WO2016171247A1 - 炭素蒸発源 - Google Patents

炭素蒸発源 Download PDF

Info

Publication number
WO2016171247A1
WO2016171247A1 PCT/JP2016/062749 JP2016062749W WO2016171247A1 WO 2016171247 A1 WO2016171247 A1 WO 2016171247A1 JP 2016062749 W JP2016062749 W JP 2016062749W WO 2016171247 A1 WO2016171247 A1 WO 2016171247A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation source
carbon
carbon evaporation
evaporation
boron
Prior art date
Application number
PCT/JP2016/062749
Other languages
English (en)
French (fr)
Inventor
裕治 瀧本
文滋 中村
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to JP2017514203A priority Critical patent/JP6684270B2/ja
Publication of WO2016171247A1 publication Critical patent/WO2016171247A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Definitions

  • the present invention relates to a carbon evaporation source used for forming an amorphous carbon film.
  • a method of forming an amorphous carbon film such as a DLC (Diamond-Like-Carbon) film by a PVD method such as a vacuum arc discharge method or a sputtering method using graphite as an evaporation source is known. Since the PVD method can use solid graphite as the main evaporation source, the amount of hydrogen mixed into the DLC film can be limited less than the CVD method using hydrocarbon gas as the main material, and carbon terminated with hydrogen. Since the bonding ratio can be limited to a small amount, this is a technique suitable for forming a DLC film harder than the CVD method (Non-Patent Document 1). However, even when the PVD method is used, there are problems that the adhesion between the DLC film and the base is insufficient or the sliding resistance is increased.
  • the DLC film is doped with an element species other than the carbon element (hereinafter referred to as a hetero element) for the purpose of improving the adhesion between the DLC film and the base or reducing the sliding resistance.
  • a hetero element an element species other than the carbon element
  • the evaporation source when a carbon composite material containing a hetero element such as silicon, molybdenum, titanium, or tungsten is used as the evaporation source, there is a problem that the evaporation rate is lower than that of the graphite evaporation source. As described above, when the evaporation rate is low, as a result, the deposition rate of the DLC film is lowered, and the production efficiency of the DLC film is reduced.
  • an object of the present invention is to provide a carbon evaporation source capable of improving the production efficiency of the DLC film by increasing the evaporation speed of the evaporation source and increasing the film formation speed of the DLC film.
  • the present invention is a carbon evaporation source containing carbon and at least one hetero element, wherein the hetero element is boron and the total amount of the carbon evaporation source is 100 atomic%. Further, the ratio of the boron to the total amount of the carbon evaporation source is regulated to 0.3 atomic% or more and 30 atomic% or less, and the electrical resistivity is 25 ⁇ ⁇ m or less.
  • the production efficiency of the DLC film can be improved by increasing the evaporation rate of the carbon evaporation source and increasing the deposition rate of the DLC film.
  • the present inventor has found that the evaporation rate of the carbon evaporation source is strongly influenced by the electrical resistivity of the carbon evaporation source by studying the evaporation process of the graphite and hetero element-containing carbon evaporation source. Although the mechanism is not clear, it is thought to be due to the following reasons.
  • a material having a high electrical resistivity of the carbon evaporation source easily evaporates even when a low voltage is applied, so that the evaporation state is maintained even if the input power to the evaporation source is small. As a result, since the energy obtained by the evaporation source is reduced, the evaporation amount is relatively small. On the other hand, since the material having a low electrical resistivity of the carbon evaporation source does not easily evaporate even when a high voltage is applied, the power input to the evaporation source tends to increase in order to maintain evaporation. As a result, the amount of energy obtained from the evaporation source increases, and the amount of evaporation is relatively large. In other words, the lower the electrical resistivity of the carbon evaporation source, the greater the evaporation amount.
  • the evaporation amount can be discharged at any high current value if the limit value on the apparatus of the arc current value is not taken into consideration, but in reality, there are equipment limitations, optimum conditions for film formation, etc. Therefore, it is necessary to make a comparison under constant current control.
  • the electric resistivity of the carbon evaporation source has a direct influence, and the lower the electric resistivity of the carbon evaporation source, the larger the evaporation amount tends to be.
  • the lower the electrical resistivity of the carbon evaporation source the larger the evaporation amount tends to be. This is because, in the case of a sputtering method, in a material having a high electrical resistivity of the carbon evaporation source, the carbon evaporation source is easily heated even with a small input power, so an undesirable transition from glow discharge to arc discharge (so-called As a result, the input power cannot be increased.
  • the carbon evaporation source has a low electrical resistivity, so that the input power can be increased, so that the evaporation rate can be increased. From the above, even in the case of the sputtering method as well as the vacuum arc evaporation method, it is affected by the electrical resistivity of the carbon evaporation source.
  • the structure of the carbon evaporation source used for the production of the amorphous carbon film by the sputtering method or the vacuum arc discharge method is as follows.
  • a carbon evaporation source containing carbon and at least one heteroelement When the hetero element is boron and the total amount of the carbon evaporation source is 100 atomic%, the ratio of the boron with respect to the total amount of the carbon evaporation source is regulated to 0.3 atomic% or more and 30 atomic% or less, and electricity
  • the resistivity is 25 ⁇ ⁇ m or less.
  • the proportion of the boron is regulated, and the electrical resistivity is set to 25 ⁇ ⁇ m or less, the same as the graphite material when this carbon evaporation source is used. Will have an evaporation rate. This is because when the electric resistivity is set to 25 ⁇ ⁇ m or less, it does not evaporate easily even when a high voltage is applied. As a result, the energy obtained by the evaporation source increases, and the amount of evaporation of the carbon evaporation source increases.
  • the boron ratio is regulated as described above because when the boron ratio is less than 0.1 atomic%, the electrical resistivity is not sufficiently reduced by the catalytic graphitization of the boron element. This is because, when the atomic percentage is exceeded, the volume content of boron carbide having a higher electrical resistivity than that of the carbon material is increased, leading to an increase in electrical resistivity.
  • the lower limit of the electrical resistivity is not limited, but is preferably 3.5 ⁇ ⁇ m or more. This is because when the electrical resistivity is less than 3.5 ⁇ ⁇ m, excessive power is required for evaporation.
  • the carbon desirably contains two or more kinds of carbonaceous materials. If two or more kinds of carbonaceous substances are included, the electrical resistivity can be easily adjusted by changing one or two or more carbonaceous substances.
  • the carbonaceous material preferably contains carbon aggregates and auxiliary carbon existing between the carbon aggregates.
  • auxiliary carbon exists between the carbon aggregates, voids inside the carbon evaporation source are reduced and the contact area between the carbons is increased, so that the electrical resistivity is further lowered. Therefore, since the input power to the evaporation source is increased, the evaporation amount of the carbon evaporation source is increased.
  • the auxiliary carbon is carbon other than the carbon aggregate, and is present between the carbon aggregates as described above.
  • the said hetero element means elements other than carbon and hydrogen.
  • boron but together with boron, group 2 element, group 3 element, group 4 element, group 5 element, group 6 element, iron group element (iron, cobalt, nickel), and group 13
  • At least one element selected from the group consisting of group elements may be used.
  • magnesium, calcium, yttrium, lanthanum, cerium, gadolinium, titanium, zirconium, hafnium, niobium, tantalum, chromium, molybdenum, tungsten, iron, cobalt, nickel, aluminum, or silicon are exemplified.
  • the ratio of the above elements (Group 2 element, Group 3 element, Group 4 element, Group 5 element, Group 6 element, Iron group element, Group 13 element) to the total amount of carbon evaporation sources is respectively It is desirable that it is 1 atomic% or more and 10 atomic% or less. With such a configuration, the above-described effects are further exhibited. In addition, when doping elements other than boron as a boride, it becomes possible to make the boron which comprises the boride bear a catalyst graphitization effect
  • the additive is preferably in the form of powder, and the average particle size is preferably 1 ⁇ m or more and 100 ⁇ m or less (particularly 5 ⁇ m or more and 50 ⁇ m or less). This is because it is difficult to obtain or costly metals having an average particle size of less than 1 ⁇ m, and when the average particle size is less than 5 ⁇ m, agglomeration occurs and uniform dispersion with the carbon raw material becomes difficult. This is because it is difficult to uniformly disperse the metal with respect to the carbon in the case of the lump exceeding 100 ⁇ m.
  • the additive may be composed of a single element of the hetero element or a compound containing the hetero element.
  • the compound containing a hetero element include oxides, carbides, nitrides, borides, carbonates, salts with inorganic acids or organic acids, and the like.
  • the electrical resistivity is desirably 20 ⁇ ⁇ m or less, and particularly desirably 15 ⁇ ⁇ m or less.
  • a DLC film formed using the above-described carbon evaporation source can be used for a mold. Specifically, it can be used for aluminum drawing tools, lead frame punches, bending tools, and plastic molds.
  • a DLC film formed using the above-described carbon evaporation source can be used for a cutting tool. Specifically, it can be used for an aluminum cutting throw-away tip, a drill, and an end mill.
  • a DLC film formed using the above-described carbon evaporation source can be used as a machine part. Specifically, it can be used for hydraulic cylinder parts as hydraulic equipment, gears and pulleys as power transmission parts, indirect and arms as robot parts, roller shafts as sliding parts, and crank joints.
  • a DLC film formed using the above-described carbon evaporation source can be used for automobile parts. Specifically, it can be used as, for example, a valve lifter, a camshaft, a rocker arm, a fuel injection pump part, a hybrid car part, a clutch as a drive system part, a coupling, or a suspension part as an engine part.
  • a DLC film formed using the above-described carbon evaporation source can be used as a protective film for the lens.
  • a protective film such as an infrared optical lens used in a harsh environment such as an outdoor monitoring camera or an in-vehicle camera.
  • a DLC film formed using the above-described carbon evaporation source can be used for a medical device. Specifically, it can be used for stents and artificial joints utilizing the high biocompatibility of carbon materials.
  • a DLC film formed using the above-described carbon evaporation source can be used in precision processing equipment.
  • Specific examples include a nanoimprint mold for microgear molding.
  • the carbon material used as the carbon aggregate is not limited to artificial graphite, and graphite such as natural graphite and quiche graphite, or carbon such as coke, glassy carbon, and carbon black is used. Is also possible.
  • the carbon material used as the carbon aggregate is in a powder form, and the average particle diameter is preferably 100 ⁇ m or less. In particular, it is preferably 1 ⁇ m or more and 100 ⁇ m or less, and more preferably 5 ⁇ m or more and 50 ⁇ m or less. This is because carbon materials of less than 1 ⁇ m are difficult to obtain except for carbon black, and when the thickness is less than 5 ⁇ m, it is difficult to uniformly disperse the metal due to aggregation. This is the reason.
  • the binder is not limited to the phenol resin, and pitch, tar, furfuryl alcohol, furan resin, imide resin varnish, and the like can be used.
  • the phenol resin, pitch, and the like are initially in a powder form, but are softened during kneading. Further, when the carbon aggregate itself has a self-sintering property or a carbon aggregate in which a binder is mixed in advance is used, the step of mixing the binder can be omitted.
  • Example 1 Artificial graphite as a carbon aggregate, a powdery phenol resin as a binder, and B 4 C (average particle size: 15 ⁇ m) as an additive were mixed and then kneaded with an open roll. During the kneading, the powdery phenol resin softens, so that the phenol resin exists between the artificial graphite. Next, after pulverizing to a moldable particle size, the pulverized product was molded and further fired in a reducing atmosphere to carbonize the binder.
  • the carbonized product of the above binder constitutes auxiliary carbon.
  • the auxiliary carbon enters the gaps between the graphite powders, and the gaps in the molded body are reduced, so that the contact area between the carbons is increased and the electrical resistivity is reduced.
  • the fired product was subjected to a final heat treatment at 2000 ° C. to produce a carbon evaporation source containing element B.
  • concentration of the B element with respect to the total amount of the carbon evaporation source containing the B element (hereinafter, the carbon evaporation source containing a hetero element such as the B element may be simply referred to as a carbon evaporation source) at the time of the mixing is as follows. was added B 4 C so that 0.3 atomic%.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A1.
  • Example 2 The carbon evaporation source was the same as in Example 1 except that the temperature during the final heat treatment was 1600 ° C. and B 4 C was added so that the concentration of B element was 2 atomic% with respect to the total amount of the carbon evaporation source. Was made.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A2.
  • Example 3 A carbon evaporation source was produced in the same manner as in Example 2 except that the temperature during the final heat treatment was 2000 ° C.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A3.
  • Example 4 A carbon evaporation source was produced in the same manner as in Example 2 above, except that B 4 C was added so that the concentration of B element with respect to the total amount of the carbon evaporation source was 5 atomic%.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A4.
  • Example 5 A carbon evaporation source was produced in the same manner as in Example 3 except that B 4 C was added so that the concentration of B element with respect to the total amount of the carbon evaporation source was 5 atomic%.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A5.
  • Example 6 A carbon evaporation source was produced in the same manner as in Example 2 above, except that B 4 C was added so that the concentration of B element with respect to the total amount of the carbon evaporation source was 10 atomic%.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A6.
  • Example 7 A carbon evaporation source was produced in the same manner as in Example 3 except that B 4 C was added so that the concentration of B element with respect to the total amount of the carbon evaporation source was 10 atomic%.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A7.
  • Example 8 A carbon evaporation source was produced in the same manner as in Example 3 except that B 4 C was added so that the concentration of B element with respect to the total amount of the carbon evaporation source was 20 atomic%.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A8.
  • Example 9 B 4 C is added so that the concentration of B element is 1 atomic% with respect to the total amount of the carbon evaporation source using carbon aggregate mixed with pitch as a binder component, and Si element is used together with B element as a hetero element. Then, SiC (average particle size: 5 ⁇ m) is added so that the concentration of Si element with respect to the total amount of the carbon evaporation source is 2 atomic%, uniformly mixed with a W cone type mixer, then molded, and further reduced in a reducing atmosphere And carbonized by firing. Finally, a carbon evaporation source was produced by subjecting the fired product to a final heat treatment at 2000 ° C. The carbon evaporation source thus produced is hereinafter referred to as evaporation source A9.
  • Example 10 The same as Example 9 except that Ti element was used together with B element as a hetero element, and TiC (average particle diameter: 5 ⁇ m) was added so that the concentration of Ti element was 2 atomic% with respect to the total amount of the carbon evaporation source. Thus, a carbon evaporation source was prepared.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A10.
  • Example 11 Except for using W element together with B element as a hetero element and adding WC (average particle diameter: 5 ⁇ m) so that the concentration of W element is 2 atomic% with respect to the total amount of carbon evaporation source, the same as in Example 9 above. Thus, a carbon evaporation source was prepared.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A11.
  • Example 12 Except for using the Mo element together with the B element as a hetero element, and adding Mo (average particle diameter: 5 ⁇ m) so that the concentration of the Mo element is 2 atomic% with respect to the total amount of the carbon evaporation source, the same as in Example 9 above. Thus, a carbon evaporation source was prepared.
  • the carbon evaporation source thus produced is hereinafter referred to as evaporation source A12.
  • Example 9 Example 9 except that Gd element is used together with B element as a hetero element, and Gd 2 O 3 (average particle diameter: 5 ⁇ m) is added so that the concentration of Gd element is 2 atomic% with respect to the total amount of the carbon evaporation source. Similarly, a carbon evaporation source was prepared. The carbon evaporation source thus produced is hereinafter referred to as evaporation source A13.
  • Example 2 Example 2 except that Si element was used instead of B element as a hetero element, and SiC (average particle size: 5 ⁇ m) was added so that the concentration of Si element was 5 atomic% with respect to the total amount of the carbon evaporation source. Similarly, a carbon evaporation source was prepared. The carbon evaporation source thus produced is hereinafter referred to as an evaporation source Z1.
  • Comparative Example 2 Similar to Comparative Example 1 except that a carbon evaporation source having a higher bulk density than that of the evaporation source Z1 was produced by forming the pulverized product at a high pressure to increase the specific gravity. Thus, a carbon evaporation source was prepared. The carbon evaporation source thus produced is hereinafter referred to as an evaporation source Z2.
  • Example 7 A carbon evaporation source was produced in the same manner as in Example 8 except that the final heat treatment temperature was 1600 ° C.
  • the carbon evaporation source thus produced is hereinafter referred to as an evaporation source Z7.
  • Test pieces were collected from the evaporation sources A1 to A12 and Z1 to Z7, and the physical characteristics were investigated. Specifically, it is as follows. The bulk density was calculated from the value obtained by dividing the weight of the test piece by the volume, and the hardness was measured using a Shore Hardness Tester D at room temperature. The electrical resistivity was measured based on JIS R7222-1997. Regarding the mechanical strength, the bending strength by three-point bending was measured using an Instron type material testing machine at room temperature, and the compressive strength was measured using a Tensilon universal testing machine at room temperature.
  • the evaporation sources A1 to A8 containing boron as a hetero element have a lower electrical resistivity than the evaporation sources Z1 to Z3 containing silicon as a hetero element and do not contain a hetero element. It can be seen that it is substantially equivalent to the evaporation sources Z4 to Z6. It can also be seen that the electrical resistivity is lower even in the evaporation source A9 containing silicon as a hetero element and boron as compared with the evaporation sources Z1 to Z3 containing only silicon as a hetero element.
  • the electrical resistivity is lower in the evaporation sources A10 to A13 containing titanium, tungsten, or molybdenum as a hetero element as well as the evaporation sources Z1 to Z3 containing only silicon as a hetero element. It is done.
  • the evaporation sources A1 to A13 are generally higher in hardness and mechanical strength than the evaporation sources Z1 to Z6, although the bulk density is almost the same. Is observed to be larger. In particular, it can be seen that the evaporation sources A9 to A12 have extremely high hardness and mechanical strength.
  • the evaporation source Z7 contains boron as a hetero element, it is recognized that the electrical resistivity is high. Therefore, it can be seen that even if boron is contained as a hetero element, the electrical resistivity is not necessarily lowered.
  • Example 2 From the evaporation sources A2, A4, A5, Z1 to Z3, Z5, and Z6, a disk-shaped target material having a diameter of 100 mm and a thickness of 12 mm was prepared, and an amorphous carbon film formation test was performed by the following method. Carried out. A vacuum arc discharge method was used as the film forming method, and UBMS 202 from Kobe Steel, Ltd. was used as the film forming apparatus.
  • a film was formed for 90 minutes under the conditions of an arc current value of DC 20 A, a process pressure of argon 0.13 Pa, a substrate bias voltage of ⁇ 100 V, and no substrate heating.
  • SKD11 was tempered to a hardness of HRC60, the film formation surface was lapped, a Cr intermediate layer was formed in advance by sputtering, and then an amorphous carbon film (DLC film) was formed.
  • DLC film amorphous carbon film
  • the evaporation rate was calculated from a value obtained by dividing the weight of the target material before and after evaporation by the film formation time.
  • the temperature of the workpiece was monitored by inserting a thermocouple on the back of the substrate to monitor the temperature rise during film formation.
  • the results are shown in Table 2.
  • FIG. 1 shows the relationship between the electrical resistivity of the carbon evaporation source and the average arc voltage
  • FIG. 2 shows the relationship between the electrical resistivity of the carbon evaporation source and the evaporation rate.
  • the evaporation sources A2, A4, and A5 have higher average arc voltage and average bias current than the evaporation sources Z1 to Z3. It is recognized that it is high.
  • the evaporation sources A2, A4, A5 have slightly lower average arc voltage and average bias current than the evaporation sources Z5, Z6, but it is recognized that the evaporation rates are substantially the same.
  • the evaporation sources A2, A4, A5 are lower than the evaporation sources Z5, Z6 and slightly higher than the evaporation sources Z1 to Z3, but are at a level with no problem.
  • FIG. 1 shows that the higher the electric resistivity of the carbon evaporation source, the lower the average arc voltage
  • FIG. 2 shows that the higher the electric resistivity of the carbon evaporation source, the lower the evaporation rate. .
  • the evaporation source A ⁇ b> 1 includes a carbon aggregate 1 (a white or whitish portion having a strong anisotropy) and an auxiliary carbon 2 (gray) existing between the carbon aggregates 1. It is recognized that there is a portion having a strong isotropy using a binder as a starting material. Note that reference numeral 3 (black portion) in FIG. 3 is a void, and the volume of the void 3 is reduced due to the presence of the auxiliary carbon 2.
  • the carbon evaporation source of the present invention is carbon that can be used as an evaporation source when a DLC film is formed on a mold, a cutting tool, a machine part, an automobile part, a lens, a medical instrument, a precision processing device, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明は、蒸発源の蒸発速度を高めてDLC膜の成膜速度を高めることにより、DLC膜の生産効率を向上することができる炭素蒸発源を提供することを目的としている。 炭素と、少なくとも1つのヘテロ元素とを含有する炭素蒸発源であって、上記ヘテロ元素がホウ素であり、炭素蒸発源の総量を100原子%としたときに、炭素蒸発源の総量に対する上記ホウ素の割合が0.3原子%以上30原子%以下に規制され、且つ、電気抵抗率が25μΩ・m以下であることを特徴とする。

Description

炭素蒸発源
 本発明は非晶質炭素膜を形成する際に用いられる炭素蒸発源に関する。
 黒鉛を蒸発源として用い、真空アーク放電法、スパッタリング法等のPVD法によりDLC(Diamond-Like-Carbon)膜などの非晶質炭素膜を形成する方法が知られている。PVD法は固体の黒鉛を主たる蒸発源として用いることができるので、炭化水素ガスを主原料とするCVD法に比べるとDLC膜中へ混入する水素量を少なく制限でき、水素で終端している炭素結合の割合を少なく制限できるため、CVD法よりも硬質なDLCの成膜に適した手法である(非特許文献1)。しかしながら、PVD法を用いた場合であっても、DLC膜と下地との密着性が不十分であったり、摺動抵抗が高くなったりするといった課題がある。
 そこで、DLC膜と下地との密着性を向上させたり、摺動抵抗の低下を図る目的で、DLC膜中へ炭素元素以外の元素種(以下、ヘテロ元素)をドープしたりすることも知られており、例えば、モリブデン、チタン、タングステン等の元素をドープすることが提案されている(特許文献1)。
 また、PVD法を用いて上記ヘテロ元素をDLC膜中へドープする場合には、黒鉛の蒸発源とは別に、ヘテロ元素を含む蒸発源を用意し、それらを同時に蒸発させる方法がある。しかしながら、当該方法では、黒鉛の蒸発とヘテロ元素を含んだ材料の蒸発とをそれぞれ制御する必要があるが、当該制御は困難であるということから、DLC膜中のヘテロ元素の濃度をコントロールすることは容易ではない。そこで、ヘテロ元素(ケイ素)を含有した炭素複合材料を蒸発源に用いることによってヘテロ元素を所定濃度含有した炭素蒸気を発生させる方法が提案されている(特許文献2)。
特開2001-316686号公報 特開2012-92408号公報
DLC膜ハンドブック,エヌ・ティー・エス,監修 斎藤秀俊
 しかしながら、上記ケイ素、モリブデン、チタン、タングステン等のヘテロ元素を含有した炭素複合材料を蒸発源に用いた場合、黒鉛の蒸発源に比べて蒸発速度が低いという課題があった。このように、蒸発速度が低いと、結果としてDLC膜の成膜速度が低くなって、DLC膜の生産効率が低下するという課題を有していた。
 そこで本発明は、蒸発源の蒸発速度を高めてDLC膜の成膜速度を高めることにより、DLC膜の生産効率を向上することができる炭素蒸発源を提供することを目的としている。
 本発明は上記目的を達成するために、炭素と、少なくとも1つのヘテロ元素とを含有する炭素蒸発源であって、上記ヘテロ元素がホウ素であり、炭素蒸発源の総量を100原子%としたときに、炭素蒸発源の総量に対する上記ホウ素の割合が0.3原子%以上30原子%以下に規制され、且つ、電気抵抗率が25μΩ・m以下であることを特徴とする。
 本発明によれば、炭素蒸発源の蒸発速度を高めてDLC膜の成膜速度を高めることにより、DLC膜の生産効率を向上することができるといった優れた効果を奏する。
炭素蒸発源の電気抵抗率と平均アーク電圧との関係を示すグラフ。 炭素蒸発源の電気抵抗率と蒸発速度との関係を示すグラフ。 蒸発源A1の偏光顕微鏡写真。
 本発明者は、黒鉛及びヘテロ元素含有炭素蒸発源の蒸発過程を研究することにより、炭素蒸発源の蒸発速度は炭素蒸発源の電気抵抗率に強く影響を受けることを見出した。その機構は明らかではないものの、下記に示す理由によるものと考えられる。
 炭素蒸発源の電気抵抗率が高い素材は、低い電圧が印加されても容易に蒸発するため、蒸発源への投入電力が小さくても蒸発状態が維持される。結果として、蒸発源が得るエネルギーが小さくなるので、蒸発量は比較的少なくなる。一方、炭素蒸発源の電気抵抗率が低い素材は、高い電圧が印加されても容易には蒸発しないため、蒸発の維持には蒸発源への投入電力が大きくなる傾向がある。結果として、蒸発源が得るエネルギーが大きくなるので、蒸発量が比較的多くなる。つまり、炭素蒸発源の電気抵抗率が低い素材ほど、蒸発量が大きくなる傾向がある。
 ここで、蒸発量はアーク電流値の装置上の制限値を考慮しなければ、いくらでも高い電流値で放電することが可能であるが、現実的には設備的な制約や成膜の最適条件などの制限があるため、必然的に定電流制御のもとでの比較が前提となる。
 真空アーク蒸発法の場合は、炭素蒸発源の電気抵抗率が直接影響し、炭素蒸発源の電気抵抗率が低い素材ほど、蒸発量が大きくなる傾向がある。また、スパッタリング法の場合も同様に、炭素蒸発源の電気抵抗率が低い素材ほど、蒸発量が大きくなる傾向がある。これは、スパッタリング法の場合、炭素蒸発源の電気抵抗率が高い素材では、少ない投入電力でも炭素蒸発源が容易に加熱されてしまうために、グロー放電からアーク放電への好ましくない移行(いわゆる、アーキング現象)を誘発し、この結果、投入電力を大きくできない。一方、炭素蒸発源の電気抵抗率が低い素材では、投入電力を大きくできるので、蒸発速度を大きくできる。以上のことから、真空アーク蒸発法のみならずスパッタリング法の場合であっても、炭素蒸発源の電気抵抗率の影響を受けることとなる。
 ここで、スパッタリング法もしくは真空アーク放電法による非晶質炭素膜の製造に用いられる炭素蒸発源の構成は、以下の通りである。
 炭素と、少なくとも1つのヘテロ元素とを含有する炭素蒸発源であって、
 上記ヘテロ元素がホウ素であり、炭素蒸発源の総量を100原子%としたときに、炭素蒸発源の総量に対する上記ホウ素の割合が0.3原子%以上30原子%以下に規制され、且つ、電気抵抗率が25μΩ・m以下であることを特徴とする。
 有機物を700℃~1300℃で焼成して炭素化し、炭素化した材料を2000℃を超える高温に加熱処理すると、黒鉛的な結晶の積層規則性が生じてくる。この現象を黒鉛化処理といい、結晶構造が発達して、電気抵抗率の低い黒鉛材となる。しかしながら、ヘテロ元素を含有した炭素蒸発源に黒鉛化処理を施すとヘテロ元素が気化蒸発するため、当該炭素蒸発源に黒鉛化処理を施すのは困難である。このようなことから、ヘテロ元素を含有した炭素蒸発源では、電気抵抗率が高くなる。このように電気抵抗率が高い炭素蒸発源を用いて非晶質炭素膜を成膜すると、炭素蒸発源の蒸発速度が小さくなるという問題がある。
 そこで、上記構成の如く、ヘテロ元素としてホウ素を用い、当該ホウ素の割合を規制すると共に、電気抵抗率を25μΩ・m以下とすれば、この炭素蒸発源を用いた場合に、黒鉛材料と同等の蒸発速度を有することになる。これは、電気抵抗率を25μΩ・m以下とすることで、高い電圧が印加されても容易には蒸発しないため、蒸発の維持には蒸発源への投入電力が大きくなる。その結果として、蒸発源が得るエネルギーが大きくなって、炭素蒸発源の蒸発量が多くなるからである。
 尚、ホウ素の割合を上述のように規制するのは、ホウ素の割合が0.1原子%未満の場合にはホウ素元素の触媒黒鉛化作用による電気抵抗率の低減が不十分となる一方、30原子%を超える場合には炭素材料よりも電気抵抗率の高い炭化ホウ素の体積含有率が増すため、却って電気抵抗率の増加を招いてしまうからである。
 また、電気抵抗率の下限は限定するものではないが、3.5μΩ・m以上であるのが好ましい。電気抵抗率が3.5μΩ・m未満になると、蒸発させるための電力が過剰に必要となるためである。
 上記炭素は2種類以上の炭素質を含んでいることが望ましい。
 2種類以上の炭素質を含んでいれば、1又は2以上の炭素質を変更することにより、電気抵抗率を容易に調整することが可能となる。
 上記炭素質は、炭素骨材と、この炭素骨材間に存在する補助炭素と、を含んでいることが望ましい。 
 このように炭素骨材間に補助炭素が存在していれば、炭素蒸発源内部の空隙が少なくなって、炭素間の接触面積が大きくなるので、電気抵抗率が一層低下する。したがって、蒸発源への投入電力が大きくなるので、炭素蒸発源の蒸発量がより多くなる。
 尚、上記補助炭素とは炭素骨材以外の炭素であり、上述の如く炭素骨材間に存在している。
 上記ヘテロ元素とは、炭素および水素以外の元素をいう。例えば、上記ホウ素であるが、ホウ素と共に、第2族元素、第3族元素、第4族元素、第5族元素、第6族元素、鉄族元素(鉄、コバルト、ニッケル)、及び第13族元素から成る群から選択される少なくとも1種の元素が用いられていても良い。具体的には、マグネシウム、カルシウム、イットリウム、ランタン、セリウム、ガドリニウム、チタン、ジルコニウム、ハフニウム、ニオブ、タンタル、クロム、モリブデン、タングステン、鉄、コバルト、ニッケル、アルミニウム、又はケイ素が例示される。尚、炭素蒸発源の総量に対する上記元素(第2族元素、第3族元素、第4族元素、第5族元素、第6族元素、鉄族元素、第13族元素)の割合は、それぞれ1原子%以上10原子%以下であることが望ましい。
 このような構成であれば、上述の作用効果が一層発揮される。
 尚、ホウ素以外の元素をホウ化物としてドープさせる場合は、そのホウ化物を構成するホウ素に触媒黒鉛化作用を担わせることも可能となる。
 上記ヘテロ元素(ホウ素、アルミニウム、ケイ素等)を添加する場合、添加物は粉末状であることが好ましく、また、平均粒径が1μm以上100μm以下(特に5μm以上50μm以下)であることが望ましい。これは、平均粒径が1μm未満の金属は入手が困難かコスト高となり、平均粒径が5μm未満になると凝集を生じてしまい炭素原料との均一な分散が困難となる一方、平均粒径が100μmを上回る塊状の場合は、炭素に対して金属を均一に分散させるのが困難となるからである。
 上記添加物は、上記ヘテロ元素の元素単体から構成されていても良いし、上記ヘテロ元素を含む化合物からなっていてもよい。このヘテロ元素を含む化合物としては、例えば、酸化物、炭化物、窒化物、ホウ化物、炭酸塩、無機酸あるいは有機酸との塩等が挙げられる。
 上記電気抵抗率が20μΩ・m以下であることが望ましく、特に、15μΩ・m以下であることが望ましい。
 このように規制すれば、上述の作用効果が一層発揮される。
 上述の炭素蒸発源を用いて形成されたDLC膜を金型に用いることができる。
 具体的には、アルミ絞り加工用工具、リードフレームパンチ、曲げ具、プラスチック成型金型に用いることができる。
 上述の炭素蒸発源を用いて形成されたDLC膜を切削工具に用いることができる。
 具体的には、アルミ切削用スローアウェイチップ、ドリル、エンドミルに用いることができる。
 上述の炭素蒸発源を用いて形成されたDLC膜を機械部品に用いることができる。
 具体的には、油圧機器としての油圧シリンダー部品、動力伝達部品としてのギアー、プーリー、ロボット部品としての間接やアーム、摺動部品としてのローラーシャフト、クランクジョイントに用いることができる。
 上述の炭素蒸発源を用いて形成されたDLC膜を自動車部品に用いることができる。
 具体的には、エンジン部品として例えば、バルブリフター、カムシャフト、ロッカーアーム、あるいは燃料噴射ポンプ部品、ハイブリッドカー部品、駆動系部品としてのクラッチ、カップリング、サスペンション部品に用いることができる。
 上述の炭素蒸発源を用いて形成されたDLC膜をレンズの保護膜に用いることができる。
 具体的には、通常のレンズ保護膜の他、屋外監視カメラや車載カメラ等厳しい環境で使用される赤外光学レンズなどの保護膜に用いることができる。
 上述の炭素蒸発源を用いて形成されたDLC膜を医療器具に用いることができる。
 具体的には、炭素材料の有する高い生体適合性を活用したステントや人工関節に用いることができる。
 上述の炭素蒸発源を用いて形成されたDLC膜を精密加工機器に用いることができる。
 具体的には、マイクロギアー成形用のナノインプリント型などが挙げられる。
 次に、ヘテロ元素含有炭素蒸発源の製造方法の一例を以下に示す。
 先ず、炭素骨材として人造黒鉛と、バインダーとしてのフェノール樹脂と、添加物としてのBC(平均粒径:15μm)とを所定の割合(例えば、ヘテロ元素含有炭素蒸発源の総量に対するホウ素の割合が10原子%)で混合した後、オープンロールにて混練する。次に、成形可能な粒度まで粉砕した後、粉砕物を成形し、更に、還元雰囲気下にて700~1300℃にて焼成する。最後に、上記焼成物を1600℃~2000℃で熱処理することにより、ヘテロ元素含有炭素蒸発源を作製する。
 ここで、上記炭素骨材となる炭素材料としては、人造黒鉛に限定するものではなく、天然黒鉛やキッシュ黒鉛などの黒鉛質、あるいはコークス、ガラス状炭素、カーボンブラックなどの炭素質等を用いることも可能である。また、炭素骨材となる炭素材料は粉末状であることが望ましく、その平均粒径は100μm以下であることが好ましい。特に、1μm以上100μm以下であることが好ましく、その中でも5μm以上50μm以下であることが望ましい。これは、1μm未満の炭素材料はカーボンブラックを除いては入手が困難であり、5μm未満になると凝集により金属との均一な分散が困難となる一方、100μmを超えると粒子離脱を生じて好ましくないという理由によるものである。
 上記バインダーとしては、上記フェノール樹脂に限定するものではなく、ピッチ、タール、フルフリルアルコール、フラン樹脂、イミド系樹脂ワニス等を使用することができる。尚、上記フェノール樹脂、ピッチ等は、当初は粉末状を成しているが、混練時に軟化する構成である。
 また、上記炭素骨材自身が自己焼結性を有したり予めバインダーを混合させた炭素骨材を用いたりする場合には、バインダーを混合させる工程を省くことができる。
(実施例1)
 炭素骨材としての人造黒鉛と、バインダーとしての粉末状のフェノール樹脂と、添加物としてのBC(平均粒子径:15μm)とを混合した後、オープンロールにて混練した。この混練時に、上記粉末状のフェノール樹脂が軟化するので、上記人造黒鉛間に、フェノール樹脂が存在することになる。次に、成形可能な粒度まで粉砕した後、粉砕物を成形し、更に、還元雰囲気中で焼成して、上記バインダーを炭素化させた。
 上記バインダーを炭素化させた物が補助炭素を構成することになる。このような構成であれば、黒鉛粉末の間の空隙に補助炭素が入り込み、成形体の空隙が少なくなるので、炭素間の接触面積が大きくなって、電気抵抗率が減少する。
 最後に、上記焼成物を2000℃で最終熱処理することにより、B元素を含有した炭素蒸発源を作製した。尚、上記混合時に、B元素を含有した炭素蒸発源(以下、B元素等のヘテロ元素を含有した炭素蒸発源を、単に、炭素蒸発源と称することがある)の総量に対するB元素の濃度が、0.3原子%となるようにBCを添加した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A1と称する。
(実施例2)
 最終熱処理時の温度を1600℃とすると共に、炭素蒸発源の総量に対するB元素の濃度を2原子%となるようにBCを添加した以外は、上記実施例1と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A2と称する。
(実施例3)
 最終熱処理時の温度を2000℃とした以外は、上記実施例2と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A3と称する。
(実施例4)
 炭素蒸発源の総量に対するB元素の濃度を5原子%となるようにBCを添加した以外は、上記実施例2と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A4と称する。
(実施例5)
 炭素蒸発源の総量に対するB元素の濃度を5原子%となるようにBCを添加した以外は、上記実施例3と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A5と称する。
(実施例6)
 炭素蒸発源の総量に対するB元素の濃度を10原子%となるようにBCを添加した以外は、上記実施例2と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A6と称する。
(実施例7)
 炭素蒸発源の総量に対するB元素の濃度を10原子%となるようにBCを添加した以外は、上記実施例3と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A7と称する。
(実施例8)
 炭素蒸発源の総量に対するB元素の濃度を20原子%となるようにBCを添加した以外は、上記実施例3と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A8と称する。
(実施例9)
 バインダー成分としてピッチを混合した炭素骨材をマトリックスとして、炭素蒸発源の総量に対するB元素の濃度が1原子%となるようにBCを添加すると共に、ヘテロ元素としてB元素と共にSi元素を用い、炭素蒸発源の総量に対するSi元素の濃度が2原子%となるようにSiC(平均粒子径:5μm)を添加し、Wコーン型混合器で均一に混合した後、成形し、更に還元雰囲気中で焼成して炭素化させた。最後に、上記焼成物を2000℃で最終熱処理することにより炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A9と称する。
(実施例10)
 ヘテロ元素としてB元素と共にTi元素を用い、炭素蒸発源の総量に対するTi元素の濃度が2原子%となるようにTiC(平均粒子径:5μm)を添加した以外は、上記実施例9と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A10と称する。
(実施例11)
 ヘテロ元素としてB元素と共にW元素を用い、炭素蒸発源の総量に対するW元素の濃度が2原子%となるようにWC(平均粒子径:5μm)を添加した以外は、上記実施例9と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A11と称する。
(実施例12)
 ヘテロ元素としてB元素と共にMo元素を用い、炭素蒸発源の総量に対するMo元素の濃度が2原子%となるようにMo(平均粒子径:5μm)を添加した以外は、上記実施例9と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A12と称する。
(実施例13)
 ヘテロ元素としてB元素と共にGd元素を用い、炭素蒸発源の総量に対するGd元素の濃度が2原子%となるようにGd(平均粒子径:5μm)を添加した以外は、上記実施例9と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源A13と称する。
(比較例1)
 ヘテロ元素としてB元素に代えてSi元素を用い、炭素蒸発源の総量に対するSi元素の濃度が5原子%となるようにSiC(平均粒子径:5μm)を添加した以外は、上記実施例2と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源Z1と称する。
(比較例2)
 粉砕物の成形時に高圧で成形することにより、成形時の比重を高くし、これにより、蒸発源Z1よりもかさ密度が高くなるような炭素蒸発源を作製した以外は、上記比較例1と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源Z2と称する。
(比較例3)
 粉砕物の成形時により高圧で成形することにより、成形時の比重をより高くし、これにより、蒸発源Z1、Z2よりもかさ密度が高くなるような炭素蒸発源を作製した以外は、上記比較例1と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源Z3と称する。
(比較例4)
 ヘテロ元素を積極的には添加せずに、炭素骨材として人造黒鉛と、バインダーとしてのフェノール樹脂とを混合すると共に、炭素化のみを行い、最終の熱処理を行わなかった以外は、上記実施例1と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源Z4と称する。
(比較例5)
 微粉砕したコークス粉末と黒鉛粉末をピッチバインダーで結合して成形して炭素化し、最終の熱処理で黒鉛化することで炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源Z5と称する。
(比較例6)
 微粉砕したコークスをピッチバインダーで結合して成形して炭素化し、最終の熱処理で黒鉛化することで炭素蒸発源を作製した。尚、上記成形時に、比較例5より高圧で成形することにより、成形時の比重をより高くし、これによって、蒸発源Z5よりもかさ密度が高くなるように構成した。
 このようにして作製した炭素蒸発源を、以下、蒸発源Z6と称する。
(比較例7)
 最終熱処理温度を1600℃とした以外は、実施例8と同様にして炭素蒸発源を作製した。
 このようにして作製した炭素蒸発源を、以下、蒸発源Z7と称する。
(実験1)
 上記蒸発源A1~A12、Z1~Z7からテストピースを採取して物理特性を調査した。具体的には、以下の通りである。

 テストピースの重量を体積で除した値からかさ密度を算出し、また、硬さの測定は室温にてショア硬度試験機D形を用いて測定した。電気抵抗率はJIS  R7222-1997に基いて測定した。機械強度については、室温にてインストロン型材料試験機を用いて3点曲げによる曲げ強さを測定するとともに、室温にてテンシロン万能試験機を用いて圧縮強さを測定した。 
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、ヘテロ元素としてホウ素を含んだ蒸発源A1~A8は、ヘテロ元素としてケイ素を含んだ蒸発源Z1~Z3に比べて電気抵抗率が低く、ヘテロ元素を含んでいない蒸発源Z4~Z6と略同等となっていることが認められる。また、ヘテロ元素としてホウ素と共にケイ素も含んだ蒸発源A9でも、ヘテロ元素としてケイ素のみを含んだ蒸発源Z1~Z3に比べて電気抵抗率が低くなっていることが認められる。更に、ヘテロ元素としてホウ素と共にチタン、タングステン、又はモリブデンも含んだ蒸発源A10~A13でも、ヘテロ元素としてケイ素のみを含んだ蒸発源Z1~Z3に比べて電気抵抗率が低くなっていることが認められる。
 また、蒸発源A1~A13は蒸発源Z1~Z6と比べて、かさ密度は同等程度のものが多くなっているにも関わらず、一般的に、蒸発源A1~A13の方が硬さや機械強度が大きくなっていることが認められる。特に、蒸発源A9~A12では硬さや機械強度が極めて大きくなっていることが認められる。
 尚、蒸発源Z7はヘテロ元素としてホウ素を含んでいるにも関わらず、電気抵抗率が高くなっていることが認められる。したがって、ヘテロ元素としてホウ素を含んでいても、必ずしも電気抵抗率が低くなるものではないことがわかる。
(実験2)
 上記蒸発源A2、A4、A5、Z1~Z3、Z5、Z6から、直径100mm×厚さ12mmの円板形状のターゲット材を作製して非晶質炭素膜の成膜試験を、下記の方法で実施した。尚、成膜方法としては真空アーク放電法を用い、成膜装置としては株式会社神戸製鋼所のUBMS202を用いた。
 真空アーク放電を実施するに際し、アーク電流値をDC20A、プロセス圧力としてアルゴン0.13Pa、基板バイアス電圧を-100V、基板加熱なしの条件で90分間成膜した。成膜する基材にはSKD11を硬さHRC60に調質し成膜面をラッピングすると共に、事前にスパッタリングでCr中間層を形成した上に、非晶質炭素膜(DLC膜)を成膜した。そして、成膜中のアーク電圧、基板に到来するイオン種に起因するバイアス電流値をモニタリングし、その時間平均値をそれぞれ平均アーク電圧、バイアス電流値とした。蒸発速度は、蒸発前後でのターゲット材の重量を成膜時間で除した値から算出した。ワーク温度は基板の背面に熱電対を挿入することで成膜中の温度上昇をモニタリングし、終了時の温度を確認した。それらの結果を表2に示す。また、炭素蒸発源の電気抵抗率と平均アーク電圧との関係について図1に示し、炭素蒸発源の電気抵抗率と蒸発速度との関係について図2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2から明らかなように、蒸発源A2、A4、A5は蒸発源Z1~Z3に比べて、平均アーク電圧と平均バイアス電流とが高くなっており、これに伴って、蒸発速度が格段に高くなっていることが認められる。また、蒸発源A2、A4、A5は蒸発源Z5、Z6に比べて、平均アーク電圧と平均バイアス電流とが若干低くなっているが、蒸発速度は略同等であることが認められる。尚、ワーク温度(終了時)については、蒸発源A2、A4、A5は蒸発源Z5、Z6よりも低く、蒸発源Z1~Z3よりも若干高くなっているが、全く問題のないレベルである。
 また、図1より、炭素蒸発源の電気抵抗率が高くなるほど、平均アーク電圧が低下することがわかり、図2より、炭素蒸発源の電気抵抗率が高くなるほど、蒸発速度が低下することがわかる。
(実験3)
 上記蒸発源A1を偏光顕微鏡を用いて調べたので、その結果を図3に示す。
 図3から明らかなように、蒸発源A1には、炭素骨材1(白色或いは白っぽい部位であって、異方性が強い部分)と、この炭素骨材1間に存在する補助炭素2(灰色の部位であって、バインダーを出発原料とする等方性が強い部分)とが存在していることが認められる。尚、図3中の符号3(黒色の部位)は空隙であって、補助炭素2の存在により空隙3の体積が小さくなっている。
 ここで、2種類以上の炭素質を含むか否かは、偏光顕微鏡の測定において、異なると思われる2箇所のラマンスペクトルのGバンド、Dバンドのピーク比およびGバンドの半値幅を比較することで推測できる。例えば、各種炭素質の微細構造のキャラクタリゼーションについては、各種文献(例えば、炭素NO.175(1996)304-313参照)において、それらを縦軸と横軸にとったマップを作成することにより、さまざまな炭素質の微細構造のキャラクタリゼーションを実施しうることが明示されている。
 本発明の炭素蒸発源は、金型、切削工具、機械部品、自動車部品、レンズ、医療器具、或いは精密加工機器等にDLC膜を形成する場合に蒸発源として用いることができる炭素。

Claims (7)

  1.  炭素と、少なくとも1つのヘテロ元素とを含有する炭素蒸発源であって、
     上記ヘテロ元素がホウ素であり、炭素蒸発源の総量を100原子%としたときに、炭素蒸発源の総量に対する上記ホウ素の割合が0.3原子%以上30原子%以下に規制され、且つ、電気抵抗率が25μΩ・m以下であることを特徴とする炭素蒸発源。
  2.  上記炭素は2種類以上の炭素質を含む、請求項1に記載の炭素蒸発源。
  3.  上記炭素質が、炭素骨材と、この炭素骨材間に存在する補助炭素とを含んでいる請求項2に記載の炭素蒸発源。
  4.  ヘテロ元素として、上記ホウ素と共に、第2族元素、第3族元素、第4族元素、第5族元素、第6族元素、鉄族元素(鉄、コバルト、ニッケル)、及び第13族元素から成る群から選択される少なくとも1種の元素が用いられ、炭素蒸発源の総量に対する上記元素の割合が、それぞれ1原子%以上10原子%以下である、請求項1~3の何れか1項に記載の炭素蒸発源。
  5.  炭素蒸発源の総量を100原子%としたときに、炭素蒸発源の総量に対する上記ホウ素の割合が0.3原子%以上20原子%以下に規制される、請求項1~4の何れか1項に記載の炭素蒸発源。
  6.  上記電気抵抗率が20μΩ・m以下である、請求項1~5の何れか1項に記載の炭素蒸発源。
  7.  上記電気抵抗率が15μΩ・m以下である、請求項6に記載の炭素蒸発源。
PCT/JP2016/062749 2015-04-22 2016-04-22 炭素蒸発源 WO2016171247A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017514203A JP6684270B2 (ja) 2015-04-22 2016-04-22 炭素蒸発源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-087676 2015-04-22
JP2015087676 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016171247A1 true WO2016171247A1 (ja) 2016-10-27

Family

ID=57144525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062749 WO2016171247A1 (ja) 2015-04-22 2016-04-22 炭素蒸発源

Country Status (2)

Country Link
JP (1) JP6684270B2 (ja)
WO (1) WO2016171247A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534084A (zh) * 2018-10-16 2021-03-19 舍弗勒技术股份两合公司 特别是用于配气机构系统的部件以及生产这种部件的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546875A (en) * 1977-06-17 1979-01-19 Nec Corp Vacuum deposition method
JPH03170661A (ja) * 1989-11-27 1991-07-24 Kobe Steel Ltd 昇華性金属の蒸発方法
JPH04183853A (ja) * 1990-11-19 1992-06-30 Seiko Instr Inc 薄膜の製造方法
JP2001106585A (ja) * 1999-08-03 2001-04-17 Ion Engineering Research Institute Corp 炭素材料の耐高温酸化処理方法
WO2008133156A1 (ja) * 2007-04-20 2008-11-06 Nanotec Corporation 導電性保護膜及びその製造方法
JP2012092408A (ja) * 2010-10-28 2012-05-17 Toyo Tanso Kk ダイヤモンド状炭素被膜及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546875A (en) * 1977-06-17 1979-01-19 Nec Corp Vacuum deposition method
JPH03170661A (ja) * 1989-11-27 1991-07-24 Kobe Steel Ltd 昇華性金属の蒸発方法
JPH04183853A (ja) * 1990-11-19 1992-06-30 Seiko Instr Inc 薄膜の製造方法
JP2001106585A (ja) * 1999-08-03 2001-04-17 Ion Engineering Research Institute Corp 炭素材料の耐高温酸化処理方法
WO2008133156A1 (ja) * 2007-04-20 2008-11-06 Nanotec Corporation 導電性保護膜及びその製造方法
JP2012092408A (ja) * 2010-10-28 2012-05-17 Toyo Tanso Kk ダイヤモンド状炭素被膜及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534084A (zh) * 2018-10-16 2021-03-19 舍弗勒技术股份两合公司 特别是用于配气机构系统的部件以及生产这种部件的方法
US11739426B2 (en) 2018-10-16 2023-08-29 Schaeffler Technologies AG & Co. KG Component, in particular for a valve train system, and method for producing a component of this type

Also Published As

Publication number Publication date
JP6684270B2 (ja) 2020-04-22
JPWO2016171247A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
Wei et al. Microstructure and mechanical properties of low-carbon MgO–C refractories bonded by an Fe nanosheet-modified phenol resin
JP6874930B2 (ja) ドープされた炭素層を製造するためのコーティング源
CN109678511A (zh) 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
JP2006117522A (ja) 多相セラミックナノコンポジット及びその製造方法
Mikociak et al. Mechanical and thermal properties of C/C composites modified with SiC nanofiller
Liu et al. Spark plasma sintering of alumina composites with graphene platelets and silicon carbide nanoparticles
JP2017535667A (ja) チタン系組成物、その製造方法およびその使用方法
Wei et al. Preparation and mechanical properties of carbon/carbon composites with high textured pyrolytic carbon matrix
Yang et al. Effect of Si/C ratio and their content on the microstructure and properties of Si–B–C–N Ceramics prepared by spark plasma sintering techniques
He et al. In situ synthesis and mechanical properties of bulk Ti3SiC2/TiC composites by SHS/PHIP
JP4691891B2 (ja) C−SiC焼結体およびその製造方法
Lin et al. Ultra-strong nanographite bulks based on a unique carbon nanotube linked graphite onions structure
WO2016171247A1 (ja) 炭素蒸発源
Yoshio et al. Effect of CNT quantity and sintering temperature on electrical and mechanical properties of CNT-dispersed Si3N4 ceramics
Mikociak et al. Effect of nanosilicon carbide on the carbonisation process of coal tar pitch
KR101532516B1 (ko) 흑연 재료의 제조 방법
KR101659823B1 (ko) HfC 복합체 및 이의 제조방법
KR101127608B1 (ko) 지르코늄실리사이드들을 전구체로 하는 나노크기를 갖는 ZrB2-SiC 조성물 및 그 제조방법
JP4311777B2 (ja) 黒鉛材の製造方法
An et al. Chemical vapor deposition synthesis carbon nanosheet–coated zirconium diboride particles for improved fracture toughness
JPH07165467A (ja) 等方性黒鉛材の製造方法
CN114101680B (zh) 一种钛合金表面硬质层的制备方法
Hu et al. In-situ preparation and mechanical property analysis of SiC/SiBCN (O) nanocomposites
JP2004067432A (ja) セラミックス複合焼結体およびその製造方法
Shirai et al. Effects of the alumina matrix on the carbonization process of polymer in the gel-casted green body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783268

Country of ref document: EP

Kind code of ref document: A1