WO2016175512A1 - 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇 - Google Patents

형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇 Download PDF

Info

Publication number
WO2016175512A1
WO2016175512A1 PCT/KR2016/004230 KR2016004230W WO2016175512A1 WO 2016175512 A1 WO2016175512 A1 WO 2016175512A1 KR 2016004230 W KR2016004230 W KR 2016004230W WO 2016175512 A1 WO2016175512 A1 WO 2016175512A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
unit
rotation
manufacturing robot
rollers
Prior art date
Application number
PCT/KR2016/004230
Other languages
English (en)
French (fr)
Inventor
만손얀-안데르스
고대화
Original Assignee
주식회사 키스타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 키스타 filed Critical 주식회사 키스타
Priority to EP16786698.7A priority Critical patent/EP3290189A4/en
Priority to US15/568,997 priority patent/US10946585B2/en
Priority to JP2018504632A priority patent/JP2018513800A/ja
Priority to CN201680023935.9A priority patent/CN107580548A/zh
Publication of WO2016175512A1 publication Critical patent/WO2016175512A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0029Cold deforming of thermoplastics material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to a 3D solid object manufacturing robot for a formable plastic material, and more particularly, to a 3D solid body manufacturing robot capable of multi-axis free rotation and capable of adjusting the tension and temperature of the formable plastic material.
  • 3D printing or 3D molding has been in the spotlight because it can reduce the amount of raw materials used in lightweight composite material and improve mechanical performance.
  • the lamination speed has also been improved to allow it to function as part of an automated process.
  • the additive processing technology has great potential in that it can be extended not only to the automotive parts market but also to various fields such as aircraft, electronic parts, consumer electronics, sports goods, and building materials. However, more research and development is required to produce sophisticated skeletal structures in a cost-effective manner.
  • the additive manufacturing apparatus for producing the internal skeleton uses raw materials of long and thin strands, which are most often made of a material that is easily solidified, cured or degraded. There is a need for a technique for preventing the raw material from hardening, hardening or deterioration until it passes through the inside of the additive processing apparatus and is discharged to the outside.
  • the additive manufacturing apparatus performs free trajectory movements (eg, rotational, linear or curved movements) in order to produce shapes of various complex structures, in which, due to its geometrical characteristics, the additive machining is performed in a wide range of joint motions.
  • free trajectory movements eg, rotational, linear or curved movements
  • the tension of the raw material is difficult to be kept constant while passing through the device.
  • the tension of the raw material is too strong, it may lead to failure of the lamination processing equipment. If the tension of the raw material is too weak, it is difficult to control the discharge speed and position of the raw material.
  • Korean Patent Publication No. 10-1198621 name of the invention: a plastic composite bumper beam for automobiles discloses a bumper beam having an insert reinforcement inserted therein.
  • the description regarding the manufacturing apparatus for manufacturing the bumper beam with the inserted insert reinforcement has not been sufficiently disclosed, and no clue can be found to overcome the above-mentioned problems.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a 3D three-dimensional object manufacturing robot for a formable plastic material, which can adaptively adjust the tension of the tow (raw material).
  • 3D stereoscopic object manufacturing robot for achieving the above object is a 3D stereoscopic object manufacturing robot for producing a 3D solid object using a material made of a formable plastic material, the head supply unit having an inlet for the material is introduced; A transformer unit having a plurality of rollers for guiding movement of the material delivered from the head supply unit; And a head unit for discharging the material transferred from the transformer unit to the outside.
  • 3D stereoscopic object manufacturing robot is a 3D stereoscopic object manufacturing robot for manufacturing a 3D solid object using a material made of a formable plastic material, a head supply unit having an inlet for the material entering; from the head supply unit A transformer unit having a plurality of rollers for guiding the movement of the material; And a head unit including a head heater to prevent the material transferred from the transformer unit from being hardened, cured, or deteriorated.
  • a 3D stereoscopic object manufacturing robot for manufacturing a 3D solid object using a material made of a formable plastic material, the head supply unit having an inlet for the material is introduced; A transformer unit having a plurality of rollers for guiding movement of the material delivered from the head supply unit; And a head unit for discharging the material transferred from the transformer unit to the outside, wherein the head unit includes a wheel assembly that enables multiple 360 degree rotations.
  • the 3D three-dimensional object manufacturing robot using the formable plastic material of the present invention according to the configuration, it is possible to adaptively adjust the tension of the raw material, that the hardening, hardening or deterioration of the raw material moving inside the 3D three-dimensional object manufacturing robot It is possible to prevent and to enable a precise rotational movement of the head unit within a limited distance.
  • FIG. 1 is a perspective view of a 3D three-dimensional object manufacturing robot 100 according to the present invention.
  • FIG. 2 is a perspective view of a head unit 200 which is one component of the 3D stereoscopic manufacturing robot 100 according to the present invention.
  • FIG 3 is a perspective view of a transformer unit 300 and a head supply unit 400 which are one component of the 3D three-dimensional object manufacturing robot 100 according to the present invention.
  • FIG 4 is a view showing the movement path of the tow in the 3D three-dimensional object manufacturing robot 100 according to the present invention.
  • FIG 5 is a cross-sectional view of the head unit 200 as one component of the 3D stereoscopic manufacturing robot 100 according to the present invention.
  • 6 to 8 are diagrams illustrating a rotation operation of the head unit 200 as one component of the 3D stereoscopic manufacturing robot 100 according to the present invention.
  • FIG 9 is an exploded perspective view of the right side of the transformer unit 300 which is one component of the 3D three-dimensional object manufacturing robot 100 according to the present invention.
  • FIG. 10 is an exploded left side perspective view of a transformer unit 300 that is one component of the 3D stereoscopic manufacturing robot 100 according to the present invention.
  • FIG. 11 is a schematic diagram of a transformer unit 300 that is one component of the 3D solid-state manufacturing robot 100 according to the present invention.
  • FIG. 1 is a perspective view of a 3D stereoscopic manufacturing robot 100 according to the present invention
  • FIG. 2 is a perspective view of a head unit 200 which is one component of the 3D stereoscopic manufacturing robot 100 according to the present invention
  • FIG. 3 is according to the present invention. It is a perspective view of the transformer unit 300 and the head supply unit 400 which are one component of the 3D three-dimensional object manufacturing robot 100.
  • the 3D stereoscopic manufacturing robot 100 includes a head unit 200, a transformer unit 300, and a head supply unit 400. ) And a body unit 500.
  • the body unit 500 includes a rotation base 510 and a connecting arm 520.
  • the rotation base 510 has a rotational movement F-F 'on a horizontal plane about the rotation axis 501a.
  • One end of the connection arm 520 is connected to the rotation base 510, and the other end of the connection arm 520 is connected to the head supply unit 400.
  • connection arm 520 and the head supply unit 400, and the connection arm 520 and the rotation base 510 may be connected by a pivotable member such as a pivot hinge or a shaft, but are not limited thereto. .
  • connection arm 520 is rotatably connected to the rotating base 510.
  • the connection arm 520 rotates around the connection axis 501b of the portion where the connection arm 520 and the rotation base 510 are connected to each other.
  • the other end of the connecting arm 520 is rotatably connected to the head supply unit 400.
  • the connecting arm 520 is a member in the longitudinal direction, and adjusts the height of the head supply unit 400 with respect to the horizontal plane.
  • the head supply unit 400 performs a rotational motion D-D 'about the connection shaft 401a of the portion where the connection arm 520 and the head supply unit 400 are interconnected.
  • the head supply unit 400 makes a rotational movement (C-C ') about the longitudinal axis. At this time, as the head supply unit 400 rotates, the transformer unit 300 and the head unit 100 connected to the head supply unit 400 also rotate in association with each other.
  • the head unit 200 is connected to the head supply unit 400.
  • the head unit 200 is connected to the head fastening part 440 provided in the head supply unit 400.
  • the head unit 200 performs a rotational motion B-B 'about the connection shaft 401b of the portion where the head unit 200 and the head fastening part 440 are interconnected.
  • the rotational movement B-B 'of the head unit 200 is adjusted by the operation of the transformer unit 300 to be described later. That is, the head unit 200 is connected to the transformer unit 300, the head unit 200 and the transformer unit 300 located in an area facing each other with respect to the connecting shaft 401b, the opposite direction (for example For example, when one component of the transformer unit 300 descends, the head unit 200 rises, and when one component of the transformer unit 300 rises, the head unit 200 descends. ')
  • the head unit 200 makes a 360 degree rotational movement A-A 'about its longitudinal axis 201a.
  • the head unit 200 is capable of multiple 360 degree rotations (360 °, 720 ° ).
  • a spacer may be provided in the head unit 200 so that the conducting wires included in the head unit 200 are not affected by the rotation of the head unit 200.
  • the 3D solid object manufacturing robot 100 may perform a multi-axis rotational motion.
  • the six-axis rotational motion has been described as possible, but if the tiltable tool table robot, to which the rotation base 510 is coupled, eight-axis rotation is possible.
  • the possible rotation of the 3D three-dimensional object manufacturing robot 100 according to the present invention is as follows.
  • First axis rotation rotation about the longitudinal axis 201a of the head unit 200 (A-A ')
  • Second axis rotation rotation of the head unit 200 controlled by the transformer unit 300 (B-B ')
  • 6th axis rotation rotation (F-F ') of the rotation base 510 about the rotation axis 501a perpendicular to the horizontal plane.
  • the operation of the head unit 200 for discharging the formable plastic material can be finely manipulated, thereby making it possible to manufacture a 3D solid object having a more complicated and sophisticated shape.
  • Figure 4 shows the movement path of the tow (50) in the 3D three-dimensional object manufacturing robot 100 according to the present invention.
  • a movement path of the tow 50 is formed by an internal passage by the connection of the head unit 200, the transformer unit 300, and the head supply unit 400.
  • the 3D stereoscopic manufacturing robot 100 has a built-in including a moving path of the tow 50 connected to the head supply unit 400, the transformer unit 300, and the head unit 200. It has a (built-in) structure.
  • the tow 50 is a continuous strand of polymer material or composite material, yarn, tow, bundle, band, Tape or the like.
  • Polymer materials include thermoplastics such as PLA, PE, PP, PA, ABS, PC, PET, PEI, PEEK, or thermosetting resins such as epoxy, unsaturated polyester, PI, and PUR. (thermosetting resins).
  • the polymer material is not limited thereto.
  • the reinforcing fibers may be GF (glass fiber), CF (carbon fiber), NF (natural fiber), aramid fiber (AF) and the like.
  • a 3D solid body manufacturing robot may be used for texturing yarn or roving.
  • the final composite material is a mixture of fibers in the polymer material
  • the fibers may be glass fibers, carbon fibers, boron fibers, alumina fibers, silicon carbide fibers, aramid fibers, various whiskers or combinations thereof It is not limited to this.
  • the manufacturing apparatus 100 may be infused with a yarn, tow, strand, band or tape. Individual yarns, tows, strands, bands, and tapes may be incorporated into the tow, in whole or in part, in an oven (including collectors, heaters, compressors, etc.).
  • the head supply unit 400, the transformer unit 300 and the head unit 100 finally help to compact and coalesce the tow 50.
  • yarns, strands, tows, bands, tapes, and the like are exemplified as materials of the finally manufactured three-dimensional object, but in the following description, the three-dimensional material is consistently described as tow to clearly understand the invention. do.
  • the tow 50 is introduced through the inlet 430 provided at the end of the inlet pipe 410 of the head supply unit 400. .
  • Inlet 430 receives the tow from a tow supply unit (not shown) provided on the outside.
  • the 3D three-dimensional object manufacturing robot 100 may include the tow supply unit (not shown).
  • the inlet 430 may be connected to a heater (not shown) provided in the outside to be supplied with temperature controlled air.
  • the temperature controlled air supplied through the inlet 430 prevents the tow 50 from hardening, curing or deteriorating until the tow 50 reaches the inlet 430, and producing a 3D solid material according to the present invention. The hardening, hardening or deterioration of the tow 50 passing through the inside of the robot 100 is prevented.
  • the tow 50 passing through the inlet 430 passes through the inlet pipe 410 of the head supply unit 400 to enter the transformer unit 300.
  • the head supply unit 400 since the head supply unit 400 includes the head supply heater 420 inside the inflow pipe 410, the tow 50 is hardened or hardened while passing through the inflow pipe 410 in the longitudinal direction. The movement continues to the transformer unit 300 without deterioration.
  • the transformer unit 300 includes a plurality of rollers, which guide the movement of the tow 50.
  • the tow 50 entering the transformer unit 300 through the head supply unit 400 changes its traveling direction while contacting each roller.
  • the traveling path of the tow 50 is defined by the structure or arrangement of the plurality of rollers.
  • the transformer unit 300 which rotates the head unit 200 the arrangement of the plurality of rollers is changed while adjusting the rotation of the head unit 200. Accordingly, the advancing direction of the tow 50 is changed, and the tension of the tow 50 is also affected.
  • At least one of the plurality of rollers is designed so that the tension of the tow 50, which can change as the tow 50 advances, can be kept constant.
  • at least one of the plurality of rollers corresponds to a tension holding roller of the tow 50.
  • the plurality of rollers other than the tension holding rollers guide the progress of the tow 50 and participate in the rotation of the head unit 200. In this regard, it will be described in more detail with reference to FIGS. 9 to 14.
  • the tow 50 passing through the transformer unit 300 continues to the head unit 200.
  • a coupling 302 is provided at the front end of the transformer unit 300, and the coupling 302 is connected to the coupling 252 located at the end of the head unit 200.
  • the coupling 252 of the head unit 200 and the coupling 302 of the transformer unit 300 may be directly connected to each other, or may be indirectly connected by an appropriate connection member.
  • the tow 50 entering the head unit 200 passes through the head pipe 212 of the head unit 200 and is discharged to the outside.
  • the head pipe 212 which is a cylindrical member in the longitudinal direction is surrounded by the head heater 214.
  • the head heater 214 is configured to maintain the head pipe 212 at an appropriate temperature state and prevent hardening, hardening or deterioration of the tow 50 passing through the inside of the pipe 212.
  • the 3D three-dimensional object manufacturing robot 100 may be provided with a plurality of heaters in order to prevent the hardening, hardening or deterioration of the tow 50.
  • the tow 50 is discharged from the 3D three-dimensional object manufacturing robot 100, it is necessary to accurately adjust the temperature of the tow 50. This is not only for sticking or solidifying the substrate from which the tow 50 is discharged, but also for controlling the discharge position and the discharge ratio.
  • the head unit 200 includes a temperature regulated forced air pipe 246 for controlling the temperature of the tow 50 discharged to the outside.
  • the forced air pipe 246 directly or indirectly makes the tow 50 at a desired temperature, and the tow 50 whose temperature is controlled by the forced air pipe 246 can be discharged from the head unit 200 without being coalesced. Will be. In this regard, it will be described in more detail below with reference to FIG. 5 with respect to the head unit 200.
  • the temperature of the adjusted tow 50 may be interpreted as a temperature or a temperature range for achieving discharge without adhesion of the tow 50 and / or required discharge rate.
  • the 3D solid object manufacturing robot 100 is not limited to a specific temperature or temperature range controlled by a heater (head heater 214 or head supply heater 420) or forced air pipe 246. That is, it is sufficient to have a function which can adjust (raise, lower or hold
  • the head unit 200 includes a head body 210 including a head pipe 212 and a head heater 214, a wheel assembly 220, a spacer 222, and a rotary housing 230.
  • the cylinder assembly 240 includes a cylinder roller 242, a cylinder roller bracket 244 and a forced air pipe 246.
  • the above configuration is only a configuration included in the preferred embodiment of the present invention. If the function of the 3D stereoscopic manufacturing robot 100 according to the present invention can be maintained, other configurations other than the above configuration may be added, and some of the above configurations may be added. It may be omitted.
  • the head body 210 includes a cylindrical head pipe 212 in the longitudinal direction, and guides the movement of the tow 200 passing through the transformer unit 300 to the head unit 200.
  • Head heater 214 surrounds all or part of head pipe 212 and raises the temperature of pipe 212. Since the tow 50 passing through the head pipe 212 passes through the inside of the head pipe 212 heated by the head heater 214, hardening, hardening or deterioration is prevented. Accordingly, the head pipe 212 is gently discharged to the outside without being fixed.
  • the wheel assembly 220 is provided at a predetermined position of the head body 210.
  • the head unit 200 is provided near the opposite end of the discharge port 250.
  • the wheel assembly 220 enables multiple 360 degree rotations (360 °, 720 ° ...) of the head unit 200.
  • the wheel assembly 220 is composed of a wheel, a flange, a gasket, and the like to rotate the head body 210.
  • the inner lead provided in the head unit 200 may be affected by the rotation of the head body 210.
  • the head unit 200 may include a rotary housing 230 and a spacer 222.
  • the rotary housing 230 is provided with at least one spacer 222 therein, by placing the conductors in the space spaced by the at least one spacer 222, the influence on the conductors (twist, disconnection, etc.) Only the head body 210 itself without rotation.
  • the head unit 200 makes a rotational movement A-A 'about the axis 201a along the longitudinal direction. 6 to 8 illustrate the rotational movement of the head unit 200 by the wheel assembly 220.
  • the head unit 200 can be rotated multiple 360 degrees by the wheel assembly 220 without the aid of the transformer unit 300 or the head supply 400. You can do it. Of course, by the rotary housing 230 and the spacer 222, the inner conductor is not affected by the rotation.
  • the rotation of the head unit 200 does not involve the rotation of the tow 50. That is, the wheel assembly 220 controls the rotation of the head unit 200, but the tow 50 passing through the inside of the head unit 200 may be discharged to the outside without rotating.
  • the rotation of the head unit 200 helps to more precisely manufacture three-dimensional objects of various shapes and structures.
  • the cylinder assembly 240 is fixed to a portion of the head body 210. Preferably, the cylinder assembly 240 is located close to the discharge port 250 from which the tow 50 is discharged.
  • the cylinder assembly 240 linearly reciprocates the cylinder roller bracket 244 using the reciprocating motion of the inner piston. Accordingly, the cylinder roller bracket 244 is a linear reciprocating motion (L-L) along the longitudinal direction of the head unit 200.
  • the cylinder roller 242 has a function of finely guiding the tow 50 discharged.
  • the cylinder roller 244 When the cylinder roller bracket 244 performs a linear reciprocating motion (L-L), the cylinder roller 242 provided at one end of the cylinder roller bracket 244 also performs a linear reciprocating motion (L'-L ').
  • the tow 50 passing through the head pipe 212 and exiting the discharge port 250 is guided by the cylinder roller 242. That is, the cylinder roller 242 appropriately guides the position of the tow 50 discharged to the outside.
  • the tow 50 In the absence of the cylinder roller 242, the tow 50 is directly lowered by gravity or adhered to the discharge port 250, making it difficult to discharge the tow 50 to a desired position.
  • the final ejection movement path of the tow 50 is guided by the cylinder roller 242, it is possible to precisely eject to a desired position, thereby making it possible to produce a 3D solid object having a more complicated shape by using a formable plastic material. Will be.
  • the cylinder assembly 240 has a forced air pipe 246.
  • the forced air pipe 246 directly or indirectly adjusts the temperature of the tow 50 discharged.
  • the forced air pipe 246 provided in the cylinder assembly 240 regulates the configurations of the cylinder assembly 240, that is, the temperature of the inner piston (not shown), the cylinder roller bracket 244 and the cylinder roller 242. .
  • the forced air pipe 246 adjusts the temperature of the cylinder roller 242 in contact with one end and the temperature of the tow 50 guided by the cylinder roller 242.
  • the cylinder roller 242 advances (forwards in the advancing direction of the tow 50) according to the internal piston movement of the cylinder assembly 240, the cylinder roller 242 passes through the head pipe 212 of the head unit 200. The tow 50 exiting the discharge port 250 is guided to the final discharge direction while contacting the cylinder roller 242.
  • the temperature of the tow 50 is also appropriately adjusted.
  • the tow 50 since the tow 50 is guided by the cylinder roller 242 without falling freely while exiting the discharge port 250, the tow 50 can be precisely discharged to a desired position, The tow 50 whose temperature is controlled by the forced air pipe 246 may be smoothly discharged without being adhered to the discharge port 250 or the cylinder roller 242.
  • FIG. 9 is an exploded perspective view of the right side of the transformer unit 300 which is one component of the 3D stereoscopic manufacturing robot 100 according to the present invention
  • FIG. 10 is a transformer unit (1 component of the 3D stereoscopic manufacturing robot 100 according to the present invention).
  • 300 is an exploded perspective view of the left side
  • FIG. 11 is a schematic diagram of a transformer unit 300 that is one component of the 3D stereoscopic manufacturing robot 100 according to the present invention.
  • the transformer unit 300 includes a plurality of rollers. In the present embodiment, it is assumed that a total of five rollers are included, but in other embodiments, fewer rollers may be included, and in another embodiment, more rollers may be included.
  • FIG. 9 is an exploded perspective view of the right side of the transformer unit 300 and illustrates in detail the right side surfaces of the first to fifth rollers 311 to 315 included in the transformer unit 300.
  • At least two or more rollers of the first to fifth rollers 311 to 315 are connected by wires 327 to keep the distance between the first to fifth rollers 311 to 315 constant. Accordingly, the movement path of the tow 50 formed on the first to fifth rollers 311 to 315 can be maintained at a constant length.
  • the first to fifth rollers 311 to 315 define a movement path of the tow 50.
  • the transformer unit Structural stability of the 300 is achieved, and the overall length of the tow 50 passing through the transformer unit 300 is constant.
  • the wires 327 are fastened to the wire engaging portions 322 to 325 located on the right side surfaces of the second to fifth rollers 312 to 315, so that the length of each roller is kept constant.
  • the shapes of the first to sixth chains 341 to 346 provided in the transformer unit 300 may be changed in conjunction with the positional changes of the first to fifth rollers 311 to 315.
  • the relative position of the second roller 312 with respect to the first roller 311 and the relative position of the first roller 311 with respect to the second roller 312 are constant. That is, the arrangement (separation distance and relative angle) of the first roller 311 and the second roller 312 with respect to each other does not change.
  • the relative position of the fifth roller 315 relative to the third roller 313 and the relative position of the third roller 313 relative to the fifth roller 315 are constant. That is, the arrangement (separation distance and relative angle) of the third roller 313 and the fifth roller 315 with respect to each other does not change.
  • the fourth roller 314 positioned between the third roller 313 and the fifth roller 315 also has a relative position with respect to the third roller 313 and the fifth roller 315, but the fourth roller 314 is fourth.
  • the roller 314 operates as a tension adjusting roller, the position is variable within a predetermined range.
  • first roller 311 and the second roller 312 move in one unit, and the third to fifth rollers 313 to 315 also move in one unit.
  • the second roller 312 and the third roller 313 are connected by the connecting member 350.
  • the third and fourth rollers 313 and 314 When a part of the transformer unit 300 is rotated around the fifth roller 315, the third and fourth rollers 313 and 314 also rotate while maintaining a constant separation distance and a relative angle.
  • the change in position of the second roller 312 is accompanied by a change in position of the first roller 311 disposed at a constant separation distance and relative angle.
  • Positional changes of the first and second rollers 311 and 312 according to the rotation of the fifth roller 315 are connected by the movement of the head unit 200. This is because the coupling 252 of the head unit 200 is connected with the coupling 302 of the transformer unit 300, and the coupling 302 of the transformer unit 300 is in close proximity to the first roller 311. Because it is fixed. That is, the separation distance and the placement angle between the coupling 302 and the first roller 311 of the transformer unit 300 are constant.
  • the head unit 200 is connected to the head fastening part 440 of the head supply 400, the head unit 200 is formed around the head fastening part 440 and the connecting shaft 401b of the head unit 200. 200 and a portion of the transformer unit 300 (regions in which the first roller 311 and the second roller 312 are located) perform relative movement.
  • the principle of the lever, the head fastening portion 440 and the connecting shaft 401b of the head unit 200 is the support point, the area where the first roller 311 of the transformer unit 300 is located is the power point, the head unit 200 ) Is the point of action.
  • the length of the head fastening part 440 is constant, and the transformer unit 300 for controlling the operation of the head unit 100 is located inside the head fastening part 440. Therefore, the transformer unit 300 according to the present invention is provided at a limited distance (the length of the head fastening part 440), thereby enabling the movement of the head unit 200, and accordingly, the 3D stereoscopic manufacturing robot ( 100) can be made more compact.
  • FIG. 12 illustrates a case where the configuration of the transformer unit 300 is located in the state of FIG. 11.
  • the head unit 200 is placed on an extension line in a direction substantially parallel to the horizontal plane, that is, the length direction of the head supply 400.
  • FIG. 13 illustrates a case in which a portion of the transformer unit 300 including the fifth roller 315 is rotated about the fifth roller 315.
  • FIG. 14 illustrates a case in which a part of the transformer unit 300 including the fifth roller 315 is rotated in the opposite direction of FIG. 13.
  • the transformer unit 300 may be deformed in a limited space by using the plurality of rollers 311 to 315, the head unit 200 may be rotated, such that the 3D stereoscopic manufacturing robot 100 Can be made compact.
  • the transformer unit 300 may freely rotate the head unit 200 up to 160 degrees or more. Of course, it is also possible to rotate at a larger angle, depending on the arrangement of the rollers 311 to 315 or the length of the head fastening portion 440.
  • At least one of the first to fifth rollers 311 to 315 functions as a tension adjusting roller having a function of adaptively adjusting the tension of the tow 50 passing through the transformer unit 300.
  • the fourth roller 314 is shown as having an adaptive tension adjustment function of the tow 50, the other roller may perform the tension adjustment function, or may further include a separate tension adjustment roller.
  • Each roller 311 to 315 provided in the transformer unit 300 defines a movement path of the tow 50.
  • the tow 50 enters the transformer unit 300 through the inflow pipe 410, is guided by the first to fifth rollers 311 to 315, and proceeds to the head unit 200. At this time, the tow 50 is in contact with the first to fifth rollers 311 to 315 of the transformer unit 300, the traveling direction is changed.
  • the tension adjusting roller (the fourth roller 314), which is one of the plurality of rollers 311 to 315, may include an elastic member 318.
  • the fourth roller 314 is variable in position within a predetermined distance.
  • the fourth roller 314 moves within a predetermined distance in response to the tension change of the tow 50 generated when the transformer unit 300 is deformed. Accordingly, the tension of the tow 50 can be kept constant.
  • the elastic member 318 allows the fourth roller 314 to move to a position where the tension of the tow 50 can be loosened, and the tension of the tow 50 is increased. If weak, the resilient member 318 allows the fourth roller 314 to move to a position where the tension of the tow 50 can be strengthened.
  • the elastic member 318 is mentioned as a means for enabling the positional movement of the fourth roller 314, which is an adaptive tension adjusting roller, but other means may be provided.
  • the transformer unit 300 may further include a wire cover 320 and a roller cover 360 to protect the rollers 311 to 315, the wires 327, and the like.
  • the transformer unit 300 may include a heater assembly 370.
  • the heater assembly 370 generates air at an appropriate temperature so that the tow 50 passing through the interior of the transformer unit 300 does not harden, harden or deteriorate.
  • the air of suitable temperature generated by the heater assembly 370 is transferred into the transformer unit 300 through the heater holder 372 and the heater guider 377.
  • air having a suitable temperature which is delivered through the heater assembly 370, is delivered to the movement path of the tow 50 through the transformer unit 300.
  • the heater assembly 370 may be mounted on the heater plate 375 to be detachably fixed to the head supply 400.
  • the tow 50 passing through the transformer unit 300 which is one component of the 3D solid-state manufacturing robot 100 according to the present invention, is maintained at a temperature controlled by air of an appropriate temperature supplied on a moving path. Hardening, curing or deterioration can be avoided.
  • a configuration for preventing hardening, hardening, or deterioration of the tow 50 may include an external heater (not shown) connected to the inlet 430 of the head supply 400, and a head supply heater of the head supply 400. 420, the head heater 214 of the head unit 200. These heating devices prevent the tow 50 from hardening, hardening or deteriorating.
  • the tow 50 is controlled by the forced air pipe 246 provided in the head unit 200 to be discharged to the outside without being coalesced.
  • each of the rollers 311 to 315 of the transformer unit 300 may further include a motor (not shown). This has a function of adjusting the discharge rate and discharge rate of the tow 50 guided by the rollers 311 to 315.
  • Each roller 311 to 315 may be separately connected to a motor, and the user may determine the rotational speed of each roller 311 to 315 by controlling the motor.
  • the rotational speed of the rollers 311 to 315 is directly related to the moving speed of the tow 50 guided by the respective rollers 311 to 315.
  • the motor may be connected to only some of the rollers of the plurality of rollers (311 to 315).

Abstract

형성 가능한 플라스틱 재료로 이루어진 소재를 이용하여 3D 입체물을 제조하는 3D 입체물 제조 로봇이 개시된다. 본 발명에 따른 제조 로봇은, 소재가 유입되는 유입구를 구비하는 헤드 서플라이 유닛, 헤드 서플라이 유닛으로부터 전달된 소재의 이동을 가이드하는 복수의 롤러를 구비하는 트랜스포머 유닛 및 트랜스포머 유닛으로부터 전달된 상기 소재를 외부로 토출하는 헤드 유닛을 포함한다. 이에 의하여, 원재료의 텐션을 적응적으로 조절할 수 있고, 3D 입체물 제조 로봇의 내부를 이동하는 원재료의 굳어지거나 경화되거나 열화되는 것을 방지할 수 있으며, 헤드 유닛의 정교한 회전 운동을 가능하게 할 수 있다. 또한, 헤드 유닛의 회전은 토우의 회전을 수반하지 않는다. 즉, 휠 어셈블리는 헤드 유닛의 회전을 제어하고, 헤드 유닛의 내부를 통과하는 토우는 회전 없이 밖으로 배출될 수 있게 된다.

Description

형성 가능한 플라스틱 재료를 위한 3D 입체물 제조 로봇
본 발명은 형성 가능한 플라스틱 재료를 위한 3D 입체물 제조 로봇에 관한 것으로, 더욱 상세하게는, 다축 자유 회전이 가능하고, 형성 가능한 플라스틱 재료의 텐션 및 온도 조절이 가능한, 3D 입체물 제조 로봇에 관한 것이다.
최근, 플라스틱 복합소재를 이용하여 강도와 내구성을 보강하기 위한 내부 보강재(reinforcement)를 제조하는 기술이 이용되고 있다. 적층 가공(additive manufacturing) 장치 및 폴리머/복합재의 내부 보강재와 같은 내부 골격 제조 기술에 대한 연구가 활발히 이루어지고 있다.
이를 이용하면, 경량 복합 소재 입체물의 원재료 사용량은 줄이면서도 기계적 성능을 높일 수 있다는 점에서 3D 프린팅이나 3D 몰딩이 각광받고 있다. 특히, 적층 가공 속도도 개선되어 자동화 공정의 일부로서 기능할 수 있게 되었다.
적층 가공 기술은 자동차 부품 시장뿐만 아니라, 항공기, 전자부품, 가전제품(consumer electronics), 스포츠 용품(sporting goods), 건축소재 등 다양한 분야로 확장될 수 있다는 점에서 잠재적 가치가 매우 높다. 하지만, 비용면에서 효율적인 방식으로 정교한 골격 구조를 제조하기 위해서는 더욱 많은 연구개발이 이루어져야 한다.
특히, 내부 골격을 제조하는 적층 가공 장치는, 가늘고 길게 이어진 스트랜드의 원재료를 사용하는데, 이 원재료는 대부분 쉽게 굳어지거나(solidified) 경화되거나(cured) 열화되는(degraded) 물질로 이루어지기 때문에, 원재료가 적층 가공 장치의 내부를 통과하여 외부로 토출될 때까지 원재료가 굳어지거나 경화되거나 열화되지 않도록 하기 위한 기술이 필요하다.
또한, 적층 가공 장치는 다양하고 복잡한 구조의 형상을 제조하기 위해, 자유로운 궤적 운동(예를 들어, 회전, 직선 또는 곡선 운동)을 하게 되는데, 이때, 형상적 특성 때문에, 광범위한 관절 운동을 하는 적층 가공 장치를 통과하는 동안 원재료의 텐션이 일정하게 유지되기 어렵다는 문제점이 있다.
원재료의 텐션이 너무 강하면 적층 가공 장치의 고장을 가져올 수 있고, 원재료의 텐션이 너무 약하면 원재료의 토출 속도와 위치를 제어하기가 어려워진다.
한국등록특허공보 제10-1198621호(발명의 명칭: 자동차용 플라스틱 복합재 범퍼 빔)는 본체 내부에 인서트 보강재가 삽입된 범퍼 빔을 개시하고 있다. 하지만, 인서트 보강재가 삽입된 범퍼 빔을 제조하는 제조 장치와 관련한 설명이 충분한 개시가 이루어지지 않았고, 위에서 언급한 문제점을 극복할만한 단서를 찾을 수 없다.
본 발명은 상기 문제점을 감안하여 안출된 것으로, 본 발명의 목적은, 원재료인 토우(tow)의 텐션을 적응적으로 조절할 수 있는, 형성 가능한 플라스틱 재료를 위한 3D 입체물 제조 로봇을 제공함에 있다.
본 발명의 또 다른 목적은, 제조 로봇 내부를 이동하는 토우의 굳어지거나 경화되거나 열화되는 것을 방지할 수 있는, 형성 가능한 플라스틱 재료를 위한 3D 입체물 제조 로봇을 제공함에 있다.
또한, 본 발명의 목적은, 한정된 거리 내에서 헤드 유닛의 정교한 회전 운동을 가능케 하는, 형성 가능한 플라스틱 재료를 위한 3D 입체물 제조 로봇을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명에 따른 3D 입체물 제조 로봇은, 형성 가능한 플라스틱 재료로 이루어진 소재를 이용하여 3D 입체물을 제조하는 3D 입체물 제조 로봇으로, 상기 소재가 유입되는 유입구를 구비하는 헤드 서플라이 유닛; 상기 헤드 서플라이 유닛으로부터 전달된 상기 소재의 이동을 가이드하는 복수의 롤러를 구비하는 트랜스포머 유닛; 및 상기 트랜스포머 유닛으로부터 전달된 상기 소재를 외부로 토출하는 헤드 유닛;을 포함한다.
일실시예에 따른 3D 입체물 제조 로봇은, 형성 가능한 플라스틱 재료로 이루어진 소재를 이용하여 3D 입체물을 제조하는 3D 입체물 제조 로봇으로, 상기 소재가 유입되는 유입구를 구비하는 헤드 서플라이 유닛;상기 헤드 서플라이 유닛으로부터 전달된 상기 소재의 이동을 가이드하는 복수의 롤러를 구비하는 트랜스포머 유닛; 및 상기 트랜스포머 유닛으로부터 전달된 소재가 굳어지거나 경화되거나 열화되는 것을 방지하는 헤드 히터를 포함하는 헤드 유닛;을 포함한다.
일실시예에 따른 3D 입체물 제조 로봇은, 형성 가능한 플라스틱 재료로 이루어진 소재를 이용하여 3D 입체물을 제조하는 3D 입체물 제조 로봇으로, 상기 소재가 유입되는 유입구를 구비하는 헤드 서플라이 유닛; 상기 헤드 서플라이 유닛으로부터 전달된 상기 소재의 이동을 가이드하는 복수의 롤러를 구비하는 트랜스포머 유닛; 및 상기 트랜스포머 유닛으로부터 전달된 상기 소재를 외부로 토출하는 헤드 유닛;을 포함하고, 상기 헤드 유닛은, 멀티플 360도 회전을 가능하게 하는 휠 어셈블리;를 포함한다.
상기 구성에 따른 본 발명의 형성 가능한 플라스틱 재료를 활용한 3D 입체물 제조 로봇에 의하면, 원재료의 텐션을 적응적으로 조절할 수 있고, 3D 입체물 제조 로봇의 내부를 이동하는 원재료의 굳어지거나 경화되거나 열화되는 것을 방지할 수 있으며, 한정된 거리 내에서 헤드 유닛의 정교한 회전 운동을 가능하게 할 수 있다.
도 1은 본 발명에 따른 3D 입체물 제조 로봇(100)의 사시도이다.
도 2는 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 헤드 유닛(200)의 사시도이다.
도 3은 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300) 및 헤드 서플라이 유닛(400)의 사시도이다.
도 4는 본 발명에 따른 3D 입체물 제조 로봇(100)에서 토우의 이동 경로를 나타내는 도면이다.
도 5는 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 헤드 유닛(200)의 단면도이다.
도 6 내지 도 8은 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 헤드 유닛(200)의 회전 동작을 나타내는 도면이다.
도 9는 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 우측 분해사시도이다.
도 10은 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 좌측 분해사시도이다.
도 11은 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 개략도이다.
도 12 내지 14는 트랜스포머 유닛(300)의 동작에 따른 헤드 유닛(200)의 회전을 나타내는 도면이다.
본 발명이 실시될 수 있는 특정 실시예를 도시한 첨부 도면을 참조하면서, 본 발명을 상세히 설명한다. 첨부 도면에 도시된 특정 실시예에 대하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 실시하기에 충분하도록 상세히 설명된다. 특정 실시예 이외의 다른 실시예는 서로 상이하지만 상호배타적일 필요는 없다. 아울러, 후술의 상세한 설명은 한정적인 의미로서 취하려는 것이 아님을 이해해야 한다.
첨부 도면에 도시된 특정 실시예에 대한 상세한 설명은, 그에 수반하는 도면들과 연관하여 읽히게 되며, 도면은 전체 발명의 설명에 대한 일부로 간주된다. 방향이나 지향성에 대한 언급은 설명의 편의를 위한 것일 뿐, 어떠한 방식으로도 본 발명의 권리범위를 제한하는 의도를 갖지 않는다.
구체적으로, "아래, 위, 수평, 수직, 상측, 하측, 상향, 하향, 상부, 하부" 등의 위치를 나타내는 용어나, 이들의 파생어(예를 들어, "수평으로, 아래쪽으로, 위쪽으로" 등)는, 설명되고 있는 도면과 관련 설명을 모두 참조하여 이해되어야 한다. 특히, 이러한 상대어는 설명의 편의를 위한 것일 뿐이므로, 본 발명의 장치가 특정 방향으로 구성되거나 동작해야 함을 요구하지는 않는다.
또한, "장착된, 부착된, 연결된, 이어진, 상호 연결된" 등의 구성 간의 상호 결합 관계를 나타내는 용어는, 별도의 언급이 없는 한, 개별 구성들이 직접적 혹은 간접적으로 부착 혹은 연결되거나 고정된 상태를 의미할 수 있고, 이는 이동 가능하게 부착, 연결, 고정된 상태뿐만 아니라, 이동 불가능한 상태까지 아우르는 용어로 이해되어야 한다.
도 1은 본 발명에 따른 3D 입체물 제조 로봇(100)의 사시도, 도 2는 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 헤드 유닛(200)의 사시도, 도 3은 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)과 헤드 서플라이 유닛(400)의 사시도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 3D 입체물 제조 로봇(100)은 헤드 유닛(head unit)(200), 트랜스포머 유닛(transformer unit)(300), 헤드 서플라이 유닛(head supply unit)(400) 및 바디 유닛(body unit)(500)을 포함한다.
먼저, 바디 유닛(500)은 회전 베이스(510)와 연결암(520)을 포함한다. 회전 베이스(510)는 회전축(501a)을 중심으로, 수평면상에서 회전 운동(F-F')을 한다. 연결암(520)의 일단은 회전 베이스(510)에 연결되고, 연결암(520)의 타단은 헤드 서플라이 유닛(400)에 연결된다.
연결암(520)과 헤드 서플라이 유닛(400), 그리고, 연결암(520)과 회전 베이스(510)는, 피봇 힌지나 샤프트와 같이 축을 중심으로 회동 가능한 부재에 의해 연결될 수 있지만, 이에 한정되지 않는다.
더욱 구체적으로, 연결암(520)의 일단은 회전 베이스(510)에 대해 회동 가능하게 연결된다. 연결암(520)과 회전 베이스(510)가 상호 연결된 부위의 연결축(501b)을 중심으로, 연결암(520)은 회전 운동(E-E')을 한다.
연결암(520)의 타단은 헤드 서플라이 유닛(400)에 대해 회동 가능하게 연결된다. 연결암(520)은 길이방향의 부재로서, 수평면에 대한 헤드 서플라이 유닛(400)의 높이를 조절한다.
다시 말해, 연결암(520)과 헤드 서플라이 유닛(400)이 상호 연결된 부위의 연결축(401a)을 중심으로, 헤드 서플라이 유닛(400)은 회전 운동(D-D')을 한다.
헤드 서플라이 유닛(400)은 길이방향의 축을 중심으로 회전 운동(C-C')을 한다. 이때, 헤드 서플라이 유닛(400)이 회전함에 따라, 헤드 서플라이 유닛(400)에 연결되어 있는 트랜스포머 유닛(300)과 헤드 유닛(100)도 연동하여 회전하게 된다.
또한, 헤드 유닛(200)은 헤드 서플라이 유닛(400)에 대해 연결된다. 헤드 유닛(200)은 헤드 서플라이 유닛(400)에 구비된 헤드 체결부(440)에 연결된다. 헤드 유닛(200)과 헤드 체결부(440)가 상호 연결된 부위의 연결축(401b)을 중심으로, 헤드 유닛(200)은 회전 운동(B-B')을 한다.
구체적으로, 헤드 유닛(200)의 회전 운동(B-B')은 후술할 트랜스포머 유닛(300)의 동작에 의해 조절된다. 즉, 헤드 유닛(200)은 트랜스포머 유닛(300)과 연결되어 있고, 상기 연결축(401b)을 중심으로 서로 마주보는 영역에 위치한 헤드 유닛(200)과 트랜스포머 유닛(300)은, 반대 방향(예를 들어, 트랜스포머 유닛(300)의 일구성이 하강하면 헤드 유닛(200)이 상승하고, 트랜스포머 유닛(300)의 일구성이 상승하면 헤드 유닛(200)이 하강)으로 수직 회전 운동(B-B')을 한다.
헤드 유닛(200)은 그의 길이 방향의 축(201a)을 중심으로, 360도 회전 운동(A-A')을 한다. 휠 어셈블리에 의하여 헤드 유닛(200)은 멀티플 360도 회전(360°, 720°…)이 가능하다. 이때, 헤드 유닛(200)에 포함된 도선들이 헤드 유닛(200)의 회전에 영향을 받지 않도록, 헤드 유닛(200)에는 스페이서가 구비될 수 있다.
상술한 바와 같이, 본 발명에 따른 3D 입체물 제조 로봇(100)은 다축 회전 운동을 할 수 있다. 위의 설명에서는, 6축 회전 운동이 가능한 것으로 설명했지만, 회전 베이스(510)가 결합되는, 틸팅 가능한 툴 테이블(tool table) 로봇을 포함하면, 8축 회전이 가능해진다.
즉, 본 발명에 따른 3D 입체물 제조 로봇(100)의 가능한 회전은 아래와 같다.
제1축 회전: 헤드 유닛(200)의 길이 방향축(201a)을 중심으로 한 회전(A-A')
제2축 회전: 트랜스포머 유닛(300)에 의해 조절되는 헤드 유닛(200)의 회전(B-B')
제3축 회전: 헤드 서플라이 유닛(400)의 길이방향의 축을 중심으로 한 회전(C-C')
제4축 회전: 헤드 서플라이 유닛(400)에 연결된 연결암(520)과의 연결축(401a)을 중심으로 한 헤드 서플라이 유닛(400)의 회전(D-D')
제5축 회전: 연결암(520)에 연결된 회전 베이스(510)의 연결축(501b)을 중심으로 한 연결암(520)의 회전(E-E')
제6축 회전: 수평면에 수직인 회전축(501a)을 중심으로 한 회전 베이스(510)의 회전(F-F')
제7축 및 제8축 회전: 회전 베이스(510)와 결합되는 2축 회전 가능한 툴 테이블(미도시)의 회전
이에 따라, 형성 가능한 플라스틱 재료를 토출하는 헤드 유닛(200)의 동작을 미세하게 조작할 수 있어, 더욱 복잡하고 정교한 형상의 3D 입체물을 제조하는 것이 가능해진다.
도 4는 본 발명에 따른 3D 입체물 제조 로봇(100)에서, 토우(tow)(50)의 이동 경로를 나타낸다. 도 4에 도시된 바와 같이, 헤드 유닛(200), 트랜스포머 유닛(300) 및 헤드 서플라이 유닛(400)의 연결에 의한 내부 통로에 의해 토우(50)의 이동 경로가 형성된다.
이와 같이, 본 발명에 따른 3D 입체물 제조 로봇(100)은, 헤드 서플라이 유닛(400), 트랜스포머 유닛(300) 및 헤드 유닛(200)으로 연결되는 토우(50)의 이동 경로를 내부에 포함하는 빌트인(built-in)구조를 갖는다.
여기서, 토우(50)란, 고분자 재료(polymer material) 또는 복합 재료(composite material)의 연속적으로 이어진 스트랜드(strand), 얀(yarn), 토우(tow), 번들(bundle), 밴드(band), 테이프(tape) 등이다. 고분자 재료로는 PLA, PE, PP, PA, ABS, PC, PET, PEI, PEEK 등의 열가소성 수지(thermoplastics) 혹은 에폭시(epoxy), 불포화 폴리에스터 수지(unsaturated polyester), PI, PUR 등의 열경화성 수지(thermosetting resins)일 수 있다. 하지만, 고분자 물질은 이에 한정되지 않는다. 또한, 보강재(reinforcing fibers)는 는 GF(glass fiber), CF(carbon fiber), NF(natural fiber), AF(aramid fiber) 등일 수 있다. 또한, 3D 입체물 제조 로봇은 직물용 실(textile yarn)이나 로빙(roving)을 위해 이용될 수도 있다.
또한, 최종 복합재 재료는 상기 고분자 재료에 섬유를 혼합한 것으로, 상기 섬유는 유리 섬유, 탄소 섬유, 보론 섬유, 알루미나 섬유, 탄화규소 섬유, 아라미드 섬유, 각종 휘스커(whisker) 또는 이들의 조합일 수 있지만, 이에 한정되지 않는다.
처음에 제조 장치(100)에는 얀, 토우, 스트랜드, 밴드 또는 테이프가 주입될 수 있다. 개별적인 얀, 토우, 스트랜드, 밴드, 테이프는 오븐(oven)(수집기(collector), 히터(heater), 압축기(compactor) 등을 포함)에서 전체적으로 혹은 부분적으로 토우로 합쳐지게 된다. 헤드 서플라이 유닛(400), 트랜스포머 유닛(300) 및 헤드 유닛(100)은 최종적으로 토우(50)를 압밀(compaction)하고 합치는데 도움을 준다.
또한, 본 설명에 있어서는 최종적으로 제조된 입체물의 소재로서, 얀, 스트랜드, 토우, 밴드, 테이프 등을 예시했지만, 이하의 설명에서는 발명을 명확히 이해할 수 있도록 입체물의 소재를 토우로 일관하여 기재하기로 한다.
다시, 도 4를 참조하면서, 토우(50)의 이동 경로에 대해 설명하면, 토우(50)는 헤드 서플라이 유닛(400)의 유입 파이프(410)의 끝단에 구비된 유입구(430)를 통해 유입된다. 유입구(430)는 외부에 구비된 토우 공급부(미도시)로부터 토우를 공급받는다. 물론, 본 발명에 따른 3D 입체물 제조 로봇(100)이, 상기 토우 공급부(미도시)를 포함해도 무방하다.
또한, 후술하겠지만, 유입구(430)는 외부에 구비된 히터(미도시)와 연결되어 온도 조절된 공기를 공급받을 수 있다. 유입구(430)를 통해 공급된, 온도 조절된 공기는, 토우(50)가 유입구(430)에 이를 때까지 토우(50)의 굳어지거나 경화되거나 열화되는 것을 방지하고, 본 발명에 따른 3D 입체물 제조 로봇(100)의 내부를 통과하는 토우(50)의 굳어짐이나 경화 또는 열화를 방지한다.
유입구(430)를 통과한 토우(50)는 헤드 서플라이 유닛(400)의 유입 파이프(410)를 지나 트랜스포머 유닛(300)으로 진입한다.
이때, 헤드 서플라이 유닛(400)은 유입 파이프(410)의 내부에 헤드 서플라이 히터(420)를 구비하고 있기 때문에, 길이 방향의 유입 파이프(410)를 지나는 동안, 토우(50)는 굳어지거나 경화되거나 열화되지 않은 상태로 트랜스포머 유닛(300)까지 이동을 계속하게 된다.
이하에서 더욱 상세히 설명하겠지만, 트랜스포머 유닛(300)은 복수의 롤러를 구비하며, 상기 복수의 롤러는 토우(50)의 이동을 가이드한다. 헤드 서플라이 유닛(400)을 지나 트랜스포머 유닛(300)에 진입한 토우(50)는, 각각의 롤러와 접촉하면서 진행 방향을 변경한다. 다시 말해, 토우(50)의 진행 경로는 복수의 롤러의 구조나 배치에 의해 정의된다.
한편, 헤드 유닛(200)을 회전시키는 트랜스포머 유닛(300)은, 헤드 유닛(200)의 회전을 조절하면서, 복수의 롤러의 배치가 변하게 된다. 이에 따라, 토우(50)의 진행 방향이 달라지게 되며, 토우(50)의 텐션도 영향을 받게 된다.
다만, 복수의 롤러 중 적어도 하나는, 토우(50)가 진행하면서 변할 수 있는 토우(50)의 텐션을 일정하게 유지할 수 있게 설계되어 있다. 구체적으로, 상기 복수의 롤러 중 적어도 하나는 토우(50)의 텐션 유지용 롤러에 해당한다. 텐션 유지용 롤러를 제외한 나머지 복수의 롤러는, 토우(50)의 진행을 가이드하는 동시에, 헤드 유닛(200)의 회전에 관여한다. 이와 관련해서는, 도 9 내지 도 14를 참조하면서 더욱 상세히 설명하기로 한다.
트랜스포머 유닛(300)을 통과한 토우(50)는 헤드 유닛(200)으로 진행을 계속한다. 트랜스포머 유닛(300)의 전단에는 커플링(302)이 구비되며, 상기 커플링(302)은 헤드 유닛(200)의 끝단에 위치한 커플링(252)과 연결된다. 이때, 헤드 유닛(200)의 커플링(252)과 트랜스포머 유닛(300)의 커플링(302)은 서로 직접 연결될 수도 있고, 적절한 연결 부재에 의해 간접적으로 연결될 수 있다.
헤드 유닛(200)의 내부로 진입한 토우(50)는 헤드 유닛(200)의 헤드 파이프(212)를 통과하여 외부로 토출된다. 이때, 길이 방향의 원통형 부재인 헤드 파이프(212)는 헤드 히터(214)에 의해 둘러싸여 있다. 헤드 히터(214)는 헤드 파이프(212)를 적절한 온도 상태로 유지하여, 파이프(212)의 내부를 통과 중인 토우(50)의 굳어짐이나 경화 또는 열화를 방지하도록 구성되어 있다.
상술한 바와 같이, 본 발명에 따른 3D 입체물 제조 로봇(100)은, 토우(50)의 굳어짐이나 경화 또는 열화를 방지하기 위하여 다수의 히터를 구비할 수 있다. 다만, 토우(50)가 3D 입체물 제조 로봇(100)으로부터 토출될 때에는 토우(50)의 온도를 정확히 조절할 필요가 있다. 이는, 토우(50)가 토출되는 기판(substrate)에 달라붙거나 굳어지는 것뿐만 아니라, 토출 위치와 토출 비율을 조절하기 위한 것이다.
이를 방지하기 위해, 헤드 유닛(200)은 외부로 토출되는 토우(50)의 온도를 조절하기 위한 온도조절 강제공기 파이프(temperature regulated forced air pipe)(246)를 구비한다. 강제공기 파이프(246)는 직간접적으로 토우(50)를 원하는 온도로 만들게 되며, 강제공기 파이프(246)에 의해 온도가 조절된 토우(50)는 유착됨 없이 헤드 유닛(200)으로부터 토출될 수 있게 된다. 이와 관련해서는, 헤드 유닛(200)과 관련한 도 5를 참조하면서 아래에서 더욱 상세히 설명하기로 한다.
조절된 토우(50)의 온도는, 토우(50)의 유착 없는 토출 및/또는 요구되는 토출률을 이루기 위한 온도 또는 온도 범위로 해석되면 무방하다.
본 발명에 따른 3D 입체물 제조 로봇(100)은 히터(헤드 히터(214) 또는 헤드 서플라이 히터(420))나 강제공기 파이프(246)에 의해 조절되는 특정 온도나 온도 범위에 한정되지 않는다. 즉, 토우(50)의 재료나 성질에 따라, 토우(50)의 온도를 조절(상승, 하강 또는 유지)할 수 있는 기능을 갖는 것으로 충분하다.
이하에서는, 본 발명에 따른 3D 입체물 제조 로봇(100)을 구성하는 헤드 유닛(200) 및 트랜스포머 유닛(300)의 세부적인 구조와 동작에 대해 설명한다.
도 5는 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 헤드 유닛(200)의 단면도이다. 도 5에 도시된 바와 같이, 헤드 유닛(200)은 헤드 파이프(212)와 헤드 히터(214)를 포함하는 헤드 바디(210), 휠 어셈블리(220), 스페이서(222), 로터리 하우징(230), 실린더 어셈블리(240), 토출구(250) 및 커플링(252)을 포함한다. 여기서, 실린더 어셈블리(240)는, 실린더 롤러(242), 실린더 롤러 브라켓(244) 및 강제공기 파이프(246)를 포함한다.
상기 구성은 본 발명의 바람직한 실시예에 포함되는 구성일 뿐이며, 본 발명에 따른 3D 입체물 제조 로봇(100)의 기능을 유지할 수 있다면, 상기 구성 외에 다른 구성이 부가되어도 무방하고, 상기 구성 중 일부가 생략되어도 무방하다.
헤드 바디(210)는 길이 방향의 원통형 헤드 파이프(212)를 포함하며, 트랜스포머 유닛(300)을 통과하여 헤드 유닛(200)으로 진입한 토우(200)의 이동을 가이드한다.
헤드 히터(214)는 헤드 파이프(212)의 전체 혹은 일부를 둘러싸며, 파이프(212)의 온도를 상승시킨다. 헤드 파이프(212)를 통과 중인 토우(50)는, 헤드 히터(214)에 의해 가열된 헤드 파이프(212) 내부를 통과하기 때문에, 굳어짐이나 경화 또는 열화가 방지된다. 이에 따라, 헤드 파이프(212) 내부에서 고착됨이 없이 외부로 부드럽게 토출된다.
휠 어셈블리(220)는 헤드 바디(210)의 소정 위치에 구비된다. 바람직하게는, 도 5에 도시된 바와 같이, 헤드 유닛(200)의 토출구(250)의 반대측 끝단 가까이에 구비된다.
휠 어셈블리(220)는 헤드 유닛(200)의 멀티플 360도 회전(360°,720°…)을 가능케 한다. 다시 말해, 휠 어셈블리(220)는 휠, 플랜지 및 가스켓 등으로 구성되어, 헤드 바디(210)를 회전시킨다.
이때, 헤드 유닛(200)의 내부에 마련된 내부 도선이, 헤드 바디(210)의 회전에 영향을 받을 수 있다. 이를 방지하기 위해, 헤드 유닛(200)은 로터리 하우징(230) 및 스페이서(222)를 구비할 수 있다.
즉, 로터리 하우징(230)은 내부에 적어도 하나의 스페이서(222)를 구비하며, 상기 적어도 하나의 스페이서(222)에 의해 이격된 공간에 도선들을 위치시켜, 도선에의 영향(꼬임, 단선 등) 없이 헤드 바디(210) 자체만 회전시킨다.
휠 어셈블리(220)에 의해, 헤드 유닛(200)은 길이 방향을 따르는 축(201a)을 중심으로 회전 운동(A-A')을 한다. 도 6 내지 도 8은 휠 어셈블리(220)에 의한 헤드 유닛(200)의 회전 운동을 나타낸다.
도 6 내지 도 8에 도시된 바와 같이, 헤드 유닛(200)은 트랜스포머 유닛(300)이나 헤드 서플라이(400)의 도움없이, 휠 어셈블리(220)에 의해 멀티플 360도 회전(360°, 720°…)할 수 있게 된다. 물론, 로터리 하우징(230)과 스페이서(222)에 의해, 내부 도선은 회전에 따른 영향을 받지 않는다.
또한, 헤드 유닛(200)의 회전은 토우(50)의 회전을 수반하지 않는다. 즉, 휠 어셈블리(220)는 헤드 유닛(200)의 회전을 조절하지만, 헤드 유닛(200)의 내부를 통과하는 토우(50)는 회전하지 않고, 외부로 토출될 수 있다.
이와 같은, 헤드 유닛(200)의 회전은, 다양한 형상과 구조의 입체물을 더욱 정교하게 제조하는 데 도움을 준다.
실린더 어셈블리(240)는 헤드 바디(210)의 일부에 고정된다. 바람직하게, 실린더 어셈블리(240)는 토우(50)가 토출 되는 토출구(250)에 근접하여 위치한다.
실린더 어셈블리(240)는 내부 피스톤의 왕복 운동을 이용하여, 실린더 롤러 브라켓(244)을 직선 왕복 운동시킨다. 이에 따라, 실린더 롤러 브라켓(244)은 헤드 유닛(200)의 길이 방향을 따라 직선 왕복 운동(L-L)하게 된다.
한편, 실린더 롤러 브라켓(244)의 일단에는 실린더 롤러(242)가 구비된다. 실린더 롤러(242)는 토출 되는 토우(50)를 정교하게 가이드하는 기능을 가진다.
실린더 롤러 브라켓(244)이 직선 왕복 운동(L-L)을 하게 되면, 실린더 롤러 브라켓(244)의 일단에 구비된 실린더 롤러(242)도 직선 왕복 운동(L'-L')을 수행하게 된다.
헤드 파이프(212)를 통과하여 토출구(250)를 빠져 나온 토우(50)는 실린더 롤러(242)에 의해 가이드된다. 즉, 실린더 롤러(242)는 외부로 토출되는 토우(50)의 위치를 적절히 가이드한다.
실린더 롤러(242)가 없는 경우, 토우(50)는 중력에 의해 바로 하강하거나 토출구(250)에 유착하여, 토우(50)를 원하는 위치로 토출시키기 어려워진다. 하지만, 토우(50)의 최종 토출 이동 경로가 실린더 롤러(242)에 의해 가이드되면, 원하는 위치로의 정교한 토출이 가능하여, 형성 가능한 플라스틱 재료를 활용하여, 더욱 복잡한 형상의 3D 입체물을 제조할 수 있게 된다.
한편, 실린더 어셈블리(240)는 강제공기 파이프(246)를 구비한다. 위에서 언급했듯이, 강제공기 파이프(246)는 토출되는 토우(50)의 온도를 직간접적으로 조절한다.
실린더 어셈블리(240)에 구비된 강제공기 파이프(246)는 실린더 어셈블리(240)의 구성들, 즉, 내부 피스톤(미도시), 실린더 롤러 브라켓(244) 및 실린더 롤러(242)의 온도를 조절한다.
특히, 강제공기 파이프(246)는 일단에 접촉하고 있는 실린더 롤러(242)의 온도 및 실린더 롤러(242)에 의해 가이드되는 토우(50)의 온도를 조절한다.
더욱 상세하게는, 실린더 어셈블리(240)의 내부 피스톤 운동에 따라 실린더 롤러(242)가 전진(토우(50)의 진행 방향으로 전진)하면, 헤드 유닛(200)의 헤드 파이프(212)를 통과하여 토출구(250)를 빠져 나온 토우(50)는 실린더 롤러(242)에 접촉하면서 최종 토출 방향이 가이드된다.
이때, 강제공기 파이프(246)에 의해 조절된 온도를 가지는 실린더 롤러(242)에 접촉하면서, 토우(50)의 온도도 적절히 조절된다.
다시 설명하면, 토우(50)가 토출구(250)를 빠져나오면서 자유 낙하하지 않고, 실린더 롤러(242)에 의해 진행 경로가 가이드 되기 때문에, 토우(50)를 원하는 위치로 정교하게 토출시킬 수 있고, 강제공기 파이프(246)에 의해 온도가 조절된 토우(50)가 토출구(250)나 실린더 롤러(242)에 유착됨이 없이 부드럽게 토출될 수 있다.
이하에서는, 트랜스포머 유닛(300)의 구성 및 동작에 대해 설명하기로 한다. 도 9는 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 우측 분해사시도이고, 도 10은 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 좌측 분해사시도이며, 도 11은 본 발명에 따른 3D 입체물 제조 로봇(100)의 일구성인 트랜스포머 유닛(300)의 개략도이다.
먼저, 도 9에 도시된 바와 같이, 트랜스포머 유닛(300)은 복수의 롤러를 포함한다. 본 실시예에서는, 총 5개의 롤러를 포함하는 것으로 상정하여 설명하지만, 이와 다른 실시예에서는 더 적은 개수의 롤러가 포함될 수 있고, 또 다른 실시예에서는 더 많은 개수의 롤러가 포함될 수도 있다.
도 9는 트랜스포머 유닛(300)의 우측 분해사시도로서, 트랜스포머 유닛(300)에 포함된 제1 내지 제5 롤러(311 내지 315)의 우측면을 세부적으로 도시하고 있다.
제1 내지 제5 롤러(311 내지 315) 중 적어도 2개 이상의 롤러는 와이어(327)에 의해 연결되어, 제1 내지 제5 롤러(311 내지 315) 사이의 거리를 일정하게 유지시킨다. 이에 따라, 제1 내지 제5 롤러(311 내지 315)에 형성되는 토우(50)의 이동 경로를 일정한 길이로 유지할 수 있게 된다.
다시 말해, 제1 내지 제5 롤러(311 내지 315)는 토우(50)의 이동 경로를 정의하는데, 제1 내지 제5 롤러(311 내지 315) 사이의 거리가 일정하게 유지됨에 따라, 트랜스포머 유닛(300)의 구조적 안정성이 도모되고, 트랜스포머 유닛(300)을 지나는 토우(50)의 전체 길이가 일정(constant)해진다.
본 실시예에서는, 제2 내지 제5 롤러(312 내지 315)의 우측면에 위치한 와이어 걸림부(322 내지 325)에 와이어(327)가 체결되어, 각 롤러의 길이가 일정하게 유지된다.
한편, 트랜스포머 유닛(300)에 구비된 제1 내지 제6 체인(341 내지 346)은, 제1 내지 제5 롤러(311 내지 315)의 위치 변화에 연동하여 형상이 달라질 수 있다.
본 실시예에서는, 제1 롤러(311)에 대한 제2 롤러(312)의 상대적 위치, 제2 롤러(312)에 대한 제1 롤러(311)의 상대적 위치는 일정하다. 즉, 제1 롤러(311)와 제2 롤러(312)의 서로에 대한 배치(이격 거리와 상대적 각도)는 변하지 않는다.
또한, 제3 롤러(313)에 대한 제5 롤러(315)의 상대적 위치, 제5 롤러(315)에 대한 제3 롤러(313)의 상대적 위치는 일정하다. 즉, 제3 롤러(313)와 제5 롤러(315)의 서로에 대한 배치(이격 거리와 상대적 각도)는 변하지 않는다.
이때, 제3 롤러(313)와 제5 롤러(315) 사이에 위치하는 제4 롤러(314)도, 제3 롤러(313) 및 제5 롤러(315)에 대한 상대적 위치가 일정하지만, 제4 롤러(314)는 텐션 조절용 롤러로 동작하는 경우, 소정 범위 내에서 위치가 가변적이다.
이에 따라, 제1 롤러(311) 및 제2 롤러(312)는 하나의 단위로 움직이고, 제3 롤러 내지 제5 롤러(313 내지 315)도 하나의 단위로 움직이는 것으로 설명될 수 있다.
한편, 제2 롤러(312)와 제3 롤러(313)는 연결부재(350)에 의해 연결된다.
제5 롤러(315)를 중심으로, 트랜스포머 유닛(300)의 일부가 회전하게 되면, 제3 및 제4 롤러(313,314)도 일정한 이격 거리와 상대적 각도를 유지하면서 회전하게 된다.
이에 따라, 연결부재(350)에 의해 제3 롤러(313)와 연결된 제2 롤러(312)의 위치도 변화하게 된다.
제2 롤러(312)의 위치 변화는, 일정한 이격 거리와 상대적 각도를 가지고 배치된 제1 롤러(311)의 위치변화를 수반한다.
제5 롤러(315)의 회전에 따른 제1 및 제2 롤러(311,312)의 위치 변화는, 헤드 유닛(200)의 움직임으로 연결된다. 이는 헤드 유닛(200)의 커플링(252)은 트랜스포머 유닛(300)의 커플링(302)과 연결되어 있고, 트랜스포머 유닛(300)의 커플링(302)은 제1 롤러(311)와 근접하여 고정되어 있기 때문이다. 즉, 트랜스포머 유닛(300)의 커플링(302)과 제1 롤러(311) 사이의 이격 거리와 배치 각도는 일정하다.
또한, 헤드 유닛(200)은 헤드 서플라이(400)의 헤드 체결부(440)에 연결되어 있기 때문에, 헤드 체결부(440)와 헤드 유닛(200)의 연결축(401b)을 중심으로 헤드 유닛(200)과 트랜스포머 유닛(300)의 일부(제1 롤러(311) 및 제2 롤러(312)가 위치한 영역)는 상대적인 운동을 한다.
지레의 원리로 설명하면, 헤드 체결부(440)와 헤드 유닛(200)의 연결축(401b)이 받침점, 트랜스포머 유닛(300)의 제1 롤러(311)가 위치한 영역이 힘점, 헤드 유닛(200)이 작용점이 된다.
제1 롤러(311)가 위치한 트랜스포머 유닛(300)의 영역이 상승 이동(회전)하게 되면, 헤드 유닛(200)은 하강 이동(회전)하게 되고, 제1 롤러(311)가 위치한 트랜스포머 유닛(300)의 영역이 하강 이동(회전)하게 되면, 헤드 유닛(200)이 상승 이동(회전)하게 된다.
이때, 헤드 체결부(440)의 길이는 일정하고, 헤드 유닛(100)의 동작을 제어하는 트랜스포머 유닛(300)은, 헤드 체결부(440)의 내부에 위치한다. 따라서, 본 발명에 따른 트랜스포머 유닛(300)은, 제한된 거리(헤드 체결부(440)의 길이)에 구비되어, 헤드 유닛(200)의 이동을 도모할 수 있게 되며, 이에 따라 3D 입체물 제조 로봇(100)을 더욱 컴팩트하게 구성할 수 있게 된다..
도 12 내지 도 14는 트랜스포머 유닛(300)에 의한 헤드 유닛(200)의 이동 혹은 회전을 나타낸다.
도 12는 트랜스포머 유닛(300)의 구성이 도 11의 상태에 위치한 경우를 도시한다. 이때, 헤드 유닛(200)은 수평면과 대략 평행한 방향, 즉, 헤드 서플라이(400)의 길이 방향의 연장선상에 놓이게 된다.
도 13은 제5 롤러(315)가 포함된 트랜스포머 유닛(300)의 일부 영역이 제5 롤러(315)를 중심으로 회전한 경우를 나타낸다.
제5 롤러(315)를 중심으로 한 트랜스포머 유닛(300)의 일부 영역의 회전은, 제3 롤러(313)와 제2 롤러(312)를 잇는 연결부재(350)를 상승시킨다. 이에 따라, 연결축(401b)을 기준으로 반대편에 있는 헤드 유닛(200)이 아래를 향하게 된다.
도 14는 제5 롤러(315)를 포함하는 트랜스포머 유닛(300)의 일부 영역이, 도 13의 반대 방향으로 회전한 경우를 나타낸다.
제5 롤러(315)를 중심으로 한 트랜스포머 유닛(300)의 일부 영역의 회전은, 제3 롤러(313)와 제2 롤러(312)를 잇는 연결부재(350)를 아래로 끌어당긴다. 이에 따라, 연결축(401b)을 기준으로 반대편에 있는 헤드 유닛(200)이 아래를 향하게 된다.
이와 같이, 트랜스포머 유닛(300)은 복수의 롤러(311 내지 315)를 이용하여, 한정된 공간에서 형상이 변형될 수 있기 때문에, 헤드 유닛(200)을 회전시킬 수 있기에, 3D 입체물 제조 로봇(100)을 컴팩트하게 만들 수 있다.
실시예에 따라 다르겠지만, 트랜스포머 유닛(300)은 헤드 유닛(200)을 160도 이상까지 자유 회전시킬 수 있다. 물론, 각 롤러(311 내지 315)의 배열 또는 헤드 체결부(440)의 길이 등에 따라, 더욱 큰 각도로 회전시키는 것도 가능하다.
이하에서는, 본 발명에 따른 3D 입체물 제조 로봇(100)에 있어서, 트랜스포머 유닛(300)을 통과하는 토우(50)의 적응적 텐션 조절 기능에 대해 상세히 설명한다.
여기서, 제1 내지 제5 롤러(311 내지 315) 중 적어도 하나의 롤러는, 트랜스포머 유닛(300)을 통과하는 토우(50)의 텐션을 적응적으로 조절하는 기능을 갖는 텐션 조절용 롤러로서 기능한다.
본 실시예에서는 제4 롤러(314)가 토우(50)의 적응적 텐션 조절 기능을 갖는 것으로 도시되어 있지만, 다른 롤러가 텐션 조절 기능을 수행할 수도 있고, 별도의 텐션 조절용 롤러를 더 포함해도 무방하다. 트랜스포머 유닛(300)에 구비된 각각의 롤러(311 내지 315)는 토우(50)의 이동 경로를 정의한다. 토우(50)는 유입 파이프(410)를 지나 트랜스포머 유닛(300)의 내부로 진입하여, 제1 내지 제5 롤러(311 내지 315)에 의해 가이드되어 헤드 유닛(200)으로 진행한다. 이때, 토우(50)는 트랜스포머 유닛(300)의 제1 내지 제5 롤러(311 내지 315)에 접촉하면서, 진행 방향이 바뀌게 된다.
이때, 복수의 롤러(311 내지 제315) 중 하나인 텐션 조절용 롤러(제4 롤러(314))는 탄성 부재(318)를 구비할 수 있다. 탄성 부재(318)에 의해 제4 롤러(314)는 소정 거리 내에서 위치 가변적이다.
제4 롤러(314)는 트랜스포머 유닛(300)의 변형이 이루어지면서 발생하는 토우(50)의 텐션 변화에 대응하여, 소정 거리 내에서 위치가 이동한다. 이에 따라, 토우(50)의 텐션이 일정하게 유지될 수 있다.
즉, 토우(50)의 텐션이 강하면, 탄성 부재(318)는 제4 롤러(314)가 토우(50)의 텐션을 느슨하게 할 수 있는 위치로 이동하는 것을 허용하고, 토우(50)의 텐션이 약하면, 탄성 부재(318)는 제4 롤러(314)가 토우(50)의 텐션을 강하게 할 수 있는 위치로 이동하는 것을 허용하게 된다.
본 실시예에서는, 적응적 텐션 조절용 롤러인 제4 롤러(314)의 위치 이동을 가능하게 하는 수단으로 탄성 부재(318)를 언급했지만, 이와 다른 수단이 구비되어도 무방하다.
한편, 트랜스포머 유닛(300)은 각 롤러(311 내지 315), 와이어(327) 등의 구성을 보호하기 위한 와이어 커버(320) 및 롤러 커버(360)를 더 포함할 수 있다.
이하에서는, 트랜스포머 유닛(300)의 일구성인 히터 어셈블리(370)에 대해 상세히 설명하기로 한다(도 3, 도 9 및 도 10 참조).
본 발명에 따른 트랜스포머 유닛(300)은 히터 어셈블리(370)를 포함할 수 있다. 히터 어셈블리(370)는 적절한 온도의 공기를 생성하여 트랜스포머 유닛(300)의 내부를 통과하는 토우(50)가 굳어지거나 경화되거나 열화되지 않도록 한다.
히터 어셈블리(370)에 의해 생성된 적절한 온도의 공기는, 히터 홀더(372)와 히터 가이더(377)를 통해 트랜스포머 유닛(300)의 내부로 전달된다.
구체적으로, 히터 어셈블리(370)를 통해 전달된, 적절한 온도를 가지는 공기는 트랜스포머 유닛(300)을 통과하는 토우(50)의 이동 경로에 전달된다.
히터 어셈블리(370)는 히터 플레이트(375) 위에 탑재되어, 헤드 서플라이(400)에 탈착 가능하게 고정될 수 있다.
이와 같이, 본 발명에 따른 3D 입체물 제조 로봇(100)의 일 구성인 트랜스포머 유닛(300)을 통과하는 토우(50)는, 이동 경로상에 공급되는 적절한 온도의 공기에 의해 조절된 온도를 유지하여 굳어지거나 경화되거나 열화되는 것을 피할 수 있다.
토우(50)의 굳어짐이나 경화 또는 열화를 방지하는 구성은 히터 어셈블리(370) 외에도, 헤드 서플라이(400)의 유입구(430)와 연결된 외부 히터(미도시), 헤드 서플라이(400)의 헤드 서플라이 히터(420), 헤드 유닛(200)의 헤드 히터(214)가 있다. 이러한 히팅 장치들에 의해 토우(50)가 굳어지거나 경화되거나 열화되지 않게 된다.
또한, 토우(50)는 헤드 유닛(200)에 구비된 강제공기 파이프(246)에 의해 온도가 조절되어 유착되지 않고 외부로 토출될 수 있게 된다.
한편, 트랜스포머 유닛(300)의 각 롤러(311 내지 315)는 모터(미도시)를 더 구비할 수 있다. 이는, 각 롤러(311 내지 315)에 의해 가이드 되는 토우(50)의 토출률 및 토출 속도를 조절하는 기능을 가진다.
각각의 롤러(311 내지 315)는 개별적으로 모터가 연결될 수 있고, 사용자는 모터를 제어함으로써, 각각의 롤러(311 내지 315)의 회전 속도를 결정할 수 있다. 롤러(311 내지 315)의 회전 속도는 각각의 롤러(311 내지 315)에 의해 가이드되는 토우(50)의 이동 속도에 직접적으로 관여한다.
물론, 다른 실시예에서는, 복수의 롤러(311 내지 315) 중 일부의 롤러에만 모터가 연결될 수도 있다.
본 발명의 바람직한 실시 형태를 포함하는 특정 실시예의 관점에서 본 발명을 설명했지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 위에서 설명된 발명의 구성에 있어서, 다양한 치환이나 변형을 예측할 수 있을 것이다. 또한, 본 발명의 권리범위와 기술적 사상을 벗어나지 않는 한, 구조적이고 기능적인 변조가 다양하게 이루어질 수 있다. 따라서, 본 발명의 사상이나 권리범위는 본 명세서에 첨부된 청구범위에 기술된 바와 같이 광범위하게 이해될 수 있을 것이다.
[부호의 설명]
100‥‥‥‥‥3D 입체물 제조 로봇 200‥‥‥‥‥‥헤드 유닛
212‥‥‥‥‥헤드 파이프 214‥‥‥‥‥‥헤드 히터
220‥‥‥‥‥휠 어셈블리 240‥‥‥‥‥‥실린더 어셈블리
242‥‥‥‥‥실린더 롤러 250‥‥‥‥‥‥토출구
300‥‥‥‥‥트랜스포머 유닛 311∼315‥‥‥‥롤러
322∼325‥‥‥와이어 걸림부 341∼346‥‥‥‥체인
350‥‥‥‥‥연결부재 370‥‥‥‥‥‥히터 어셈블리
377‥‥‥‥‥히터 가이더 400‥‥‥‥‥‥헤드 서플라이 유닛
440‥‥‥‥‥헤드 체결부 500‥‥‥‥‥‥바디 유닛
510‥‥‥‥‥회전 베이스 520‥‥‥‥‥‥연결 암

Claims (20)

  1. 형성 가능한 플라스틱 재료로 이루어진 소재를 이용하여 3D 입체물을 제조하는 3D 입체물 제조 로봇으로,
    상기 소재가 유입되는 유입구를 구비하는 헤드 서플라이 유닛;
    상기 헤드 서플라이 유닛으로부터 전달된 상기 소재의 이동을 가이드하는 복수의 롤러를 구비하는 트랜스포머 유닛; 및
    상기 트랜스포머 유닛으로부터 전달된 상기 소재를 외부로 토출하는 헤드 유닛;을 포함하는, 3D 입체물 제조 로봇.
  2. 제1항에 있어서,
    상기 트랜스포머 유닛은,
    상기 복수의 롤러의 배치를 변형시킴으로써, 상기 헤드 유닛의 이동 또는 회전을 제어하는, 3D 입체물 제조 로봇.
  3. 제2항에 있어서,
    상기 복수의 롤러 중 두 개의 롤러를 연결하는 연결부재;를 더 포함하는, 3D 입체물 제조 로봇.
  4. 제3항에 있어서,
    상기 트랜스포머 유닛은,
    상기 복수의 롤러 중 하나의 롤러를 중심으로 한 일부 영역의 회전에 따라, 상기 연결부재 및 상기 연결부재에 연결된 두 개의 롤러가 연동하여 이동함으로써, 상기 헤드 유닛의 회전을 조절하는, 3D 입체물 제조 로봇.
  5. 제1항에 있어서,
    상기 복수의 롤러 중 적어도 하나는 상기 소재의 텐션 변화에 대응하여 위치 가변적인 텐션 조절용 롤러인, 3D 입체물 제조 로봇.
  6. 제5항에 있어서,
    상기 텐션 조절용 롤러는,
    소정 범위 내에서 이동을 가능하게 하는 탄성 부재를 구비하는, 3D 입체물 제조 로봇.
  7. 제1항에 있어서,
    상기 복수의 롤러에 의해 가이드되는 상기 소재는, 상기 복수의 롤러의 위치가 변화하는 동안에도 일정한 길이를 유지하는, 3D 입체물 제조 로봇.
  8. 형성 가능한 플라스틱 재료로 이루어진 소재를 이용하여 3D 입체물을 제조하는 3D 입체물 제조 로봇으로,
    상기 소재가 유입되는 유입구를 구비하는 헤드 서플라이 유닛;
    상기 헤드 서플라이 유닛으로부터 전달된 상기 소재의 이동을 가이드하는 복수의 롤러를 구비하는 트랜스포머 유닛; 및
    상기 트랜스포머 유닛으로부터 전달된 소재가 굳어지거나 경화되거나 열화되는 것을 방지하는 헤드 히터를 포함하는 헤드 유닛;을 포함하는, 3D 입체물 제조 로봇.
  9. 제8항에 있어서,
    상기 헤드 히터는 상기 소재의 이동 통로인 헤드 파이프의 둘레의 전체 혹은 일부에 형성되는, 3D 입체물 제조 로봇.
  10. 제8항에 있어서,
    상기 헤드 유닛의 선단에는 상기 소재의 토출 위치를 가이드하는 실린더 롤러;가 형성되는, 3D 입체물 제조 로봇.
  11. 제10항에 있어서,
    상기 실린더 롤러의 온도를 조절하기 위한 강제공기 파이프;를 더 포함하는, 3D 입체물 제조 로봇.
  12. 제8항에 있어서,
    상기 트랜스포머 유닛은,
    상기 소재가 굳어지거나 경화되거나 열화되는 것을 방지하기 위한 온도를 가지는 공기를 생성하는 히터 어셈블리;를 구비하는, 3D 입체물 제조 로봇.
  13. 제12항에 있어서,
    상기 트랜스포머 유닛의 내부로 상기 공기를 가이드하는 히터 가이더;를 더 포함하는, 3D 입체물 제조 로봇.
  14. 제8항에 있어서,
    상기 헤드 서플라이 유닛은,
    상기 소재의 굳어지거나 경화되거나 열화되는 것을 방지하기 위한 헤드 서플라이 히터;를 구비하는, 3D 입체물 제조 로봇.
  15. 형성 가능한 플라스틱 재료로 이루어진 소재를 이용하여 3D 입체물을 제조하는 3D 입체물 제조 로봇으로,
    상기 소재가 유입되는 유입구를 구비하는 헤드 서플라이 유닛;
    상기 헤드 서플라이 유닛으로부터 전달된 상기 소재의 이동을 가이드하는 복수의 롤러를 구비하는 트랜스포머 유닛; 및
    상기 트랜스포머 유닛으로부터 전달된 상기 소재를 외부로 토출하는 헤드 유닛;을 포함하고,
    상기 헤드 유닛은, 멀티플 360도 회전을 가능하게 하는 휠 어셈블리;를 포함하는, 3D 입체물 제조 로봇.
  16. 제15항에 있어서,
    상기 헤드 유닛은, 상기 소재의 회전을 수반하지 않으면서, 멀티플 360도 회전이 가능한 3D 입체물 제조 로봇.
  17. 제1항, 제8항 또는 제15항에 있어서,
    상기 입체물 제조 로봇은, 상기 헤드 서플라이 유닛, 상기 트랜스포머 유닛 및 상기 헤드 유닛에 의해 형성되는 상기 소재의 이동 경로를 내부에 포함하는 빌트인(built-in)구조로 이루어진, 3D 입체물 제조 로봇.
  18. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 소재는, 스트랜드(strand), 얀(yarn), 토우(tow), 번들(bundle), 밴드(band) 또는 테이프(tape) 로 구성된, 3D 입체물 제조 로봇.
  19. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 3D 입체물 제조 로봇은,
    상기 헤드 유닛의 길이 방향축을 중심으로 한 회전(제1축 회전);
    상기 트랜스포머 유닛에 의해 조절되는 상기 헤드 유닛의 회전(제2축 회전);
    상기 헤드 서플라이 유닛의 길이 방향축을 중심으로 한 회전(제3축 회전);
    상기 헤드 서플라이 유닛에 연결된 연결암과의 연결축을 중심으로 한 상기 헤드 서플라이 유닛의 회전(제4축 회전);
    상기 연결암에 연결된 회전 베이스의 연결축을 중심으로 한 상기 연결암의 회전(제5축 회전); 및
    수평면에 수직인 회전축을 중심으로 한 상기 회전 베이스의 회전(제6축 회전); 중 적어도 하나의 회전이 가능하도록 구성된, 3D 입체물 제조 로봇.
  20. 제1항, 제8항 및 제15항 중 어느 한 항에 있어서,
    상기 트랜스포머 유닛은,
    상기 복수의 롤러 중 적어도 하나의 회전 속도를 제어하기 위한 적어도 하나의 모터;를 더 포함하는, 3D 입체물 제조 로봇.
PCT/KR2016/004230 2015-04-28 2016-04-22 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇 WO2016175512A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16786698.7A EP3290189A4 (en) 2015-04-28 2016-04-22 THREE-DIMENSIONAL OBJECT FABRICATION ROBOT FOR FAÇASABLE PLASTIC MATERIAL
US15/568,997 US10946585B2 (en) 2015-04-28 2016-04-22 Three-dimensional product manufacturing robot for plastic formable materials
JP2018504632A JP2018513800A (ja) 2015-04-28 2016-04-22 形成可能なプラスチック材料のための3d立体物製造ロボット
CN201680023935.9A CN107580548A (zh) 2015-04-28 2016-04-22 可成型的塑料材料的3d立体物制造机器人

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0059668 2015-04-28
KR1020150059668A KR101714772B1 (ko) 2015-04-28 2015-04-28 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇

Publications (1)

Publication Number Publication Date
WO2016175512A1 true WO2016175512A1 (ko) 2016-11-03

Family

ID=57199280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004230 WO2016175512A1 (ko) 2015-04-28 2016-04-22 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇

Country Status (6)

Country Link
US (1) US10946585B2 (ko)
EP (1) EP3290189A4 (ko)
JP (1) JP2018513800A (ko)
KR (1) KR101714772B1 (ko)
CN (1) CN107580548A (ko)
WO (1) WO2016175512A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3619027A4 (en) * 2017-05-05 2021-03-03 3DP Unlimited, LLC D/B/A 3d Platform MATERIAL ALIGNMENT DEVICE FOR FEEDING MATERIAL TO A MACHINE FOR ADDITIONAL MANUFACTURING

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
KR101714772B1 (ko) 2015-04-28 2017-03-09 주식회사 키스타 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇
KR101785703B1 (ko) 2016-01-14 2017-10-17 주식회사 키스타 형성 가능한 플라스틱 재료로 이루어진 소재의 토출을 제어하는 헤드 유닛 및 헤드 서플라이 유닛
US20170320267A1 (en) * 2016-05-03 2017-11-09 Ut-Battelle, Llc Variable Width Deposition for Additive Manufacturing with Orientable Nozzle
US20210094230A9 (en) * 2016-11-04 2021-04-01 Continuous Composites Inc. System for additive manufacturing
KR101914705B1 (ko) * 2017-02-15 2018-11-05 이이엘씨이이주식회사 고분자 복합 재료를 활용한 3d 입체물 제조 로봇 시스템
KR102041980B1 (ko) * 2017-11-14 2019-11-07 이이엘씨이이주식회사 헤드 유닛
EP3837104A4 (en) * 2018-08-13 2022-04-27 University of South Carolina SYSTEMS AND PROCESSES FOR PRINTING THREE-DIMENSIONAL OBJECTS FROM THERMOPLASTICS
US11167483B2 (en) * 2019-04-10 2021-11-09 Northrop Grumman Systems Corporation Methods and apparatus for fabrication of 3D integrated composite structures
US20200376758A1 (en) 2019-05-28 2020-12-03 Continuous Composites Inc. System for additively manufacturing composite structure
KR102278253B1 (ko) * 2020-01-31 2021-07-16 주식회사 비에이티파트너스 필라멘트 공급 채널을 이중화한 3d 프린팅 시스템 및 그 이중화 방법
KR102099870B1 (ko) * 2020-02-03 2020-04-10 이창환 3d 펜
CN112519216A (zh) * 2020-12-22 2021-03-19 武汉理工大学 多丝束并行打印喷嘴装置及多丝束并行打印方法
CN113696476B (zh) * 2021-08-19 2022-08-02 清华大学 双自由度旋转机构和体内原位生物打印装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121945A (ja) * 1992-08-24 1994-05-06 Mitsubishi Heavy Ind Ltd 三次元造形物の成形装置
JPH0724572A (ja) * 1993-07-09 1995-01-27 Babcock Hitachi Kk フィラーワイヤ送給装置
KR100214153B1 (ko) * 1993-02-25 1999-08-02 로톤 렌들 더블유. 강성의 3차원 구조 예비 성형체의 제조 방법
US20010003871A1 (en) * 1998-01-27 2001-06-21 Eastman Kodak Company Apparatus and method for marking multiple colors on a contoured surface having a complex topography
KR20100098552A (ko) * 2007-12-31 2010-09-07 엑사테크 엘.엘.씨. 3차원 물체를 인쇄하기 위한 장치 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639133B2 (ja) * 1990-06-27 1994-05-25 川崎重工業株式会社 ロービング材自動積層装置
JP2004017632A (ja) * 2002-06-20 2004-01-22 Hideo Fujimoto 造形ディスプレイシステム及び試作方法
DE102010015199B9 (de) * 2010-04-16 2013-08-01 Compositence Gmbh Faserführungsvorrichtung und Vorrichtung zum Aufbau eines dreidimensionalen Vorformlings
JP6002954B2 (ja) 2012-01-20 2016-10-05 兵神装備株式会社 立体構造物造形装置
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
KR101714772B1 (ko) 2015-04-28 2017-03-09 주식회사 키스타 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121945A (ja) * 1992-08-24 1994-05-06 Mitsubishi Heavy Ind Ltd 三次元造形物の成形装置
KR100214153B1 (ko) * 1993-02-25 1999-08-02 로톤 렌들 더블유. 강성의 3차원 구조 예비 성형체의 제조 방법
JPH0724572A (ja) * 1993-07-09 1995-01-27 Babcock Hitachi Kk フィラーワイヤ送給装置
US20010003871A1 (en) * 1998-01-27 2001-06-21 Eastman Kodak Company Apparatus and method for marking multiple colors on a contoured surface having a complex topography
KR20100098552A (ko) * 2007-12-31 2010-09-07 엑사테크 엘.엘.씨. 3차원 물체를 인쇄하기 위한 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3290189A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3619027A4 (en) * 2017-05-05 2021-03-03 3DP Unlimited, LLC D/B/A 3d Platform MATERIAL ALIGNMENT DEVICE FOR FEEDING MATERIAL TO A MACHINE FOR ADDITIONAL MANUFACTURING

Also Published As

Publication number Publication date
US20180126652A1 (en) 2018-05-10
KR101714772B1 (ko) 2017-03-09
EP3290189A4 (en) 2019-03-27
EP3290189A1 (en) 2018-03-07
KR20160128004A (ko) 2016-11-07
US10946585B2 (en) 2021-03-16
CN107580548A (zh) 2018-01-12
JP2018513800A (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2016175512A1 (ko) 형성 가능한 플라스틱 재료를 위한 3d 입체물 제조 로봇
WO2017122942A1 (ko) 형성 가능한 플라스틱 재료로 이루어진 소재의 토출을 제어하는 헤드 유닛 및 헤드 서플라이 유닛
WO2017122941A1 (ko) 헤드 유닛의 이동과, 형성 가능한 플라스틱 재료의 텐션 및 온도를 제어하는 트랜스포머
WO2017122943A1 (ko) 형성 가능한 플라스틱 재료로 이루어진 소재를 공급하는 소재 공급 장치 및 이를 포함하는 3d 입체물 제조 로봇
WO2016080767A1 (ko) 로봇 시스템 및 그를 갖는 3차원 프린터
WO2014104730A1 (ko) 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
US11254046B2 (en) Five degree of freedom additive manufacturing device
US11413806B2 (en) Method for fabricating a 3D composite structure including smoothing of support structures
US11565464B2 (en) System for deposition and fabrication of 3D integrated composite structures
KR20210151076A (ko) 3d 집적 복합 구조체의 제조를 위한 방법 및 장치
WO2017196137A1 (ko) 삼차원 물체 제조용 와이어 공급장치
US20200324472A1 (en) Printing machine for fabricating 3d integrated composite structures and having a rotatable extruder module
US20160288430A1 (en) A laying device and a method for the laying down of fibre tapes
WO2020210055A1 (en) Method for fabricating multi-material structure for 3d integrated composite structures
WO2019117525A1 (ko) 섬유 장력 조절 장치, 이를 포함하는 섬유강화 복합재 제조 장치 및 그 제조 방법
CN114161706A (zh) 控制复合材料纤维磁场取向的装置、3d打印装置及方法
WO2017131344A1 (ko) 프리프레그 제조 장치 및 이를 이용한 프리프레그 제조 방법
JPS62182136A (ja) 軸ずれ防止機能付きガラスフアイバ被覆用押出機
WO2018151548A1 (ko) 고분자 복합 재료를 활용한 3d 입체물 제조 로봇 시스템
WO2018160033A2 (ko) 고분자 복합 재료를 활용한 3d 입체물 및 이의 제조 로봇 시스템
KR20170117010A (ko) 형성 가능한 플라스틱 재료로 이루어진 소재의 토출을 제어하는 헤드 유닛 및 헤드 서플라이 유닛
WO2021137457A1 (ko) 비함침 타입의 연속섬유 복합재 제조장치
WO2022080679A1 (ko) 후공정을 통한 고기능성 고분자의 결정화 방법 및 이에 제조된 결정성 고분자
WO2021137447A1 (ko) 연속섬유 복합재 제조장치
WO2017052315A1 (ko) 섬유 강화 수지 복합재의 제조방법, 섬유 강화 수지 복합재 및 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018504632

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15568997

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE