CN108711631B - 固体氧化物燃料电池系统及其启动方法 - Google Patents

固体氧化物燃料电池系统及其启动方法 Download PDF

Info

Publication number
CN108711631B
CN108711631B CN201810469675.9A CN201810469675A CN108711631B CN 108711631 B CN108711631 B CN 108711631B CN 201810469675 A CN201810469675 A CN 201810469675A CN 108711631 B CN108711631 B CN 108711631B
Authority
CN
China
Prior art keywords
air
fuel
heater
electric pile
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810469675.9A
Other languages
English (en)
Other versions
CN108711631A (zh
Inventor
谭旭光
胡浩然
孙少军
陈文淼
于超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weichai Power Co Ltd
Original Assignee
Weichai Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weichai Power Co Ltd filed Critical Weichai Power Co Ltd
Priority to CN201810469675.9A priority Critical patent/CN108711631B/zh
Publication of CN108711631A publication Critical patent/CN108711631A/zh
Application granted granted Critical
Publication of CN108711631B publication Critical patent/CN108711631B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种固体氧化物燃料电池系统及其启动方法,固体氧化物燃料电池系统的启动方法包括步骤:加热空气;加热燃料;使加热后的空气和燃料进入电堆,完成预热;其中,所述步骤:加热燃料,具体包括步骤:采用第一加热器对燃料进行加热,所述第一加热器与燃料重整器串联;和/或,所述步骤:加热空气,具体包括步骤:采用第二加热器对空气进行加热,所述第二加热器与空气加热器串联。本发明公开的固体氧化物燃料电池系统的启动方法,能够提高燃料和/或空气的升温速度,从而能够提高电堆的预热速度,进而缩短了固体氧化物燃料电池系统的启动时间。

Description

固体氧化物燃料电池系统及其启动方法
技术领域
本发明涉及固体氧化物燃料电池技术领域,更具体地说,涉及一种固体氧化物燃料电池系统及其启动方法。
背景技术
固体氧化物燃料电池,是一种在中高温条件下将燃料中的化学能通过电化学反应直接转化为电能的全固态化学发电装置。如图1所示,固体氧化物燃料电池系统主要包括:空气加热器、燃料重整器、电堆和尾气燃烧器,其中,电堆通常包括几个乃至十几个电堆单元,每个电堆单元需要分别提供燃料电池反应需要的空气和燃料。
由于固体氧化物燃料电池属于中高温燃料电池,电堆运行温度高达600℃-1000℃,则空气和燃料进入电堆前均需要加热。空气在空气加热器中被加热升温,进入每个电堆单元的阴极;燃料则在燃料重整器中被加热重整,天然气在高温下被重整成H2和CO等,而后进入每个电堆单元阳极。
固体氧化物燃料电池系统在冷启动时,电堆需要加热至600℃-1000℃,系统才能正常工作,此时通常在尾气燃烧器中喷入燃料,燃料催化燃烧放热,释放出的热量对空气和燃料进行加热,即空气加热、燃料加热重整所需要的能量来自尾气燃烧器产生的高温排气,升温后的空气和燃料则继续对电堆进行加热,从而逐步提高电堆的温度,直到电堆温度升至正常高温反应温度。
由于空气加热、燃料加热重整所需要的能量来自尾气燃烧器产生的高温排气,导致空气和燃料的温度提升较慢,电堆的预热较慢,使得整个固体氧化物燃料电池系统的启动时间较长,可长达数小时。而固体氧化物燃料电池系统长达数小时的启动时间是其应用推广的一个关键难点,严重制约了固体氧化物燃料电池系统在车用领域的应用。
另外,固体氧化物燃料电池系统需要燃料喷射、点火及控制装置,使得整个系统较复杂,而且,燃料燃烧不可避免地会产生一些有害气体排放,较难满足清洁环保的需求。
另外,固体氧化物燃料电池包括多个电堆单元,每个电堆单元又由上百片电池单元组成,电堆整体质量较大,电堆材质也是热容较大的材质,例如陶瓷和金属等,导致电堆的热容较大,升温速度较慢。
综上所述,如何启动固体氧化物燃料电池系统,以缩短启动时间,是目前本领域技术人员亟待解决的问题。
发明内容
本发明的目的是提供一种固体氧化物燃料电池系统的启动方法,以缩短启动时间。本发明的另一目的是提供一种固体氧化物燃料电池系统。
为了实现上述目的,本发明提供如下技术方案:
一种固体氧化物燃料电池系统的启动方法,包括步骤:
加热空气;
加热燃料;
使加热后的空气和燃料进入电堆,完成预热;
其中,所述步骤:加热燃料,具体包括步骤:采用第一加热器对燃料进行加热,所述第一加热器与燃料重整器串联;
和/或,所述步骤:加热空气,具体包括步骤:采用第二加热器对空气进行加热,所述第二加热器与空气加热器串联。
优选地,所述步骤:采用第一加热器对燃料进行加热,具体为:采用第一加热器对经过所述燃料重整器的燃料进行加热;
所述步骤:采用第二加热器对空气进行加热,具体为:采用第二加热器对经过所述空气加热器的空气进行加热。
优选地,所述第一加热器和所述第二加热器均为电加热器。
优选地,若采用所述第一加热器对燃料进行加热,当所述电堆的每个电堆单元的排气温度均达到预设值时,停止所述第一加热器加热;
若采用所述第二加热器对空气进行加热,当所述电堆的每个电堆单元的排气温度均达到预设值时,停止所述第二加热器加热。
优选地,所述步骤:使加热后的空气和燃料进入电堆,完成预热,具体为:
使加热后的空气和燃料依次进入所述电堆的各个电堆单元,依次完成各个所述电堆单元的预热;其中,所述电堆包括至少两个电堆单元。
优选地,所述步骤:使加热后的空气和燃料依次进入所述电堆的各个电堆单元,具体为:
当前一个所述电堆单元的排气温度达到预设值时,使加热后的空气和燃料进入后一个所述电堆单元。
优选地,所述固体氧化物燃料电池系统的启动方法还包括步骤:
使所述电堆排出的尾气进入尾气燃烧器;
采用所述尾气燃烧器的排气向所述空气加热器和所述燃料重整器供热。
本发明提供的固体氧化物燃料电池系统的启动方法,采用与燃料重整器串联的第一加热器对燃料进行加热和/或采用与空气加热器串联的第二加热器对空气进行加热,较现有技术利用尾气燃烧器中燃料燃烧的热量加热空气和燃料相比,通过第一加热器能够直接对燃料进行加热和/或通过第二加热器能够直接对空气进行加热,能够提高燃料和/或空气的升温速度,从而能够提高电堆的预热速度,进而缩短了固体氧化物燃料电池系统的启动时间。
基于上述提供的固体氧化物燃料电池系统的启动方法,本发明还提供了一种固体氧化物燃料电池系统,该固体氧化物燃料电池系统包括:空气加热器、燃料重整器、电堆、以及与所述燃料重整器串联且用于加热燃料的第一加热器。
优选地,所述固体氧化物燃料电池系统还包括:与所述空气加热器串联,且用于加热空气的第二加热器。
优选地,所述燃料重整器、所述第一加热器和所述电堆依次连通,所述空气加热器、所述第二加热器和所述电堆依次连通。
优选地,所述第一加热器和所述第二加热器均为电加热器。
优选地,所述固体氧化物燃料电池系统还包括第一控制器,当冷启动时,所述第一控制器用于控制所述第一加热器和/或所述第二加热器加热以完成预热。
优选地,若冷启动时所述第一控制器用于控制所述第一加热器加热,当所述电堆的每个电堆单元的排气温度均达到预设值时,所述第一控制器还用于控制所述第一加热器停止加热;
若冷启动时所述第一控制器用于控制所述第二加热器加热,当所述电堆的每个电堆单元的排气温度均达到预设值时,所述第一控制器还用于控制所述第二加热器停止加热。
优选地,所述电堆包括至少两个电堆单元;
所述固体氧化物燃料电池系统还包括:
用于向所述电堆单元导入空气和燃料的支路管组,所述支路管组与所述电堆单元一一对应;
第二控制器,用于控制各个所述支路管组依次导通以依次完成各个所述电堆单元的预热。
优选地,所述第二控制器具体为:当与前一个导通的所述支路管组对应的所述电堆单元的排气温度达到预设值时,所述第二控制器用于控制后一个所述支路管组导通。
优选地,所述支路管组包括:向所述电堆单元的阴极导入空气的空气支路,以及向所述电堆单元的阳极导入燃料的燃料支路;
所述空气支路串接有空气控制阀,所述燃料支路串接有燃料控制阀;
其中,所述第二控制器通过所述空气控制阀控制所述空气支路导通,所述第二控制器通过所述燃料控制阀控制所述燃料支路导通。
优选地,所述固体氧化物燃料电池系统还包括供热管道,所述供热管道用于将所述固体氧化物燃料电池系统的尾气燃烧器的排气导入所述空气加热器和所述燃料重整器。
附图说明
为了更清楚地说明本发明实施例和现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有的提供的固体氧化物燃料电池系统的启动框图;
图2为本发明实施例提供的固体氧化物燃料电池系统的启动框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2所示,本发明实施例提供的固体氧化物燃料电池系统的启动方法,包括步骤:
加热空气;
加热燃料;
使加热后的空气和燃料进入电堆,完成预热。
其中,上述步骤加热燃料,具体包括步骤:采用第一加热器对燃料进行加热,第一加热器与燃料重整器串联;
和/或,上述步骤加热空气,具体包括步骤:采用第二加热器对空气进行加热,第二加热器与空气加热器串联。
上述步骤加热空气和上述步骤加热燃料,可先后进行,也可同时进行,本发明实施例对此不做限定。可以理解的是,完成预热,即完成电堆的预热,表明启动完成。
需要说明的是,在高温下,天然气等燃料和水蒸气燃料在燃料重整器内发生反应,生成燃料电池反应需要的H2和CO等。空气加热器用于对空气进行加热。电堆是固体氧化物燃料电池系统的核心部件,电堆的电堆单元的阳极为燃料发生氧化的场所,电堆单元的阴极为氧化剂还原的场所。第一加热器与燃料重整器串联,是指沿燃料输送管道第一加热器与燃料重整器串联;第二加热器与空气加热器串联,是指沿空气输送管道第二加热器与空气加热器串联。
本发明实施例提供的固体氧化物燃料电池系统的启动方法,采用与燃料重整器串联的第一加热器对燃料进行加热和/或采用与空气加热器串联的第二加热器对空气进行加热,较现有技术利用尾气燃烧器中燃料燃烧的热量加热空气和燃料相比,通过第一加热器能够直接对燃料进行加热和/或通过第二加热器能够直接对空气进行加热,能够提高燃料和/或空气的升温速度,从而能够提高电堆的预热速度,进而缩短了固体氧化物燃料电池系统的启动时间。
同时,本发明实施例提供的固体氧化物燃料电池系统的启动方法,采用第一加热器对燃料进行加热和/或采用第二加热器对空气进行加热,则无需再利用燃料在尾气燃烧器中燃烧的热量加热空气和燃料,即无需再采用燃料喷射、点火及控制装置,简化了整个固体氧化物燃料电池系统的结构。
同时,本发明实施例提供的固体氧化物燃料电池系统的启动方法,采用与燃料重整器串联的第一加热器对燃料进行加热和/或采用与空气加热器串联的第二加热器对空气进行加热,则能够实现燃料的双级加热以及空气的双级加热,进一步提高了电堆的预热速度,进一步缩短了启动时间。
为了提高加热速度,上述步骤:采用第一加热器对燃料进行加热,具体为:采用第一加热器对经过燃料重整器的燃料进行加热。可以理解的是,此时,沿燃料流向,第一加热器位于燃料重整器的下游。
相应地,上述步骤:采用第二加热器对空气进行加热,具体为:采用第二加热器对经过空气加热器的空气进行加热。可以理解的是,此时,沿空气流向,第二加热器位于空气加热器的下游。
当然,也可选择沿燃料流向,第一加热器位于燃料重整器的上游;沿空气流向,第二加热器位于空气加热器的上游,并不局限于上述实施例。
对于第一加热器和第二加热器的具体类型和结构,根据实际需要进行设计。为了简化结构,上述第一加热器和第二加热器均为电加热器。而且,电加热器的加热效率较高,进一步提高了加热效率,缩短了启动时间。另外,电加热器不会排放有害气体,能够满足清洁环保的需求。
当然,也可选择上述第一加热器和第二加热器为液体加热器,例如冷媒加热器等,并不局限于上述实施例。
优选地,若采用第一加热器对燃料进行加热,当电堆的每个电堆单元的排气温度均达到预设值时,停止第一加热器加热。这样,减少了第一加热器的加热时间,节省了能源和成本。
相应地,若采用第二加热器对空气进行加热,当电堆的每个电堆单元的排气温度均达到预设值时,停止第二加热器加热。这样,减少了第二加热器的加热时间,节省了能源和成本。
为了进一步优化上述技术方案,上述步骤:使加热后的空气和燃料进入电堆,完成预热,具体为:
使加热后的空气和燃料依次进入电堆的各个电堆单元,依次完成各个电堆单元的预热;其中,电堆包括至少两个电堆单元。
可以理解的是,依次进入各个电堆单元,是指按照顺序进入各个电堆单元;依次完成各个电堆单元的预热,即按照顺序完成各个电堆单元的预热。
上述启动方法,由于燃料和空气依次进入各个电堆单元,则依次对各个电堆单元进行加热,较现有技术燃料和空气同时进入各个电堆单元相比,显著降低了电堆的热容,提高了每个电堆单元的预热速度;而且依次对各个电堆单元进行加热,则各个电堆单元依次完成预热,先完成预热的电堆单元可以在供电的同时为其他电堆提供大量热能,进一步提高了每个电堆单元的预热速度,有效缩短了固体氧化物燃料电池系统的启动时间。
为了便于保证各个电堆单元依次完成预热,上述步骤:使加热后的空气和燃料依次进入电堆的各个电堆单元,具体为:
当前一个电堆单元的排气温度达到预设值时,使加热后的空气和燃料进入后一个电堆单元。
对于预设值,根据电堆单元的反应温度进行设定,本发明实施例对此不做限定。
以电堆单元为三个为例,三个电堆单元分别为第一电堆单元、第二电堆单元和第三电堆单元。使加热后的空气和燃料依次进入第一电堆单元、第二电堆单元和第三电堆单元,具体地:使加热后的空气和燃料进入第一电堆单元,当第一电堆单元的排气温度达到预设值时,则表明第一电堆单元完成预热,使加热后的空气和燃料进入第二电堆单元;当第二电堆单元的排气温度达到预设值时,则表明第二电堆单元完成预热,使加热后的空气和燃料进入第三电堆单元。
可以理解的是,加热后的空气和燃料进入第二电堆单元时,加热后的空气和燃料也进入第一电堆单元;加热后的空气和燃料进入第三电堆单元时,加热后的空气和燃料也进入第一电堆单元和第二电堆单元。
上述固体氧化物燃料电池系统的启动方法中,也可选择其他方式来保证各个电堆单元依次完成预热,例如,根据燃料和空气导入电堆单元的时间来保证等,并不局限于上述实施例。
优选地,上述固体氧化物燃料电池系统的启动方法,还包括步骤:
使电堆排出的尾气进入尾气燃烧器;
采用尾气燃烧器的排气向空气加热器和燃料重整器供热。
电堆中未完全反应的H2、CO等燃料在尾气燃烧器中催化燃烧,反应后生成CO2和H2O等,并放出热量。
可以理解的是,此时,上述步骤加热燃料还包括步骤:利用燃料重整器加热燃料;上述步骤加热空气还包括步骤:利用空气加热器加热空气。
上述固体氧化物燃料电池系统的启动方法,充分利用了尾气燃烧器的排气能量,相应地,减小了第一加热器和第二加热器的工作量,节省了能源。
基于上述实施例提供的固体氧化物燃料电池系统的启动方法,本发明实施例还提供了一种固体氧化物燃料电池系统,如图2所示,该固体氧化物燃料电池系统包括:空气加热器、燃料重整器、电堆和第一加热器,其中,第一加热器用于加热燃料,且上述燃料重整器和第一加热器串联。
在高温下,天然气等燃料和水蒸气燃料在燃料重整器内发生反应,生成燃料电池反应需要的H2和CO等。电堆是固体氧化物燃料电池系统的核心部件,电堆的电堆单元的阳极为燃料发生氧化的场所,电堆单元的阴极为氧化剂还原的场所。第一加热器与燃料重整器串联,是指沿燃料输送管道第一加热器与燃料重整器串联。
本发明实施例提供的固体氧化物燃料电池系统,当启动时,采用与燃料重整器串联的第一加热器对燃料进行加热,实现了直接加热,较现有技术利用尾气燃烧器中燃料燃烧的热量加热燃料相比,能够提高燃料的升温速度,从而能够提高电堆的预热速度,进而缩短了固体氧化物燃料电池系统的启动时间。
同时,本发明实施例提供的固体氧化物燃料电池系统中,第一加热器与燃料重整器串联,则能够实现对燃料的双级加热,进一步提高了加热速度,提高了电堆的预热速度,从而进一步缩短了启动时间。
进一步地,上述固体氧化物燃料电池系统还包括第二加热器,该第二加热器用于加热空气,且第二加热器与空气加热器串联。可以理解的是,第二加热器与空气加热器串联,是指沿空气输送管道第二加热器与空气加热器串联。
上述固体氧化物燃料电池系统,当启动时,采用与空气加热器串联的第二加热器对空气进行加热,实现了直接加热,较现有技术利用尾气燃烧器中燃料燃烧的热量加热空气相比,能够提高空气的升温速度,从而能够提高电堆的预热速度,进而缩短了固体氧化物燃料电池系统的启动时间。
同时,本发明实施例提供的固体氧化物燃料电池系统中,第二加热器与空气加热器串联,则能够实现对空气的双级加热,进一步提高了加热速度,提高了电堆的预热速度,从而进一步缩短了启动时间。
上述固体氧化物燃料电池系统,采用第一加热器对燃料进行加热,以及采用第二加热器对空气进行加热,则无需再利用燃料在尾气燃烧器中燃烧的热量加热空气和燃料,即无需再采用燃料喷射、点火及控制装置,简化了整个固体氧化物燃料电池系统的结构。
为了提高加热速度,优先选择燃料重整器、第一加热器和电堆依次连通。可以理解的是,沿燃料流向,第一加热器位于燃料重整器的下游。第一加热器对经过燃料重整器的燃料进行加热。
相应地,空气加热器、第二加热器和电堆依次连通。可以理解的是,沿空气流向,第二加热器位于空气加热器的下游。第二加热器对经过空气加热器的空气进行加热。
当然,也可选择沿燃料流向,第一加热器位于燃料重整器的上游;沿空气流向,第二加热器位于空气加热器的上游,并不局限于上述实施例。
对于第一加热器和第二加热器的具体类型和结构,根据实际需要进行设计。为了简化结构,优先选择第一加热器和第二加热器均为电加热器。
而且,电加热器的加热效率较高,进一步提高了加热效率,缩短了启动时间。另外,电加热器不会排放有害气体,能够满足清洁环保的需求。
当然,也可选择上述第一加热器和第二加热器为液体加热器,例如冷媒加热器等,并不局限于上述实施例。
优选地,上述固体氧化物燃料电池系统还包括第一控制器,当冷启动时,第一控制器用于控制第一加热器和/或第二加热器加热以完成预热。这样,方便了控制和启动。
进一步地,若冷启动时第一控制器用于控制第一加热器加热,当电堆的每个电堆单元的排气温度均达到预设值时,第一控制器还用于控制第一加热器停止加热。这样,减少了第一加热器的加热时间,节省了能源和成本。
相应地,若冷启动时第一控制器用于控制第二加热器加热,当电堆的每个电堆单元的排气温度均达到预设值时,第一控制器还用于控制第二加热器停止加热。这样,减少了第二加热器的加热时间,节省了能源和成本。
为了进一步优化上述技术方案,上述电堆包括至少两个电堆单元;上述固体氧化物燃料电池系统还包括:支路管组和第二控制器。
上述支路管组向电堆单元导入空气和燃料,且该支路管组与电堆单元一一对应;第二控制器用于控制各个支路管组依次导通以依次完成各个电堆单元的预热。
可以理解的是,各个支路管组依次导通,是指各个支路管组按顺序导通;依次完成各个电堆单元的预热,即按顺序完成各个电堆单元的预热。
上述固体氧化物燃料电池系统,第二控制器用于控制各个支路管组依次导通,则使得加热后的空气和燃料依次进入电堆的各个电堆单元,则依次对各个电堆单元进行加热,较现有技术燃料和空气同时进入各个电堆单元相比,显著降低了电堆的热容,提高了每个电堆单元的预热速度;而且依次对各个电堆单元进行加热,则各个电堆单元依次完成预热,先完成预热的电堆单元可以在供电的同时为其他电堆提供大量热能,进一步提高了每个电堆单元的预热速度,有效缩短了固体氧化物燃料电池系统的启动时间。
为了便于保证各个电堆单元依次完成预热,上述第二控制器具体为:当与前一个导通的支路管组对应的电堆单元的排气温度达到预设值时,第二控制器用于控制后一个支路管组导通。
对于预设值,根据电堆单元的反应温度进行设定,本发明实施例对此不做限定。
以电堆单元为三个为例,三个电堆单元分别为第一电堆单元、第二电堆单元和第三电堆单元,与第一电堆单元对应的支路管组为第一支路管组,与第二电堆单元对应的支路管组为第二支路管组,与第三电堆单元对应的支路管组为第三支路管组。第二控制器用于控制第一支路管组、第二支路管组、第三支路管组依次导通,具体地,第二控制器控制第一支路管组导通,当第一电堆单元的排气温度达到预设值时,则表明第一电堆单元完成预热,第二控制器控制第二支路管组导通;当第二电堆单元的排气温度达到预设值时,则表明第二电堆单元完成预热,第二控制器控制第三支路管组导通。
可以理解的是,第二支路管组导通时,第一支路管组也导通;第三支路管组导通时,第一支路管组和第二支路管组也导通。
上述固体氧化物燃料电池系统,也可选择其他方式来保证各个电堆单元依次完成预热,例如,根据燃料和空气导入电堆单元的时间来保证等,并不局限于上述实施例。
为了便于控制支路管组的导通,上述支路管组包括:向电堆单元的阴极导入空气的空气支路,以及向电堆单元的阳极导入燃料的燃料支路;空气支路串接有空气控制阀,燃料支路串接有燃料控制阀。可以理解的是,空气控制阀与空气支路一一对应,空气支路与电堆单元一一对应;燃料控制阀与燃料支路一一对应,燃料支路与电堆单元一一对应。
上述第二控制器通过空气控制阀控制空气支路导通,具体地,第二控制器控制空气控制阀打开,实现控制具有该空气控制阀的空气支路导通;第二控制器通过燃料控制阀控制燃料支路导通,具体地,第二控制器控制燃料控制阀打开,实现控制具有该燃料控制阀的燃料支路导通。
优选地,上述固体氧化物燃料电池系统还包括供热管道,该供热管道用于将固体氧化物燃料电池系统的尾气燃烧器的排气导入空气加热器和燃料重整器。
可以理解的是,电堆中未完全反应的H2、CO等燃料在尾气燃烧器中催化燃烧,反应后生成CO2和H2O等,并放出热量。供热管道与尾气燃烧器的排气口连通,空气加热器和燃料重整器依次串接于供热管道,尾气燃烧器的排气向空气加热器和燃料重整器供热。
上述固体氧化物燃料电池系统,充分利用了尾气燃烧器的排气能量,相应地,减小了第一加热器和第二加热器的工作量,节省了能源。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

1.一种固体氧化物燃料电池系统的启动方法,其特征在于,包括步骤:
加热空气;
加热燃料;
使加热后的空气和燃料进入电堆,完成预热;
其中,所述步骤:加热燃料,具体包括步骤:采用第一加热器对燃料进行加热,沿燃料输送管道所述第一加热器与燃料重整器串联;
所述步骤:加热空气,具体包括步骤:采用第二加热器对空气进行加热,沿空气输送管道所述第二加热器与空气加热器串联;
所述电堆包括至少两个电堆单元,所述固体氧化物燃料电池系统还包括支路管组,所述支路管组与所述电堆单元一一对应;所述支路管组包括:向所述电堆单元的阴极导入空气的空气支路,以及向所述电堆单元的阳极导入燃料的燃料支路;所述空气支路串接有空气控制阀,所述燃料支路串接有燃料控制阀;所述空气控制阀与所述空气支路一一对应,所述空气支路与所述电堆单元一一对应;所述燃料控制阀与所述燃料支路一一对应,所述燃料支路与所述电堆单元一一对应;
所有的所述空气支路均由所述燃料输送管道分成,所有的所述空气支路均由所述空气输送管道连通分成;
所述步骤:使加热后的空气和燃料进入电堆,完成预热,具体为:
通过所述空气控制阀控制各个所述空气支路依次导通以及通过所述燃料控制阀控制各个所述燃料依次支路导通以使加热后的空气和燃料依次进入所述电堆的各个电堆单元,控制各个支路管组依次导通以依次完成各个所述电堆单元的预热;
所述步骤:使加热后的空气和燃料依次进入所述电堆的各个电堆单元,具体为:当前一个所述电堆单元的排气温度达到预设值时,使加热后的空气和燃料进入后一个所述电堆单元。
2.根据权利要求1所述的启动方法,其特征在于,
所述步骤:采用第一加热器对燃料进行加热,具体为:采用第一加热器对经过所述燃料重整器的燃料进行加热;
所述步骤:采用第二加热器对空气进行加热,具体为:采用第二加热器对经过所述空气加热器的空气进行加热。
3.根据权利要求1所述的启动方法,其特征在于,所述第一加热器和所述第二加热器均为电加热器。
4.根据权利要求1所述的启动方法,其特征在于,
若采用所述第一加热器对燃料进行加热,当所述电堆的每个电堆单元的排气温度均达到预设值时,停止所述第一加热器加热;
若采用所述第二加热器对空气进行加热,当所述电堆的每个电堆单元的排气温度均达到预设值时,停止所述第二加热器加热。
5.根据权利要求1-4中任一项所述的启动方法,其特征在于,还包括步骤:
使所述电堆排出的尾气进入尾气燃烧器;
采用所述尾气燃烧器的排气向所述空气加热器和所述燃料重整器供热。
6.一种固体氧化物燃料电池系统,包括:空气加热器、燃料重整器和电堆,其特征在于,还包括:沿燃料输送管道与所述燃料重整器串联,且用于加热燃料的第一加热器;沿空气输送管道与所述空气加热器串联,且用于加热空气的第二加热器;
所述电堆包括至少两个电堆单元;
所述固体氧化物燃料电池系统还包括:用于向所述电堆单元导入空气和燃料的支路管组,所述支路管组与所述电堆单元一一对应;第二控制器,用于控制各个所述支路管组依次导通以依次完成各个所述电堆单元的预热;
所述支路管组包括:向所述电堆单元的阴极导入空气的空气支路,以及向所述电堆单元的阳极导入燃料的燃料支路;所有的所述空气支路均由所述燃料输送管道分成,所有的所述空气支路均由所述空气输送管道连通分成;
所述空气支路串接有空气控制阀,所述燃料支路串接有燃料控制阀;
其中,所述第二控制器通过所述空气控制阀控制所述空气支路导通,所述第二控制器通过所述燃料控制阀控制所述燃料支路导通;
所述空气控制阀与所述空气支路一一对应,所述空气支路与所述电堆单元一一对应;所述燃料控制阀与所述燃料支路一一对应,所述燃料支路与所述电堆单元一一对应;
所述第二控制器具体为:当与前一个导通的所述支路管组对应的所述电堆单元的排气温度达到预设值时,所述第二控制器用于控制后一个所述支路管组导通。
7.根据权利要求6所述的固体氧化物燃料电池系统,其特征在于,所述燃料重整器、所述第一加热器和所述电堆依次连通,所述空气加热器、所述第二加热器和所述电堆依次连通。
8.根据权利要求6所述的固体氧化物燃料电池系统,其特征在于,所述第一加热器和所述第二加热器均为电加热器。
9.根据权利要求7所述的固体氧化物燃料电池系统,其特征在于,还包括第一控制器,当冷启动时,所述第一控制器用于控制所述第一加热器和/或所述第二加热器加热以完成预热。
10.根据权利要求9所述的固体氧化物燃料电池系统,其特征在于,
若冷启动时所述第一控制器用于控制所述第一加热器加热,当所述电堆的每个电堆单元的排气温度均达到预设值时,所述第一控制器还用于控制所述第一加热器停止加热;
若冷启动时所述第一控制器用于控制所述第二加热器加热,当所述电堆的每个电堆单元的排气温度均达到预设值时,所述第一控制器还用于控制所述第二加热器停止加热。
11.根据权利要求6-10中任一项所述的固体氧化物燃料电池系统,其特征在于,还包括供热管道,所述供热管道用于将所述固体氧化物燃料电池系统的尾气燃烧器的排气导入所述空气加热器和所述燃料重整器。
CN201810469675.9A 2018-05-16 2018-05-16 固体氧化物燃料电池系统及其启动方法 Active CN108711631B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810469675.9A CN108711631B (zh) 2018-05-16 2018-05-16 固体氧化物燃料电池系统及其启动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810469675.9A CN108711631B (zh) 2018-05-16 2018-05-16 固体氧化物燃料电池系统及其启动方法

Publications (2)

Publication Number Publication Date
CN108711631A CN108711631A (zh) 2018-10-26
CN108711631B true CN108711631B (zh) 2021-04-16

Family

ID=63868185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810469675.9A Active CN108711631B (zh) 2018-05-16 2018-05-16 固体氧化物燃料电池系统及其启动方法

Country Status (1)

Country Link
CN (1) CN108711631B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911708A (zh) * 2018-09-17 2020-03-24 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池电堆的加热启动方法与加热装置
CN109509895A (zh) * 2018-12-20 2019-03-22 中国地质大学(武汉) 一种固体氧化物燃料电池
CN109755611A (zh) * 2019-01-25 2019-05-14 广东工业大学 直接丙烷部分氧化重整制氢的固体氧化物燃料电池组
CN110661015B (zh) * 2019-10-12 2020-11-10 中氢新能技术有限公司 一种甲醇重整燃料电池系统
CN111082100A (zh) * 2019-12-31 2020-04-28 上海杰宁新能源科技发展有限公司 一种氢燃料电池控制系统
CN113314729B (zh) * 2020-02-27 2022-12-09 国家能源投资集团有限责任公司 燃料电池系统及启动控制方法
CN112687918B (zh) * 2020-12-17 2022-04-26 潍柴动力股份有限公司 固体氧化物燃料电池系统及其控制方法
CN113540501A (zh) * 2021-07-06 2021-10-22 天津大学 高温质子交换膜燃料电池的热管理系统及控制方法
CN117374358B (zh) * 2023-09-26 2024-05-31 广东佛燃科技有限公司 一种双电池堆运行的固体氧化物燃料电池发电系统
CN117747871B (zh) * 2024-02-19 2024-05-14 北京锦源创新科技有限公司 燃料电池及其热装置和制造方法
CN117936837A (zh) * 2024-02-19 2024-04-26 北京锦源创新科技有限公司 燃料电池及其热装置和制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2209155A1 (en) * 1998-12-02 2010-07-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system with improved startability
CN102306818A (zh) * 2011-08-23 2012-01-04 西安交通大学 管状固体氧化物燃料电池堆结构及其预热方法
CN107534168A (zh) * 2015-04-28 2018-01-02 日产自动车株式会社 燃料电池系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057945B2 (en) * 2007-10-24 2011-11-15 Atomic Energy Council-Institute Of Nuclear Energy Research Solid oxide fuel cell with recycled core outlet products
CN202855854U (zh) * 2012-09-05 2013-04-03 北京斯塔能源科技有限公司 一种固体氧化物燃料电池系统
CN103682403B (zh) * 2013-12-24 2016-07-06 武汉理工大学 具有分级式温度控制的燃料电池低温快速启动系统及方法
CN110701826A (zh) * 2019-11-05 2020-01-17 中国华电科工集团有限公司 一种百kW-MW级SOFC冷热电系统及其运行方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2209155A1 (en) * 1998-12-02 2010-07-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system with improved startability
CN102306818A (zh) * 2011-08-23 2012-01-04 西安交通大学 管状固体氧化物燃料电池堆结构及其预热方法
CN107534168A (zh) * 2015-04-28 2018-01-02 日产自动车株式会社 燃料电池系统

Also Published As

Publication number Publication date
CN108711631A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
CN108711631B (zh) 固体氧化物燃料电池系统及其启动方法
CN108370051B (zh) 燃料电池系统、及燃料电池系统的控制方法
CN104396072B (zh) 固体氧化物型燃料电池系统及其控制方法
US10804554B2 (en) Fuel cell system and control method for fuel cell system
EP3392949B1 (en) Control method for fuel cell system and fuel cell system
CN108475799B (zh) 燃料电池系统以及燃料电池系统的控制方法
CN111725537A (zh) 一种燃料电池发动机氢气燃烧加热器及极低温自启动方法
CN108539225A (zh) 固体氧化物燃料电池的启动方法及固体氧化物燃料电池
CN117673403A (zh) 燃料电池系统及应用于燃料电池系统的启动控制方法
JP2013157134A (ja) 固体酸化物型燃料電池システム
CN113299953B (zh) 燃料电池发电系统快速启动方法、装置、设备及存储介质
EP4085185B1 (en) Hybrid power system
CN114556645B (zh) 燃料电池系统以及燃料电池系统的控制方法
CN111149245B (zh) 快速加热燃料电池系统的方法
JP3997264B2 (ja) 燃料電池コージェネレーションシステム
KR101553106B1 (ko) 하이브리드 연료전지 시스템의 운전방법
CN211320226U (zh) 空压机和燃料电池联合循环系统、交通工具、充电系统
JPH04269460A (ja) 燃料電池プラントの昇温方法
WO2020105190A1 (ja) 燃焼システムおよび燃焼システムの制御方法
JP6113472B2 (ja) 複合発電システム及びその運転方法
JP2020113526A (ja) 燃料電池システムおよび燃料電池システム始動方法
CN112204785A (zh) 燃料电池系统及其运转方法
JP2019033023A (ja) 燃料電池システム及び燃料電池システムの制御方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant