WO2016174738A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2016174738A1
WO2016174738A1 PCT/JP2015/062819 JP2015062819W WO2016174738A1 WO 2016174738 A1 WO2016174738 A1 WO 2016174738A1 JP 2015062819 W JP2015062819 W JP 2015062819W WO 2016174738 A1 WO2016174738 A1 WO 2016174738A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel vapor
vapor
fuel cell
supplied
Prior art date
Application number
PCT/JP2015/062819
Other languages
English (en)
French (fr)
Inventor
魚住 哲生
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US15/568,592 priority Critical patent/US20180138526A1/en
Priority to CA2984097A priority patent/CA2984097C/en
Priority to CN201580079358.0A priority patent/CN107534168A/zh
Priority to PCT/JP2015/062819 priority patent/WO2016174738A1/ja
Priority to EP15890722.0A priority patent/EP3291345A4/en
Priority to BR112017023311A priority patent/BR112017023311A2/pt
Priority to JP2017515324A priority patent/JP6477868B2/ja
Publication of WO2016174738A1 publication Critical patent/WO2016174738A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system that generates power by supplying fuel and an oxidant to a fuel cell.
  • Patent Document 1 A technology is known in which fuel vapor generated in a fuel tank is adsorbed and released by a canister and flows into a fuel vapor reformer to use the fuel vapor as fuel for a fuel cell.
  • the fuel (fuel vapor) vaporized in the fuel tank is discharged to the outside from the fuel supply port when fuel is supplied to the fuel tank, and the fuel vapor containing energy is wasted.
  • an object of the present invention is to effectively use the fuel vapor generated in the fuel storage unit that stores the fuel in a liquid state.
  • the present invention has a fuel vapor pipe for flowing the fuel vapor generated by the evaporation of the liquid fuel in the fuel storage portion to the oxidant heater.
  • the fuel vapor generated in the fuel container is supplied to the oxidant heater through the fuel vapor pipe and burned by the oxidant heater, so that it can be effectively used for heating the oxidant.
  • FIG. 1 is an overall configuration diagram of a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a simplified cross-sectional view of the vaporizer, heat exchanger, and catalytic combustor used in FIG.
  • FIG. 3 is a simplified cross-sectional view of the startup combustor used in FIG.
  • FIG. 4 is an overall configuration diagram of a fuel cell system according to the second embodiment of the present invention.
  • FIG. 5 is an overall configuration diagram of a fuel cell system according to the third embodiment of the present invention.
  • FIG. 6 is an overall configuration diagram of a fuel cell system according to the fourth embodiment of the present invention.
  • FIG. 7 is an overall configuration diagram of a fuel cell system according to the fifth embodiment of the present invention.
  • FIG. 8 is an overall configuration diagram of a fuel cell system according to the seventh embodiment of the present invention.
  • FIG. 9 is a simplified cross-sectional view of the heat exchanger and catalytic combustor used in FIG.
  • FIG. 1 is an overall configuration diagram of a fuel cell system according to a first embodiment of the present invention.
  • a solid oxide fuel cell (SOFC, hereinafter, simply referred to as a fuel cell) 1 is supplied with hydrogen as a fuel and air as an oxidant to generate power.
  • SOFC solid oxide fuel cell
  • Fuel is stored in a liquid state as liquid fuel 5 in a fuel tank 3 as a fuel storage section.
  • liquid fuel 5 alcohols such as methanol and ethanol, gasoline, light oil and the like are used.
  • the fuel pipe 7 that connects the fuel cell 1 and the fuel tank 3 includes a fuel pump 9, a first fuel heat exchanger 11, a vaporizer 13, and a second fuel heat exchanger in order from the upstream side of the fuel tank 3 side. 15 and the reformer 17 are respectively arranged.
  • the fuel pump 9 sends the liquid fuel 5 in the fuel tank 3 to the first fuel heat exchanger 11.
  • the first fuel heat exchanger 11 heats and raises the temperature of the liquid fuel fed by the fuel pump 9 by the heat of the exhaust discharged from the fuel cell 1.
  • Exhaust gas flows from the fuel cell 1 through the exhaust pipe 19 into the first fuel heat exchanger 11.
  • the vaporizer 13 vaporizes the liquid fuel flowing from the first fuel heat exchanger 11. As shown in FIG. 2, the vaporizer 13 discharges liquid fuel into the vaporizer 13 through a nozzle 21, and at that time, air flows from the air introduction pipe 23, thereby atomizing the fuel discharged from the nozzle 21. Further, although not shown in FIG. 1, the carburetor 13 heats the fuel atomized by the exhaust gas flowing through the exhaust pipe 19.
  • the second fuel heat exchanger 15 raises the temperature of the vaporized fuel flowing from the vaporizer 13 by heating it with a catalytic combustor 27 as a fuel heater including the electric heater 25.
  • the exhaust pipe 19 described above is connected to the catalytic combustor 27, and exhaust gas flowing through the exhaust pipe 19 is introduced to raise the temperature by catalytic combustion.
  • the heated exhaust gas gives heat to the fuel in the carburetor 13 and the first fuel heat exchanger 11.
  • FIG. 2 shows the structure of the catalytic combustor 27 together with the second fuel heat exchanger 15 in a simplified manner.
  • the catalytic combustor 27 is accommodated in the catalytic combustion chamber 29 together with the second fuel heat exchanger 15.
  • FIG. 2 the positional relationship between the second fuel heat exchanger 15 and the catalytic combustor 27 is upside down with respect to FIG.
  • the catalytic combustor 27 includes the electric heater 25, the catalyst 31, and the spark plug 33 described above.
  • the electric heater 25 heats the liquid fuel supplied to the nozzle 37 via the liquid fuel pipe 35.
  • the liquid fuel pipe 35 is connected to the fuel tank 3 and includes a first liquid fuel pump 39 on the catalyst combustor 27 side. Liquid fuel is supplied to the nozzle 37 by the first liquid fuel pump 39.
  • the spark plug 33 ignites the liquid fuel discharged from the nozzle 37.
  • the catalyst 31 causes the ignited liquid fuel to undergo catalytic combustion together with the exhaust flowing from the exhaust pipe 19, and exchanges heat with the fuel in the second fuel heat exchanger 15.
  • the electric heater 25 operates when the fuel cell system is started, and heats the fuel supplied to the fuel cell 1 by the catalytic combustor 27 from the stage where high-temperature exhaust does not exist. For this reason, the first liquid fuel pump 39 that supplies liquid fuel to the catalytic combustor 27 is also activated when the fuel cell system is started.
  • the reformer 17 reforms the heated fuel flowing from the second fuel heat exchanger 15 to generate hydrogen.
  • the generated hydrogen is supplied to the positive electrode of the fuel cell 1.
  • a compressor 43 In the air pipe 41 through which the air supplied to the fuel cell 1 flows, a compressor 43, an air flow rate adjustment valve 45, an air heat exchanger 47, and an activation combustor 49 as an oxidant heater are arranged in order from the upstream side. .
  • the air pressurized by the compressor 43 is sent to the air heat exchanger 47 after the flow rate is adjusted by the air flow rate adjusting valve 45.
  • the air heat exchanger 47 is connected to the above-described exhaust pipe 19 extending from the first fuel heat exchanger 11, and heats and raises the temperature of the air by the exhaust gas flowing through the exhaust pipe 19. Exhaust gas discharged from the air heat exchanger 47 is discharged to the outside through the exhaust muffler 50. That is, in the exhaust pipe 19, the catalytic combustor 27, the carburetor 13, the first fuel heat exchanger 11, the air heat exchanger 47, and the exhaust muffler 50 are arranged in order from the fuel cell 1 side.
  • the start-up combustor 49 includes an electric heater 51 and heats the air flowing from the air heat exchanger 47 to raise the temperature.
  • the startup combustor 49 and the fuel tank 3 are connected to each other by a fuel vapor pipe 53. Fuel vapor generated by evaporation of the liquid fuel 5 in the fuel tank 3 is supplied to the start combustor 49 through the fuel vapor pipe 53. In other words, the fuel vapor pipe 53 flows the fuel vapor generated by the evaporation of the liquid fuel 5 in the fuel tank 3 to the startup combustor 49.
  • the simplified structure of the start-up combustor 49 is shown in FIG.
  • the startup combustor 49 has an air introduction chamber 55 and a combustion chamber 57, and the air introduction chamber 55 accommodates the electric heater 51 described above.
  • the liquid fuel in the fuel tank 3 is supplied to the liquid fuel nozzle 59 via the liquid fuel pipe 35 described above.
  • Liquid fuel is supplied to the liquid fuel nozzle 59 by a second liquid fuel pump 61 shown in FIG.
  • the second liquid fuel pump 61 is provided in the liquid fuel pipe 35 at the downstream end of the first liquid fuel pump 39 described above.
  • the liquid fuel heated by the electric heater 51 is discharged into the combustion chamber 57.
  • the electric heater 51 operates at the time of starting the fuel cell system, and heats the air supplied to the fuel cell 1 by the start combustor 49 from the stage where high-temperature exhaust does not exist. For this reason, the second liquid fuel pump 61 that supplies liquid fuel to the startup combustor 49 also operates when the fuel cell system is started.
  • fuel vapor is discharged from the fuel vapor nozzle 63 near the portion of the combustion chamber 57 where liquid fuel is discharged.
  • the fuel vapor nozzle 63 is connected to the fuel vapor pipe 53 described above.
  • a spark plug 65 is installed in the vicinity of the portion of the combustion chamber 57 where liquid fuel and fuel vapor are discharged.
  • the spark plug 65 ignites and burns the liquid fuel discharged from the liquid fuel nozzle 59 and the fuel vapor discharged from the fuel vapor nozzle 63.
  • the air introduced from the air heat exchanger 47 into the air introduction chamber 55 of the start-up combustor 49 is heated by passing through a pipe (not shown) in the combustion chamber 57 to be heated.
  • the heated air is supplied to the negative electrode of the fuel cell 1 and supplied to the power generation of the fuel cell 1 together with the fuel supplied to the positive electrode via the fuel pipe 7 separately.
  • the fuel-side catalyst combustor 27 and the air-side start-up combustor 49 are both activated when the fuel cell system is started. Thereby, the temperature of the fuel and air is increased by heating from the time of starting the fuel cell system.
  • the solid oxide fuel cell 1 having a steady operating temperature of 650 ° C. to 800 ° C. needs to raise the temperature of the supplied air and fuel, and the catalyst combustor 27 and the start combustor 49 when the fuel cell system is started By operating, stable operation is possible.
  • the fuel vapor generated by the evaporation of the liquid fuel 5 in the fuel tank 3 flows through the fuel vapor pipe 53 toward the start combustor 49 and is supplied to the start combustor 49. For this reason, when the starting combustor 49 is burned, not only the liquid fuel 5 in the fuel tank 3 but also fuel vapor generated by evaporation of the liquid fuel 5 in the fuel tank 3 is used for combustion. .
  • the fuel vapor by suppressing the release of the fuel vapor generated in the fuel tank 3 to the outside.
  • the liquid fuel 5 can be saved.
  • the fuel vapor for the combustion of the start-up combustor 49 less electric power is required for vaporizing the liquid fuel than when the entire amount of liquid fuel is used for combustion.
  • the temperature of the startup combustor 49 is also increased in a shorter time, and the startup time of the fuel cell system can be shortened.
  • FIG. 4 is an overall configuration diagram of a fuel cell system according to the second embodiment of the present invention.
  • a flow rate adjustment valve 67 as a flow rate adjustment unit is installed in the fuel vapor pipe 53 in contrast to the first embodiment.
  • the flow rate of the fuel vapor flowing through the fuel vapor pipe 53 is adjusted by the flow rate adjusting valve 67.
  • Other configurations are the same as those of the first embodiment, and the same components as those of the first embodiment are denoted by the same reference numerals.
  • the flow rate adjustment valve 67 is opened when the fuel cell system is started up, and then the opening degree is changed by a control device (not shown) to adjust the amount of fuel vapor supplied to the start-up combustor 49. After the activation, the flow rate adjustment valve 67 is closed after a certain period of time has elapsed so that the fuel cell 1 can be stably operated.
  • the ratio of the fuel vapor to the liquid fuel used for combustion can be changed by adjusting the amount of fuel vapor supplied to the start-up combustor 49 by the flow rate adjusting valve 67.
  • the fuel vapor suitable for raising the temperature of the startup combustor 49 can be supplied, and a highly versatile fuel cell system can be obtained.
  • FIG. 5 is an overall configuration diagram of a fuel cell system according to the third embodiment of the present invention.
  • a fuel vapor pump 69 as a fuel vapor transfer section is installed in the fuel vapor pipe 53 in contrast to the first embodiment.
  • the fuel vapor flowing through the fuel vapor pipe 53 is transferred to the start-up combustor 49 and sent by the fuel vapor pump 69.
  • Other configurations are the same as those of the first embodiment, and the same components as those of the first embodiment are denoted by the same reference numerals.
  • the fuel vapor in the fuel tank 3 can be started more stably by using the fuel vapor pump 69 regardless of the internal pressure conditions of both the fuel tank 3 and the startup combustor 49. It can be supplied to the combustor 49.
  • the fuel vapor pump 69 By stably supplying fuel vapor to the start-up combustor 49, effective use of the fuel vapor, shortening of the start-up time of the fuel cell system, and saving of the liquid fuel 5 can be realized more stably.
  • FIG. 6 is an overall configuration diagram of a fuel cell system according to the fourth embodiment of the present invention.
  • the fourth embodiment is a fuel vapor pipe 53 upstream of the fuel vapor pump 69, that is, a fuel vapor pipe 53 between the fuel tank 3 and the fuel vapor pump 69.
  • a canister 71 is installed.
  • the canister 71 is a container in which activated carbon is placed in a container, and constitutes a fuel holding unit that adsorbs fuel vapor in the fuel vapor pipe 53 and detaches the adsorbed fuel vapor.
  • Other configurations are the same as those of the third embodiment, and the same components as those of the third embodiment are denoted by the same reference numerals.
  • the canister 71 adsorbs the fuel vapor generated in the fuel tank 3 in the fuel vapor pipe 53.
  • the fuel vapor pump 69 is operated to introduce air into the canister 71 from an air intake port (not shown). As the introduced air flows around the activated carbon, the adsorbed fuel vapor is removed (air purge).
  • the concentration of the fuel vapor used in the startup combustor 49 can be increased by separating the fuel vapor adsorbed by the canister 71 and supplying it to the startup combustor 49.
  • the concentration of the fuel vapor By increasing the concentration of the fuel vapor, the amount of liquid fuel used can be reduced correspondingly, and the saving effect of the liquid fuel can be further enhanced, and the startup time can be shortened.
  • FIG. 7 is an overall configuration diagram of a fuel cell system according to the fifth embodiment of the present invention.
  • the fifth embodiment is different from the fourth embodiment shown in FIG. 6 in that a concentration detector 73 that detects the concentration of fuel vapor and a control device 75 that controls the amount of fuel vapor supplied to the startup combustor 49. And are provided.
  • the concentration detector 73 is provided in the fuel vapor pipe 53 between the fuel vapor pump 69 and the canister 71 and detects the concentration of the fuel vapor in the fuel vapor pipe 53.
  • the control device 75 takes in the fuel vapor concentration signal detected by the concentration detector 73 and controls the operation of the fuel vapor pump 69 and the electric heater 51 of the start-up combustor 49 in accordance with the fuel vapor concentration.
  • control device 75 and the fuel vapor pump 69 constitute a fuel vapor amount control unit that controls the amount of fuel vapor supplied to the startup combustor 49.
  • the fuel vapor amount control unit controls the amount of fuel vapor flowing through the fuel vapor pipe 53 on the downstream side of the concentration detector 73 according to the concentration of the fuel vapor detected by the concentration detector 73.
  • Other configurations are the same as those of the fourth embodiment in FIG. 6, and the same reference numerals are given to the same components as those of the fourth embodiment.
  • the control device 75 calculates the supply amount of the fuel vapor according to the fuel vapor concentration. If the fuel vapor concentration is high, the control device 75 increases the driving force of the fuel vapor pump 69 and controls to send a large amount of fuel vapor corresponding to the high fuel vapor concentration to the startup combustor 49. On the other hand, if the fuel vapor concentration is low, the control device 75 controls to reduce the driving force of the fuel vapor pump 69 and send a small amount of fuel vapor corresponding to the low fuel vapor concentration to the start-up combustor 49.
  • the control device 75 performs control so that the amount of electric power used by the electric heater 51 is reduced when the concentration of fuel vapor that is easy to ignite is higher than that of liquid fuel.
  • the control device 75 performs control so that the amount of electric power used by the electric heater 51 is increased.
  • the fuel vapor pump 69 and the electric heater 51 are optimally controlled according to the fuel vapor concentration, operate efficiently, and save the liquid fuel used in the startup combustor 49. This can contribute to a reduction in startup time.
  • the fuel vapor amount control unit includes a control device 75 and a fuel vapor pump 69.
  • the flow rate adjustment valve 67 in the second embodiment of FIG. 4 is configured such that the control device 75 controls the opening degree according to the detected concentration of the concentration detector 73, so that the control device 75 and the flow rate adjustment valve 67 provide fuel.
  • a steam amount control unit is configured.
  • the fuel vapor pump 69 used in each of the embodiments shown in FIGS. 5 to 7 and FIG. 8 described later has a function of lowering the pressure in the fuel vapor pipe 53. Shall be provided.
  • Other configurations are the same as those of the embodiments shown in FIGS.
  • the fuel vapor pump 69 lowers the pressure in the fuel vapor pipe 53, the liquid fuel 5 in the fuel tank 3 is easily evaporated, the amount of fuel vapor increases, and the concentration of fuel vapor can be increased.
  • the amount of liquid fuel used for combustion can be reduced by that amount, and the amount of electric power used by the electric heater 51 can be reduced.
  • FIG. 8 is an overall configuration diagram of a fuel cell system according to the seventh embodiment of the present invention.
  • the seventh embodiment is configured to supply the fuel vapor in the fuel vapor pipe 53 to the catalytic combustor 27 serving as a fuel heater. That is, the fuel vapor pipe 53 flows the fuel vapor generated by the evaporation of the liquid fuel 5 in the fuel tank 3 to the catalytic combustor 27.
  • the fuel vapor pipe 53 between the fuel vapor pump 69 and the concentration detector 73 and the catalytic combustor 27 are connected by the fuel vapor pipe 77, and the fuel vapor pump 79 is installed in the fuel vapor pipe 77.
  • the control device 75 controls the operation of the electric heater 25 of the catalytic combustor 27.
  • FIG. 9 corresponds to the diagram in which the carburetor 13 in FIG. 2 is omitted, and shows a simplified structure of the catalytic combustor 27 together with the second fuel heat exchanger 15.
  • FIG. 9 is provided with a fuel vapor nozzle 81 connected to the fuel vapor pipe 77 as compared to FIG.
  • the fuel vapor nozzle 81 discharges fuel vapor toward the inside of the catalytic combustion chamber 29 near the portion where the nozzle 37 discharges liquid fuel.
  • Other configurations are the same as those of the fifth embodiment, and the same components as those of the fifth embodiment are denoted by the same reference numerals.
  • liquid fuel is supplied from the nozzle 37 and fuel vapor is supplied from the fuel vapor nozzle 81 to burn. That is, when starting up the fuel cell system, the fuel vapor is used not only for raising the temperature of the air but also for securing the heat of vaporization of the liquid fuel necessary for reforming the fuel in the reformer 17.
  • the timing at which the fuel vapor in the fuel tank 3 is utilized is extended to steady operation other than startup, stop processing, and idle standby. At that time, the fuel vapor in the fuel tank 3 is supplied to at least one of the startup combustor 49 and the catalytic combustor 27.
  • the startup combustor 49 and the catalytic combustor 27 require a temperature rise in the air supplied to the fuel cell 1 and the fuel for reforming not only when starting the fuel cell system but also during normal operation.
  • the exhaust gas from the fuel cell 1 can be used as a heat source for raising the temperature of air or fuel.
  • the exhaust gas has a shortage of heat, the temperature of the exhaust gas depends on the operating condition of the fuel cell 1, Flow rate may fluctuate.
  • the fuel becomes a stable heat source by burning the fuel, but the liquid fuel can be saved by using the fuel vapor in the fuel tank 3 rather than using the entire amount as the heat source.
  • a plurality of embodiments can be combined.
  • both of the flow rate adjustment valve 67 of the second embodiment shown in FIG. 4 and the fuel vapor pump 69 of the third embodiment shown in FIG. 5 may be provided.
  • the flow rate adjusting valve 67 of the second embodiment shown in FIG. 4 and the canister 71 of the fourth embodiment shown in FIG. 6 may be provided.
  • a flow rate adjusting valve 67, a fuel vapor pump 69, and a canister 71 may be provided.
  • the present invention is applied to a fuel cell system that generates power by supplying fuel and an oxidant to the fuel cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池(1)は、コンプレッサ(43)により送られる空気と、燃料収容部(3)から燃料ポンプ9により送られる燃料とが供給されて発電する。燃料は、改質器(17)で改質されて燃料電池(1)に供給される。空気は、酸化剤加熱器(49)によって昇温される。酸化剤加熱器(49)には、燃料収容部(3)の液体燃料(5)が液体燃料配管(35)を通して供給され、燃料収容部(3)の液体燃料(5)が蒸発した燃料蒸気が、燃料蒸気配管(53)を通して供給される。

Description

燃料電池システム
 本発明は、燃料電池に燃料及び酸化剤を供給して発電させる燃料電池システムに関する。
 燃料タンク内で発生した燃料蒸気を、キャニスタで吸着、離脱させて燃料蒸気改質器に流入さることで、燃料蒸気を燃料電池の燃料として使用する技術が知られている(特許文献1)。
特開2000-192863号公報
 しかし、燃料タンク内で気化した燃料(燃料蒸気)は、そのままでは燃料タンクに燃料を補給するときなどに燃料補給口から外部に放出されてしまい、エネルギを含んだ燃料蒸気が無駄になる。
 そこで、本発明は、燃料を液体状態で収容する燃料収容部内で発生した燃料蒸気を有効利用することを目的としている。
 本発明は、燃料収容部の液体燃料が蒸発して発生した燃料蒸気を酸化剤加熱器へ流す燃料蒸気配管を有する。
 本発明によれば、燃料収容部内で発生した燃料蒸気は、燃料蒸気配管を通して酸化剤加熱器に供給され、酸化剤加熱器で燃焼することによって、酸化剤の加熱に有効利用できる。
図1は、本発明の第1の実施形態に係わる燃料電池システムの全体構成図である。 図2は、図1で使用する気化器、熱交換器及び触媒燃焼器の簡素化した断面図である。 図3は、図1で使用する起動燃焼器の簡素化した断面図である。 図4は、本発明の第2の実施形態に係わる燃料電池システムの全体構成図である。 図5は、本発明の第3の実施形態に係わる燃料電池システムの全体構成図である。 図6は、本発明の第4の実施形態に係わる燃料電池システムの全体構成図である。 図7は、本発明の第5の実施形態に係わる燃料電池システムの全体構成図である。 図8は、本発明の第7の実施形態に係わる燃料電池システムの全体構成図である。 図9は、図8で使用する熱交換器及び触媒燃焼器の簡素化した断面図である。
 以下、本発明を実施するための形態について、図面を参照して詳細に説明する。
[第1の実施形態]
 図1は、本発明の第1の実施形態に係わる燃料電池システムの全体構成図である。固体酸化物形燃料電池(SOFC、以下、単に燃料電池という。)1は、燃料である水素及び、酸化剤である空気が供給されて発電する。
 燃料は、燃料収容部としての燃料タンク3内に液体燃料5として液体状態で収容される。液体燃料5としては、メタノールやエタノールなどのアルコール類、ガソリン、軽油などが使用される。
 燃料電池1と燃料タンク3とを接続する燃料配管7には、上流に位置する燃料タンク3側から順に、燃料ポンプ9、第1燃料熱交換器11、気化器13、第2燃料熱交換器15、改質器17がそれぞれ配置される。
 燃料ポンプ9は、燃料タンク3内の液体燃料5を第1燃料熱交換器11に送り込む。第1燃料熱交換器11は、燃料ポンプ9により送り込まれた液体燃料を、燃料電池1から排出される排気の熱によって加熱し昇温させる。排気は燃料電池1から排気管19を通して第1燃料熱交換器11に流入する。
 気化器13は、第1燃料熱交換器11から流入する液体燃料を気化させる。気化器13は、図2に示すように、液体燃料をノズル21により気化器13内に吐出し、その際空気導入管23から空気を流すことで、ノズル21が吐出した燃料を噴霧化する。さらに、気化器13は、図1では省略しているが、排気管19を流れる排気によって噴霧化された燃料を加熱する。
 第2燃料熱交換器15は、気化器13から流入する気化した燃料を、電気ヒータ25を備える燃料加熱器としての触媒燃焼器27により加熱して昇温させる。触媒燃焼器27には、前述した排気管19が接続され、排気管19を流れる排気が導入されて触媒燃焼して昇温される。昇温した排気は、気化器13及び第1燃料熱交換器11にて燃料に熱を与える。
 触媒燃焼器27の構造を、第2燃料熱交換器15と共に図2に簡素化して示す。触媒燃焼器27は、第2燃料熱交換器15と共に触媒燃焼室29内に収容される。なお、図2は、図1に対し、第2燃料熱交換器15と触媒燃焼器27との位置関係が上下逆となっている。触媒燃焼器27は、前述した電気ヒータ25と、触媒31と、スパークプラグ33とを備えている。
 電気ヒータ25は、液体燃料配管35を経てノズル37に供給される液体燃料を加熱する。液体燃料配管35は、図1に示すように燃料タンク3に接続され、触媒燃焼器27側に第1液体燃料ポンプ39を備えている。第1液体燃料ポンプ39によってノズル37に液体燃料が供給される。スパークプラグ33は、ノズル37から吐出される液体燃料に点火する。触媒31は、点火された液体燃料を、排気管19から流れ込む排気とともに触媒燃焼させて、第2燃料熱交換器15で燃料と熱交換させる。
 電気ヒータ25は燃料電池システムの起動時に作動し、高温の排気が存在していない段階から燃料電池1に供給する燃料を触媒燃焼器27により加熱する。このため、触媒燃焼器27に液体燃料を供給する第1液体燃料ポンプ39も燃料電池システムの起動時に作動する。
 改質器17は、第2燃料熱交換器15から流入する昇温した燃料を改質して水素を生成する。生成された水素は燃料電池1の正極に供給される。
 燃料電池1に供給する空気が流れる空気配管41には、上流側から順に、コンプレッサ43、空気流量調整バルブ45、空気熱交換器47、酸化剤加熱器としての起動燃焼器49がそれぞれ配置される。
 コンプレッサ43で加圧した空気は、空気流量調整バルブ45で流量が調整された後、空気熱交換器47に送られる。空気熱交換器47は、第1燃料熱交換器11から延びる前述した排気管19が接続され、排気管19を流れる排気によって空気を加熱し昇温させる。空気熱交換器47から排出される排気は、排気マフラ50を経て外部に排出される。すなわち、排気管19には、燃料電池1側から順に、触媒燃焼器27、気化器13、第1燃料熱交換器11、空気熱交換器47、排気マフラ50がそれぞれ配置される。
 起動燃焼器49は、電気ヒータ51を備え、空気熱交換器47から流入する空気を加熱して昇温させる。起動燃焼器49と燃料タンク3とは、燃料蒸気配管53により互いに接続している。燃料タンク3内の液体燃料5が蒸発して発生した燃料蒸気が、燃料蒸気配管53を通して起動燃焼器49に供給される。すなわち、燃料蒸気配管53は、燃料タンク3の液体燃料5が蒸発して発生した燃料蒸気を起動燃焼器49へ流す。
 起動燃焼器49の構造を図3に簡素化して示す。起動燃焼器49は、空気導入室55と燃焼室57とを有し、空気導入室55には、前述した電気ヒータ51を収容している。燃料タンク3の液体燃料は、前述した液体燃料配管35を経て液体燃料ノズル59に供給される。
 液体燃料ノズル59には、図1に示す第2液体燃料ポンプ61によって液体燃料が供給される。第2液体燃料ポンプ61は、前述した第1液体燃料ポンプ39の下流側の端部の液体燃料配管35に設けてある。電気ヒータ51によって加熱された液体燃料は、燃焼室57に吐出される。
 電気ヒータ51は燃料電池システムの起動時に作動し、高温の排気が存在していない段階から燃料電池1に供給する空気を起動燃焼器49により加熱する。このため、起動燃焼器49に液体燃料を供給する第2液体燃料ポンプ61も燃料電池システムの起動時に作動する。
 さらに、燃焼室57の液体燃料が吐出される部位付近には、燃料蒸気ノズル63から燃料蒸気が吐出される。燃料蒸気ノズル63は、前述した燃料蒸気配管53に接続されている。
 燃焼室57の液体燃料及び燃料蒸気が吐出される部位付近には、スパークプラグ65を設置している。スパークプラグ65は、液体燃料ノズル59から吐出される液体燃料及び、燃料蒸気ノズル63から吐出される燃料蒸気に点火して燃焼させる。
 空気熱交換器47から起動燃焼器49の空気導入室55に導入される空気は、燃焼室57内の図示しない配管を通過することで加熱されて昇温する。昇温した空気は、燃料電池1の負極に供給され、別途燃料配管7を経て正極に供給される燃料と共に、燃料電池1の発電に供される。
 本実施形態は、燃料側の触媒燃焼器27及び空気側の起動燃焼器49は、いずれも燃料電池システムの起動時に作動する。これにより、燃料電池システムの起動時から、燃料及び空気を加熱して昇温する。定常運転温度が650℃~800℃である固体酸化物形の燃料電池1は、供給される空気及び燃料の昇温が必要であり、燃料電池システムの起動時に触媒燃焼器27及び起動燃焼器49が作動することで、安定した運転ができる。
 本実施形態は、燃料タンク3内で液体燃料5が蒸発して発生した燃料蒸気は、燃料蒸気配管53を起動燃焼器49に向けて流れて起動燃焼器49に供給される。このため、起動燃焼器49を燃焼させる際には、燃料タンク3内の液体燃料5だけではなく、燃料タンク3内で液体燃料5が蒸発して発生した燃料蒸気も燃焼用に使用している。
 このため、燃料タンク3内で発生した燃料蒸気の外部への放出を抑制して燃料蒸気を有効利用できる。燃料蒸気を有効利用することで、液体燃料5の節約につながる。また、起動燃焼器49の燃焼用に燃料蒸気を利用することで、燃焼用に液体燃料を全量使用する場合に比較して、液体燃料の気化に必要な電力が少なくて済む。起動燃焼器49の温度上昇もより短時間でなされ、燃料電池システムの起動時間を短縮できる。
[第2の実施形態]
 図4は、本発明の第2の実施形態に係わる燃料電池システムの全体構成図である。第2の実施形態は、第1の実施形態に対し、燃料蒸気配管53に流量調整部としての流量調整バルブ67を設置している。流量調整バルブ67によって、燃料蒸気配管53を流れる燃料蒸気の流量を調整する。その他の構成は、第1の実施形態と同様であり、第1の実施形態と同一の構成要素には同一符号を付してある。
 流量調整バルブ67は、燃料電池システムの起動時に開放し、その後、図示しない制御装置によって開度を変化させることで、起動燃焼器49への燃料蒸気の供給量を調整する。起動後、燃料電池1が安定して運転できるような一定時間経過した後に、流量調整バルブ67を閉じる。
 第2の実施形態によれば、流量調整バルブ67によって起動燃焼器49への燃料蒸気の供給量を調整することで、燃料蒸気と燃焼に使用する液体燃料との割合を変更できる。これにより、起動燃焼器49の昇温に適する燃料蒸気の供給ができ、汎用性の高い燃料電池システムとすることができる。
[第3の実施形態]
 図5は、本発明の第3の実施形態に係わる燃料電池システムの全体構成図である。第3の実施形態は、第1の実施形態に対し、燃料蒸気配管53に燃料蒸気移送部としての燃料蒸気ポンプ69を設置している。燃料蒸気ポンプ69によって、燃料蒸気配管53を流れる燃料蒸気を起動燃焼器49に移送して送り込む。その他の構成は、第1の実施形態と同様であり、第1の実施形態と同一の構成要素には同一符号を付してある。
 第3の実施形態によれば、燃料タンク3及び起動燃焼器49の双方の内部圧力の状況に関わらず、燃料タンク3内の燃料蒸気を、燃料蒸気ポンプ69を用いることでより安定して起動燃焼器49に供給できる。起動燃焼器49に安定して燃料蒸気を供給することで、燃料蒸気の有効利用、燃料電池システムの起動時間の短縮及び、液体燃料5の節約をより安定的に実現できる。
[第4の実施形態]
 図6は、本発明の第4の実施形態に係わる燃料電池システムの全体構成図である。第4の実施形態は、図5に示した第3の実施形態に対し、燃料蒸気ポンプ69の上流側の燃料蒸気配管53、つまり燃料タンク3と燃料蒸気ポンプ69との間の燃料蒸気配管53に、キャニスタ71を設置している。
 キャニスタ71は、活性炭を容器に入れたもので、燃料蒸気配管53内の燃料蒸気の吸着及び、吸着した燃料蒸気の離脱を行う燃料保持部を構成している。その他の構成は、第3の実施形態と同様であり、第3の実施形態と同一の構成要素には同一符号を付してある。
 キャニスタ71は、燃料タンク3内で発生した燃料蒸気を燃料蒸気配管53内で吸着する。燃料電池システムの起動時に、燃料蒸気ポンプ69を作動させることで、図示しない大気取り入れ口からキャニスタ71内に空気を導入する。導入した空気が活性炭周囲を流れることで、吸着した燃料蒸気の離脱を行う(エアパージ)。
 第4の実施形態は、キャニスタ71に吸着させた燃料蒸気を離脱させて起動燃焼器49に供給することで、起動燃焼器49で使用する燃料蒸気の濃度を高めることができる。燃料蒸気の濃度が高まることで、その分液体燃料の使用量を減少させることができ、液体燃料の節約効果がより一層高まり、起動時間の短縮も図れる。
[第5の実施形態]
 図7は、本発明の第5の実施形態に係わる燃料電池システムの全体構成図である。第5の実施形態は、図6に示した第4の実施形態に対し、燃料蒸気の濃度を検出する濃度検出器73と、起動燃焼器49に供給する燃料蒸気の量を制御する制御装置75とを設けている。
 濃度検出器73は、燃料蒸気ポンプ69とキャニスタ71との間の燃料蒸気配管53に設けられ、燃料蒸気配管53内の燃料蒸気の濃度を検出する。制御装置75は、濃度検出器73が検出した燃料蒸気の濃度信号を取り込み、燃料蒸気濃度に応じて、燃料蒸気ポンプ69及び起動燃焼器49の電気ヒータ51の作動を制御する。
 この場合、制御装置75と燃料蒸気ポンプ69とで、起動燃焼器49に供給する燃料蒸気の量を制御する燃料蒸気量制御部を構成している。燃料蒸気量制御部は、濃度検出器73によって検出された燃料蒸気の濃度に応じて、濃度検出器73の下流側の燃料蒸気配管53に流れる燃料蒸気の量を制御する。その他の構成は、図6の第4の実施形態と同様であり、第4の実施形態と同一の構成要素には同一符号を付してある。
 第5の実施形態は、濃度検出器73が燃料蒸気の濃度を検出することにより、制御装置75が燃料蒸気濃度に応じた燃料蒸気の供給量を計算する。燃料蒸気濃度が高ければ、制御装置75は、燃料蒸気ポンプ69の駆動力を増大させ、高い燃料蒸気濃度に応じた多量の燃料蒸気を起動燃焼器49に送り込むよう制御する。逆に、燃料蒸気濃度が低ければ、制御装置75は、燃料蒸気ポンプ69の駆動力を低下させ、低い燃料蒸気濃度に応じた少量の燃料蒸気を起動燃焼器49に送り込むよう制御する。
 空気に対して同等の昇温を行うとして、燃料蒸気濃度が高い場合には、その分液体燃料の供給量が少なくて済む。制御装置75は、液体燃料に比較して着火しやすい燃料蒸気の濃度が高い場合には、電気ヒータ51の使用電力量が少なくなるよう制御する。逆に、燃料蒸気濃度が低い場合には、その分液体燃料の供給量が多く必要となる。制御装置75は、燃料蒸気濃度が低い場合には、電気ヒータ51の使用電力量が多くなるよう制御する。
 このように、第5の実施形態は、燃料蒸気ポンプ69や電気ヒータ51は、燃料蒸気濃度に応じて最適に制御されて、効率よく作動し、起動燃焼器49で使用する液体燃料の節約と起動時間の低減に寄与することができる。
 なお、燃料蒸気量制御部として、第5の実施形態では制御装置75と燃料蒸気ポンプ69とを備える構成としている。図4の第2の実施形態における流量調整バルブ67を、濃度検出器73の検出濃度に応じて制御装置75が開度制御する構成とすることで、制御装置75と流量調整バルブ67とで燃料蒸気量制御部を構成することになる。
[第6の実施形態]
 本発明の第6の実施形態として、前述した図5~図7及び後述する図8に示した各実施形態で使用している燃料蒸気ポンプ69が、燃料蒸気配管53内の圧力を下げる機能を備えるものとする。その他の構成は、図5~図8に示す各実施形態と同様である。
 燃料蒸気ポンプ69が燃料蒸気配管53内の圧力を下げることで、燃料タンク3内の液体燃料5が蒸発しやすくなって燃料蒸気の量が増え、燃料蒸気の濃度を高めることができる。液体燃料に比較して着火しやすい燃料蒸気の量が増えることで、その分燃焼に使用する液体燃料の量を減らすことができ、電気ヒータ51の使用電力量が少なくて済む。
[第7の実施形態]
 図8は、本発明の第7の実施形態に係わる燃料電池システムの全体構成図である。第7の実施形態は、図7に示した第5の実施形態に対し、燃料蒸気配管53内の燃料蒸気を、燃料加熱器となる触媒燃焼器27にも供給する構成としている。すなわち、燃料蒸気配管53は、燃料タンク3の液体燃料5が蒸発して発生した燃料蒸気を触媒燃焼器27へ流す。
 燃料蒸気ポンプ69と濃度検出器73との間の燃料蒸気配管53と、触媒燃焼器27とを、燃料蒸気配管77で接続し、燃料蒸気配管77に燃料蒸気ポンプ79を設置する。制御装置75は、触媒燃焼器27の電気ヒータ25の作動を制御する。
 図9は、図2の気化器13を省略した図に対応するもので、触媒燃焼器27の構造を、第2燃料熱交換器15と共に簡素化して示す。図9は、図2に対し、燃料蒸気配管77に接続される燃料蒸気ノズル81を備える。燃料蒸気ノズル81は、ノズル37が液体燃料を吐出する部位付近の触媒燃焼室29内に向けて燃料蒸気を吐出する。その他の構成は、第5の実施形態と同様であり、第5の実施形態と同一の構成要素には同一符号を付してある。
 第7の実施形態の触媒燃焼器27は、液体燃料がノズル37により供給されるとともに、燃料蒸気が燃料蒸気ノズル81により供給されて燃焼する。すなわち、燃料電池システムの起動時に、空気の昇温だけでなく、改質器17での燃料の改質に必要な液体燃料の気化熱の確保にも、燃料蒸気を利用している。
 このため、空気側に加えて燃料側も含めた燃料電池システム全体での燃料蒸気の有効利用及び、燃料電池システムの起動時間の短縮を達成でき、液体燃料5の節約も燃料電池システム全体で達成できる。
[第8の実施形態]
 本発明の第8の実施形態として、燃料タンク3内の燃料蒸気を活用するタイミングを、起動時以外の定常運転時や停止処理時やアイドル待機時などにも拡大する。その際、起動燃焼器49と触媒燃焼器27との少なくとも一方に、燃料タンク3内の燃料蒸気を供給する。
 起動燃焼器49及び触媒燃焼器27は、燃料電池システムの起動時だけでなく通常運転時などでも、燃料電池1へ供給する空気や改質のための燃料は昇温を必要としている。この場合、空気や燃料を昇温する際の熱源として燃料電池1からの排出ガスを利用することもできるが、排出ガスの熱量不足や、燃料電池1の運転状況に応じて排出ガスの温度や流量が変動することがある。
 その際、燃料を燃焼させることで安定した熱源となるが、熱源として全量を液体燃料とするよりも、燃料タンク3内の燃料蒸気を利用することで液体燃料を節約できる。
 以上、本発明の実施形態について説明したが、これらの実施形態は本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含む。
 上記した第1~第8の各実施形態は、複数の実施形態同士を組み合わせることができる。例えば、図4に示す第2の実施形態の流量調整バルブ67と、図5に示す第3の実施形態の燃料蒸気ポンプ69との双方を備えるものでもよい。また、図4に示す第2の実施形態の流量調整バルブ67と、図6に示す第4の実施形態のキャニスタ71との双方を備えるものでもよい。さらに、流量調整バルブ67と燃料蒸気ポンプ69とキャニスタ71との三つを備えるものでもよい。
 本発明は、燃料電池に燃料及び酸化剤を供給して発電させる燃料電池システムに適用される。
 1 固体酸化物形燃料電池(燃料電池)
 3 燃料タンク(燃料収容部)
 17 改質器
 27 触媒燃焼器(燃料加熱器)
 49 起動燃焼器(酸化剤加熱器)
 53,77 燃料蒸気配管
 67 流量調整バルブ(流量調整部)
 69 燃料蒸気ポンプ(燃料蒸気移送部、燃料蒸気量制御部)
 71 キャニスタ(燃料保持部)
 73 濃度検出器
 75 制御装置(燃料蒸気量制御部)

Claims (8)

  1.  燃料及び酸化剤が供給されて発電する燃料電池と、
     前記燃料電池に供給される燃料を液体状態で収容する燃料収容部と、
     前記燃料電池に供給される酸化剤を加熱する酸化剤加熱器と、
     前記燃料収容部と前記酸化剤加熱器とを接続し、前記燃料収容部の液体燃料が蒸発して発生した燃料蒸気を前記酸化剤加熱器へ流す燃料蒸気配管と、を有することを特徴とする燃料電池システム。
  2.  前記酸化剤加熱器は、燃料電池システムの起動時に作動することを特徴とする請求項1に記載の燃料電池システム。
  3.  燃料及び酸化剤が供給されて発電する燃料電池と、
     前記燃料電池に供給される燃料を液体状態で収容する燃料収容部と、
     前記燃料収容部から前記燃料電池に供給される燃料を加熱する燃料加熱器と、
     前記燃料加熱器によって加熱された燃料を改質して前記燃料電池に供給する水素を生成する改質器と、
     前記燃料収容部と前記燃料加熱器とを接続し、前記燃料収容部の液体燃料が蒸発して発生した燃料蒸気を前記燃料加熱器へ流す燃料蒸気配管と、を有することを特徴とする燃料電池システム。
  4.  前記燃料蒸気配管に、当該燃料蒸気配管内の燃料蒸気の流量を調整する流量調整部が設けられていることを特徴とする請求項1ないし3のいずれか1項に記載の燃料電池システム。
  5.  前記燃料蒸気配管に、当該燃料蒸気配管内の燃料蒸気を移送する燃料蒸気移送部が設けられていることを特徴とする請求項1ないし4のいずれか1項に記載の燃料電池システム。
  6.  前記燃料蒸気配管に、当該燃料蒸気配管内の燃料蒸気の吸着及び、吸着した燃料蒸気の離脱を行う燃料保持部が設けられていることを特徴とする請求項1ないし5のいずれか1項に記載の燃料電池システム。
  7.  前記燃料蒸気配管内の燃料蒸気の濃度を検出する濃度検出器と、
     前記濃度検出器によって検出された燃料蒸気の濃度に応じて、前記濃度検出器の下流側の燃料蒸気配管に流れる燃料蒸気の量を制御する燃料蒸気量制御部と、を備えていることを特徴とする請求項1ないし6のいずれか1項に記載の燃料電池システム。
  8.  前記燃料蒸気移送部は、前記燃料蒸気配管内の圧力を下げる機能を有することを特徴とする請求項5に記載の燃料電池システム。
PCT/JP2015/062819 2015-04-28 2015-04-28 燃料電池システム WO2016174738A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/568,592 US20180138526A1 (en) 2015-04-28 2015-04-28 Fuel cell system
CA2984097A CA2984097C (en) 2015-04-28 2015-04-28 Fuel cell system
CN201580079358.0A CN107534168A (zh) 2015-04-28 2015-04-28 燃料电池系统
PCT/JP2015/062819 WO2016174738A1 (ja) 2015-04-28 2015-04-28 燃料電池システム
EP15890722.0A EP3291345A4 (en) 2015-04-28 2015-04-28 Fuel cell system
BR112017023311A BR112017023311A2 (pt) 2015-04-28 2015-04-28 sistema de pilha de combustível
JP2017515324A JP6477868B2 (ja) 2015-04-28 2015-04-28 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062819 WO2016174738A1 (ja) 2015-04-28 2015-04-28 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2016174738A1 true WO2016174738A1 (ja) 2016-11-03

Family

ID=57198269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062819 WO2016174738A1 (ja) 2015-04-28 2015-04-28 燃料電池システム

Country Status (7)

Country Link
US (1) US20180138526A1 (ja)
EP (1) EP3291345A4 (ja)
JP (1) JP6477868B2 (ja)
CN (1) CN107534168A (ja)
BR (1) BR112017023311A2 (ja)
CA (1) CA2984097C (ja)
WO (1) WO2016174738A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051468A1 (ja) * 2016-09-15 2018-03-22 日産自動車株式会社 燃料電池システム
JP2019046676A (ja) * 2017-09-04 2019-03-22 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
WO2019068123A1 (de) * 2017-10-03 2019-04-11 Avl List Gmbh Verfahren zum schnellen aufheizen eines brennstoffzellensystems

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520976B1 (de) * 2018-02-16 2020-04-15 Avl List Gmbh Wärmetauscher für ein Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
CN108386344B (zh) * 2018-03-09 2019-10-08 重庆大学 燃料电池和压缩空气储能耦合的发电储能系统及控制方法
CN108711631B (zh) * 2018-05-16 2021-04-16 潍柴动力股份有限公司 固体氧化物燃料电池系统及其启动方法
US10991963B2 (en) * 2018-07-10 2021-04-27 Cummins Enterprise Llc Fuel cell system and control method thereof
CN110911708A (zh) * 2018-09-17 2020-03-24 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池电堆的加热启动方法与加热装置
DE102019212855A1 (de) * 2019-08-27 2021-03-04 Robert Bosch Gmbh Brennstoffzellensystem, sowie Verfahren zum Betreiben eines Brennstoffzellensystems
CN210866373U (zh) * 2019-11-27 2020-06-26 潍柴动力股份有限公司 燃烧换热总成及sofc系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192863A (ja) * 1998-12-25 2000-07-11 Aisan Ind Co Ltd 自動車用燃料蒸気処理装置
JP2001052730A (ja) * 1999-08-05 2001-02-23 Fuji Electric Co Ltd 燃料電池発電装置
JP2009179553A (ja) * 2009-04-24 2009-08-13 Toshiba Corp マルチ燃料供給システム
JP2010508633A (ja) * 2006-11-01 2010-03-18 セレス インテレクチュアル プラパティ コンパニー リミテッド 燃料電池の熱交換システム及び方法
JP2012142225A (ja) * 2011-01-05 2012-07-26 Kyocera Corp 燃料電池装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139725A (ja) * 1993-11-18 1995-05-30 Nippondenso Co Ltd 燃焼装置
JP3334487B2 (ja) * 1996-05-10 2002-10-15 日産自動車株式会社 内燃機関の蒸発燃料処理装置
DE10063648B4 (de) * 2000-12-20 2006-12-14 Nucellsys Gmbh Brennstoffzellensystem und Verfahren zum Betreiben des Brennstoffzellensystems
JP3900922B2 (ja) * 2001-12-17 2007-04-04 日産自動車株式会社 燃料電池システム
JP4140253B2 (ja) * 2002-03-15 2008-08-27 日産自動車株式会社 燃料改質システム
JP5062466B2 (ja) * 2006-09-25 2012-10-31 スズキ株式会社 燃料電池システム
DE102007001154A1 (de) * 2007-01-05 2008-07-10 Enerday Gmbh Blasenfreie Brennstoffzufuhr insbesondere für Brennstoffzellensysteme
JP5408420B2 (ja) * 2009-07-30 2014-02-05 日産自動車株式会社 燃料電池システムとこの燃料電池システムに用いる燃料電池の昇温方法
JP5910127B2 (ja) * 2012-02-03 2016-04-27 日産自動車株式会社 燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192863A (ja) * 1998-12-25 2000-07-11 Aisan Ind Co Ltd 自動車用燃料蒸気処理装置
JP2001052730A (ja) * 1999-08-05 2001-02-23 Fuji Electric Co Ltd 燃料電池発電装置
JP2010508633A (ja) * 2006-11-01 2010-03-18 セレス インテレクチュアル プラパティ コンパニー リミテッド 燃料電池の熱交換システム及び方法
JP2009179553A (ja) * 2009-04-24 2009-08-13 Toshiba Corp マルチ燃料供給システム
JP2012142225A (ja) * 2011-01-05 2012-07-26 Kyocera Corp 燃料電池装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051468A1 (ja) * 2016-09-15 2018-03-22 日産自動車株式会社 燃料電池システム
US11127969B2 (en) 2016-09-15 2021-09-21 Nissan Motor Co., Ltd. Fuel cell system
JP2019046676A (ja) * 2017-09-04 2019-03-22 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
JP7003501B2 (ja) 2017-09-04 2022-01-20 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
WO2019068123A1 (de) * 2017-10-03 2019-04-11 Avl List Gmbh Verfahren zum schnellen aufheizen eines brennstoffzellensystems
CN111149245A (zh) * 2017-10-03 2020-05-12 Avl李斯特有限公司 快速加热燃料电池系统的方法
CN111149245B (zh) * 2017-10-03 2023-09-26 Avl李斯特有限公司 快速加热燃料电池系统的方法

Also Published As

Publication number Publication date
JP6477868B2 (ja) 2019-03-06
EP3291345A4 (en) 2018-07-25
EP3291345A1 (en) 2018-03-07
CA2984097A1 (en) 2016-11-03
CN107534168A (zh) 2018-01-02
BR112017023311A2 (pt) 2018-08-14
US20180138526A1 (en) 2018-05-17
CA2984097C (en) 2018-11-13
JPWO2016174738A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6477868B2 (ja) 燃料電池システム
WO2007106138A3 (en) Fuel steam reformer system and reformer startup process
WO2010113442A1 (ja) 燃料電池システム
JP2020517070A (ja) 環状の改質器を備えた燃料電池システム
JP5634986B2 (ja) 水素生成装置及びこれを備える燃料電池システム
JP2011204390A (ja) 固体酸化物形燃料電池システム及びこれを備えたコージェネレーションシステム
JP5519357B2 (ja) 固体酸化物形燃料電池システム及びこれを備えたコージェネレーションシステム
JP2010255999A (ja) 温風器およびボイラーの燃焼装置
JP6122360B2 (ja) 燃料電池モジュール
JP5771631B2 (ja) 高温の排気ガスを提供するための装置
JP2004149407A (ja) 水素発生装置およびこれを用いた発電装置
JPWO2018051468A1 (ja) 燃料電池システム
WO2022209563A1 (ja) ガスタービンシステム
US20130344409A1 (en) Multi-fuel combustor with swirl flame stabilization
JP3295884B2 (ja) 燃料電池用水素ガス供給装置
CN111149245B (zh) 快速加热燃料电池系统的方法
WO2009061299A1 (en) Catalytic burning of fuel cell anode exhaust upstream of homogeneous burning of startup reformate
JP2021039906A (ja) 燃料電池システム
JP5646000B2 (ja) 燃料電池システム
JP2022547518A (ja) 燃料電池システムのためのバーナー
JP2006310291A (ja) 燃料電池システム
JP2009140686A (ja) 液体燃料気化器、方法及び液体燃料気化システム
JP6502146B2 (ja) 起動ユニットおよび起動用車両
JP2015185263A5 (ja)
JP2019033023A (ja) 燃料電池システム及び燃料電池システムの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515324

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15568592

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2984097

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017023311

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2015890722

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017023311

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171027