 상기 제1기판 상에 설치된 복수의 지지봉; 상기 지지봉에 삽입 설치된 탄력성의 완충 부재; 및 상기 완충 부재 상에 설치된 제2기판을 포함하고, 상기 제2기판에는 지지봉의 상부 말단이 삽입되는 가이드공이 형성된다.
본 발명에 따르면, 건축물의 바닥을 형성하는 콘크리트 구조체 자체에 소화용수(fire water)가 저장되어 화재를 초기에 진압할 수 있는 효과를 갖는다. 또한, 본 발명에 따르면, 건축물의 바닥 시공이 용이하면서 우수한 층간 차음성 등을 갖는다. 아울러, 개선된 난방 구조에 의해, 우수한 열전도율을 가져 에너지 소비(난방 비용)를 절감할 수 있다.
도 1은 본 발명의 제1실시 형태에 따른 건축물의 바닥 시공용 콘크리트 구조체의 사시도이다.
도 2는 본 발명의 제1실시 형태에 따른 건축물의 바닥 시공용 콘크리트 구조체의 단면 구성도로서, 도 1의 A-A선 단면 구성도이다.
도 3은 본 발명의 제1실시 형태에 따른 건축물의 바닥 시공용 콘크리트 구조체의 단면 구성도로서, 도 1의 B-B선 단면 구성도이다.
도 4 내지 도 8은 본 발명에 사용되는 트러스 거더의 다양한 구현예들을 보인 것이다.
도 9는 본 발명에 따른 콘크리트 본체의 제조방법을 설명하기 위한 도면이다.
도 10은 본 발명에 따른 소화용수 셀을 형성하기 위한 성형틀의 구현예를 보인 사시도이다.
도 11은 본 발명에 사용되는 몰드의 다른 실시 형태를 도시한 사시도이다.
도 12는 본 발명의 제2실시 형태에 따른 건축물의 바닥 시공용 콘크리트 구조체의 사시도이다.
도 13은 본 발명의 제2실시 형태에 따른 건축물의 바닥 시공용 콘크리트 구조체의 단면 구성도로서, 도 12의 C-C선 단면 구성도이다.
도 14는 본 발명의 제2실시 형태에 따른 건축물의 바닥 시공용 콘크리트 구조체의 단면 구성도로서, 도 12의 D-D선 단면 구성도이다.
도 15는 본 발명의 제3실시 형태에 따른 건축물의 바닥 시공용 콘크리트 구조체의 사시도이다.
도 16은 본 발명의 제3실시 형태에 따른 건축물의 바닥 시공용 콘크리트 구조체의 단면 구성도로서, 도 15의 E-E선 단면 구성도이다.
도 17은 본 발명에 따른 건축물의 바닥 시공용 콘크리트 구조체의 설치 과정을 설명하기 위한 단면 구성도이다.
도 18은 본 발명에 따른 건축물의 바닥 시공용 콘크리트 구조체의 설치 과정을 설명하기 위한 평면도이다.
도 19는 본 발명의 제1실시 형태에 따른 건축물 바닥 시공구조의 단면 구성도이다.
도 20은 본 발명에 사용되는 소화용수 분사기의 구현예를 보인 단면도이다.
도 21은 본 발명의 제2실시 형태에 따른 건축물 바닥 시공구조의 단면 구성도이다.
도 22는 본 발명의 제3실시 형태에 따른 건축물 바닥 시공구조의 단면 구성도이다.
도 23은 본 발명에 따른 충격 흡수 유닛의 제1실시 형태를 보인 분리 사시도이다.
도 24는 본 발명에 따른 충격 흡수 유닛을 구성하는 완충 부재의 실시 형태를 보인 단면 구성도이다.
도 25는 본 발명에 따른 충격 흡수 유닛의 제1실시 형태를 보인 단면 구성도이다.
도 26은 본 발명에 따른 충격 흡수 유닛의 제2실시 형태를 보인 단면 구성도이다.
본 명세서에서 사용되는 용어 "및/또는"은 전후에 나열한 구성요소들 중에서 적어도 하나 이상을 포함하는 의미로 사용된다. 본 명세서에서 사용되는 용어 "하나 이상"은 하나 또는 둘 이상을 의미한다. 본 명세서에서 "제1", "제2", "제3", "일측" 및 "타측" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되며, 각 구성요소가 상기 용어들에 의해 제한되는 것은 아니다.
본 명세서에서 사용되는 용어 "상에 형성", "상부(상측)에 형성", "하부(하측)에 형성", "상에 설치", "상부(상측)에 설치" 및 "하부(하측)에 설치" 등은, 당해 구성요소들이 직접 접하여 적층 형성(설치)되는 것만을 의미하는 것은 아니고, 당해 구성요소들 간의 사이에 다른 구성요소가 더 형성(설치)되어 있는 의미를 포함한다. 예를 들어, "상에 형성(설치)된다"라는 것은, 제1구성요소 위에 제2구성요소가 직접 접하여 형성(설치)되는 의미는 물론, 상기 제1구성요소와 제2구성요소의 사이에 제3구성요소가 더 형성(설치)될 수 있는 의미를 포함한다.
또한, 본 명세서에서 사용되는 용어 "연결", "설치", "결합" 및 "체결" 등은, 두 개의 부재가 착탈(결합과 분리)이 가능하게 결합된 것은 물론, 일체 구조의 의미를 포함한다. 구체적으로, 본 명세서에서 사용되는 용어 "연결", "설치", "결합" 및 "체결" 등은, 예를 들어 강제 끼움 방식(억지 끼움 방식); 홈과 돌기를 이용한 끼움 방식; 및 나사, 볼트, 피스, 리벳 등의 체결 부재를 이용한 체결 방식 등을 통하여, 두 개의 부재가 결합과 분리가 가능하도록 결합되는 것은 물론, 용접이나 접착제, 시멘트나 모르타르의 타설, 또는 일체적 성형 등을 통하여 두 개의 부재가 결합된 후, 분리가 불가능하게 구성된 의미를 포함한다. 또한, 상기 "설치"의 경우에는 별도의 결합력 없이 두 개의 부재가 적층(안착)되어 있는 의미도 포함한다.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명한다. 첨부된 도면은 본 발명의 예시적인 실시 형태를 도시한 것으로, 이는 단지 본 발명의 이해를 돕도록 하기 위해 제공된다. 첨부된 도면에서, 각 층 및 영역을 명확하게 표현하기 위해 두께는 확대하여 나타낸 것일 수 있고, 도면에 표시된 두께, 크기 및/또는 비율 등에 의해 본 발명의 범위가 제한되는 것은 아니다.
본 발명은 소화(화재 진압)의 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체(100)(이하, "콘크리트 구조체"로 약칭한다) 및 이를 포함하는 건축물의 바닥 시공구조를 제공한다. 구체적으로, 본 발명은 건축물의 바닥을 시공하는 콘크리트 구조체(100) 자체의 내부에 화재 진압을 위한 소화용수(fire water)를 포함하여, 건축물의 바닥 시공이 용이하면서 화재를 초기에 진압할 수 있는 콘크리트 구조체(100), 및 상기 콘크리트 구조체(100)를 이용하여 시공된 건축물의 바닥 시공구조를 제공한다.
이하, 본 발명의 예시적인 실시 형태를 설명함에 있어서, 관련된 공지의 범용적인 기능 또는 구성에 대한 상세한 설명은 생략한다. 먼저, 본 발명에 따른 콘크리트 구조체(100)의 예시적인 실시 형태를 설명하면 다음과 같다.
제1실시 형태
도 1은 본 발명의 제1실시 형태에 따른 콘크리트 구조체(100)의 사시도를 보인 것이다. 도 2는 도 1의 A-A선 단면을 보인 것이고, 도 3은 도 1의 B-B선 단면을 보인 것이다.
도 1 내지 도 3을 참조하면, 본 발명에 따른 콘크리트 구조체(100)는 건축물의 바닥 기초를 형성하는 구조체로서, 이는 본 발명의 제1형태에 따라서 적어도 콘크리트 본체(100A)를 포함한다. 본 발명에 따른 콘크리트 구조체(100)는, 본 발명의 제2형태에 따라서 상기 콘크리트 본체(100A)와, 소화용수 분사 유닛(fire water injection unit)(100B)을 포함한다. 이때, 상기 콘크리트 본체(100A)에는 화재 진압을 위한 소화용수(fire water)(FW)가 저장되며, 상기 소화용수 분사 유닛(100B)은 상기 콘크리트 본체(100A)의 내부에 저장된 소화용수(FW)를 분사한다.
본 발명에서, 상기 콘크리트 본체(100A)는 패널(panel)이나 블록(block) 등의 형상으로서, 이는 건축물의 바닥 기초를 형성한다. 상기 콘크리트 본체(100A)는, 예를 들어 기존의 콘크리트 슬래브(slab)를 대체한다. 구체적으로, 본 발명에서, 상기 콘크리트 본체(100A)는 건축물의 바닥 구조체(바닥 기초)를 형성하는 것으로서, 이는 기존의 슬래브를 대체하여 건축물의 각 층간을 구분하며, 바닥 기초를 형성한다. 이때, 본 발명에서, 상기 각 층은 지상층은 물론, 지하층을 포함한다.
상기 콘크리트 본체(100A)의 크기(길이, 폭 및/또는 두께 등)는 제한되지 않는다. 상기 콘크리트 본체(100A)는 건축물의 크기(규모) 및/또는 콘크리트 본체(100A) 자체의 크기에 따라 1개 또는 2개 이상의 복수 개가 체결, 조립되어 건축물의 바닥을 형성할 수 있다. 상기 콘크리트 본체(100A)는, 하나의 구현예에 따라서 운반 및 설치 작업 등을 고려하여, 2개 이상 복수 개의 체결에 의해 어느 한 층의 바닥을 형성할 수 있는 크기를 가질 수 있다.
도 1을 참조하면, 상기 콘크리트 본체(100A)는, 예를 들어 직육면체로서 판상의 형상을 갖는다. 또한, 상기 콘크리트 본체(100A)는 베이스 판(10)과, 상기 베이스 판(10)의 상부에 돌출 형성된 격리벽(20)과, 소화용수(FW)를 저장할 수 있는 복수의 소화용수 셀(fire water cell)(30)을 포함할 수 있다.
상기 베이스 판(10)은, 예를 들어 직육면체 형상의 판상이다. 상기 베이스 판(10)의 상부에는 격리벽(20)이 일체로 연장하여 돌출 형성되어 있다. 보다 구체적으로, 상기 콘크리트 본체(100A)는 직육면체 판상의 베이스 판(10)과, 상기 베이스 판(10)으로부터 일체로 돌출 형성된 격리벽(20)을 포함한다. 그리고 상기 격리벽(20)은 베이스 판(10)의 테두리에 형성된 외측 격리벽(20)(21)과, 상기 외측 격리벽(20)(21)의 내측에 형성된 내측 격리벽(20)(22)(24)을 포함할 수 있다. 상기 베이스 판(10) 및 격리벽(20)은 콘크리트재로서, 이들은 몰드(mold)(110, 도 9 참조)를 통한 콘크리트의 타설, 양생에 의해 일체로 동시에 성형될 수 있다.
상기 격리벽(20)은 격자 구조 및/또는 벌집 구조(허니콤 구조)를 가질 수 있다. 본 발명에서, 상기 격자 구조는, 격리벽(20)이 콘크리트 본체(100A)의 길이 방향(가로 방향)과 폭 방향(세로 방향)으로 형성되어 사각형 형상으로 배열된 그리드(grid) 구조는 물론, 격리벽(20)이 대각선 방향으로 형성되어 마름모형(또는 평행사변형) 등으로 배열된 와플(waffle) 구조를 포함한다. 또한, 본 발명에서, 상기 벌집 구조(허니콤 구조)는 벌집 모양으로서, 이는 오각형, 육각형, 팔각형 및/또는 원형 등의 모양을 포함한다.
도면에서는 상기 격리벽(20)이 사각형 형상의 격자 구조로 형성된 모습을 예시하였다. 구체적으로, 상기 격리벽(20)은, 도 1에 보인 바와 같이 베이스 판(10)의 테두리에 돌출 형성된 외벽(21)과, 상기 베이스 판(10)의 길이 방향(가로 방향)으로 돌출 형성된 복수의 가로 벽(22)과, 상기 베이스 판(10)의 폭 방향(세로 방향)으로 돌출 형성된 복수의 세로 벽(24)을 포함하되, 상기 외벽(21)은 사각틀체 모양을 이루고, 상기 가로 벽(22)과 세로 벽(24)은 서로 직각을 이루어 사각형 형상의 격자 구조를 가질 수 있다.
상기 소화용수 셀(30)에는 화재 진압을 위한 소화용수(FW)가 저장된다. 본 발명에서, 상기 소화용수 셀(30)은 어떠한 형태로든 소화용수(FW)가 저장될 수 있으면 좋다. 상기 소화용수 셀(30)에는, 하나의 실시 형태에 따라서 상기 소화용수 셀(30) 내에 소화용수(FW)가 직접 주입되어 저장될 수 있다. 바람직한 실시 형태에 따라서, 상기 소화용수 셀(30)에는 소화용수 컨테이너(fire water container)(150, 도 12 내지 도 14 참조)를 통해 소화용수(FW)가 저장된다. 구체적으로, 바람직한 실시 형태에 따라서, 상기 소화용수 셀(30)에는 소화용수 컨테이너(150)가 내입, 설치되고, 상기 소화용수 컨테이너(150) 내에 소화용수(FW)가 주입되어 저장된다.
상기 소화용수 셀(30)은 베이스 판(10) 상에 마련된 홈 형상의 공간으로서, 이는 상기 격리벽(20)에 의해 형성된다. 상기 소화용수 셀(30)은 격리벽(20)의 형상에 따라 다양한 형상을 가질 수 있으며, 이는 예를 들어 사각형, 오각형, 육각형, 팔각형 및/또는 원형 등의 단면 형상을 가질 수 있다. 상기 소화용수 셀(30)은 복수 개로서, 이는 상기 복수의 가로 벽(22)과 상기 복수의 세로 벽(24)에 의해 구획된 공간이다. 상기 소화용수 셀(30)의 개수는 제한되지 않는다. 상기 소화용수 셀(30)은, 예를 들어 콘크리트 본체(100A)의 가로 방향(길이 방향)으로 2열 내지 20열, 세로 방향(폭 방향)으로 1열 내지 10열 등으로 배열될 수 있다. 도 1에서는, 상기 소화용수 셀(30)이 가로 방향(길이 방향)으로 4열, 세로 방향(폭 방향)으로 2열로 배열되어, 총 8개가 형성된 모습을 예시하였다.
또한, 본 발명의 구현예에 따라서, 상기 콘크리트 본체(100A)는 관통홀(40)을 더 포함하는 것이 좋다. 상기 관통홀(40)은 콘크리트 본체(100A)의 가로 방향(길이 방향) 및 세로 방향(폭 방향)으로부터 선택된 하나 이상의 방향으로 복수 개가 형성될 수 있다. 상기 관통홀(40)은, 콘크리트 본체(100A)의 적어도 세로 방향(폭 방향)에는 형성되어 있는 것이 좋다. 상기 관통홀(40)은 콘크리트 본체(100A)의 세로 방향(폭 방향)으로 형성되되, 베이스 판(10)에 형성될 수 있다. 건축물의 바닥 기초를 시공함에 있어, 본 발명에 따라서 상기 복수 개의 콘크리트 본체(100A)를 체결하여 시공하는 경우에 상기 관통홀(40)은 유용하게 사용된다. 구체적으로, 상기 관통홀(40)에는 인접하는 콘크리트 본체(100A)와 체결하기 위한 인장선(TW, 도 17 참조)이 삽입되어, 콘크리트 본체(100A) 간의 조립력을 견고하게 할 수 있다.
본 발명의 예시적인 구현예에 따라서, 상기 콘크리트 본체(100A)는 측면에 설치된 인서트(50)를 더 포함할 수 있다. 상기 인서트(50)의 일측은 콘크리트 본체(100A)의 측면에 매설되고, 타측은 외부로 노출된다. 상기 인서트(50)는 건축물의 벽체(W, 도 17 참조)에 내설된 철근(F)과 연결하기 위해 사용된다. 이때, 상기 인서트(50)와 철근(F)은, 예를 들어 용접 등을 통해 견고히 연결된다. 이러한 인서트(50)에 의해, 콘크리트 본체(100A)는 건축물의 벽체(W)와 견고한 결합력을 가질 수 있다.
또한, 본 발명의 다른 구현예에 따라서, 상기 콘크리트 본체(100A)는 측면에 설치된 고리 부재(60)를 더 포함할 수 있다. 도 1에 도시한 바와 같이, 상기 고리 부재(60)의 일측은 콘크리트 본체(100A)의 측면에 매설되고, 타측은 외부로 노출된다. 상기 고리 부재(60)는 콘크리트 본체(100A)의 운반이나 설치 시에 사용될 수 있다. 구체적으로, 콘크리트 본체(100A)의 운반이나 설치 시에, 상기 고리 부재(60)를 잡거나, 상기 고리 부재(60)에 기중기 등의 장치를 연결하여 운반 및/또는 설치할 수 있다. 이에 따라, 상기 고리 부재(60)는 콘크리트 본체(100A)의 운반이나 설치 작업 등을 용이하게 할 수 있다. 상기 고리 부재(60)는 그 사용을 다한 후에는 제거될 수 있다. 즉, 콘크리트 본체(100A)의 운반이나 설치 작업을 완료한 후, 상기 고리 부재(60)는 콘크리트 본체(100A)로부터 분리, 제거될 수 있다.
도 1 내지 도 3을 참조하면, 상기 소화용수 분사 유닛(100B)은 화재 시에 소화용수(FW)를 분사하여 화재를 진압한다. 본 발명에서, 상기 소화용수 분사 유닛(100B)은 위와 같은 콘크리트 본체(100A)의 내부에 저장된 소화용수(FW)를 분사할 수 있으면 좋다.
본 발명의 제1실시 형태에 따라서, 상기 소화용수 셀(30)에는 소화용수(FW)가 주입, 저장되고, 상기 소화용수 분사 유닛(100B)은 상기 소화용수 셀(30)에 저장된 소화용수(FW)를 분사한다. 상기 소화용수 분사 유닛(100B)은, 소화용수(FW)가 배출되는 소화용수 배출관(160)과, 소화용수(FW)를 분사하는 소화용수 분사구(180)를 포함한다. 본 발명의 제1실시 형태에 따라서, 위와 같이 상기 소화용수 셀(30)에는 소화용수(FW)가 직접 주입, 저장될 수 있다. 이때, 상기 각 소화용수 셀(30)에 저장된 소화용수(FW)는 소화용수 배출관(160)을 통해 배출되고, 이후 소화용수 분사구(180)를 통해 화재 지점을 향해 분사된다.
도 1 내지 도 3에 도시한 바와 같이, 상기 베이스 판(10)에는 각 소화용수 셀(30)과 연통된 배출공(10B)이 형성되어 있다. 상기 배출공(10B)은 소화용수 셀(30)의 개수와 같거나, 그 이상이다. 이때, 1개의 소화용수 셀(30)에는 1개 또는 2개 이상 복수의 배출공(10B)이 연통될 수 있다. 상기 배출공(10B)에는 소화용수 배출관(160)이 삽입, 설치된다. 구체적으로, 도 2 및 도 3에 도시된 바와 같이, 상기 소화용수 배출관(160)의 일측(도면에서 상측)은 배출공(10B)에 삽입, 설치되고, 상기 소화용수 배출관(160)의 타측은 베이스 판(10)의 하부로 노출되어 소화용수 분사구(180)와 결합된다. 전술한 바와 같이, 상기 콘크리트 본체(100A)에는 복수의 소화용수 셀(30)이 형성되어 있다. 이때, 1개의 소화용수 셀(30)에는 1개 또는 2개 이상 복수의 소화용수 배출관(160)이 설치된다.
상기 소화용수 분사구(180)는 각 소화용수 배출관(160)의 말단에 설치된다. 상기 소화용수 분사구(180)는 천장 마감재(600)를 관통하여 외부로 노출되며, 이는 화재 지점을 향해 소화용수(FW)를 분사한다. 상기 소화용수 분사구(180)는 소화용수 배출관(160)으로부터 배출된 소화용수(FW)를 분사할 수 있는 것이면 특별히 제한되지 않는다. 하나의 구현예에 따라서, 상기 소화용수 분사구(180)는 통상의 스프링클러(sprinkler) 설비에서 사용되는 스프링클러 헤드(sprinkler head) 등으로부터 선택될 수 있다.
본 발명의 구현예에 따라서, 상기 콘크리트 본체(100A)는, 인접하는 소화용수 셀(30) 간을 서로 연통시키는 소화용수 흐름 유로(20B)(162)를 더 포함할 수 있다. 상기 흐름 유로(20B)(162)는 격리벽(20)에 형성되며, 이는 적어도 가로 벽(22) 및/또는 세로 벽(24)에는 형성될 수 있다. 상기 소화용수 흐름 유로(20B)(162)는, 소화용수(FW)가 흐를 수 있는 것이면 제한되지 않으며, 이는 예를 들어 격리벽(20)의 상단에 형성된 홈(groove) 및/또는 격리벽(20)에 천공을 통해 형성된 연통공(20B)으로부터 선택될 수 있다. 아울러, 상기 소화용수 흐름 유로(20B)(162)는 연통공(20B)에 삽입, 설치된 연통 배관(162)을 더 포함할 수 있다. 이러한 소화용수 흐름 유로(20B)(162)에 의해, 복수의 소화용수 셀(30)은 서로 연통되어, 소화용수(FW)의 주입 및/또는 보충이 용이해질 수 있다.
또한, 상기 콘크리트 본체(100A)는 소화용수 셀(30)에 소화용수(FW)를 주입하기 위한 소화용수 주입구(164)를 더 포함할 수 있다. 상기 소화용수 주입구(164)는 콘크리트 본체(100A)의 일측에 형성된다. 구체적으로, 상기 소화용수 주입구(164)는 콘크리트 본체(100A)의 격리벽(20)에 형성되되, 콘크리트 본체(100A)의 테두리에 마련된 외벽(21)에 형성될 수 있다. 예를 들어, 상기 외벽(21)에는 삽입공(21a)이 형성되고, 상기 삽입공(21a)에 소화용수 주입구(164)가 삽입, 설치될 수 있다.
아울러, 상기 콘크리트 본체(100A)는 소화용수 셀(30) 내부에 존재하는 공기를 외부로 배출하는 공기 배기구(166)를 선택적으로 더 포함할 수 있다. 상기 공기 배기구(166)는 콘크리트 본체(100A)의 일측에 형성된다. 구체적으로, 상기 공기 배기구(166)는 콘크리트 본체(100A)의 격리벽(20)에 형성되되, 콘크리트 본체(100A)의 테두리에 마련된 외벽(21)에 형성될 수 있다. 예를 들어, 상기 외벽(21)에는 삽입공(도시하지 않음)이 형성되고, 상기 삽입공에 공기 배기구(166)가 삽입, 설치될 수 있다.
본 발명의 구현예에 따라서, 상기 소화용수 셀(30)에 소화용수(FW)를 주입, 저장함에 있어서는 건축물에 콘크리트 본체(100A)를 시공한 후에 주입될 수 있다. 이때, 소화용수(FW)는 상기 콘크리트 본체(100A)의 일측에 형성된 소화용수 주입구(164)을 통해 소화용수 셀(30) 내부로 주입될 수 있다. 그리고 소화용수(FW)의 주입 시, 소화용수 셀(30) 내부에 존재하는 공기는 상기 공기 배기구(166)를 통해 외부로 배출되어, 소화용수(FW)의 주입이 원활해진다.
또한, 소화용수(FW)가 소화용수 주입구(164)를 통해 어느 하나의 소화용수 셀(30)에 채워지게 되면, 이후 상기 격리벽(20)에 형성된 소화용수 흐름 유로(20B)(162)을 통해 인접하는 소화용수 셀(30)에 소화용수(FW)가 연속적으로 채워질 수 있다. 아울러, 화재 진압에 의해, 상기 소화용수 셀(30)에 저장된 소화용수(FW)가 모두 소모된 경우, 소화용수(FW)는 위와 같은 과정을 통해 각 소화용수 셀(30)에 채워져 보충될 수 있다. 따라서 상기 소화용수 흐름 유로(20B)(162), 소화용수 주입구(164) 및/또는 공기 배기구(166) 등에 의해, 소화용수(FW)의 주입 및 보충이 용이하게 진행될 수 있다.
본 발명의 구현예에 따라서, 상기 소화용수 셀(30)의 벽면에는 방수층(35)이 형성될 수 있다. 구체적으로, 상기 소화용수 셀(30)을 형성하기 위한 베이스 판(10)의 상부 표면 및 격리벽(20)의 벽면에는 방수층(35)이 형성될 수 있다. 상기 방수층(35)은 소화용수(FW)의 침투를 방지할 수 있는 방수성을 가지는 것이면 좋다. 상기 방수층(35)은, 예를 들어 방수 필름이 부착되어 형성되거나, 방수제가 코팅되어 형성될 수 있다. 상기 방수제는, 예를 들어 방수성의 유기물 및/또는 유기-무기 복합물 등으로부터 선택될 수 있으며, 구체적인 예를 들어 실리콘, 우레탄 및 에폭시 등으로부터 선택된 하나 이상의 수지를 포함하는 방수 조성물이 사용될 수 있다.
또한, 본 발명의 구현예에 따라서, 상기 콘크리트 본체(100A)는 보강 심재를 더 포함하는 것이 좋다. 상기 보강 심재는 콘크리트 본체(100A)의 강도를 향상시킬 수 있는 것이면 좋으며, 이는 콘크리트 본체(100A)의 내부에 매입된다. 상기 보강 심재는, 예를 들어 금속 메쉬(mesh), 금속 다공판, 철근, 트러스 거더 및/또는 섬유 시트 등으로부터 선택될 수 있다. 이러한 보강 심재는 콘크리트 본체(100A)의 베이스 판(10) 및/또는 격리벽(20)의 내부에 매입될 수 있다.
도 2 및 도 3을 참조하면, 본 발명의 예시적인 구현예에 따라서, 상기 베이스 판(10)의 내부에는 보강 심재로서 금속 메쉬(70), 금속 다공판 및 섬유 시트 중에서 선택된 하나 이상이 매입될 수 있다. 또한, 도 2 및 도 3을 참조하면, 상기 격리벽(20)의 내부에는 철근(80, 도 2 참조) 및/또는 트러스 거더(90, 도 3 참조) 중에서 선택된 하나 이상이 매입될 수 있다. 하나의 예시에서, 격리벽(20) 중에서 세로 벽(24)의 내부에는 철근(80)이 매입되고, 가로 벽(22)의 내부에는 트러스 거더(90)가 매입될 수 있다. 상기 트러스 거더(90)는 3개 이상의 메인바(92)가 결선된 입체 구조를 가지는 것으로서, 이는 콘크리트 본체(100A)의 강도 보강에 유리하다.
도 4 내지 도 8에는 상기 콘크리트 본체(100A)에 매입될 수 있는 보강 심재의 예로서, 트러스 거더(90)의 다양한 구현예들이 도시되어 있다. 도 4 내지 도 8을 참조하여 설명하면, 상기 트러스 거더(90)는 적어도 3개 이상의 메인바(92)와, 상기 메인바(92)를 연결하는 강선(94)을 포함한 입체적 구조를 갖는다. 이때, 상기 메인바(92)와 강선(94)은 철재 파이프, 철근 및/또는 와이어(wire) 등이 사용될 수 있으며, 상기 강선(94)은 메인바(92)보다 직경이 작은 것이 사용된다.
상기 트러스 거더(90)는 메인바(92)의 개수 및 위치 배열에 따라 다양한 형태의 입체적 구조를 갖는다. 도 4 및 도 5는 3개의 메인바(92)를 가지는 삼각형 구조물 형태의 트러스 거더(90)를 보인 것이고, 도 6은 4개의 메인바(92)를 가지되, 강선(94)이 X자 형태로 연결된 구조를 보인 것이다. 그리고 도 7은 사각형 구조물 형태, 도 8은 사다리꼴 구조물 형태의 단면 모습을 가지는 트러스 거더(90)를 예시한 것이다. 이와 같은 입체적 구조의 트러스 거더(90)는 콘크리트 본체(100A)의 지지 강도와 인장 강도 등을 개선하여, 하중을 효과적으로 지지할 수 있다.
바람직한 구현예에 따라서, 상기 트러스 거더(90)는 도 4에 도시한 바와 같은 입체적 구조물로부터 선택될 수 있다. 도 4를 참조하면, 상기 트러스 거더(90)는 복수의 메인바(92)와, 상기 복수의 메인바(92)를 연결하는 강선(94)을 포함하되, 상기 강선(94)은 굴곡되면서 복수의 메인바(92)를 연결하는 구조를 가질 수 있다. 이러한 구조의 트러스 거더(90)는 콘크리트 본체(100A)의 지지 강도와 인장 강도 등의 보강에 매우 효과적이다. 이때, 도 4에서는 3개의 메인바(92)와 2개의 강선(94)으로 구성된 트러스 거더(90)를 예시하였다. 도 4에 보인 바와 같이, 각 강선(94)은 2개의 메인바(92)를 연결하되, 굴곡부(94a)에서 굴곡되면서 연속적으로 메인바(92)를 연결하는 구조를 갖는다. 그리고 강선(94)은 굴곡부(94a)에서 메인바(92)와 용접이나 결선 등을 통해 결합될 수 있다.
상기 콘크리트 본체(100A)는, 다양한 방법으로 제조(성형)될 수 있으며, 예를 들어 다음과 같은 방법으로 제조될 수 있다. 도 9는 상기 콘크리트 본체(100A)의 제조방법을 설명하기 위한 도면이다. 그리고 도 10은 소화용수 셀(30)을 형성하기 위한 성형틀(120)을 예시한 것이고, 도 11은 콘크리트 본체(100A)를 성형하기 위한 몰드(110)의 다른 실시 형태를 보인 것이다.
먼저, 도 9 및 도 10을 참조하면, 상기 콘크리트 본체(100A)는, 몰드(1)의 내부에 보강 심재를 설치하는 제1단계; 상기 보강 심재 상에 소화용수 셀(30)을 형성하기 위한 성형틀(2)을 설치하는 제2단계; 및 상기 몰드(1)의 내부에 콘크리트를 타설, 양생하는 제3단계를 포함하는 공정으로 제조될 수 있다.
상기 보강 심재를 설치하는 제1단계는, 보강 심재로서 전술한 바와 같은 금속 메쉬(70), 금속 다공판, 철근(80), 트러스 거더(90) 및 섬유 시트 등으로부터 선택된 하나 이상의 보강 심재를 설치할 수 있다. 하나의 예시에서, 먼저 몰드(1)의 내부에 금속 메쉬(70)를 설치하고, 금속 메쉬(70)의 상부에 철근(80)과 트러스 거더(90)를 설치할 수 있다. 이때, 상기 철근(80)은 세로 벽(24)에 매입될 수 있도록 세로 방향(폭 방향)으로 설치하고, 상기 트러스 거더(90)는 가로 벽(22)에 매입될 수 있도록 가로 방향(길이 방향)으로 설치할 수 있다. 그리고 상기 보강 심재들은, 즉 상기 금속 메쉬(70), 철근(80) 및 트러스 거더(90)는 서로 결선될 수 있다. 본 발명에서, 결선은 철사 등의 와이어(wire)를 이용하여 부재 간을 서로 엮는 것을 의미한다.
또한, 상기 콘크리트 본체(100A)의 제조는, 몰드(1)의 내부에 중공관(4)을 설치하는 제4단계를 더 포함할 수 있다. 상기 중공관(4)은 관통홀(40)을 형성하기 위한 것으로서, 이는 콘크리트의 양생 후 제거된다. 상기 중공관(4)은, 속이 빈 것이면 특별히 제한되지 않으며, 이는 예를 들어 금속재 관이나 합성수지재 관 등으로부터 선택될 수 있다. 이러한 중공관(4)을 설치하는 제4단계는 상기 제1단계와 제2단계의 사이, 또는 상기 제2단계와 제3단계의 사이에 진행될 수 있다.
도 9를 참조하면, 상기 몰드(1)는 바닥판(1a)과, 상기 바닥판(1a)의 측면에 형성된 4개의 벽체부(1b)를 포함한다. 이때, 4개의 벽체부(b) 중에서 적어도 1개 이상은, 콘크리트 본체(100A)의 탈거가 용이하도록 분리될 수 있는 것이 좋다. 또한, 몰드(1)의 벽체부(1b)에는 상기 중공관(4)이 관통되는 관통공(1c)이 형성될 수 있다. 아울러, 몰드(1)의 벽체부(1b)에는 상기한 바와 같은 인서트(50)와 고리 부재(60)를 매입하기 위하기 삽입공(도시하지 않음)이 형성될 수 있다.
도 10을 참조하면, 상기 성형틀(2)은 소화용수 셀(30)을 형성하기 위한 것으로서, 이는 적어도 소화용수 셀(30)과 대응되는 형상을 가지는 셀 형성틀(2a)을 포함한다. 이때, 상기 셀 형성틀(2a)은 소화용수 셀(30)과 대응되는 형상으로서, 이는 다양한 형상을 가질 수 있다. 셀 형성틀(2a)은, 예를 들어 삼각형, 사각형, 오각형, 육각형, 마름모형 및/또는 원형 등의 다양한 단면 형상을 가질 수 있다. 그리고 이러한 셀 형성틀(2a)의 설치에 의해, 소화용수 셀(30)이 형성됨과 동시에 상기한 바와 같은 격자 구조 및/또는 벌집 구조의 격리벽(20)이 형성된다.
상기 성형틀(2)은, 하나의 구현예에 따라서 도 10에 예시한 바와 같이 소화용수 셀(30)을 형성하는 복수의 셀 형성틀(2a)과; 상기 복수의 셀 형성틀(2a)을 연결하는 연결 프레임(2b)을 포함할 수 있다. 또한, 도 10에 도시한 바와 같이, 상기 연결 프레임(2b)의 양쪽 말단에는 볼트 등의 체결구를 끼우기 위한 체결공(2c)이 형성될 수 있다. 따라서 성형틀(2)을 몰드(1)에 설치함에 있어서, 연결 프레임(2b)의 양쪽 말단을 몰드(1)의 벽체부(1b) 상에 안착시킨 다음, 상기 체결공(2c)을 통해 볼트 등의 체결구로 몰드(1)와 체결함으로써, 성형틀(2)을 몰드(1)에 견고하게 고정시킬 수 있다.
도 11에는 상기 몰드(1)의 다른 실시 형태가 도시되어 있다. 도 11을 참조하면, 상기 콘크리트 본체(100A)는 다른 실시 형태에 따라서, 몰드(1)의 바닥판(1a)에 성형틀(2)을 설치하는 단계; 상기 성형틀(2) 상에 보강 심재를 설치하는 단계; 및 상기 몰드(1)의 내부에 콘크리트를 타설, 양생하는 단계를 포함하는 공정으로 제조될 수 있다. 즉, 도 1에 보인 콘크리트 본체(100A)을 뒤집어진 형태로 제조할 수 있다. 이때, 상기 성형틀(2)은 적어도 소화용수 셀(30)과 대응되는 형상을 가지는 복수의 셀 형성틀(2a)을 포함한다. 구체적으로, 몰드(1)의 바닥판(1a) 상에 성형틀(2)로서 복수의 셀 형성틀(2a)을 소정 간격으로 배치한 다음, 보강 심재의 설치와 콘크리트의 타설, 양생을 진행할 수 있다.
이하에서는, 본 발명에 따른 콘크리트 구조체(100)의 제2실시 형태 및 제3실시 형태를 설명한다. 이하, 본 발명의 제2 및 제3실시 형태를 설명함에 있어, 상기 제1실시 형태와 동일하게 사용되는 용어 및 도면 부호는 동일한 기능을 나타내므로, 이에 대한 구체적인 설명은 생략한다. 또한, 이하에서 구체적으로 설명되지 않는 부분이 있다면, 이는 상기 제1실시 형태를 설명한 바와 같다. 아울러, 상기 제1실시 형태는 이하에서 설명되는 제2 및 제3실시 형태의 구성을 포함할 수 있으며, 상기 제1실시 형태에서 설명되지 않은 부분이 있다면, 이는 이하의 제2 및 제3실시 형태를 설명한 바와 같다.
제2실시 형태
도 12는 본 발명의 제2실시 형태에 따른 콘크리트 구조체(100)의 사시도를 보인 것이다. 도 13은 도 12의 C-C선 단면을 보인 것이고, 도 14는 도 12의 D-D선 단면을 보인 것이다.
도 12 내지 도 14를 참조하면, 상기 콘크리트 본체(100A)는 전술한 바와 같이 베이스 판(10), 상기 베이스 판(10)의 상부에 형성된 격리벽(20), 및 상기 격리벽(20)에 의해 형성된 복수의 소화용수 셀(30)을 포함한다. 본 발명의 제2실시 형태에 따라서, 상기 소화용수 분사 유닛(100B)은 상기 소화용수 셀(30)에 내입, 설치된 소화용수 컨테이너(fire water container)(150)를 더 포함한다. 이때, 소화용수(FW)는 상기 소화용수 컨테이너(150)의 내부에 주입, 저장된다.
구체적으로, 본 발명의 제2실시 형태에 따라서, 상기 소화용수 분사 유닛(100B)은, 상기 콘크리트 본체(100A)의 소화용수 셀(30)에 내입, 설치되고, 소화용수(FW)가 저장된 소화용수 컨테이너(150)와, 상기 소화용수 컨테이너(150)에 저장된 소화용수(FW)가 배출되는 소화용수 배출관(160)과, 상기 소화용수 배출관(160)의 말단에 설치되고, 소화용수(FW)를 분사하는 소화용수 분사구(180)를 포함한다.
상기 소화용수 컨테이너(150)는 방수성을 가지되, 이는 소화용수(FW)를 저장할 수 있는 것이면 특별히 제한되지 않는다. 상기 소화용수 컨테이너(150)는, 예를 들어 합성수지재, 금속재 및/또는 섬유재 등으로 구성될 수 있다. 또한, 상기 소화용수 컨테이너(150)는 경질재이거나 연질재일 수 있으며, 하나의 예시에서 플렉시블(flexible)한 재질로 구성될 수 있다.
도 12 내지 도 14에 도시한 바와 같이, 상기 소화용수 컨테이너(150)는 복수개로서, 이는 각 소화용수 셀(30)에 내입, 설치된다. 상기 소화용수 컨테이너(150)는 예시적인 구현예에 따라서 컨테이너 본체(151)와, 상기 컨테이너 본체(151)의 하부에 형성된 소화용수 배출부(152)를 포함한다. 상기 컨테이너 본체(151)의 내부에는 소화용수(FW)가 주입, 저장된다. 상기 소화용수 배출부(152)는 소화용수 배출관(160)과 연결되어 있으며, 이는 상기 컨테이너 본체(151)에 저장된 소화용수(FW)를 소화용수 배출관(160)으로 하향 배출한다.
또한, 본 발명의 구현예에 따라서, 상기 소화용수 컨테이너(150)는 하나 이상의 소화용수 유입부(154a)를 포함할 수 있다. 상기 소화용수 유입부(154a)는 컨테이너 본체(151)의 측면에 형성되며, 이러한 소화용수 유입부(154a)를 통해 컨테이너 본체(151) 내부로 소화용수(FW)가 유입, 저장될 수 있다.
아울러, 본 발명의 구현예에 따라서, 상기 소화용수 컨테이너(150)는 하나 이상의 소화용수 공급부(154b)(154c)를 포함할 수 있다. 상기 소화용수 공급부(154b)(154c)는 컨테이너 본체(151)의 측면에 형성되며, 이러한 소화용수 공급부(154b)(154c)를 통해, 인접하는 다른 소화용수 컨테이너(150)로 소화용수(FW)가 배출, 공급될 수 있다. 상기 소화용수 공급부(154b)(154c)는 1개 또는 2개 이상의 복수 개일 수 있다. 구체적으로, 상기 소화용수 컨테이너(150)는 1개의 소화용수 공급부(154b)로서 제1공급부(154b)를 포함하거나, 2개의 소화용수 공급부(154b)(154c)로서, 제1공급부(154b) 및 제2공급부(154c)를 포함할 수 있다. 이때, 상기 제1공급부(154b)는 격리벽(20), 즉 가로 벽(22)에 설치된 소화용수 흐름 유로(20B)(162)와 연결되어 인접하는 다른 소화용수 컨테이너(150)에 소화용수(FW)를 공급할 수 있다. 또한, 상기 제2공급부(154c)는 격리벽(20), 즉 세록 벽(24)에 설치된 소화용수 흐름 유로(20B)(162)와 연결되어 인접하는 다른 소화용수 컨테이너(150)에 소화용수(FW)를 공급할 수 있다.
이에 따라, 상기 소화용수 유입부(154a)을 통해 컨테이너 본체(151) 내에 소화용수(FW)가 주입될 수 있으며, 상기 제1공급부(154b) 및 제2공급부(154c)를 통해 인접하는 다른 소화용수 컨테이너(150)에 소화용수(FW)가 공급되어 채워질 수 있다.
또한, 상기 복수의 소화용수 컨테이너(150) 중에서, 어느 하나 이상의 소화용수 컨테이너(150)는 콘크리트 본체(100A)의 일측에 설치된 소화용수 주입구(164)와 소화용수 유입부(154a)를 통해 연결될 수 있다. 아울러, 상기 복수의 소화용수 컨테이너(150) 중에서, 어느 하나 이상의 소화용수 컨테이너(150)는 콘크리트 본체(100A)의 일측에 설치된 공기 배기구(166)와 소화용수 유입부(154a) 및/또는 소화용수 공급부(154b)(154c)를 통해 연결될 수 있다.
상기 소화용수 컨테이너(150)에 소화용수(FW)를 주입, 저장함에 있어서는 건축물에 콘크리트 본체(100A)를 시공한 후에 주입, 저장될 수 있다. 이때, 소화용수(FW)는 상기 콘크리트 본체(100A)의 일측에 형성된 소화용수 주입구(164)를 통해 주입되고, 상기 소화용수 유입부(154a)를 통해 컨테이너 본체(151) 내부로 주입, 저장된다. 그리고 이러한 소화용수(FW)의 주입 시, 컨테이너 본체(151) 내부에 존재하는 공기는 상기 소화용수 공급부(154b)(154c)를 통과한 다음, 콘크리트 본체(100A)의 공기 배기구(166)를 통해 외부로 배출되어, 소화용수(FW)의 주입이 원활해진다.
또한, 소화용수(FW)가 소화용수 주입구(164) 및 소화용수 유입부(154a)를 통해 어느 하나의 컨테이너 본체(151)에 채워지게 되면, 이후 소화용수 공급부(154b)(154c)를 통하여 상기 흐름 유로(20B)를 따라 인접하는 다른 소화용수 컨테이너(150)에 소화용수(FW)가 연속적으로 채워질 수 있다. 아울러, 화재 진압에 의해, 소화용수 컨테이너(150)에 저장된 소화용수(FW)가 모두 소모된 경우, 소화용수(FW)는 위와 같은 과정을 통해 각 소화용수 컨테이너(150)에 채워져 보충될 수 있다.
본 제2실시 형태에 따라서, 위와 같은 소화용수 컨테이너(150)를 포함하는 경우, 소화용수(FW)의 주입성/배출성, 소화용수(FW)의 저장성, 및/또는 방수성 등에서 바람직하다. 구체적으로, 소화용수 셀(30) 내에 소화용수(FW)를 직접 저장하는 경우에 비해, 상기와 같은 소화용수 컨테이너(150)를 설치하여 소화용수(FW)를 저장하는 경우, 소화용수(FW)의 주입 및 배출이 원활하고, 컨테이너 본체(151) 내에 충만이 가능하여 많은 량의 소화용수(FW)를 저장할 수 있으며, 이와 함께 방수성이 보장될 수 있어 바람직하다.
본 발명의 구현예에 따라서, 상기 소화용수 컨테이너(150)는 체결 부재(170)를 통하여 연통 배관(162) 및/또는 소화용수 주입구(164)과 기밀성을 갖도록 체결될 수 있다. 도 13을 참조하면, 일례를 들어 소화용수 컨테이너(150)의 제2공급부(154c)는 격리벽(20)에 설치된 연통 배관(162)과 체결 부재(170)를 통해 결합될 수 있다. 상기 체결 부재(170)는 특별히 제한되지 않으며, 이는 예를 들어 나사 구조로 두 개의 부재를 결합시킬 수 있는 것이면 좋다. 도 13에서, 도면 부호 S는 나사산이고, 도면 부호 172는 기밀성을 위한 실링재이다. 상기 실링재(172)는, 예를 들어 방수성의 고무재, 실리콘재 및/또는 섬유재 등으로부터 선택되며, 일례를 들어 고무재의 O-링(ring) 등으로부터 선택될 수 있다.
또한, 상기 제1공급부(154b)와 연통 배관(162)의 체결, 및 상기 소화용수 유입부(154a)와 소화용수 주입구(164)의 체결의 경우에도 위와 같은 체결 부재(170)를 통해 결합될 수 있다. 아울러, 경우에 따라서, 상기 소화용수 배출부(152)와 소화용수 배출관(160)의 체결의 경우에도 위와 같은 체결 부재(170)를 통해 기밀성을 갖도록 결합될 수 있다.
제3실시 형태
도 15는 본 발명의 제3실시 형태에 따른 콘크리트 구조체(100)의 사시도를 보인 것이다. 도 16은 도 15의 E-E선 단면을 보인 것이다.
본 발명에 따른 콘크리트 구조체(100)는, 제3실시 형태에 따라서 상기 소화용수 셀(30)의 상부에 설치된 보호 부재(130)를 더 포함할 수 있다. 상기 보호 부재(130)는 소화용수 셀(30) 및/또는 소화용수 컨테이너(150)를 보호하기 위해 설치된다. 구체적으로, 상기 보호 부재(130)는 이물질이나 상부에서 가해지는 하중 등으로부터 소화용수 셀(30) 및/또는 소화용수 컨테이너(150)를 보호하기 위해 설치된다. 하나의 예시에서, 상기 소화용수 셀(30) 및/또는 소화용수 컨테이너(150)의 상측에는 경량 콘크리트, 단열재, 난방 배관 및/또는 바닥 마감재 등의 적층물(FL, 19 참조)이 설치될 수 있다. 상기 보호 부재(130)는 이러한 적층물(FL)로부터 소화용수 셀(30) 및/또는 소화용수 컨테이너(150)를 보호한다.
본 발명에서, 상기 보호 부재(130)는 소화용수 셀(30) 및/또는 소화용수 컨테이너(150)를 보호할 수 있으면 특별히 제한되지 않으며, 바람직하게는 양호한 지지 강도를 가지는 것이면 좋다. 상기 보호 부재(130)는, 예를 들어 금속재, 콘크리트재 및/또는 세라믹재 등의 재질로 구성되어, 상부에서 가해지는 하중을 지지할 수 있으면 좋다. 상기 보호 부재(130)는, 구체적인 예를 들어 금속재로서, 판(plate) 형상, 스트립(strip) 형상 및/또는 바(bar) 형상 등을 가질 수 있다. 이러한 보호 부재(130)는, 예를 들어 각 소화용수 셀(30)의 상부에 1개씩 설치될 수 있다.
또한, 상기 보호 부재(130)는, 도 15 및 도 16에 예시한 바와 같이 만곡된 판 형상을 가지는 금속재로부터 선택될 수 있다. 하나의 구현예에 따라서, 상기 보호 부재(130)는 중앙 영역의 만곡부(132)와, 테두리 영역의 체결부(134)를 포함하는 판 형태의 금속재로 구성될 수 있다. 다른 구현예에 따라서, 예를 들어, 상기 보호 부재(130)는 위와 같은 만곡부(132)와 체결부(134)를 포함하는 스트립 형상을 가지되, 이러한 스트립 형상의 보호 부재(130)는 각 소화용수 셀(30)의 상부에 복수 개 설치될 수 있다. 상기 만곡부(132)는 체결부(134)보다 상향 볼록된 형상을 의미한다. 상기 체결부(134)는 격리벽(20) 상에 위치한다. 이때, 상기 체결부(134)는, 예를 들어 앙카 볼트(anchor bolt) 등의 체결구(135)를 통해 격리벽(20) 상에 고정될 수 있다. 상기 체결부(134)에는 체결구(135)가 관통되는 하나 이상의 체결공(134a)이 형성될 수 있다.
이하에서는, 본 발명에 따른 건축물의 바닥 시공구조(이하, "바닥 시공구조"로 약칭한다)의 구체적인 실시 형태를 설명한다. 또한, 이하에서 설명되는 본 발명에 따른 바닥 시공구조에서는 본 발명에 따른 콘크리트 구조체(100)의 다른 실시형태가 설명될 수 있다.
본 발명에 따른 바닥 시공구조는 상기한 바와 같은 본 발명의 콘크리트 구조체(100)를 1개 또는 2개 이상을 포함할 수 있다. 도 17 내지 도 19는 본 발명에 따른 바닥 시공구조를 예시한 것으로서, 도 17은 콘크리트 구조체(100)를 설치하는 과정을 설명하기 위한 단면도이고, 도 18은 평면도이다. 그리고 도 19는 본 발명의 제1실시 형태에 따른 바닥 시공구조의 단면 구성도를 보인 것이다.
먼저, 도 17을 참조하면, 건축물의 벽체(W)는 통상과 같이 거푸집(C)을 통해 축조되거나, 조립식 블록을 통해 프리캐스트(PC) 공법으로 축조될 수 있다. 도 17은 거푸집(C)을 통해 축조되는 모습을 예시한 것이다. 구체적으로, 벽체(W)의 시공을 위해, 내측 거푸집(C)과 외측 거푸집(C)을 설치한다. 내측 거푸집(C)과 외측 거푸집(C)의 사이에는 복수의 철근(F)이 설치되며, 철근(F)은 결선된다. 이후, 내외측 거푸집(C)의 사이에 콘크리트를 타설, 양생하여 벽체(W)를 시공한다. 이때, 좌측 벽체(W)와 우측 벽체(W)의 사이에는 바닥을 시공하기 위한 콘크리트 구조체(100)가 설치된다. 예를 들어, 2개 이상의 콘크리트 구조체(100)가 수평을 이루도록 복수 개 설치된다. 경우에 따라서, 복수의 콘크리트 구조체(100)가 수평을 이루도록 지지하는 수평 유지판(6)과, 상기 수평 유지판(6)을 지지하기 위한 지지 프레임(7)이 설치될 수 있다. 이때, 도 17에 도시한 바와 같이, 상기 수평 유지판(6)은 콘크리트 구조체(100)의 하부에 설치되며, 상기 지지 프레임(7)은 수평 유지판(7)의 하측에 설치되어 지지할 수 있다.
상기 복수의 콘크리트 구조체(100)은 인장선(Tension Wire)(TW)을 통해 상호간 체결된다. 구체적으로, 전술한 바와 같이 콘크리트 구조체(100)에는 관통홀(40)이 형성되어 있는데, 이러한 관통홀(40)에 인장선(TW)을 삽입한 다음, 어느 한쪽에서 텐션(tension)을 가하여 체결한다. 즉, 도 17에 도시한 바와 같이, 좌측 콘크리트 구조체(100)의 일측(도 17에서 왼쪽)에는 인장콘 등의 고정부재(8)로 인장선(TW)의 일단을 고정하여 마감한다. 그리고 우측 콘크리트 구조체(100)의 일측(도 17에서 오른쪽)에서 인장기(9)를 이용하여 인장선(TW)의 타단을 인장하여 강한 텐션을 가한 후, 철근(F)에 고정하게 되면, 복수의 콘크리트 구조체(100)는 견고하게 상호간 체결될 수 있다. 이때, 인장기(9)에는 유압기 등이 연결되어 강한 텐션이 가해질 수 있다.
본 발명에서, 인장선(TW)은 적절한 강도를 가지는 것이면 제한되지 않으며, 이는 예를 들어 철근을 사용하거나, 바람직하게는 복수의 강선이 꼬아진 것을 사용할 수 있다. 상기 인장선(TW)의 말단은, 벽체(W)의 내부에 매입되는 철근(F)과 용접 등을 통해 견고히 체결될 수 있다. 이와 같이 인장선(TW)을 통해 복수의 콘크리트 구조체(100)을 체결한 다음에는, 콘크리트 구조체(100)의 측면에 설치된 상기 인서트(50)를 벽체(W)의 철근(F)에 용접하거나 별도의 체결구로 체결하여, 보다 견고한 결합력을 갖게 할 수 있다.
위에서 설명한 콘크리트 구조체(100)의 설치 과정은 건축물의 2층이나 3층 이상의 바닥을 시공하는 경우를 예로 들어 설명한 것이다. 건축물의 맨 아래층 바닥의 경우에는, 상기에서 수평 유지판(6)과 지지 프레임(7)의 설치 구조는 생략될 수 있다. 또한, 위와 같이 시공된 콘크리트 구조체(100)는 상층에 거주하는 입주자에게는 바닥이 되고, 하층에 거주하는 입주자에게는 천장이 된다.
도 18에는 2개의 콘크리트 구조체(100)(100-1)(100-2)가 체결된 평면도가 예시되어 있다. 앞서 언급한 바와 같이, 콘크리트 구조체(100)(100-1)(100-2)의 측면에는 소화용수 주입구(164) 및/또는 공기 배기구(166)가 설치될 수 있다. 도 18에 예시한 바와 같이, 복수의 콘크리트 구조체(100)(100-1)(100-2) 중에서, 제1구조체(100-1)(100)에는 소화용수 주입구(164)가 설치되고, 제2구조체(100-2)(100)에는 공기 배기구(166)가 설치될 수 있다. 그리고 상기 소화용수 주입구(164) 및/또는 공기 배기구(166)는 벽체(W)를 관통하여 외부로 노출될 수 있다.
또한, 복수의 콘크리트 구조체(100)(100-1)(100-2) 상호간은 연통될 수 있다. 구체적으로, 도 18에 보인 바와 같이, 상기 제1구조체(100-1)(100)와 제2구조체(100-2)(100)는 연통 유로(165)를 통해 연통될 수 있다. 이때, 상기 연통 유로(165)는 제1구조체(100-1)(100)에 설치된 어느 하나의 소화용수 컨테이너(150)와 제2구조체(100-2)(100)에 설치된 어느 하나의 소화용수 컨테이너(150)를 연결한다. 이에 따라, 제1구조체(100-1)(100)에 설치된 소화용수 주입구(164)를 통해 소화용수(FW)를 주입하게 되면, 소화용수(FW)는 제1구조체(100-1)(100)의 각 소화용수 컨테이너(150)에 채워진 후, 계속적으로 연통 유로(165)를 따라 제2구조체(100-2)(100)로 공급되어 제2구조체(100-2)(100)의 각 소화용수 컨테이너(150)에 채워진다. 도 18에서, 도면 부호 L-FW로 표시한 화살표는 소화용수(FW)의 흐름을 나타낸다. 아울러, 소화용수(FW)의 주입 과정에서, 각 소화용수 컨테이너(150) 내에 존재하는 공기는 제2구조체(100-2)(100)에 설치된 공기 배기구(166)를 통해 외부로 배출된다. 상기 소화용수 주입구(164)를 통해 각 소화용수 컨테이너(150)에 소화용수(FW)를 충만시킨 후, 상기 소화용수 주입구(164) 및/또는 공기 배기구(166)에는 밀폐 캡(도시하지 않음)이 결합되어 마감될 수 있다.
한편, 화재 진압에 의해, 상기 소화용수 컨테이너(150)에 저장된 소화용수(FW)가 모두 소모된 경우, 각 소화용수 컨테이너(150)에는 소화용수(FW)가 채워져 보충될 수 있다. 이때, 도 19에 도시한 바와 같이, 소화용수(FW)는 소화용수 공급라인(168)을 통하여 보충될 수 있다. 상기 소화용수 공급라인(168)의 일측은 소화용수 주입구(164)와 체결 부재(170)을 통해 연결된다. 상기 소화용수 공급라인(168)에는 개폐밸브(168a)가 설치될 수 있다. 하나의 예시에서, 상기 소화용수 공급라인(168)은 옥상에 설치된 소화 수조(169)와 연결되어, 상기 소화 수조(169)에 저장된 소화용수(FW)을 소화용수 컨테이너(150)에 보충할 수 있다.
도 19를 참조하면, 본 발명에 따른 바닥 시공구조는 위와 같은 구조로 설치된 콘크리트 구조체(100)를 포함하되, 상기 콘크리트 구조체(100) 상에 설치된 적층물(Floor Lamination)(FL)을 더 포함할 수 있다. 상기 적층물(FL)은 경량 콘크리트, 단열재, 난방 배관, 모르타르층, 미장층 및/또는 바닥 마감재 등으로부터 선택될 수 있다. 하나의 예시에서, 상기 적층물(FL)은 콘크리트 구조체(100) 상에 설치된 단열재, 상기 단열재 상에 형성된 모르타르층, 상기 모르타르층 내에 배열 매입된 난방 배관, 상기 모르타르층 상에 형성된 미장층, 및 상기 미장층 상에 설치된 바닥 마감재(장판 등)를 포함할 수 있다.
화재 발생 시, 상기 콘크리트 구조체(100)에 설치된 소화용수 분사 유닛(100B)은 화재 지점을 향하여 소화용수(FW)를 분사한다. 본 발명에서, 소화용수(FW)를 분사, 즉 상기 소화용수 분사 유닛(100B)의 작동은 특별히 제한되지 않으며, 이는 자동 및/또는 수동을 포함한다. 예를 들어, 소화용수(FW)는 상기 소화용수 배출관(160)에 설치된 개폐밸브(V)의 작동(개방), 및/또는 상기 소화용수 분사구(180)의 작동(개방)에 의해 분사될 수 있다. 또한, 상기 소화용수 분사 유닛(100B)은 통상의 소화설비에 준하여 분사될 수 있다. 예를 들어, 상기 소화용수 분사 유닛(100B)은 통상의 소화설비에 설치되는 화재 감지기(열 감지기 및/또는 연기 감지기), 경보기 및/또는 제어부 등과 연계되어 소화용수(FW)가 분사될 수 있다. 아울러, 상기 소화용수 분사 유닛(100B)의 작동, 즉 상기 개폐밸브(V)의 작동(개방), 및/또는 상기 소화용수 분사구(180)의 작동(개방)은, 예를 들어 관제처(건물 관리소나 소방서 등)에서 원격으로 제어하여 작동(개방)되게 할 수 있다.
하나의 구현예에 따라서, 상기 소화용수 배출관(160)에는 개폐밸브(V)가 설치되고, 상기 개폐밸브(V)는 자동 및/또는 수동으로 작동될 수 있다. 일례를 들어, 상기 개폐밸브(V)는 솔레노이드 밸브로부터 선택되어 전기적으로 작동될 수 있다. 또한, 개폐밸브(V)에는 톱니식 또는 체인식 액추에이터(Actuator)(194)가 연결되고, 상기 액추에이터(194)는 모터(196)에 의해 작동될 수 있다. 아울러, 상기 모터(196)는 작동 스위치(198)에 의해 제어되어, 화재 발생 시 작동 스위치(198)를 누르면 모터(196)에 의해 액추에이터(194)가 작동되고, 이러한 액추에이터(194)에 의해 개폐밸브(V)가 개방되어 소화용수 분사구(180)를 통해 소화용수(FW)가 분사될 수 있다. 이때, 소화용수(FW)는 각 층별로 분사되거나, 각 층에 입주한 입주 세대별로 분사될 수 있다. 아울러, 소화용수(FW)는 콘크리트 구조체(100) 및/또는 소화용수 컨테이너(150)를 단위로 하여 각각 독립적으로 분사될 수 있다.
본 발명에서, 상기 소화용수 분사구(180)는 소화용수(FW)를 분사할 수 있으면 특별히 제한되지 않는다. 상기 소화용수 분사구(180)는, 전술한 바와 같이 통상의 스프링클러 설비에서 사용되는 스프링클러 헤드로부터 선택될 수 있다. 상기 소화용수 분사구(180)는, 예를 들어 열 반응부(185, 도 20 참조)를 포함하여, 화재 시에 발생된 열에 의해 상기 열 반응부(185)가 녹거나 파단되어 소화용수(FW)를 분사할 수 있는 구조를 가질 수 있다.
도 20은 상기 소화용수 분사구(180)의 예시적인 구현예를 보인 구성도이다.
도 20을 참조하면, 하나의 구현예에 따라서, 상기 소화용수 분사구(180)는 상기 소화용수 배출관(160)과 체결되는 어댑터(adapter)(181)와, 상기 어댑터(181)의 하부에 형성된 지지 튜브(support tube)(182)와, 상기 지지 튜브(182)의 하부에 설치된 소켓(socket)(183)과, 상기 소켓(183)의 하부에 설치된 지지 프레임(support frame)(184)과, 상기 지지 프레임(184)의 하부에 결합된 디플렉터(deflector)(186)와, 상기 지지 프레임(184)의 내측에 설치된 열 반응부(185)와, 상기 열 반응부(185)의 상부에 설치된 밸브(187)를 포함할 수 있다. 그리고 상기 열 반응부(185)의 하부에는 지지 부재(188)가 설치될 수 있다.
상기 열 반응부(185)는, 예를 들어 열에 의해 녹을 수 있는 것으로서 융점이 낮은 금속(예, 납(Pb) 등)으로부터 선택된 열 용융물로 구성되거나, 열에 의해 파단될 수 있는 유리벌브(glass bulb) 등으로 구성될 수 있다. 따라서 화재가 발생되면, 화재에 의한 열에 의해, 상기 열 반응부(185)가 녹거나 파단되어 밸브(187)가 이탈되고, 수압에 의해 소화용수(FW)가 분사된다.
다른 예를 들어, 상기 열 반응부(185)에는 전기 배선이 설치되고, 상기 전기 배선은 화재 감지기 및/또는 제어부 등과 연결될 수 있다. 그리고 화재가 발생되면, 화재 감지기에서 감지된 화재 정보는 제어부에 전달되고, 제어부는 전기 배선을 통해 열 반응부(185)에 전기가 인가되도록 하여, 상기 열 반응부(185)는 전기적인 저항열에 의해 녹거나 파단되어 소화용수(FW)가 분사될 수 있다.
도 21은 본 발명에 따른 바닥 시공구조의 제2실시 형태를 보인 요부 단면도이고, 도 22는 본 발명에 따른 바닥 시공구조의 제3실시 형태를 보인 요부 단면도이다.
도 21 및 도 22를 참조하면, 본 발명에 따른 바닥 시공구조는 상기한 바와 같은 콘크리트 구조체(100)와, 상기 콘크리트 구조체(100) 상에 이격 설치된 열전도성 금속 플레이트(500)를 포함할 수 있다. 이때, 상기 콘크리트 구조체(100)와 열전도성 금속 플레이트(500)는 충격 흡수 유닛(200)에 의해 소정 간격으로 이격될 수 있다. 또한, 상기 콘크리트 구조체(100)와 열전도성 금속 플레이트(500)의 사이에는 단열재(300) 및/또는 난방 배관(400)이 설치된 구조를 가질 수 있다.
하나의 구현예에 따라서, 본 발명에 따른 바닥 시공구조는 콘크리트 구조체(100)와, 상기 콘크리트 구조체(100) 상에 설치된 복수의 충격 흡수 유닛(200)과, 상기 충격 흡수 유닛(200) 상에 설치된 열전도성 금속 플레이트(500)와, 상기 콘크리트 구조체(100) 상에 설치된 단열재(300)와, 상기 단열재(300)와 열전도성 금속 플레이트(500)의 사이에 설치된 난방 배관(400)을 포함할 수 있다. 이때, 상기 충격 흡수 유닛(200)은 콘크리트 구조체(100)의 상부 면에 직접 접하여 설치(도 21 참조)되거나, 단열재(300)의 상부 면에 직접 접하여 설치(도 22 참조)될 수 있다.
도 21을 참조하면, 상기 충격 흡수 유닛(200)은 콘크리트 구조체(100)의 상부 면에 직접 접하여 설치되고, 이러한 충격 흡수 유닛(200)의 주위에는 단열재(300)가 콘크리트 구조체(100)와 직접 접하여 설치될 수 있다. 또한, 도 22를 참조하면, 상기 충격 흡수 유닛(200)은 단열재(300)의 상부 면에 직접 접하여 설치될 수 있다. 구체적으로, 콘크리트 구조체(100)의 상부 면에 직접 접하여 단열재(300)가 설치되고, 상기 단열재(300)의 상부 면에 직접 접하여 충격 흡수 유닛(200)이 설치될 수 있다. 아울러, 상기 난방 배관(400)들의 사이에 마련된 빈 공간(S)에는 별도의 패킹재가 채워지거나, 다른 형태에 따라서는 상기 빈 공간(S)은 공기층으로서 그대로 유지되어도 좋다. 상기 패킹재는 단열성 및/또는 차음성 등을 위한 것으로서, 이는 예를 들어 통상적으로 사용되는 단열재가 사용되거나, 기공 구조의 충전물이 될 수 있다. 상기 기공 구조의 충전물은 다수의 기공(pore)을 가지는 것으로서, 이는 예를 들어 기포 콘크리트 및/또는 합성수지 발포 폼(foam) 등으로부터 선택될 수 있다.
상기 충격 흡수 유닛(200)은 콘크리트 구조체(100)와 열전도성 금속 플레이트(500)의 사이에 설치되어, 이는 콘크리트 구조체(100)와 열전도성 금속 플레이트(500)를 소정 간격으로 이격시킨다. 또한, 상기 충격 흡수 유닛(200)은 열전도성 금속 플레이트(500)를 이격시킴과 함께 상부에서 가해지는 충격을 흡수, 완충하여 소음과 진동을 효과적으로 차단한다. 이때, 상기 충격 흡수 유닛(200)은 콘크리트 구조체(100)의 격리벽(20)에 고정될 수 있다.
도 23 내지 도 26은 상기 충격 흡수 유닛(200)의 실시 형태를 보인 것이다.
먼저, 도 23을 참조하면, 상기 충격 흡수 유닛(200)은 제1기판(210); 상기 제1기판(210) 상에 설치된 지지봉(220); 상기 지지봉(220)에 삽입 설치된 탄력성의 완충 부재(230); 및 상기 완충 부재(230) 상에 설치된 제2기판(240)을 포함할 수 있다. 이때, 상기 충격 흡수 유닛(200)은 안정감을 위해 복수의 지지봉(220)을 포함한다. 이와 같이 구성된 충격 흡수 유닛(200)은 상부에서 가해진 충격을 효과적으로 흡수, 완충하여 소음과 진동을 차단한다. 상기 충격 흡수 유닛(200)을 구성하는 각 구성요소는, 예를 들어 금속재 및/또는 플라스틱재 등으로부터 선택될 수 있으나, 그 개질은 특별히 제한되지 않는다.
상기 제1기판(210)은 원형 또는 다각형(사각형 등) 등의 판상으로서, 이는 콘크리트 구조체(100) 상에 고정된다. 구체적으로, 도 21 내지 도 23을 참조하면, 상기 제1기판(210)은 콘크리트 구조체(100)의 격리벽(20)에 고정될 수 있다. 상기 제1기판(210)은, 예를 들어 콘크리트 구조체(100)에 앙카 볼트(anchor bolt)(142)를 통해 고정될 수 있다. 이를 위해, 상기 제1기판(210)에는 앙카 볼트(142)가 삽입될 수 있는 볼트공(210a)이 형성될 수 있다. 보다 구체적으로, 상기 제1기판(210)에는 하나 이상의 볼트공(210a)이 형성되고, 상기 콘크리트 구조체(100)의 격리벽(20)에는 앙카 삽입물(144)이 매입되어, 앙카 볼트(142)가 볼트공(210a)을 관통한 다음, 앙카 삽입물(144)에 체결되어 제1기판(210)은 콘크리트 구조체(100)에 고정될 수 있다.
상기 지지봉(220)은, 전술한 바와 같이 안정감을 위해 복수 개이다. 즉, 상기 제1기판(210) 상에는 복수의 지지봉(220)이 설치되어 있다. 상기 제1기판(210) 상에는 예를 들어 3개 내지 6개의 지지봉(220)이 설치될 수 있으며, 도면에서는 4개의 지지봉(220)이 소정 간격으로 배열, 설치된 모습을 예시하였다. 상기 지지봉(220)은, 예를 들어 원기둥형 또는 다각 기둥형 등의 형상을 가질 수 있다.
상기 완충 부재(230)는 탄력성을 가지는 것으로서, 이는 지지봉(220)에 삽입, 설치되어 충격 흡수를 위한 완충력을 제공한다. 상기 완충 부재(230)는 탄력성을 가지는 것이면 제한되지 않는다. 이때, 충격 흡수 유닛(200)의 상부에서 충격이 가해질 시, 상기 완충 부재(230)의 수축(완충)되는 길이는 약 0.1mm 내지 4mm인 것이 바람직하다. 보다 구체적으로, 상부(상층)에서 충격이 가해지면, 상기 완충 부재(230)는 수축(완충)되는데, 이때 완충 부재(230)는 충격 하중에 의해 약 0.1mm 내지 4mm 정도의 수축력(완충력)을 가지는 것이 바람직하다.
일례를 들어, 충격이 가해지기 전 완충 부재(230)의 전체 길이(높이)가 약 5cm(= 50mm)인 경우(초기 길이 = 약 5cm)를 가정할 때, 상부에서 가해진 충격 하중에 의해 완충 부재(230)는 약 0.1mm 내지 4mm 정도로 수축되어, 수축 후의 길이(높이)는 약 46mm 내지 49.9mm의 정도가 되는 것이 바람직하다. 이때, 수축되는 길이(수축력)가 0.1mm 미만인 경우, 충격 흡수 기능(완충 기능)이 미미할 수 있다. 그리고 수축되는 길이(수축력)가 4mm를 초과하여 너무 과하게 수축되는 경우, 사람에게 완충(수축) 흔들림이 느껴질 수 있어 바람직하지 않을 수 있다. 이러한 점을 고려할 때, 상기 완충 부재(230)의 수축되는 길이는 0.5mm 내지 3.5mm, 또는 1mm 내지 3mm인 것이 바람직하다. 이러한 범위에서 완충되는 경우, 우수한 충격 흡수 기능(완충 기능)을 가지면서 사람에게는 수축(완충) 느낌을 주지 않아 바람직하다. 이때, 상기 충격 하중은 바닥 시공 후에 상부에서 가해질 수 있는 임의의 충격 하중으로서, 이는 특별히 제한되지 않으며, 하나의 예시에서 몸무게 100kg의 사람이 바닥에서 약 30cm 높이로 뛰어서 가해질 수 있는 충격 하중일 수 있다.
본 발명에서, 상기 완충 부재(230)는 위와 같은 범위의 수축력을 가질 수 있는 것이면 제한되지 않으며, 이는 예를 들어 코일형의 스프링(용수철 구조), 또는 복수의 갓 부재(235)를 포함할 수 있다. 바람직한 실시 형태에 따라서, 상기 완충 부재(230)는 복수의 갓 부재(235)로부터 선택된다. 도 24에는 완충 부재(230)의 바람직한 실시 형태로서, 복수의 갓 부재(235)를 포함하는 완충 부재(230)의 단면 구성도가 예시되어 있다.
도 24를 참조하면, 상기 완충 부재(230)는, 구체적으로 복수의 갓 부재(235)가 적층되어 구성된 탄성체인 것이 바람직하다. 상기 갓 부재(235)는 탄성의 금속 부재 또는 탄성의 플라스틱 부재로서, 이는 구체적인 예를 들어 탄소강, 스테인리스 스틸(SUS), 알루미늄 합금강, 및 강철 등의 금속 재질로 구성될 수 있다.
상기 갓 부재(235)의 중앙에는 완충공(235a)이 형성되어 있고, 상기 완충공(235a)에는 지지봉(220)이 삽입된다. 보다 구체적으로, 상기 갓 부재(235)는, 지지봉(220)이 끼워지는 중앙의 완충공(235a)과, 상기 완충공(235a)을 기준으로 하여 원주 방향으로 형성된 갓 모양의 탄성 원반(235b)을 포함한다. 이때, 상기 갓 모양의 탄성 원반(235b)은 도 24에 보인 바와 같이 수평 기준선(L)으로부터 소정 각도()로 경사지게 형성되어 삿갓 모양을 갖는다. 상기 탄성 원반(235b)은, 특별히 한정하는 것은 아니지만, 수평 기준선(L)으로부터 예를 들어 2도 내지 45도 정도의 각도()를 갖도록 경사지게 형성될 수 있다.
상기 완충 부재(230)는 위와 같은 갓 부재(235)가 복수 개 적층되어 구성될 수 있다. 이때, 도 24를 참조하면, 2개의 갓 부재(235)가 서로 반대 방향으로 적층되어 하나의 탄성체 세트를 이루며, 이러한 탄성체 세트가 1개 또는 2개 이상 적층되어 완충 부재(230)를 구성할 수 있다. 도 24에서는 서로 반대 방향으로 적층된 2개의 갓 부재(235)가 1개의 탄성체 세트를 이루되, 이러한 탄성체 세트 4개가 상하로 적층되어, 총 8개의 갓 부재(235)가 적층되어 구성된 완충 부재(230)를 예시하였다. 따라서 상부에서 충격이 가해지면, 갓 모양의 갓 부재(235), 즉 소정 각도()로 경사지게 형성된 갓 모양의 탄성 원반(235b)가 벌어지면서(퍼지면서) 충격을 흡수, 완충시킨다. 이러한 갓 부재(235)는 코일형의 스프링보다 안정감 있게 충격 흡수(완충)를 구현하며, 이는 또한 구조적으로 견고하여 본 발명에 바람직하다.
또한, 도 21 내지 도 23을 참조하면, 상기 제2기판(240)은, 위와 같은 완충 부재(230) 상에 설치되어, 열전도성 금속 플레이트(500)를 지지한다. 이때, 상기 제2기판(240)은 원형 또는 다각형(사각형 등) 등의 판상으로서, 여기에는 가이드공(245)이 형성되어 있다. 즉, 제2기판(240)에는 상기 지지봉(220)의 상부 말단(221)이 삽입되는 가이드공(245)이 형성되어 있다. 상기 가이드공(245)은 복수 개이며, 이는 상기 지지봉(220)의 개수와 동일할 수 있다. 예를 들어, 도 23에 도시한 바와 같이, 지지봉(220)이 4개인 경우, 상기 가이드공(245)도 4개가 될 수 있다. 따라서 상부에서 충격이 가해지면, 상기 제2기판(240)은 지지봉(220)을 따라 상하로 유동될 수 있다.
또한, 도 25를 참조하면, 상기 지지봉(220)의 상부 말단(221)은 제1기판(240)의 가이드공(245)에 삽입되어 있되, 단차(d)를 갖도록 삽입되어 있는 것이 바람직하다. 구체적으로, 지지봉(220)의 상부 말단(221)은 가이드공(245)의 말단(245a)으로부터 소정 거리의 단차(d)를 두고 위치되는 것이 바람직하다. 예를 들어, 제2기판(240)의 상부에서 강한 충격이 가해지면, 완충 부재(230)의 수축에 의해 지지봉(220)의 상부 말단(221)이 가이드공(245)을 이탈하여, 상부의 열전도성 금속 플레이트(500)를 압착시킬 수 있다. 상기 단차(d)는 이러한 현상을 방지할 수 있다. 즉, 상기 단차(d)는 제2기판(240)에 강한 충격이 가해지는 경우, 상기 말단(221)의 여분 출입로를 형성하여 지지봉(220)의 상부 말단(221)과 열전도성 금속 플레이트(500) 간의 접촉을 방지할 수 있다. 상기 단차(d)는, 예를 들어 0.2mm ~ 6mm의 거리로 형성될 수 있다. 상기 단차(d)는, 다른 예를 들어 0.5mm ~ 4mm의 거리로 형성될 수 있다. 구체적으로, 충격이 가해지는 경우, 지지봉(220)의 상부 말단(221)은 가이드공(245))의 내부에서 0.2mm ~ 6mm의 범위(또는 0.5mm ~ 4mm의 범위)로 유동될 수 있다.
도 23 및 도 25를 참조하면, 본 발명의 예시적인 실시 형태에 따라서, 상기 충격 흡수 유닛(200)은 높이 조절 부재(250)를 더 포함할 수 있다. 이러한 높이 조절 부재(250)는 제1기판(210)과 완충 부재(230)의 사이, 및 제2기판(240)과 완충 부재(230)의 사이 중에서 선택된 하나 이상에 설치된다. 상기 높이 조절 부재(250)는 충격 흡수 유닛(200) 간의 수평을 조절하기 위해 사용된다.
상기 충격 흡수 유닛(200)은 콘크리트 구조체(100) 상에 복수 개 설치될 수 있다. 경우에 따라서, 상기 콘크리트 구조체(100)는 상호간 수평이 맞지 않을 수 있다. 이때, 상기 높이 조절 부재(250)를 통하여 적어도 충격 흡수 유닛(200) 간의 수평을 조절할 수 있다. 상기 높이 조절 부재(250)는, 예를 들어 링(ring) 형상으로서, 이는 지지봉(220)에 끼움 설치된다. 이를 위해, 상기 높이 조절 부재(250)는 그의 중앙에 지지봉(220)이 끼워지는 끼움공(255)이 형성될 수 있다. 하나의 예시에서, 상기 높이 조절 부재(250)는 1개 또는 2개 이상의 복수 개일 수 있다. 이러한 높이 조절 부재(250)는 높이 편차에 따라 사용되는 개수가 정해질 수 있다. 즉, 충격 흡수 유닛(200) 간의 높이 편차에 따라 제1기판(210)과 완충 부재(230)의 사이, 및/또는 제2기판(240)과 완충 부재(230)의 사이에 높이 조절 부재(250)를 적절한 개수로 설치하여 높이를 조절할 수 있다.
도 26에는 상기 충격 흡수 유닛(200)의 다른 실시 형태가 도시되어 있다.
도 26을 참조하면, 상기 제1기판(210)과 제2기판(240)은, 완충 부재(230)와 접하는 면에 지지부(212)(242)가 형성될 수 있다. 즉, 제1기판(210)의 상부 면에는 제1지지부(210)가 형성되고, 제2기판(240)의 하부 면에는 제2지지부(242)가 형성될 수 있다. 또한, 상기 지지부(212)(242)는 제1기판(210)과 제2기판(240)으로부터 각각 일체로 형성될 수 있다. 아울러, 상기 지지부(212)(242)는 링 형상을 가지되, 이는 상기 완충 부재(230)를 구성하는 갓 부재(235)와 동일한 외경을 가질 수 있다. 이때, 제2기판(240)에 형성된 제2지지부(242)는 가이드공(245)과 연통된 연통공을 가지며, 상기 연통공에는 지지봉(220)의 상단이 끼워진다.
위와 같은 지지부(212)(242)에 의해 완충 부재(230)는 제1기판(210)과 제2기판(240)에 안정적으로 밀착될 수 있으며, 또한 지지부(212)(242)는 경우에 따라 높이 조절 기능을 겸할 수 있다. 부가적으로, 상기 제2기판(242)에 형성된 제2지지부(242)의 경우에는 가이드공(245)의 길이를 연장할 수 있어, 지지봉(220)의 상부 말단(221)을 안정감 있게 가이드할 수 있다. 보다 구체적으로, 제2지지부(242)에는 상기한 바와 같은 연통공이 형성되어, 제2기판(240)에 형성된 가이드공(245)의 길이가 연장될 수 있다. 이에 따라, 지지봉(220)의 상부 말단(221)이 제2기판(240)의 가이드공(245)으로부터 이탈되는 것을 효과적으로 방지할 수 있다.
한편, 본 발명에서, 상기 단열재(300)는 단열성을 갖는 것이면 특별히 제한되지 않으며, 이는 통상적으로 사용되는 것을 사용할 수 있다. 또한, 상기 단열재(300)는 단열성은 물론 차음성을 가질 수 있다. 상기 단열재(300)는, 예를 들어 합성수지 폼(폴리스틸렌 폼, 폴리우레탄 폼, 폴리에틸렌 폼, 폴리프로필렌 폼 등), 아이소핑크(압축 합성수지 폼으로서, 본 발명에서 아이소핑크는 압축 스티로폼은 물론 압축 폴리에틸렌 폼, 압축 폴리프로필렌 등을 포함한다), 석고보드, 글라스 울, 미네랄 울, 락 울 및 섬유 집합체(솜 등) 등으로부터 선택될 수 있으나, 이들에 의해 제한되는 것은 아니다.
또한, 본 발명에서, 상기 열전도성 금속 플레이트(500)는 열전도성을 갖는 금속 판(plate)이면 특별히 제한되지 않는다. 상기 열전도성 금속 플레이트(500)는, 예를 들어 철(Fe), 구리(Cu) 및 알루미늄(Al) 등으로부터 선택된 단일 금속 또는 이들의 합금으로 구성될 수 있다. 상기 열전도성 금속 플레이트(500)는, 가격을 고려하여 철판으로 선택되거나, 중량과 함께 열전도성을 고려하여 알루미늄 판 또는 철-알루미늄 합금 판 등으로부터 선택될 수 있다.
전술한 바와 같이, 본 발명에 따라서, 상기 난방 배관(400)은 단열재(300)와 열전도성 금속 플레이트(500)의 사이에 설치된다. 이때, 난방 배관(400)은 열전도성 금속 플레이트(500)의 하측 면에 최대한 밀착된 구조로 설치될 수 있다. 난방 배관(400)으로부터 발생된 열기는 상승하여 열전도성 금속 플레이트(500)에 전도된다.
위와 같은 본 발명에 따르면, 종래와 대비하여, 효과적인 난방 효과를 구현할 수 있다. 즉, 종래와 같이, 마감 모르타르에 난방 배관을 매입, 설치하는 경우, 마감 모르타르는 열전도율이 낮아 에너지 소비량에 비해 난방 효과가 낮으나, 위와 같이 본 발명에 따라서 열전도성 금속 플레이트(500)를 설치하고, 상기 열전도성 금속 플레이트(500)의 하측에 난방 배관(400)을 설치하는 경우, 열전도성이 효과적으로 개선된다. 보다 구체적으로, 종래의 마감 모르타르에 비해 열전도율이 매우 높은 금속 플레이트(500)가 열을 효과적으로 전도 및 방출하여 낮은 에너지 소비량으로도 높은 난방 효과를 구현할 수 있다. 또한, 난방 배관(400)의 하측에는 단열재(300)가 설치되어 난방 배관(400)의 열기는 단열에 의해 거의 상부로만 전달될 수 있다.
또한, 다른 실시 형태에 따라서, 본 발명에 따른 바닥 시공구조는 완충 패드(450)를 더 포함할 수 있다. 구체적으로, 도 21 및 도 22에 도시한 바와 같이, 상기 충격 흡수 유닛(200)과 열전도성 금속 플레이트(500)의 접촉 계면에는 완충 패드(450)가 설치될 수 있다. 이러한 완충 패드(450)는 충격 흡수 유닛(200)과 열전도성 금속 플레이트(500) 간의 완충을 위한 것으로서, 이는 예를 들어 고무재, 합성수지재, 섬유재 등으로 구성될 수 있다.
아울러, 본 발명에 따른 바닥 시공구조는, 상기한 바와 같은 구성요소 이외에 다른 구성요소를 더 포함할 수 있다. 예를 들어, 열전도성 금속 플레이트(500)의 상부에는 마감재가 설치될 수 있다. 이러한 마감재는 통상적으로 사용되는 바닥 마감재로부터 선택될 수 있다. 상기 마감재는, 예를 들어 인쇄 장식시트, 장판, 타일, 천연 석판(대리석 등), 인조 대리석(대리석 무늬의 합성수지 시트 등) 및/또는 황토판 등으로부터 선택될 수 있다. 또한, 본 발명에 따른 바닥 시공구조는, 상기 마감재 이외에 다양한 기능성 층을 더 포함할 수 있다. 예를 들어, 황토층, 탈취층, 살균층, 원적외선 방사층 및/또는 별도의 차음재층 등이 선택적으로 더 형성될 수 있다.
이상에서 설명한 본 발명에 따르면, 건축물의 바닥을 견고한 구조로 간단하게 시공할 수 있으면서 화재를 초기에 진압할 수 있다. 구체적으로, 상기 콘크리트 본체(100A)는, 그 구조적 측면에서 견고하다. 즉, 상기 콘크리트 본체(100A)는 콘크리트재의 베이스 판(10)을 포함하되, 상기 베이스 판(10) 상에 돌출 형성된 격자 구조 및/또는 벌집 구조의 격리벽(20)에 의해 견고한 지지력을 갖는다.
아울러, 본 발명에 따르면, 우수한 차음성 및 경량성 등을 갖는다. 예를 들어, 격리벽(20) 간의 사이에 복수의 소화용수 셀(30)이 형성되어 경량성을 확보하면서, 상기 소화용수 셀(30)에 의해 소음과 진동이 흡수, 소진(분산)되어 우수한 차음성 등을 도모한다. 특히, 상기한 바와 같은 충격 완충 유닛(200)에 의해, 우수한 차음성 등을 도모한다. 부가적으로, 본 발명에 따르면, 건축물의 바닥을 시공함에 있어, 종래와 같이 거푸집의 설치 및 콘크리트의 타설 등의 작업에 의하지 않고, 인장선(TW)을 통한 콘크리트 구조체(100)의 체결에 의해 바닥이 시공되어 작업이 간편하다.
또한, 본 발명에 따르면, 화재를 초기에 진압할 수 있다. 구체적으로, 콘크리트 구조체(100) 자체에 소화용수(FW)가 저장되어, 화재 발생 시 신속하게 소화용수(FW)가 분사될 수 있어 화재를 초기에 진압할 수 있다. 아울러, 개선된 난방 구조에 의해 열전도성이 우수하여 에너지 소비(난방비용 등)를 절감할 수 있다.

Claims (12)

  1. 건축물의 바닥을 형성하는 콘크리트 구조체이고,
    화재 진압을 위한 소화용수가 저장되는 콘크리트 본체를 포함하되,
    상기 콘크리트 본체는,
    베이스 판;
    상기 베이스 판의 상부에 돌출 형성된 격리벽; 및
    상기 격리벽에 의해 형성되고, 소화용수가 저장되는 복수의 소화용수 셀을 포함하는 것을 특징으로 하는 건축물의 바닥 시공용 콘크리트 구조체.
  2. 건축물의 바닥을 형성하는 콘크리트 구조체이고,
    화재 진압을 위한 소화용수가 저장되는 콘크리트 본체를 포함하되,
    상기 콘크리트 본체는,
    베이스 판;
    상기 베이스 판의 상부에 돌출 형성된 격리벽; 및
    상기 격리벽에 의해 형성된 복수의 소화용수 셀을 포함하고,
    상기 콘크리트 본체의 소화용수 셀에는 소화용수가 저장되는 소화용수 컨테이너가 내입된 것을 특징으로 하는 건축물의 바닥 시공용 콘크리트 구조체.
  3. 건축물의 바닥을 형성하는 콘크리트 구조체이고,
    화재 진압을 위한 소화용수가 저장되는 콘크리트 본체; 및
    상기 콘크리트 본체에 저장된 소화용수를 분사하는 소화용수 분사 유닛을 포함하는 것을 특징으로 하는 건축물의 바닥 시공용 콘크리트 구조체.
  4. 제3항에 있어서,
    상기 콘크리트 본체는,
    베이스 판;
    상기 베이스 판의 상부에 돌출 형성된 격리벽; 및
    상기 격리벽에 의해 형성되고, 소화용수가 저장되는 복수의 소화용수 셀을 포함하고,
    상기 소화용수 분사 유닛은,
    상기 콘크리트 본체의 소화용수 셀에 저장된 소화용수가 배출되는 소화용수 배출관; 및
    상기 소화용수 배출관의 말단에 설치되고, 소화용수를 분사하는 소화용수 분사구를 포함하는 것을 특징으로 하는 건축물의 바닥 시공용 콘크리트 구조체.
  5. 제3항에 있어서,
    상기 콘크리트 본체는,
    베이스 판;
    상기 베이스 판의 상부에 돌출 형성된 격리벽; 및
    상기 격리벽에 의해 형성된 복수의 소화용수 셀을 포함하고,
    상기 소화용수 분사 유닛은,
    상기 콘크리트 본체의 소화용수 셀에 내입되고, 소화용수가 저장되는 소화용수 컨테이너;
    상기 소화용수 컨테이너에 저장된 소화용수가 배출되는 소화용수 배출관; 및
    상기 소화용수 배출관의 말단에 설치되고, 소화용수를 분사하는 소화용수 분사구를 포함하는 것을 특징으로 하는 건축물의 바닥 시공용 콘크리트 구조체.
  6. 제4항에 있어서,
    상기 콘크리트 본체는,
    상기 소화용수 셀에 소화용수를 주입하기 위한 소화용수 주입구; 및
    상기 소화용수 셀 간을 연통시키는 소화용수 흐름 유로를 더 포함하는 것을 특징으로 하는 건축물의 바닥 시공용 콘크리트 구조체.
  7. 제5항에 있어서,
    상기 콘크리트 본체는,
    상기 소화용수 셀에 소화용수를 주입하기 위한 소화용수 주입구; 및
    상기 소화용수 셀 간을 연통시키는 소화용수 흐름 유로를 더 포함하고,
    상기 소화용수 컨테이너는,
    소화용수가 저장되는 컨테이너 본체;
    상기 컨테이너 본체에 설치되고, 소화용수가 유입되는 소화용수 유입부;
    상기 컨테이너 본체에 설치되고, 상기 소화용수 배출관과 연결되는 소화용수 배출부; 및
    상기 컨테이너 본체에 설치되고, 상기 소화용수 흐름 유로와 연결되는 소화용수 공급부를 포함하는 것을 특징으로 하는 건축물의 바닥 시공용 콘크리트 구조체.
  8. 제4항 내지 제7항 중 어느 하나의 항에 있어서,
    상기 콘크리트 구조체는 상기 소화용수 셀의 상부에 설치된 보호 부재를 더 포함하는 것을 특징으로 하는 건축물의 바닥 시공용 콘크리트 구조체.
  9. 제1항 내지 제7항 중 어느 하나의 항에 따른 콘크리트 구조체를 포함하는 것을 특징으로 하는 건축물의 바닥 시공구조.
  10. 제9항에 있어서,
    상기 건축물의 바닥 시공구조는,
    상기 콘크리트 구조체;
    상기 콘크리트 구조체 상에 설치된 충격 흡수 유닛;
    상기 충격 흡수 유닛 상에 설치된 열전도성 금속 플레이트;
    상기 콘크리트 구조체 상에 설치된 단열재; 및
    상기 단열재와 열전도성 금속 플레이트의 사이에 설치된 난방 배관을 포함하는 것을 특징으로 하는 건축물의 바닥 시공구조.
  11. 제10항에 있어서,
    상기 충격 흡수 유닛은,
    상기 콘크리트 구조체 상에 고정된 제1기판;
    상기 제1기판 상에 설치된 복수의 지지봉;
    상기 지지봉에 삽입 설치된 탄력성의 완충 부재; 및
    상기 완충 부재 상에 설치된 제2기판을 포함하고,
    상기 제2기판은, 상기 지지봉의 상부 말단이 삽입되는 가이드공이 형성된 것을 특징으로 하는 건축물의 바닥 시공구조.
  12. 제11항에 있어서,
    상기 완충 부재는, 복수의 갓 부재가 적층되어 구성된 탄성체인 것을 특징으로 하는 건축물의 바닥 시공구조.
PCT/KR2016/004351 2015-04-28 2016-04-26 소화 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조 WO2016175534A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680024965.1A CN107567523A (zh) 2015-04-28 2016-04-26 用于施工建筑物地板的混凝土结构体以及建筑物地板施工结构
JP2017557117A JP2018520278A (ja) 2015-04-28 2016-04-26 消火機能を有する建築物の床施工用コンクリート構造体及びこれを含む建築物の床施工構造
US15/570,337 US10709917B2 (en) 2015-04-28 2016-04-26 Concrete structure body for constructing building floor, having firefighting function, and building floor construction structure including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0059726 2015-04-28
KR1020150059726A KR101588665B1 (ko) 2015-04-28 2015-04-28 소화 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조

Publications (1)

Publication Number Publication Date
WO2016175534A1 true WO2016175534A1 (ko) 2016-11-03

Family

ID=55309887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004351 WO2016175534A1 (ko) 2015-04-28 2016-04-26 소화 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조

Country Status (5)

Country Link
US (1) US10709917B2 (ko)
JP (1) JP2018520278A (ko)
KR (1) KR101588665B1 (ko)
CN (1) CN107567523A (ko)
WO (1) WO2016175534A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110886378A (zh) * 2019-12-04 2020-03-17 北京林业大学 一种安装在绿化道及人行道下的蓄水减振装置的施工方法
CN110924512A (zh) * 2019-12-04 2020-03-27 北京林业大学 一种城市用方形的蓄水,灌溉及减振周期结构
CN115263138A (zh) * 2022-07-18 2022-11-01 中建八局第一建设有限公司 一种免收口门窗洞口及防渗漏施工方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106522440A (zh) * 2016-11-17 2017-03-22 西咸新区矩阵实业有限公司 基于聚苯颗粒纤维混凝土夹芯保温的叠合楼板及施工方法
US10912963B2 (en) * 2017-12-01 2021-02-09 International Business Machines Corporation Automatically generating fire-fighting foams to combat Li-ion battery failures
US10722741B2 (en) * 2017-12-01 2020-07-28 International Business Machines Corporation Automatically generating fire-fighting foams to combat Li-ion battery failures
JP6853776B2 (ja) * 2017-12-21 2021-03-31 住友林業株式会社 貫通部の耐火被覆構造
US11241599B2 (en) * 2018-05-09 2022-02-08 William A. Enk Fire suppression system
AU2019338428A1 (en) * 2018-09-10 2021-04-15 Hcsl Pty Ltd Building panel
CN110925918B (zh) * 2019-12-10 2020-12-15 安庆师范大学 一种计算机机房安全预防系统
EP3940160A1 (en) 2020-07-16 2022-01-19 Christian Coslovi Longo Disposable formwork with integrated water tank, developed to store water inside attics and building roofs
IT202000017311A1 (it) * 2020-07-16 2022-01-16 Longo Christian Coslovi Cassero a perdere con serbatoio idrico integrato, sviluppato per stoccare acqua dentro solai e coperture di edifici
CN113202242B (zh) * 2021-03-30 2022-07-19 浙江上青元电力科技有限公司 一种多段式防火材料
KR102365069B1 (ko) * 2021-09-09 2022-02-23 주식회사 경기세라믹스 커튼월 건축물의 층간 화재 방지 구조
AT17947U1 (de) * 2022-09-14 2023-08-15 Ke Kelit Gmbh Vorrichtung zur Anbindung von Rohrkreisen an einen Verteiler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114085A (ja) * 1997-10-14 1999-04-27 Hochiki Corp スプリンクラー消火設備
KR20050097400A (ko) * 2004-04-03 2005-10-07 김진현 공동주택의 소방배관 설치구조 및 이 구조를 이용한소방배관 설치방법
KR20080048901A (ko) * 2006-11-29 2008-06-03 안승한 콘크리트 구조체 및 이를 이용한 건축물의 슬래브 시공구조
KR20080073905A (ko) * 2007-02-07 2008-08-12 엘에스전선 주식회사 바닥 충격음 흡수 패널

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104060A (en) 1960-12-07 1963-09-17 Robertson Co H H Fire extinguishing system and apparatus
FR1586831A (ko) * 1968-02-06 1970-03-06
DE8612253U1 (de) * 1986-05-03 1989-10-05 Roland-Werke Dachbaustoffe u. Bauchemie Algostat GmbH & Co, 2807 Achim Dachabdeckung
FI934617A0 (fi) * 1993-10-19 1993-10-19 Suomen Pelastuskoulutus Oy Sprinklersystem foer slaeckande av braend
JP2009516533A (ja) 2005-10-21 2009-04-23 タイコ・フアイヤー・プロダクツ・エルピー 倉庫占有部火災に対応する天井専用ドライスプリンクラーシステムと方法
KR100862333B1 (ko) * 2006-08-29 2008-10-13 백운기 아파트 층고를 절감하기 위한 스프링클러 배관 구조 및이에 사용되는 슬리브
KR100810750B1 (ko) 2007-10-05 2008-03-10 전후식 건축물의 실내소방설비
IT1396655B1 (it) * 2009-02-13 2012-12-14 Montanari Impianto di riscaldamento cellulare a pavimento.
CA2793366A1 (en) 2010-03-15 2011-09-22 The Reliable Automatic Sprinkler Co., Inc. Low-lead residential fire protection sprinklers
CA2840062C (en) * 2011-06-27 2016-02-09 Ihi Corporation Method for constructing low-temperature tank and low-temperature tank
AU2013214742B2 (en) * 2012-02-02 2017-08-31 Engineered Plastics Inc. Frost resistant surface
CA2792370A1 (en) * 2012-10-10 2014-04-10 Flextherm Inc. Floor heating system with flexible and stretchable anti-fracture membrane
KR20150019107A (ko) 2013-08-12 2015-02-25 이정운 건물 화재 진압용 복합 스프링클러 시스템
US9476166B2 (en) * 2014-06-23 2016-10-25 Gary J. Hydock System for regulating temperature and moisture on a field
EP3186561B1 (en) * 2014-08-30 2020-11-25 Innovative Building Technologies LLC Floor and ceiling panel for use in buildings
US10190324B2 (en) * 2015-11-06 2019-01-29 Svein Julton Membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114085A (ja) * 1997-10-14 1999-04-27 Hochiki Corp スプリンクラー消火設備
KR20050097400A (ko) * 2004-04-03 2005-10-07 김진현 공동주택의 소방배관 설치구조 및 이 구조를 이용한소방배관 설치방법
KR20080048901A (ko) * 2006-11-29 2008-06-03 안승한 콘크리트 구조체 및 이를 이용한 건축물의 슬래브 시공구조
KR20080073905A (ko) * 2007-02-07 2008-08-12 엘에스전선 주식회사 바닥 충격음 흡수 패널

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110886378A (zh) * 2019-12-04 2020-03-17 北京林业大学 一种安装在绿化道及人行道下的蓄水减振装置的施工方法
CN110924512A (zh) * 2019-12-04 2020-03-27 北京林业大学 一种城市用方形的蓄水,灌溉及减振周期结构
CN115263138A (zh) * 2022-07-18 2022-11-01 中建八局第一建设有限公司 一种免收口门窗洞口及防渗漏施工方法
CN115263138B (zh) * 2022-07-18 2023-06-16 中建八局第一建设有限公司 一种免收口门窗洞口及防渗漏施工方法

Also Published As

Publication number Publication date
US10709917B2 (en) 2020-07-14
JP2018520278A (ja) 2018-07-26
CN107567523A (zh) 2018-01-09
US20180147432A1 (en) 2018-05-31
KR101588665B1 (ko) 2016-01-28

Similar Documents

Publication Publication Date Title
WO2016175534A1 (ko) 소화 기능을 가지는 건축물의 바닥 시공용 콘크리트 구조체 및 이를 포함하는 건축물의 바닥 시공구조
WO2015167203A1 (ko) 건축물의 바닥 시공용 콘크리트 패널 및 충격 흡수 유닛, 이를 포함하는 건축물의 바닥 시공구조
SI9420070A (en) Earthquake, wind resistant and fire resistant pre-fabricated building panels and structures formed therefrom
US8789339B2 (en) Method for making façades of buildings
US10683661B2 (en) Building module with pourable foam and cable
US6871466B2 (en) Structure formed of foaming cement and lightweight steel and a structural system and method of forming the structural system
JP5990424B2 (ja) 構造部材の接合構造
TWI837438B (zh) 隔牆與樓板的連接結構、其施工方法及建築物
CN102817426A (zh) 一种建筑复合墙体
JP4480181B2 (ja) 木造建物の外張り断熱構造
WO2018038484A1 (ko) 우수한 층간 차음성을 가지는 건축물의 바닥 시공구조
JP4326572B2 (ja) 鉄筋コンクリート建物のコンクリート外壁への複合パネルの外張り施工方法
BR112020014261B1 (pt) Elemento de cobertura para pisos suspensos, e sistema de piso suspenso
KR100913408B1 (ko) 탈기기능을 이용한 방수시트 및 방수공법
KR101588669B1 (ko) 건축물의 바닥 시공용 충격 흡수 유닛 및 이를 포함하는 건축물의 바닥 시공구조
EP2543791A1 (en) Method for making façades of buildings
KR101543585B1 (ko) 건축물의 바닥 시공용 콘크리트 패널, 그 제조방법 및 그를 포함하는 바닥 시공구조
EP3517701A1 (en) Improved building module with pourable foam and cable
ES2275389B1 (es) Mejoras introducidas en el objeto de la solicitud de patente española n. 200400682 por "sistema de construccion a partir de paneles prefabricados y panel prefabricado utilizado".
KR101543587B1 (ko) 건축물의 바닥 시공용 콘크리트 패널, 그 제조방법 및 그를 포함하는 바닥 시공구조
WO2012169765A2 (ko) 경량기포콘크리트를 이용한 복합패널의 제조장치 및 제조방법 그리고 이를 이용하여 제작된 경량기포콘크리트를 이용한 복합패널
EP3580399A1 (en) Facade for a building, process for producing a facade and construction set for a facade of a building
JP7081863B1 (ja) 間仕切り壁構成体及び間仕切り壁の設置工法
JPH10195975A (ja) 玄関ポーチ等の施工方法並びに玄関ポーチ
KR20170040883A (ko) 외단열 미장마감 시스템의 단열재 시공방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557117

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15570337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786720

Country of ref document: EP

Kind code of ref document: A1