JP2006117522A - 多相セラミックナノコンポジット及びその製造方法 - Google Patents
多相セラミックナノコンポジット及びその製造方法 Download PDFInfo
- Publication number
- JP2006117522A JP2006117522A JP2005302675A JP2005302675A JP2006117522A JP 2006117522 A JP2006117522 A JP 2006117522A JP 2005302675 A JP2005302675 A JP 2005302675A JP 2005302675 A JP2005302675 A JP 2005302675A JP 2006117522 A JP2006117522 A JP 2006117522A
- Authority
- JP
- Japan
- Prior art keywords
- nanocomposite
- multiphase
- ceramic
- phases
- ceramic nanocomposite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/593—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/597—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6267—Pyrolysis, carbonisation or auto-combustion reactions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/781—Nanograined materials, i.e. having grain sizes below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/87—Grain boundary phases intentionally being absent
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Ceramic Products (AREA)
Abstract
【課題】少なくとも3相を有する多相セラミックナノコンポジット、並びにこうした多相セラミックナノコンポジットの製造方法を提供する。
【解決手段】少なくとも3相を有する多相セラミックナノコンポジットが開示される。この少なくとも3相の各々は平均粒径が100nm未満である。一実施形態においては、この多相セラミックナノコンポジットには実質的にガラス粒界相がない。別の実施形態においては、この多相セラミックナノコンポジットは少なくとも約1500°Cの温度まで熱的に安定である。こうした多相セラミックナノコンポジットの製造方法も開示される。
【選択図】図2
【解決手段】少なくとも3相を有する多相セラミックナノコンポジットが開示される。この少なくとも3相の各々は平均粒径が100nm未満である。一実施形態においては、この多相セラミックナノコンポジットには実質的にガラス粒界相がない。別の実施形態においては、この多相セラミックナノコンポジットは少なくとも約1500°Cの温度まで熱的に安定である。こうした多相セラミックナノコンポジットの製造方法も開示される。
【選択図】図2
Description
本発明はセラミックナノコンポジットに関する。より詳細には、本発明は、実質的にガラス粒界のない、又は高温で熱的に安定な多相セラミックナノコンポジットに関する。本発明は、こうした多相セラミックナノコンポジットの製造方法にも関する。
近年、セラミックナノコンポジットは、高度な超塑性の可能性に加えて、硬さ、強さ及び耐摩耗性などの室温特性が当然のこととみなされることにより注目されている。セラミックナノコンポジットは、例えば、発電及び航空機推進用のタービン組立品などの様々な構造用途において有用であると思われる。
現在、多相ナノ結晶セラミックを製造する方法としては2つの方法が報告されているが、これらの方法は、100nmを超える粒径を形成する傾向があり、マイクロメートル範囲になることもある。実際、多相ナノ結晶セラミックは、その微細構造が実際はミクロ−及び−ナノ相のハイブリッドであるために、ナノコンポジットと誤って呼ばれることがある。
特開平07−232965号公報
したがって、各相の平均粒径が約100nm未満の熱的に安定な多相セラミックナノコンポジットの必要性は依然として存在する。実質的にガラス粒界相がない多相セラミックナノコンポジットも必要とされている。こうした多相セラミックナノコンポジットの製造方法も必要とされている。
本発明は、少なくとも3相を含む多相セラミックナノコンポジットを提供することによって上記及びその他の必要性に応える。こうしたナノコンポジットの製造方法も開示される。
したがって、本発明の一態様は、少なくとも3相を含む多相セラミックナノコンポジットを提供することである。この少なくとも3相の各々は平均粒径が100nm未満である。この多相セラミックナノコンポジットには実質的にガラス粒界相がない。
本発明の別の態様は、少なくとも3相を含む多相セラミックナノコンポジットを提供することである。この少なくとも3相の各々は平均粒径が100nm未満である。この多相セラミックナノコンポジットは少なくとも約1500°Cの温度まで熱的に安定である。
本発明の更に別の態様は、少なくとも3相を含む多相セラミックナノコンポジットの製造方法を提供することである。この少なくとも3相の各々は平均粒径が100nm未満であり、この多相セラミックナノコンポジットには実質的にガラス粒界がない。この方法は、i)実質的に酸化物を含まない少なくとも1種の非晶質セラミックパウダーを供給する段階と、ii)この少なくとも1種の非晶質セラミックパウダーを結晶化及び緻密化して多相セラミックナノコンポジットを形成する段階と、を含む。
本発明の別の態様は、少なくとも3相を含む多相セラミックナノコンポジットの製造方法を提供することである。この少なくとも3相の各々は平均粒径が100nm未満であり、この多相セラミックナノコンポジットは少なくとも約1500°Cの温度まで熱的に安定である。この方法は、i)実質的に酸化物を含まない少なくとも1種の非晶質セラミックパウダーを供給する段階と、ii)この少なくとも1種の非晶質セラミックパウダーを結晶化及び緻密化して多相セラミックナノコンポジットを形成する段階と、を含む。
本発明の上記及びその他の態様、利点、並びに顕著な特徴は、以下の詳細な説明、添付の図面、及び頭記の特許請求の範囲から明らかとなろう。
以下の説明においては、同様な参照符号は、図面に示されたいくつかの図全体にわたって同様な又は相当する部分を示す。また、「最上部」、「底部」、「外向き」、「内向き」などの用語は便宜上の言葉であり、限定する用語であると解釈してはならない。本発明の特定の態様について、ある群の要素の少なくとも1つ及びその組み合わせを含む、又はこれらからなると言う場合はいつも、その態様は、要素単独であっても又はその群の他の要素のいずれかとの組み合わせであっても、その群の要素の何れを含んでもよい、又は何れからなるものでもよい。
図面全般を参照すると、これらの説明図は本発明の特定の実施形態を説明することを目的としており、本発明をこれに限定することを目的とするものではない。
比較として、図1は、マイクロ及びナノ相を有する、既知のSi3N4/SiCハイブリッドマイクロ−ナノコンポジット10セラミック材料の概略図である。このタイプのハイブリッドマイクロ−ナノコンポジットは、ミクロンサイズのマトリックスから構成されており、ナノサイズの介在物が粒子内及び/又は粒界領域内に含まれている。このハイブリッドマイクロ−ナノコンポジットは、2つの相11、12の間にガラス粒界相102を有する。ガラス粒界相102は、出発パウダーの酸化ケイ素表面層と、このタイプのコンポジットの加工に用いられる酸化物添加剤との反応で生成した酸化物を含む。ガラス粒界相102は、耐クリープ性などの高温特性に悪影響を及ぼすことにより、且つ結晶粒の成長を促進することにより、有害な影響を及ぼす恐れがある。
本発明の一実施形態のセラミックナノコンポジットを図2に示す。図2は、多相セラミックナノコンポジット100の概略図である。多相セラミックナノコンポジット100は、少なくとも3つの相110、120、130を含む。少なくとも3つの相110、120、130の各々は、平均粒径が約100nm未満である。多相セラミックナノコンポジット100は、実質的にガラス粒界相102がない。
一実施形態においては、少なくとも3つの相110、120、130としては、それだけに限らないが、炭化物、窒化物、ホウ化物、及びこれらの組み合わせの少なくとも1つが挙げられる。これら3つの相の各々は、それぞれ独立に、炭化物、窒化物、ホウ化物又はこれらのどんな組み合わせを含んでもよい。別の実施形態においては、3つの相110、120、130としては、それだけに限らないが、炭化ケイ素、窒化ケイ素、窒化ホウ素、炭化ホウ素、炭化ジルコニウム、窒化ジルコニウム、炭化ハフニウム、ホウ化ハフニウム、窒化ハフニウム、炭化チタン、ホウ化チタン、窒化チタン、及びこれらの組み合わせの少なくとも1つが挙げられる。これら3つの相の各々は、それぞれ独立に、上記材料のどの1つを含んでもよく、又はこれらをどんな組み合わせで含んでもよい。
一つの非限定的な例においては、この少なくとも3つの相には、炭化ケイ素(SiC)、窒化ケイ素(Si3N4)、及び窒化ホウ素(BN)が含まれる。図2は、こうしたSi3N4/SiC/BN多相セラミックナノコンポジット100の概略図である。図3は、3つの異なる相の存在を示す、本発明の一実施形態のSi3N4/SiC/BN多相セラミックナノコンポジット100のX線回折パターンである。
これら少なくとも3つの相の各々は、平均粒径が約100nm未満である。図4Aは、本発明の一実施形態のSi3N4/SiC/BN多相セラミックナノコンポジット100の明視野透過型電子顕微鏡(TEM)画像である。図4Aに示した各相の平均粒径140は、約100nm未満である。図4Bは多相セラミックナノコンポジット100の暗視野TEM画像であり、各相の平均粒径140が約100nm未満であることを示している。多くの場合、平均粒径は約30nmから約70nmの範囲である。
また、多相セラミックナノコンポジット100には、実質的にガラス粒界102がない。図5は、粒界150を示す、本発明の一実施形態のSi3N4/SiC/BN多相セラミックナノコンポジット100の高分解能透過型電子顕微鏡(HRTEM)画像である。粒界150にはガラス粒界102がない。
図6は、結晶相と窒化ホウ素相130の間の粒界150を示す、本発明の一実施形態のSi3N4/SiC/BN多相セラミックナノコンポジット100のHRTEM画像である。図5と同様、粒界150にはガラス粒界102がない。
図7は、3つの粒界150が交差することによって形成された3重会合点160を示す、本発明の一実施形態のSi3N4/SiC/BN多相セラミックナノコンポジット100のHRTEM画像である。ガラス粒界相102が存在する場合は、通常、こうした3重会合点に存在する。しかし、図6は、本発明の一実施形態の多相セラミックナノコンポジット100の3重会合点には、実質的にガラス粒界相102がないことを示している。
本発明の別の態様は、少なくとも3つの相を含む多相セラミックナノコンポジット100を提供することである。少なくとも3つの相の各々は、平均粒径が100nm未満である。多相セラミックナノコンポジット100は、少なくとも約1500°Cの温度まで熱的に安定である。熱的に安定であるとは、高温に長時間暴露しても、微細構造、結晶粒又は相のサイズ、及び組成の有意な変化が起こらないことを意味する。
一実施形態においては、多相セラミックナノコンポジット100は、約1500°Cから約2000°Cの範囲の温度で熱的に安定である。
多相セラミックナノコンポジット100の少なくとも3つの相の各々は、それだけに限らないが、表1に挙げた条件の温度及び時間で、平均粒径100nm未満を保持した。
表1
各相が平均粒径100nm未満を保持していた多相セラミックナノコンポジット100の熱安定性試験
各相が平均粒径100nm未満を保持していた多相セラミックナノコンポジット100の熱安定性試験
長時間暴露した後の多相セラミックナノコンポジット100の熱安定性の一例を図8に示す。図8は、窒素中で1600°Cに100時間暴露した後の、Si3N4/SiC/BN多相セラミックナノコンポジットの構造を示すTEM画像である。各相は、100nm未満の平均粒経140を保持した。
多相セラミックナノコンポジット100の熱安定性は、多相セラミックナノコンポジットにおける材料の熱拡散率が低いことを示すものである。熱拡散率が低いことは、多相セラミックナノコンポジット100が高い耐クリープ性の可能性を有することを示すものであり、これは温度に関する特性が高いことを示している。
本発明は、上記の多相セラミックナノコンポジット100の製造方法も含む。この方法は、実質的に酸化物を含まない少なくとも1種の非晶質セラミックパウダーを供給する段階と、この少なくとも1種の非晶質セラミックパウダーを結晶化及び緻密化して多相セラミックナノコンポジットを形成する段階と、を含む。図9は、こうした多相セラミックナノコンポジットを製造する一つの方法の流れ図である。
最初に、実質的に酸化物を含まない少なくとも1種の非晶質セラミックパウダーを供給する。一実施形態においては、非晶質パウダーは、それだけに限らないが、Si、B、C及びNを含む。一実施形態においては、非晶質パウダーを供給する段階は、少なくとも1種の高分子前駆体を供給する段階と、この少なくとも1種の高分子前駆体を硬化させる段階と、硬化した少なくとも1種の高分子前駆体を熱分解して、前記の少なくとも1種の非晶質セラミックパウダーを形成する段階と、を含む。高分子前駆体の候補としては、それだけに限らないが、ポリシラン、ポリシラザン、ポリカルボシラン、ポリボロシラザン、ポリボラジレン、及びこれらの組み合わせが挙げられる。高分子前駆体は、ポリシラン、ポリシラザン、ポリカルボシラン、ポリボロシラザン、ポリボラジレンを、それぞれ独立に又は任意の相互の組み合わせで含んでよい。高分子前駆体は、適宜、少なくとも1種の有機金属ドーパントと反応させることができる。有機金属ドーパントは相の材料を提供する。一実施形態においては、有機金属ドーパントとしては、それだけに限らないが、有機ホウ素、有機ジルコニウム、有機チタン、有機ハフニウム、有機イットリウム、有機マグネシウム、有機アルミニウム及びこれらの組み合わせの内少なくとも1つが含まれる。別の実施形態においては、少なくとも1種の有機金属ドーパントとしては、それだけに限らないが、ハイブリッド、アルキル誘導体、アルコキシル誘導体、アラルキル誘導体、アルキリニル誘導体、アリール誘導体、シクロペンタジエニル誘導体、アレーン誘導体、オレフィン錯体、アセチレン錯体、イソシアニド錯体、及びこれらの組み合わせの内少なくとも1つが含まれる。
例えば、この少なくとも1種の高分子前駆体は、市販のポリシラザン又はポリカルボシランとすることができる。高分子前駆体は、適宜、ホウ素含有化合物などの有機金属ドーパントと反応させることができる。このホウ素含有化合物は、ボラン、ボラジン、又はポリボラジンとすることができる。得られたドーピングされた高分子前駆体中のホウ素含有化合物は、高分子前駆体の0〜40重量%とすることができる。図10は、高分子前駆体へのドーピング濃度の効果を示す、フーリエ変換赤外(FTIR)スペクトルである。B−N振動に相当するバンドがドーピングの増大と共に成長している。これは、脱水素によってBが前駆体の網目に組み込まれたことを示している。
次いで、高分子前駆体を硬化する。硬化は、それだけに限らないが、有機過酸化物などのラジカル発生開始剤の助けを借りて行うことができる。有機過酸化物は、セラミック前駆体重量の0〜5%とすることができる。
少なくとも1種の高分子前駆体を供給しこれを硬化させた後、この少なくとも1種の高分子前駆体を熱分解して少なくとも1種の非晶質セラミックパウダーを形成することができる。高分子前駆体は、適宜、反応性雰囲気又は不活性雰囲気において熱分解することができる。例えば、高分子前駆体は、約900°Cから約1200°Cの範囲の温度で、アルゴン、窒素、又はアンモニアを含む雰囲気において熱分解して非晶質セラミックパウダーを形成することができる。図11は、Si−C、Si−Nに相当する振動、及びBをドーピングしたパウダー中のB−Nの振動を示す、熱分解された非晶質セラミックパウダーのFTIRスペクトルである。Bをドーピングした前駆体は、Si−B−C−Nから構成されるセラミックに変換される。
本発明の一実施形態の利点は、ホウ素の導入によりポリマーからセラミックへの変換率もまた、約70〜75重量%から約90重量%へ上昇することである。
形成された少なくとも1種の非晶質セラミックパウダーは、適宜熱処理することができる。一実施形態においては、この少なくとも1種の非晶質セラミックパウダーは、最終熱分解温度より高い温度であるが、結晶化の開始温度より低い温度、例えば約1200°Cから約1500°Cの範囲で熱処理することができる。
熱分解された高分子前駆体は、引き続いて起こる結晶化のための核生成プロセスが完了する温度まで非晶質構造を保持することができる。図12は、少なくとも1種の高分子前駆体の熱分解で生成した非晶質セラミックパウダーのX線回折パターンであり、このセラミックパウダーの非晶質性を示している。この非晶質セラミックパウダーを適宜粉砕して、非晶質セラミックパウダーの粒径を約0.5μmから約40μmに調整することができる。別の実施形態においては、粒径を約0.5μmから約10μmとすることができる。
この少なくとも1種の非晶質セラミックパウダーを供給した後、多相セラミックコンポジットの製造方法における第2の段階は、この非晶質セラミックパウダーを結晶化及び緻密化して多相セラミックコンポジットを形成する段階を含む。一実施形態においては、この少なくとも1種の非晶質セラミックパウダーを結晶化及び緻密化する段階は、それだけに限らないが、放電焼結、熱間静水圧プレス、及びこれらの組み合わせなどの焼結法を含む。
一例として、非晶質セラミックパウダーの焼結を放電焼結(SPS)によって行った。パウダーを黒鉛金型に仕込み、圧力約20MPaで予備プレスした後SPS装置に装填した。SPS装置はパルス電界を金型及び押込み装置に直接送る。これにより試料の急速加熱が可能になる。更に、パルス電界はまた、活性化作用を発生させる役割も果たす。活性化作用は表面拡散を加速させる。活性化作用は緻密化プロセスを加速させ、通常のホットプレスより効果的な焼結をもたらす。一実施形態においては、焼結は酸化物焼結助剤を含まない。
非晶質セラミックパウダーの放電焼結の制御パラメータを表2に示した。
表2
放電焼結の制御パラメータ
放電焼結の制御パラメータ
上記の焼結プロセスは、真空中又は窒素雰囲気において行われた。
パウダーの非晶質Si−B−C−N網目は、焼結中にin−situで結晶化を受ける。得られた材料は、図2に示したように、XRDで明らかにされる主要相としてSi3N4/SiC/BNを含む。
パウダーの非晶質Si−B−C−N網目は、焼結中にin−situで結晶化を受ける。得られた材料は、図2に示したように、XRDで明らかにされる主要相としてSi3N4/SiC/BNを含む。
緻密化としては、それだけに限らないが、SPSと熱間静水圧プレス(HIP)の組み合わせ、又は熱間静水圧プレス単独などの技術が挙げられる。後者の場合、圧縮パウダーは、封入されて、例えば約1850°Cから2050°Cの温度でHIPに直接送られるが、前者の場合は、放電焼結試料は、より高い温度でHIPに供給される。
典型的な実施形態を例証の目的で説明してきたが、上記の説明は、本発明の範囲を限定するものとみなすべきではない。したがって、当業者には、本発明の精神及び範囲を逸脱することなく、様々な修正、改造、及び代替案を思いつくであろう。
10 既知のSi3N4/SiCハイブリッドマイクロ−ナノコンポジット
11 Si3N4相
12 SiC相
100 Si3N4/SiC/BN多相セラミックナノコンポジット
102 ガラス粒界相
110 Si3N4相
120 BN相
130 SiC相
140 平均粒径
150 粒界
160 3重会合点
11 Si3N4相
12 SiC相
100 Si3N4/SiC/BN多相セラミックナノコンポジット
102 ガラス粒界相
110 Si3N4相
120 BN相
130 SiC相
140 平均粒径
150 粒界
160 3重会合点
Claims (10)
- 少なくとも3相を含む多相セラミックナノコンポジットであって、前記少なくとも3相の各々は平均粒径が約100nm未満であり、前記多相セラミックナノコンポジットには実質的にガラス粒界がない、多相セラミックナノコンポジット。
- 少なくとも3相が炭化物、窒化物、ホウ化物、及びこれらの組み合わせの少なくとも1つを含む、請求項1記載の多相セラミックナノコンポジット。
- 少なくとも3相を含む多相セラミックナノコンポジットであって、前記少なくとも3相の各々は平均粒径が約100nm未満であり、前記多相セラミックナノコンポジットは少なくとも約1500°Cの温度まで熱的に安定である、多相セラミックナノコンポジット。
- 多相セラミックナノコンポジットには実質的にガラス粒界がない、請求項3記載の多相セラミックナノコンポジット。
- 少なくとも3相を含む多相セラミックナノコンポジットであって、前記少なくとも3相の各々は平均粒径が約100nm未満であり、前記多相セラミックナノコンポジットには実質的にガラス粒界がない、多相セラミックナノコンポジットの製造方法であって、
a)実質的に酸化物を含まない少なくとも1種の非晶質セラミックパウダーを供給する段階と、
b)前記少なくとも1種の非晶質セラミックパウダーを結晶化及び緻密化して前記多相セラミックナノコンポジットを形成する段階と、
を含む方法。 - 少なくとも1種の非晶質セラミックパウダーを提供する段階が、
i)少なくとも1種の高分子前駆体を供給する段階と、
ii)前記少なくとも1種の高分子前駆体を硬化する段階と、
iii)前記硬化した少なくとも1種の高分子前駆体を第1の温度で熱分解して、前記少なくとも1種の非晶質セラミックパウダーを形成する段階と、
を含む請求項5記載の方法。 - 形成された少なくとも1種の非晶質セラミックパウダーを、第1の温度より高い第2の温度で熱処理する段階を更に含む、請求項6記載の方法。
- 少なくとも1種の高分子前駆体を少なくとも1種の有機金属ドーパントと反応させる段階を更に含む、請求項6記載の方法。
- 少なくとも3相を含む多相セラミックナノコンポジットであって、前記少なくとも3相の各々は平均粒径が約100nm未満であり、前記多相セラミックナノコンポジットは少なくとも約1500°Cの温度まで熱的に安定である、多相セラミックナノコンポジットの製造方法であって、
i)実質的に酸化物を含まない少なくとも1種の非晶質セラミックパウダーを供給する段階と、
ii)前記少なくとも1種の非晶質セラミックパウダーを結晶化及び緻密化して前記多相セラミックナノコンポジットを形成する段階と、
を含む方法。 - 少なくとも1種の非晶質セラミックパウダーを提供する段階が、
i)少なくとも1種の高分子前駆体を供給する段階と、
ii)前記少なくとも1種の高分子前駆体を硬化する段階と、
iii)前記硬化した少なくとも1種の高分子前駆体を第1の温度で熱分解して、前記少なくとも1種の非晶質セラミックパウダーを形成する段階と、
を含む請求項9記載の方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/968,742 US20060084566A1 (en) | 2004-10-19 | 2004-10-19 | Multiphase ceramic nanocomposites and method of making them |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006117522A true JP2006117522A (ja) | 2006-05-11 |
Family
ID=36129187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005302675A Withdrawn JP2006117522A (ja) | 2004-10-19 | 2005-10-18 | 多相セラミックナノコンポジット及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US20060084566A1 (ja) |
JP (1) | JP2006117522A (ja) |
CN (1) | CN1778757A (ja) |
DE (1) | DE102005051489A1 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050056975A1 (en) * | 2003-09-08 | 2005-03-17 | Min-Fon Fan | Method of preparing a crystal source mineral light wave magnetic energy anti-bacteria health product |
CN100432017C (zh) * | 2006-07-28 | 2008-11-12 | 北京工业大学 | 快速制备高强度氮化硅-氮化硼可加工陶瓷的方法 |
US8236200B2 (en) * | 2006-12-06 | 2012-08-07 | General Electric Company | Nano-composite IR window and method for making same |
US7608829B2 (en) | 2007-03-26 | 2009-10-27 | General Electric Company | Polymeric composite scintillators and method for making same |
US7625502B2 (en) * | 2007-03-26 | 2009-12-01 | General Electric Company | Nano-scale metal halide scintillation materials and methods for making same |
US7708968B2 (en) * | 2007-03-26 | 2010-05-04 | General Electric Company | Nano-scale metal oxide, oxyhalide and oxysulfide scintillation materials and methods for making same |
US8323796B2 (en) * | 2007-07-17 | 2012-12-04 | United Technologies Corporation | High temperature refractory coatings for ceramic substrates |
EP2248195B1 (en) * | 2008-02-29 | 2013-07-31 | Siemens Aktiengesellschaft | Thermoelectric nanocomposite, method for making the nanocomposite and application of the nanocomposite |
US8679246B2 (en) | 2010-01-21 | 2014-03-25 | The University Of Connecticut | Preparation of amorphous mixed metal oxides and their use as feedstocks in thermal spray coating |
US20110206937A1 (en) * | 2010-02-25 | 2011-08-25 | Schmidt Wayde R | Composite article having a ceramic nanocomposite layer |
FR2958286A1 (fr) * | 2010-03-30 | 2011-10-07 | Univ Claude Bernard Lyon | Nouveaux precurseurs du type metalloborazine, procede et materiaux obtenus a partir de tels precurseurs |
US8858843B2 (en) * | 2010-12-14 | 2014-10-14 | Innovalight, Inc. | High fidelity doping paste and methods thereof |
CN102990063B (zh) * | 2013-01-08 | 2014-09-17 | 江苏大学 | 兼具减磨和抗磨效果的双相纳米增强金属基微纳粉及其制备方法 |
WO2015041802A1 (en) | 2013-09-18 | 2015-03-26 | United Technologies Corporation | Article having coating including compound of aluminum, boron and nitrogen |
US9890088B2 (en) | 2013-10-15 | 2018-02-13 | United Technologies Corporation | Preceramic polymer for ceramic including metal boride |
RU2542073C1 (ru) * | 2013-12-26 | 2015-02-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) | Способ получения безусадочного наномодифицированного конструкционного керамического материала |
CN105272269B (zh) * | 2015-10-20 | 2017-02-22 | 西安邮电大学 | 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法 |
CN105801866A (zh) * | 2016-03-01 | 2016-07-27 | 江苏赛菲新材料有限公司 | 一种含铝的聚硼硅氮烷陶瓷先驱体的制备方法 |
CN106747465B (zh) * | 2017-02-27 | 2020-02-11 | 太原理工大学 | 一种HfC颗粒弥散增韧补强TiN基陶瓷刀具材料及制备方法 |
CN107879743B (zh) * | 2017-09-28 | 2020-06-09 | 中国空间技术研究院 | 一种超高温陶瓷的低温烧结方法 |
CN109837612B (zh) * | 2019-01-28 | 2021-08-27 | 江西嘉捷信达新材料科技有限公司 | 铍、铪共掺杂的碳化硅/氮化硼纤维及其制备方法与应用 |
CN109704782B (zh) * | 2019-01-30 | 2021-12-14 | 中国科学院理化技术研究所 | 一种用于光伏多晶硅生产的Si2N2O陶瓷粉体的制备方法 |
CN110436930A (zh) * | 2019-08-05 | 2019-11-12 | 广东工业大学 | 一种高性能纳米SiC陶瓷及其制备方法和应用 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806612A (en) * | 1987-08-10 | 1989-02-21 | Dow Corning Corporation | Preceramic acetylenic polysilanes |
US5173459A (en) * | 1987-11-09 | 1992-12-22 | Koichi Niihara | Si3 N4 -A12 O3 composite sintered bodies and method of producing the same |
JPH02141466A (ja) * | 1988-11-24 | 1990-05-30 | Mitsubishi Mining & Cement Co Ltd | セラミックス複合材料及びその製造方法 |
JPH035374A (ja) * | 1989-06-01 | 1991-01-11 | Mitsubishi Gas Chem Co Inc | 窒化ケイ素―炭化ケイ素複合焼結体およびその製造法 |
US5431967A (en) * | 1989-09-05 | 1995-07-11 | Board Of Regents, The University Of Texas System | Selective laser sintering using nanocomposite materials |
US5030592A (en) * | 1989-10-26 | 1991-07-09 | The United States Of America As Represented By The Secretary Of The Air Force | Highly dense cordierite and method of manufacturing same |
US5320800A (en) * | 1989-12-05 | 1994-06-14 | Arch Development Corporation | Nanocrystalline ceramic materials |
US5223186A (en) * | 1991-04-15 | 1993-06-29 | The United States Of America As Represented By The United States Department Of Energy | Microwave sintering of nanophase ceramics without concomitant grain growth |
JP2704332B2 (ja) * | 1991-10-11 | 1998-01-26 | 株式会社ノリタケカンパニーリミテド | 炭素繊維強化窒化珪素質ナノ複合材及びその製造方法 |
US5173454A (en) * | 1992-01-09 | 1992-12-22 | Corning Incorporated | Nanocrystalline materials |
DE4336694A1 (de) * | 1993-10-27 | 1995-05-04 | Inst Neue Mat Gemein Gmbh | Verfahren zur Herstellung von Metall- und Keramiksinterkörpern und -schichten |
US5543485A (en) * | 1993-12-23 | 1996-08-06 | Bayer Ag | Process for the production of preceramic polyborosilazanes and ceramic material derived thereform |
EP0676380B1 (en) * | 1994-03-30 | 1999-07-28 | Honda Giken Kogyo Kabushiki Kaisha | Composite powders of silicon nitride and silicon carbide |
US5767025A (en) * | 1994-03-30 | 1998-06-16 | Honda Giken Kogyo Kabushiki Kaisha | Composite powder comprising silicon nitride and silicon carbide |
US5648312A (en) * | 1994-12-29 | 1997-07-15 | Intevep, S.A. | Hydrogenation catalyst with improved attrition resistance and heat dissipation |
US5984996A (en) * | 1995-02-15 | 1999-11-16 | The University Of Connecticut | Nanostructured metals, metal carbides, and metal alloys |
US5728195A (en) * | 1995-03-10 | 1998-03-17 | The United States Of America As Represented By The Department Of Energy | Method for producing nanocrystalline multicomponent and multiphase materials |
DE19530404A1 (de) * | 1995-08-18 | 1997-02-20 | Bayer Ag | Neue keramische Fasern im System Silicium-Bor-Stickstoff-Kohlenstoff |
US6004505A (en) * | 1996-07-26 | 1999-12-21 | Dennis Tool Corporation | Process and apparatus for the preparation of particulate or solid parts |
US5728637A (en) * | 1996-02-01 | 1998-03-17 | The Regents Of The University Of California | Nanocrystalline alumina-diamond composites |
DE19634799A1 (de) * | 1996-08-29 | 1998-03-05 | Bayer Ag | SiCN-Gele als Vorstufen zu nichtoxidischen Silicium-Keramiken |
US5905000A (en) * | 1996-09-03 | 1999-05-18 | Nanomaterials Research Corporation | Nanostructured ion conducting solid electrolytes |
US6063327A (en) * | 1996-12-18 | 2000-05-16 | Raytheon Company | Method for making high yield-low carbon ceramic via polysilazane |
KR100216821B1 (ko) * | 1996-12-30 | 1999-09-01 | 김규현 | 와이어 본딩 장치의 볼 본딩 캐필러리용 알루미나-탄화규소 나노복합체 및 그 제조방법 |
US6133396A (en) * | 1997-01-10 | 2000-10-17 | The Regents Of The University Of Michigan | Highly processable hyperbranched polymer precursors to controlled chemical and phase purity fully dense SiC |
US6495483B1 (en) * | 1997-03-14 | 2002-12-17 | The United States Of America As Represented By The Secretary Of The Navy | Linear metallocene polymers containing acetylenic and inorganic units and thermosets and ceramics therefrom |
US5948348A (en) * | 1997-12-01 | 1999-09-07 | Raytheon Company | High yield-low carbon ceramic via silicon-based polymers |
US6458315B1 (en) * | 1998-02-13 | 2002-10-01 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Process for producing a Si/C/N ceramic body |
US6214079B1 (en) * | 1998-03-25 | 2001-04-10 | Rutgers, The State University | Triphasic composite and method for making same |
US6184550B1 (en) * | 1998-08-28 | 2001-02-06 | Advanced Technology Materials, Inc. | Ternary nitride-carbide barrier layers |
US6395214B1 (en) * | 1998-11-30 | 2002-05-28 | Rutgers, The State University Of New Jersey | High pressure and low temperature sintering of nanophase ceramic powders |
US6403750B1 (en) * | 1999-06-03 | 2002-06-11 | Edward J. A. Pope | Apparatus and process for making ceramic composites from photo-curable pre-ceramic polymers |
US6270347B1 (en) * | 1999-06-10 | 2001-08-07 | Rensselaer Polytechnic Institute | Nanostructured ceramics and composite materials for orthopaedic-dental implants |
US6200515B1 (en) * | 1999-08-13 | 2001-03-13 | Centre National De La Recherche Scientifique | One-step synthesis and consolidation of nanophase materials |
US6359325B1 (en) * | 2000-03-14 | 2002-03-19 | International Business Machines Corporation | Method of forming nano-scale structures from polycrystalline materials and nano-scale structures formed thereby |
US6478994B1 (en) * | 2000-03-30 | 2002-11-12 | Trustees Of The University Of Pennsylvania | Method for making boron carbide containing ceramics |
JP3607939B2 (ja) * | 2000-06-16 | 2005-01-05 | 独立行政法人産業技術総合研究所 | 炭化ケイ素−窒化ホウ素複合材料の反応合成 |
US6420293B1 (en) * | 2000-08-25 | 2002-07-16 | Rensselaer Polytechnic Institute | Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior |
DE10055082A1 (de) * | 2000-11-07 | 2002-05-16 | Bosch Gmbh Robert | Keramischer Verbundwerkstoff |
EP1298106A4 (en) * | 2001-04-20 | 2007-04-04 | Sumitomo Electric Industries | COMPOSITE FRITTE PRODUCT BASED ON SILICON NITRIDE AND PROCESS FOR PRODUCING THE SAME |
JP2005132654A (ja) * | 2003-10-29 | 2005-05-26 | Sumitomo Electric Ind Ltd | セラミックス複合材料及びその製造方法 |
US7077991B2 (en) * | 2004-02-06 | 2006-07-18 | The Regents Of The University Of California | Nanocomposites of silicon nitride, silicon carbide, and boron nitride |
-
2004
- 2004-10-19 US US10/968,742 patent/US20060084566A1/en not_active Abandoned
-
2005
- 2005-10-18 JP JP2005302675A patent/JP2006117522A/ja not_active Withdrawn
- 2005-10-19 CN CN200510114024.0A patent/CN1778757A/zh active Pending
- 2005-10-19 DE DE102005051489A patent/DE102005051489A1/de not_active Ceased
-
2006
- 2006-10-11 US US11/548,294 patent/US20080064585A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20080064585A1 (en) | 2008-03-13 |
DE102005051489A1 (de) | 2006-04-27 |
US20060084566A1 (en) | 2006-04-20 |
CN1778757A (zh) | 2006-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006117522A (ja) | 多相セラミックナノコンポジット及びその製造方法 | |
US11180419B2 (en) | Method for preparation of dense HfC(Si)—HfB2 composite ceramic | |
Wan et al. | Spark plasma sintering of silicon nitride/silicon carbide nanocomposites with reduced additive amounts | |
Zhang et al. | Progress of a novel non-oxide Si-BCN ceramic and its matrix composites | |
US5455000A (en) | Method for preparation of a functionally gradient material | |
Lanfant et al. | Effects of carbon and oxygen on the spark plasma sintering additive-free densification and on the mechanical properties of nanostructured SiC ceramics | |
JP5444384B2 (ja) | 高熱伝導性窒化アルミニウム焼結体 | |
Proust et al. | Polymer-derived Si-C-Ti systems: From titanium nanoparticle-filled polycarbosilanes to dense monolithic multi-phase components with high hardness | |
Cai et al. | Synthesis of ZrC–SiC powders by a preceramic solution route | |
KR20120072884A (ko) | 지르코늄디보라이드-실리콘카바이드 복합소재 및 그 제조방법 | |
Yu et al. | Single-source-precursor synthesis, microstructure and high temperature behavior of TiC-TiB2-SiC ceramic nanocomposites | |
JPH1149572A (ja) | セラミックス複合粒子及びその製造方法 | |
Zhou et al. | Polymer‐derived high‐temperature nonoxide materials: a review | |
Suri et al. | Liquid phase sintering of Si3N4/SiC nanopowders derived from silica fume | |
US20170320783A1 (en) | Refractory metal silicide nanoparticle ceramics | |
Toma et al. | Influence of nano-aluminum filler on the microstructure of SiOC ceramics | |
CN103073300A (zh) | 一种实现过渡金属氮化物陶瓷低温烧结的方法 | |
US7077991B2 (en) | Nanocomposites of silicon nitride, silicon carbide, and boron nitride | |
JP2004515437A (ja) | 半導体構造素子のための窒化ケイ素を基礎とする支持体 | |
Solodkyi et al. | B6O ceramic by in-situ reactive spark plasma sintering of a B2O3 and B powder mixture | |
KR20110016776A (ko) | 지르코늄실리사이드들을 전구체로 하는 나노크기를 갖는 ZrB2-SiC 조성물 및 그 제조방법 | |
KR101466946B1 (ko) | 열전도도가 개선된 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법 | |
JP2003226580A (ja) | 窒化アルミニウム質セラミックスおよび半導体製造用部材 | |
Kim et al. | Ti-based ceramic composites derived from polymer pyrolysis | |
Kodera et al. | Role of disorder-order transformation in consolidation of ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081017 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20100329 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101220 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101220 |