WO2016171102A1 - 慢性呼吸器疾患治療剤及び心臓の線維化抑制組成物 - Google Patents

慢性呼吸器疾患治療剤及び心臓の線維化抑制組成物 Download PDF

Info

Publication number
WO2016171102A1
WO2016171102A1 PCT/JP2016/062256 JP2016062256W WO2016171102A1 WO 2016171102 A1 WO2016171102 A1 WO 2016171102A1 JP 2016062256 W JP2016062256 W JP 2016062256W WO 2016171102 A1 WO2016171102 A1 WO 2016171102A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
administration
chronic respiratory
carbon atoms
chronic
Prior art date
Application number
PCT/JP2016/062256
Other languages
English (en)
French (fr)
Inventor
三木 徳太郎
西川 洋史
鍾求 姜
杉山 理
Original Assignee
株式会社日本ハイポックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本ハイポックス filed Critical 株式会社日本ハイポックス
Priority to CN201680021457.8A priority Critical patent/CN107530299A/zh
Priority to JP2017514112A priority patent/JP6647716B2/ja
Priority to KR1020177025686A priority patent/KR101969451B1/ko
Priority to EP16783123.9A priority patent/EP3287128A4/en
Priority to KR1020197000964A priority patent/KR20190006102A/ko
Publication of WO2016171102A1 publication Critical patent/WO2016171102A1/ja
Priority to US15/787,999 priority patent/US20180049996A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/085Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/222Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/314Foods, ingredients or supplements having a functional effect on health having an effect on lung or respiratory system

Definitions

  • the present invention relates to a therapeutic agent for chronic respiratory diseases comprising a specific hydroquinone derivative as an active ingredient, a food composition for preventing or improving chronic respiratory diseases, a composition for inhibiting cardiac fibrosis, and a composition for reducing side effects of drugs.
  • Chronic respiratory diseases are chronic diseases of non-infectious airways and lung tissues, and main examples include chronic obstructive pulmonary disease (COPD), asthma and interstitial pneumonia.
  • COPD chronic obstructive pulmonary disease
  • COPD chronic obstructive pulmonary disease
  • WHO survey, 2004 World Health Organization
  • interstitial pneumonia develops when fibrosis of the inflamed tissue occurs as a result of inflammation in the interstitial tissue of the lung.
  • the air is taken into alveoli, which is said to be about 300 million, and gas exchange is performed through capillaries entangled with the alveoli, but the tissue surrounding and supporting these is the stroma.
  • the stroma becomes fibrotic, the entire lung becomes hard and normal lung expansion and contraction is hindered, reducing the vital capacity and reducing the efficiency of gas exchange performed between the alveoli and capillaries.
  • This interstitial pneumonia includes those whose cause of disease has already been clarified and those whose cause cannot be identified, and one of the known causes of onset is due to drugs.
  • bleomycin is an anticancer antibiotic isolated from Streptomyces verticillus, and is used as a therapeutic agent for many types of cancer because it has a low myelosuppressive action that is frequently seen with anticancer agents and is relatively mild to nausea and vomiting. Yes.
  • bleomycin has the serious side effect of being prone to induce interstitial pneumonia. Therefore, bleomycin is also used to produce a disease model animal for interstitial pneumonia.
  • anticancer agents such as gefitinib, erlotinib, cetuximab, panitumumab and bortezomib, platinum preparations (anticancer agents) such as cisplatin and oxaliplatin, immunosuppressants such as cyclophosphamide, azathioprine, tacrolimus and penicillamine, methotrexate,
  • antirheumatic drugs such as salazosulfapyridine and leflunomide
  • vasodilators such as hydralazine
  • Chinese medicine such as Shosaikoto
  • antiarrhythmic drugs such as amiodarone, interferon, antibacterial agents, antiepileptics, diuretics, etc.
  • interstitial pneumonia drugs are known to cause interstitial pneumonia. Furthermore, it is known that inhalation of powders such as minerals, earthenware or stones, asbestos, exposure to radiation, collagen diseases and infectious diseases also cause interstitial pneumonia. In addition, idiopathic interstitial pneumonia whose cause cannot be specified is designated by the country as a specific disease, so-called intractable disease.
  • the fibrosis of the organ includes many intractable diseases, and it is often difficult to determine the cause or the treatment method has not been established.
  • fibrosis of the organ tissue progresses, the whole organ becomes hard, and in the case of a hollow organ, normal expansion and contraction become difficult and dysfunction occurs.
  • cardiomyopathy in the heart can be mentioned as a fibrotic disease of hollow organs.
  • both the lung and the heart are important organs that cause dysfunction directly to death, interstitial pneumonia and Cardiomyopathy can be a fatal disease.
  • Cardiomyopathy develops as a result of inflammation or degeneration of cardiomyocytes due to various causes, resulting in necrosis of cardiomyocytes and replacement with fibrous tissue. When the tissue of the heart becomes fibrotic, the normal contractile function is lost, and this seriously impedes the function of the heart as a pump that sends blood throughout the body.
  • This cardiomyopathy also includes those with a clear cause and those that are not, but it is known that the cardiomyopathy is caused by administration of a drug, like the above-mentioned interstitial pneumonia.
  • doxorubicin also known as adriamycin
  • an anthracycline anticancer agent is available from Streptomyces Peucetis var.
  • doxorubicin is an anticancer antibiotic extracted from Caecius and has been used as a therapeutic agent for various cancers clinically because it has a strong and broad anticancer spectrum.
  • anthracycline anticancer agents such as doxorubicin have serious side effects of inducing myocardial damage in a dose-dependent manner.
  • doxorubicin is also used to produce a disease model animal for cardiomyopathy.
  • viral infection, diabetes, obesity, thyroid disease, alcohol and the like also cause cardiomyopathy.
  • the hydroquinone derivative represented by the following general formula (1) is a substance having a strong antioxidant action and an NO production inhibitory action.
  • Patent Documents 1 to 4 include an antioxidant containing this hydroquinone derivative as an active ingredient (Patent Document 1), a composition for treating arteriosclerosis (Patent Document 2), a therapeutic agent for neurodegenerative diseases (Patent Document 3), and liver fibers. An oxidation inhibitor (Patent Document 4) is described.
  • pirfenidone As a therapeutic agent for interstitial pneumonia, only pirfenidone has been confirmed to be effective in Japan, but it has a side effect such as increased risk of photosensitivity and skin cancer.
  • cardiomyopathy surgical treatment such as heart transplantation and auxiliary artificial heart is mainly used, and radical medical treatment has been demanded.
  • pulmonary and cardiac fibrotic diseases induced by drugs occur as side effects as a result of being administered to patients in anticipation of their original efficacy.
  • bleomycin and anthracycline anti-cancer drug doxorubicin are widely used as anti-cancer drugs because they have a broad anti-cancer spectrum, but they induce lung or heart fibrosis as a side effect. Therefore, even though the original anticancer treatment effect is good, the use is restricted such as the administration is stopped due to the occurrence of side effects and there is an upper limit on the total dose so that side effects do not occur ing.
  • the therapeutic agent cannot be sufficiently used due to side effects such as interstitial pneumonia and myocardial injury.
  • the present invention has been devised in view of the above points, and an object thereof is to provide a new drug effective for the prevention or treatment of chronic respiratory diseases such as COPD, interstitial pneumonia and asthma.
  • Another object of the present invention is to provide a new drug effective for the prevention or treatment of cardiac fibrosis.
  • Another object of the present invention is to provide a new drug effective for the prevention, treatment or reduction of side effects of lung or heart fibrosis caused as a side effect by administration of a therapeutic agent.
  • the hydroquinone derivative represented by the above general formula (1) suppresses COPD, asthma and interstitial pneumonia, has the effect of discharging sputum, and myocardial damage. It has been found that it has an inhibitory action, and the present invention has been completed.
  • the therapeutic agent for chronic respiratory diseases of the present invention is represented by the following general formula (1) (wherein R 1 represents an alkyl group having 4 to 8 carbon atoms, R 2 represents a hydrogen atom, 2-6 alkylcarbonyl group or C2-C6 alkoxycarbonyl group.) Is included as an active ingredient.
  • the hydroquinone derivative is preferably 2,3,5-trimethylhydroquinone-1-hexyl ether or 2,3,5-trimethylhydroquinone-1-hexyl ether 4-acetate. Accordingly, a substance that is excellent in pharmacological activity and biocompatibility and can be used particularly effectively is selected.
  • the chronic respiratory disease is at least one disease selected from the group consisting of chronic obstructive pulmonary disease (COPD), interstitial pneumonia and asthma.
  • COPD chronic obstructive pulmonary disease
  • interstitial pneumonia is also preferably caused by drugs.
  • the therapeutic agent of the present invention suppresses inflammation of lung tissue induced by the drug, and effectively suppresses fibrosis of the lungs that presents interstitial pneumonia.
  • the above-mentioned drugs are bleomycin, gefitinib, erlotinib, cetuximab, panitumumab, bortezomib, cisplatin, oxaliplatin, cyclophosphamide, azathioprine, tacrolimus, penicillamine, methotrexate, salazosulfapyridine, lefluramide, hydralazine It is preferably at least one drug selected from the group consisting of amiodarone and interferon. As a result, an appropriate drug is selected as a drug that induces fibrosis of the lung, that is, interstitial pneumonia.
  • the food composition for preventing or ameliorating chronic respiratory diseases of the present invention has the following general formula (1) (wherein R 1 represents an alkyl group having 4 to 8 carbon atoms, R 2 represents a hydrogen atom, carbon
  • a hydroquinone derivative represented by the formula (2) is an alkylcarbonyl group having 2 to 6 carbon atoms or an alkoxycarbonyl group having 2 to 6 carbon atoms.
  • hydroquinone derivative which is an active ingredient of the food composition for preventing or ameliorating chronic respiratory diseases of the present invention is 2,3,5-trimethylhydroquinone-1-hexyl ether or 2,3,5-trimethylhydroquinone-1.
  • -Hexyl ether 4-acetate is also preferred. Accordingly, a substance that is excellent in pharmacological activity and biocompatibility and can be used particularly effectively is selected.
  • the chronic respiratory disease is at least one disease selected from the group consisting of chronic obstructive pulmonary disease (COPD), interstitial pneumonia and asthma.
  • COPD chronic obstructive pulmonary disease
  • interstitial pneumonia a suitable disease state to be prevented or improved is selected.
  • composition for inhibiting cardiac fibrosis has the following general formula (1) (wherein R 1 represents an alkyl group having 4 to 8 carbon atoms, R 2 represents a hydrogen atom, and has 2 to 6 carbon atoms).
  • R 1 represents an alkyl group having 4 to 8 carbon atoms
  • R 2 represents a hydrogen atom, and has 2 to 6 carbon atoms
  • the hydroquinone derivative is preferably 2,3,5-trimethylhydroquinone-1-hexyl ether or 2,3,5-trimethylhydroquinone-1-hexyl ether 4-acetate. Accordingly, a substance that is excellent in pharmacological activity and biocompatibility and can be used particularly effectively is selected.
  • the heart fibrosis inhibiting composition of the present invention is also preferably such that heart fibrosis is induced by a drug.
  • the fibrosis-suppressing composition of the present invention the inflammation of the heart tissue induced by the drug is suppressed, and the fibrosis of the heart is effectively suppressed.
  • the above-mentioned drug is preferably an anthracycline anticancer drug.
  • an appropriate drug is selected as a drug that induces fibrosis of the heart.
  • composition for reducing side effects of the drug of the present invention has the general formula (1) (wherein R 1 represents an alkyl group having 4 to 8 carbon atoms, R 2 represents a hydrogen atom, and an alkylcarbonyl having 2 to 6 carbon atoms). Or a C2-C6 alkoxycarbonyl group.) As an active ingredient.
  • the side effect reducing composition of the drug of the present invention is a drug comprising bleomycin, gefitinib, erlotinib, cetuximab, panitumumab, bortezomib, cisplatin, oxaliplatin, cyclophosphamide, azathioprine, tacrolimus, penicillamine, methotrexate, salazosulfapyridine, It is preferably at least one drug selected from the group consisting of leflunomide, hydralazine, Sho-saiko-to, amiodarone, interferon and anthracycline anticancer agents.
  • the side effect reducing composition of the present invention suppresses inflammation of lung and heart tissues induced by these agents, and effectively reduces side effects such as myocardial injury and interstitial pneumonia.
  • the above-mentioned drug is preferably bleomycin or an anthracycline anticancer drug.
  • the side effect reducing composition of the present invention inflammation of lung and heart tissues induced by these anticancer agents is suppressed, and side effects such as myocardial injury and interstitial pneumonia are effectively reduced.
  • a therapeutic agent for chronic respiratory diseases a food composition for preventing or ameliorating chronic respiratory diseases, a composition for inhibiting cardiac fibrosis, and a composition for reducing side effects of drugs, which have the following excellent effects.
  • (1) Suppresses inflammation of the respiratory tract and lung tissue, promotes sputum discharge, and effectively suppresses the progression of chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma and interstitial pneumonia , Can improve the pathology.
  • COPD chronic obstructive pulmonary disease
  • asthma interstitial pneumonia
  • FIG. 2 is a graph showing the relative lung weight (%) of rats in the control group and each test group in Example 1.
  • FIG. 3 is a graph showing the total number of cells in BAL fluid in the bronchoalveolar lavage examination of Example 1.
  • 4 is a graph showing the number of alveolar macrophages in BAL fluid in the bronchoalveolar lavage examination of Example 1.
  • 2 is a graph showing the number of neutrophils in BAL fluid in the bronchoalveolar lavage examination of Example 1.
  • 2 is a graph showing the number of lymphocytes in BAL fluid in the bronchoalveolar lavage examination of Example 1.
  • 6 is an explanatory diagram showing a test flow of an HTHQ administration group in Example 2.
  • 6 is a graph showing the number of inflammatory cells in BAL fluid in the bronchoalveolar lavage examination of Example 2.
  • 6 is a graph showing the amount of active oxygen (ROS) in the BAL fluid in the bronchoalveolar lavage examination of Example 2.
  • 4 is a graph showing the amount of TNF- ⁇ in BAL fluid in the bronchoalveolar lavage examination of Example 2.
  • 4 is a graph showing the amount of IL-6 in BAL fluid in the bronchoalveolar lavage examination of Example 2.
  • 2 is a photograph showing lung tissue around the bronchus of the control group and each test group in Example 2.
  • FIG. FIG. 4 is an explanatory diagram showing the sensitization, induction, and test substance administration schedule in Example 3.
  • 6 is a graph showing the number of inflammatory cells in BAL fluid in the bronchoalveolar lavage examination of Example 3.
  • 4 is a graph showing the amount of IL-4 in BAL fluid in the bronchoalveolar lavage examination of Example 3.
  • 6 is a graph showing the amount of IL-5 in BAL fluid in the bronchoalveolar lavage examination of Example 3.
  • 4 is a graph showing the amount of IL-13 in BAL fluid in the bronchoalveolar lavage examination of Example 3.
  • 4 is a graph showing the total IgE content in serum in Example 3.
  • 4 is a graph showing the ovalbumin-specific IgE content in serum in Example 3. It is a graph which shows the sputum discharge
  • the alkyl group having 4 to 8 carbon atoms represented by R 1 may be linear, branched, or cyclic. Examples thereof include a butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group.
  • the alkyl group is preferably a straight chain group having 4 to 7 carbon atoms from the viewpoint of pharmacological activity, and an n-hexyl group is particularly preferred.
  • alkylcarbonyl group having 2 to 6 carbon atoms in R 2 may be linear or branched, and examples thereof include an acetyl group, a propionyl group, a butyryl group, and an isobutyryl group.
  • the alkoxycarbonyl group having 2 to 6 carbon atoms in R 2 may be linear or branched, and examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and an isopropoxycarbonyl group. Can be mentioned.
  • 2,3,5-trimethylhydroquinone-1-butyl ether, 2,3,5-trimethyl are particularly preferred from the viewpoint of pharmacological activity in any application. Mention may be made of hydroquinone-1-hexyl ether and 2,3,5-trimethylhydroquinone-1-hexyl ether 4-acetate.
  • the hydroquinone derivative represented by the above general formula (1) can be produced, for example, by the method described in Patent Document 2.
  • the therapeutic agent for chronic respiratory diseases, the composition for suppressing fibrosis of the heart and the composition for reducing side effects of the drug of the present invention comprise the hydroquinone derivative represented by the above general formula (1) as an active ingredient, and is chronic. It has the effect of preventing or treating chronic respiratory diseases such as obstructive pulmonary disease (COPD), asthma and interstitial pneumonia, and suppressing cardiac fibrosis. Therefore, the therapeutic agent for chronic respiratory diseases, the composition for inhibiting fibrosis of the heart and the composition for reducing side effects of the drug of the present invention are pharmaceuticals, quasi drugs and food compositions for preventing, treating or improving these diseases. It can be used as a product.
  • COPD obstructive pulmonary disease
  • the cause of COPD includes exposure to harmful substances, that is, smoking (cigarette smoke), inhalation of air pollution, organic fuel smoke and dust, etc.
  • harmful substances that is, smoking (cigarette smoke), inhalation of air pollution, organic fuel smoke and dust, etc.
  • interstitial pneumonia among chronic respiratory diseases is caused by pulmonary fibrosis.
  • the causes of pulmonary fibrosis include side effects of drugs, as well as suction of minerals, ceramics, stones, etc. and asbestos.
  • the causes of cardiac fibrosis include viral infection, diabetes, obesity, thyroid disease, alcohol and the like.
  • the fibrosis of the lung and heart includes those for which no cause has been identified.
  • the suppression of lung or heart fibrosis due to various causes is particularly preferable.
  • lung or heart fibrosis caused by drugs that is, interstitial pneumonia or cardiomyopathy caused by drugs is preferable.
  • This type of drug may be any drug that induces fibrosis of the lung or heart, but examples include anticancer drugs, immunosuppressive drugs, antirheumatic drugs, vasodilators, antiarrhythmic drugs, Chinese medicines, interferons, antibacterial drugs, Antiepileptics, diuretics, antibiotics, etc. are mentioned.
  • anticancer agents include anthracycline anticancer agents that cause cardiac fibrosis, and those that cause lung fibrosis include bleomycin, gefitinib, erlotinib, cetuximab, panitumumab, bortezomib, vinorelbine , Peplomycin, busulfan, irinotecan, cisplatin, oxaliplatin, carboplatin and the like.
  • anthracycline anticancer agent examples include doxorubicin (adriamycin), daunorubicin, pirarubicin, epirubicin, idarubicin, aclarubicin, amrubicin, valrubicin or mitoxantrone.
  • immunosuppressive agents include cyclophosphamide, azathioprine, tacrolimus, or penicillamine as those that cause lung fibrosis
  • antirheumatic drugs include methotrexate as those that cause lung fibrosis.
  • Salazosulfapyridine or leflunomide examples include doxorubicin (adriamycin), daunorubicin, pirarubicin, epirubicin, idarubicin, aclarubicin, amrubicin, valrubicin or mitoxantrone.
  • immunosuppressive agents include cyclophosphamide, azathioprine, tacrolimus
  • These drugs are used for the treatment of diseases such as malignant tumors and rheumatism, but cause pulmonary and cardiac fibrosis as a side effect. Therefore, by ingesting the therapeutic agent for chronic respiratory diseases or the composition for inhibiting fibrosis of the heart of the present invention before the administration of this type of drug, or simultaneously with the administration of this type of drug, or at a time difference, Side effects such as lung or heart fibrosis can be reduced.
  • the hydroquinone derivative is about 0.01 to 100 mg / kg body weight, preferably about 0.05 to 50 mg / kg body weight.
  • the dose of the therapeutic agent or composition of the present invention is orally about 0.1 to 500 mg / kg body weight, preferably about 0.5 to 200 mg / kg body weight as the above-described hydroquinone derivative. This may be administered in 1 to 3 divided doses.
  • administration of the therapeutic agent or composition of the present invention causes lung or heart fibrosis. It is preferably performed in advance before administration of a drug such as an anticancer drug, but may be performed simultaneously with or separately from the drug administration.
  • hydroquinone derivative which is an active ingredient of the therapeutic agent or composition of the present invention. It is good also as a compounding medicine which combined this kind of chemical
  • the recombinant respiratory erythropoietin in the therapeutic agent for chronic respiratory diseases the composition for inhibiting cardiac fibrosis and the composition for reducing side effects of the drug of the present invention is used.
  • EPO can be included.
  • the dose of human erythropoietin when the above hydroquinone derivative and human erythropoietin are combined varies depending on the target therapeutic effect, administration method, age, body weight, etc.
  • a typical dosage is about 0.1-100 IU / kg body weight, preferably about 0.5-50 IU / kg body weight.
  • composition or therapeutic agent comprising a combination of the above hydroquinone derivative and the above human erythropoietin can be administered orally or parenterally as a pharmaceutical composition of these active ingredients separately or simultaneously.
  • hydroquinone derivative which is an active ingredient and human erythropoietin are formulated separately, those separately formulated can be administered at the time of use, and those separately formulated can be separately administered, Alternatively, it may be administered to the same subject at the same time or with a time difference.
  • the therapeutic agent for chronic respiratory diseases, the composition for inhibiting cardiac fibrosis and the composition for reducing side effects of drugs of the present invention can be prepared in various forms by conventionally used methods. In this case, it can be formulated using an additive that is generally accepted as a pharmaceutical additive, such as a carrier or excipient for preparation.
  • a drug delivery system including a preparation technique such as microcapsule, micronization, inclusion using cyclodextrin and the like can also be used.
  • the composition When used as a preparation for oral administration, it can be used in the form of tablets, granules, capsules, liquids for internal use, etc., but is preferably used in a form suitable for absorption from the digestive tract.
  • the conventional formulation technique can also be used when providing a formulation in a desired form for reasons such as distribution and storage.
  • it When used as a parenteral administration agent, it can be in the form of injections, suppositories and transdermal absorbents such as tapes, pups, etc., but solid preparations are used for reasons such as distribution and storage. It can sometimes be used after being dissolved in a suitable solvent, and can be provided in the form of a liquid or a semi-solid preparation by a conventional preparation technique.
  • a food composition for preventing or improving chronic respiratory diseases, cardiac fibrosis diseases or side effects of drugs, comprising the hydroquinone derivative represented by the above general formula (1) as an active ingredient is a tablet or capsule. It can be used in any form such as supplements such as granules, syrups, beverages, confectionery, bread, rice cakes, cereals, noodles, jellies, soups, dairy products, seasonings, edible oils and the like. Moreover, when using as a food composition, it is also possible to combine various active ingredients, nutrients such as vitamins, minerals or amino acids in various ways within a range not affecting the efficacy of the active ingredients of the present invention.
  • Foods developed from the food composition of the present invention include supplements, health foods, functional foods, foods for specified health use, and the like.
  • the intake amount of the food composition of the present invention is preferably about 0.1 to 500 mg / kg body weight, more preferably about 0.5 to 200 mg / kg body weight as the hydroquinone derivative described above. Is preferably taken in 1 to 3 divided dose
  • Example 1 Examination of effects on pulmonary fibrosis induced by bleomycin Bleomycin has been used to produce animal models of interstitial pneumonia. This bleomycin is administered to 10-week-old male SD rats, and 2,3,5-trimethylhydroquinone-1-hexyl ether (HTHQ) is used as the hydroquinone derivative represented by the above general formula (1) of the present invention. The effect was examined.
  • HTHQ 2,3,5-trimethylhydroquinone-1-hexyl ether
  • test group was as follows: control group: sterilized physiological saline administered, test group 1: bleomycin (7.5 mg / kg body weight) administered alone, test group 2: bleomycin (7.5 mg / kg body weight) and HTHQ (50 mg) / Kg body weight / day), combined administration, test group 3: bleomycin (7.5 mg / kg body weight) and HTHQ (200 mg / kg body weight / day) were combined.
  • test groups 1 to 3 bleomycin was administered once and administered orally.
  • Test Groups 2 and 3 2,3,5-trimethylhydroquinone-1-hexyl ether (HTHQ) should be administered 24 hours after the administration of bleomycin, and orally administered daily for 10 or 20 days. Went by.
  • HTHQ 2,3,5-trimethylhydroquinone-1-hexyl ether
  • olive oil used as a solvent for HTHQ was orally administered every day at 10 mL / kg / day from 24 hours after administration of bleomycin.
  • the number of animals in each group was 16 per group.
  • On day 10 and day 20 of bleomycin administration 8 animals were sacrificed for each group, and body weight measurement, lung autopsy, lung histopathology and bronchoalveolar lavage examination were performed.
  • ⁇ Body weight and lung relative weight> The body weight of the control group rats increased over time during the study period.
  • the result of relative lung weight is shown in FIG. Lung interstitial tissue tends to increase in weight due to fibrosis and increase in relative lung weight.
  • the numbers in the graph indicate the corresponding test group, ## described on the bar indicates that the p value when compared to the control group is p ⁇ 0.01, and * indicates the test It shows that the p value when compared with Group 1 is p ⁇ 0.05. As shown in FIG.
  • ⁇ Lung histopathological findings> The major lung lesions in rats 10 days after administration of Test Group 1 (Bleomycin alone administration group) include alveolar enlargement around the bronchi and bronchioles, thickening of the alveolar walls, and mononuclear cells in the alveolar walls and interstitial tissues Infiltration of lymphocytes and exudation of alveolar macrophages in the alveolar space were observed. In the rats of Test Groups 2 and 3 (HTHQ administration group), these findings were alleviated compared to the tissues of Test Group 1.
  • test group 1 an alveolar epithelial atypia (Atypia) having a large nucleus in which the nucleolus is not clear is observed, and a foamy form is present in the alveolar cavity at the site where the alveolar morphology is still maintained. It was found that lung fibrosis was progressing, such as observation of alveolar macrophages.
  • Table 1 shows the results of histological examination of the lungs of the control group and each test group on the 20th day after bleomycin administration. As for the severity score, “ ⁇ ” is none, “+” is mild, “++” is moderate, and “++” indicates severe.
  • test group 1 bleomycin-only administration group
  • thickening and fibrosis of the surrounding and adjacent alveolar walls became more prominent than the tissue on the 10th day of administration, and the lungs were infiltrated by infiltration of lymphocytes and neutrophils. The cell morphology almost disappeared.
  • alveolar macrophages infiltrating into the alveolar space were buried by surrounding tissues.
  • test groups 2 and 3 which are HTHQ administration groups
  • thickening was observed, the degree was mild compared to Test Group 1 which was a bleomycin-only administration group.
  • BAL bronchoalveolar lavage
  • a bronchoalveolar lavage (BAL) test was performed on the rats in the control group and each test group.
  • the measurement results of the total number of cells in the bronchoalveolar lavage fluid are shown in FIG.
  • Regarding the total number of cells on the 10th day after bleomycin administration 2 ⁇ 10 5 in the control group, 9 ⁇ 10 5 in the test group 1 (bleomycin single administration group), and 2 in the test group 2 (low dose HTHQ administration group, 50 mg / day).
  • test group 3 high dose HTHQ administration group, 200 mg / kg body weight
  • test group 3 high dose HTHQ administration group, 200 mg / kg body weight
  • the effect of HTHQ administration on the 10th day of bleomycin administration was not recognized.
  • the total cell count of the bleomycin single administration group was 12.8 ⁇ 10 5 cells
  • the low dose HTHQ administration group was 7.9 ⁇ 10 5 cells
  • the high dose HTHQ administration group was 3.8 ⁇ . It decreased to 10 5 pieces.
  • HTHQ was found to suppress lung cell exudation in a dose-dependent manner.
  • the measurement result of the number of alveolar macrophages in the bronchoalveolar lavage fluid is shown in FIG.
  • alveolar macrophages infiltrate into the interstitial tissue, and the number of alveolar macrophages in the BAL fluid increases.
  • FIG. 1 the measurement result of the number of neutrophils in bronchoalveolar lavage fluid is shown in FIG.
  • neutrophil counts on the 10th day after bleomycin administration 1.04 ⁇ 10 4 in the control group, 2.28 ⁇ 10 5 in test group 1 (bleomycin single administration group), and test group 2 (low dose) HTHQ administration group) was 1.44 ⁇ 10 5 cells, test group 3 (high dose HTHQ administration group) was 5.83 ⁇ 10 5 cells, and no effect of HTHQ was observed on the 10th day of bleomycin administration.
  • the bleomycin single administration group was 2.09 ⁇ 10 5
  • the low dose HTHQ administration group was 0.53 ⁇ 10 5
  • the high dose HTHQ administration group was 0.3
  • the number was significantly reduced to ⁇ 10 5
  • HTHQ was found to suppress lymphocyte exudation in a dose-dependent manner.
  • the hydroquinone derivative represented by the above general formula (1) of the present invention effectively suppresses pulmonary fibrosis induced by bleomycin. It has been found that there is an effect of preventing or treating pneumonia.
  • Example 2 Examination of effect on lung inflammation induced by cigarette smoke 6-week-old SPF C57BL / 6N male mice weighing 20-25 g were purchased from Coretech Co., Ltd. (Korea). After about 1 week of quarantine and adaptation period, the mice were divided into 5 groups as shown in Table 2 below.
  • the test was conducted as follows. Among the test groups, the COPD (chronic obstructive pulmonary disease) model group was exposed to cigarette smoke (8 cigarettes / day) for 1 hour per day for 10 days. LPS (5 ⁇ g / 50 ⁇ L / mouse) was administered intranasally. In the positive control substance administration group, roflumilast, which is a positive control substance, was orally administered at 10 mg / kg body weight / day and then exposed to tobacco smoke for 1 hour after 10 hours. Moreover, LPS (5 ⁇ g / 50 ⁇ L / mouse) was administered intranasally on the 8th day from the start of the test.
  • LPS ⁇ g / 50 ⁇ L / mouse
  • roflumilast is a selective phosphodiesterase 4 inhibitor, which is a substance used as a therapeutic agent for COPD and asthma (approved in Europe and the United States, but not approved in Japan).
  • HTHQ 2,3,5-trimethylhydroquinone-1-hexyl ether
  • the dose group was exposed to tobacco smoke for 1 hour 1 hour after administration of 20 mg / kg body weight / day for 10 days.
  • LPS 5 ⁇ g / 50 ⁇ L / mouse was administered intranasally.
  • mice in the normal control group and test group were given sterilized tap water and a standard rodent diet. All experimental procedures were performed after obtaining IACUC approval from the Korea Institute of Biotechnology.
  • BAL ⁇ Bronchoalveolar lavage (BAL) examination> 72 hours after LPS administration for mice in each test group and 11 days after the start of the test for mice in the normal control group, after euthanasia by injection of 50 mg / kg intraperitoneally with pentobarbital (Hanrim Pharmaceutical, Korea) The bronchi were excised.
  • BAL fluid bronchoalveolar lavage fluid
  • 700 ⁇ L of ice-cooled PBS was injected into the lung and then collected twice, and 1.4 mL of BAL fluid was collected.
  • the collected BAL solution was centrifuged under conditions of 4 ° C. and 1500 rpm ⁇ 5 minutes.
  • the amount of active oxygen (ROS) in the BAL cell fluid was measured.
  • BAL cell suspension was placed in BAL cell solution to each well of 5 ⁇ 10 3 / 100 ⁇ L / well become as 96-well plates, a 20mM of DCF-DA was added in 10 ⁇ L per well as ROS indicator, 30 minutes Shake.
  • the amount of active oxygen (ROS) in the cell was measured with a fluorescence plate analyzer (Perkin Elmer product) at a wavelength of excitation 485 nm / fluorescence 530 nm. The results are shown in FIG. As shown in FIG. 8, high active oxygen production was observed in the COPD model group induced by tobacco smoke.
  • the stored supernatant of the BAL solution was removed from the ultra-low temperature bath, and the amounts of TNF- ⁇ and IL-6 were measured as the amount of inflammatory cytokines in the supernatant.
  • a quantitative ELISA kit product of Invitrogen
  • an ELISA analyzer product of Molecular Devices
  • the measurement wavelength was 450 nm.
  • the result of the amount of TNF- ⁇ is shown in FIG. 9, and the result of the amount of IL-6 is shown in FIG.
  • FIG. 9 it was found that the BAL fluid of the COPD model group contains TNF- ⁇ at a high level.
  • the amount of TNF- ⁇ is effectively reduced compared to the COPD model group, and in the comparison with the positive control substance (roflumilast, ROF) administration group, the effect is almost the same as that of the positive target substance. showed that.
  • the BAL fluid in the COPD model group contained IL-6 at a very high level.
  • the amount of IL-6 was remarkably reduced as compared with the COPD model group, and it was found that the same effect was shown in comparison with ROF (roflumilast).
  • FIG. 11 shows photographs of lung tissue around the airway in the normal control group (“NC” in the photograph) and each test group.
  • N normal control group
  • FIG. 11 a portion where inflammatory cell infiltration has occurred (portion stained darkly by HE staining) is indicated by an arrow. As shown in the photograph of FIG.
  • the hydroquinone derivative represented by the above-mentioned general formula (1) of the present invention can cause inflammation of lung tissue induced by tobacco smoke, that is, progression of COPD. It was found that it has an effect of effectively suppressing and preventing or treating COPD. Further, in this example, the hydroquinone derivative of the present invention showed the same effect as roflumilast used as a positive control substance, indicating that it is effective for the prevention and treatment of COPD.
  • Example 3 Examination of action on asthma Using the allergic asthma model in mice sensitized with ovalbumin, the effectiveness of the hydroquinone derivative represented by the above general formula (1) of the present invention for asthma was examined.
  • mice 6 weeks old BALB / c female mice were purchased, and after acclimation breeding for about 2 weeks, 5 mice were arranged in 5 groups shown in Table 3 below.
  • IP ovalbumin sensitization treatment by intraperitoneal administration of ovalbumin / aluminum hydroxide
  • IH ovalbumin inhalation exposure treatment
  • PO administration of each test substance. Is shown. Specifically, 20 ⁇ g of ovalbumin and 200 ⁇ L of PBS (pH 7.4) emulsified by adding 2 mg of aluminum hydroxide as an adjuvant were intraperitoneally administered to all the mice of the 4 groups except the normal control group (initial feeling). Product, test day 1). Then, two weeks later (study day 14), the second sensitization treatment was performed in the same manner as the first sensitization.
  • mice were exposed to inhalation with PBS containing 1% ovalbumin for 1 hour each day using an ultrasonic nebulizer.
  • the test substance was orally administered on each day on the 18th to 23rd day of the test.
  • PBS was orally administered to the normal control group
  • 3% Tween 80-containing physiological saline used as an HTHQ solvent described later was orally administered to the ovalbumin-sensitized control group
  • PBS to the positive control substance administration group.
  • Dissolved montelukast (Sigma Aldrich) was orally administered at 30 mg / kg body weight / day.
  • montelukast is a leukotriene receptor antagonist and is a substance used as a therapeutic agent for bronchial asthma.
  • the test substance 2,3,5-trimethylhydroquinone-1-hexyl ether (HTHQ) was dissolved in 3% Tween 80, the low dose group was 20 mg / kg body weight / day, and the high dose group was Each was orally administered at 40 mg / kg body weight / day.
  • blood was collected from the orbital venous plexus of all mice, then euthanized, bronchoalveolar lavage (BAL) test and determination of total IgE content in serum and ovalbumin-specific IgE content. went.
  • BAL bronchoalveolar lavage
  • BAL bronchoalveolar lavage
  • All mice were euthanized by 50 mg / kg intraperitoneal injection of pentobarbital (Hanrim Pharmaceutical, Korea) on the 25th day of the test, and the bronchi were excised.
  • BAL fluid bronchoalveolar lavage fluid
  • 700 ⁇ L of ice-cooled PBS was injected into the lung and then collected twice, and 1.4 mL of BAL fluid was collected.
  • the collected BAL solution was centrifuged under conditions of 4 ° C. and 1500 rpm ⁇ 5 minutes. The supernatant was collected for later analysis of inflammatory cytokines and stored in an ultra-low temperature bath at -70 ° C.
  • ovalbumin sensitized control group “OVA” that was sensitized by intraperitoneal administration of ovalbumin and caused allergic asthma by inhalation of ovalbumin was compared with the normal control group “NC”.
  • NC normal control group
  • the HTHQ administration group the number of inflammatory cells described above was significantly decreased in a dose-dependent manner with HTHQ, and the inhibitory effect on the number of inflammatory cells was used as a therapeutic agent for bronchial asthma. It was found to be comparable to the control substance Montelukast (see the positive control substance administration group “Mon”).
  • the stored BAL solution supernatant was removed from the ultra-low temperature bath, and the amounts of IL-4, IL-5 and IL-13 were measured as the inflammatory cytokine content in the BAL solution supernatant.
  • a quantitative ELISA kit R & D System product
  • a microplate reader BioRad product
  • FIG. 14 shows the results of IL-4
  • FIG. 15 shows the results of IL-5
  • FIG. 16 shows the results of IL-13. # Described on the bars of the graphs of FIGS.
  • the p value is p ⁇ 0.01 when compared with the normal control group, and * is compared with the ovalbumin-sensitized control group The p value is p ⁇ 0.05, and ** indicates that the p value is p ⁇ 0.01 when compared with the ovalbumin-sensitized control group.
  • the BAL fluid of the ovalbumin sensitized control group “OVA” has significantly higher contents of IL-4, IL-5 and IL-13 than the normal control group “NC”. Had increased.
  • FIGS. 17 and 18 indicates that the p-value when compared to the normal control group is p ⁇ 0.01, and * indicates the comparison with the ovalbumin-sensitized control group P value is p ⁇ 0.05.
  • the ovalbumin-sensitized control group “OVA” the serum total IgE amount and the ovalbumin-specific IgE amount were clearly increased compared to the normal control group “NC”.
  • the total IgE amount shown in FIG. 17 was significantly decreased in the HTHQ 20 mg / kg body weight / day administration group “HTHQ20”, and the HTHQ 40 mg / kg body weight / day administration group “ A trend toward a decrease was also seen in “HTHQ40”.
  • the ovalbumin-specific IgE amount shown in FIG. 18 was not significantly different depending on the administration of HTHQ, but a decreasing tendency was observed.
  • HTHQ has an effect comparable to that of montelukast, which is a leukotriene receptor antagonist already used clinically as a therapeutic agent for bronchial asthma, that is, effectively suppresses inflammation of the respiratory tract based on an allergic reaction. It was found to have an effect. Therefore, it was shown that the hydroquinone derivative represented by the above general formula (1) of the present invention is effective for the treatment of bronchial asthma.
  • Example 4 4). Examination of sputum excretion effect The hydroquinone derivative of the present invention was orally administered to 8-week-old male ICR mice, and the method by Engler et al. (Engler H, Szelenii I, J. Pharmacol. According to, the effect of soot was evaluated. First, eight 8-week-old ICR male mice were arranged in five groups shown in Table 4 below.
  • the test was conducted as follows.
  • the test substance was orally administered to the mice of the control group and each test group. That is, a 2% gum arabic aqueous solution was administered to the negative control group, and 2,3,5-trimethylhydroquinone-1-hexyl ether (HTHQ) as a test substance was administered to the HTHQ administration group at 100 mg / kg body weight and 200 mg / kg. Oral administration was performed at kg body weight and 400 mg / kg body weight, respectively.
  • Ambroxol Sigma Aldrich product
  • ambroxol is a substance having an expectorant action and is selected as a positive control substance.
  • the amount of phenol red discharged from the trachea piece was substituted into the following equation to determine the sputum discharge ability of the test substance.
  • the results of this example are shown in FIG. * On the bar of the graph of FIG. 19 indicates that the p value when compared with the negative control group is p ⁇ 0.05, and ** indicates the p value when compared with the negative control group. p ⁇ 0.01.
  • the sputum excretion ability of the HTHQ administration group is 24.6% (HTHQ 100 mg / kg), 30.0% (HTHQ 200 mg / kg) and 36.2% (HTHQ 400 mg / kg), respectively, and the 200 mg / kg administration group and 400 mg / kg. There was a significant increase in the treated group compared to the negative control group.
  • HTHQ has an action of promoting sputum discharge, that is, an expectorant action, like ambroxol. Therefore, HTHQ can promote the excretion of sputum caused by chronic respiratory diseases such as COPD, asthma and interstitial pneumonia, as well as respiratory diseases such as cases and acute bronchitis, like ambroxol. It was shown to be effective in the treatment and improvement of various diseases.
  • Example 5 5. Examination of the effect
  • Doxorubicin is utilized in order to produce the disease model animal of a cardiomyopathy. This doxorubicin is administered to 4-week-old female SD rats, and 2,3,5-trimethylhydroquinone-1-hexyl ether (HTHQ) is used as the hydroquinone derivative represented by the above general formula (1) of the present invention. The effect was examined.
  • HTHQ 2,3,5-trimethylhydroquinone-1-hexyl ether
  • test group 3 The composition of the test group is: control group: sterilized physiological saline, test group 1: doxorubicin (13 mg / kg body weight) alone, test group 2: doxorubicin (13 mg / kg body weight) and HTHQ (50 mg / kg body weight) And test group 3: doxorubicin (13 mg / kg body weight), HTHQ (50 mg / kg body weight) and recombinant human erythropoietin (400 IU / kg body weight) were combined.
  • Recombinant human erythropoietin (rHuEPO) is mainly used for the treatment of renal anemia and has a myocardial protective effect.
  • Test group 3 is to confirm the presence or absence of a myocardial injury inhibitory effect by the combined use of HTHQ and rHuEPO.
  • doxorubicin was administered once and administered orally.
  • Test Groups 2 and 3 2,3,5-trimethylhydroquinone-1-hexyl ether (HTHQ) was administered three times before doxorubicin administration and twice on the day of doxorubicin administration, and administration was performed orally.
  • HTHQ 2,3,5-trimethylhydroquinone-1-hexyl ether
  • Test Group 3 recombinant human erythropoietin was administered every day from 3 days before doxorubicin administration, and was administered by intravenous injection. The number of animals in each group was 16 per group.
  • On day 7 and day 14 after administration of doxorubicin 8 blood samples were collected from each group and sacrificed, and cardiac necropsy, calculation of heart relative weight, cardiac histopathology, and blood test were performed.
  • ⁇ Relative heart weight> The myocardium becomes hypertrophied by fibrosis, and the myocardial weight increases and the relative heart weight tends to increase.
  • the results of the relative heart weight of the rats of the control group and the test groups 1 to 3 are shown in Table 5 below.
  • the relative heart weight of test group 2 On day 7 after administration of doxorubicin, the relative heart weight of test group 2 was greater than that of test group 1, but on day 14 after administration, the relative heart weight of test group 2 was higher than that of test group 1. There was no significant difference. In addition, there was no significant difference between the other groups on day 7 and day 14 after administration (p ⁇ 0.05).
  • ⁇ Pathological examination findings 1 (optical microscope)> The results of the histopathological examination of the heart are shown in Table 6 below. The severity scores in the table are “ ⁇ ”, “+” is mild, “++” is moderate, and “++” is severe.
  • Table 6 The severity scores in the table are “ ⁇ ”, “+” is mild, “++” is moderate, and “++” is severe.
  • cardiomyocyte degeneration, myocardial fiber loss and tissue destruction, myocardial necrosis, striated loss, and cell infiltration in the interstitial tissue were observed in Test Group 1. .
  • Test Group 2 administered with HTHQ
  • these lesions were reduced as compared to Test Group 1
  • Test Group 3 administered with HTHQ and rHuEPO, these lesions were further reduced, and almost similar to normal myocardial tissue.
  • the findings were shown.
  • tissue lesions on the 14th day after doxorubicin administration are more advanced in the test group 1 than on the 7th day after the administration, with high vacuole degeneration in myocardial cells and interstitial tissues, myocardial fiber hypertrophy and atrophy. Observations such as myocardial fiber loss and tissue collapse, myocardial necrosis and striated loss were observed. Also on the 14th day after administration, as in the 7th day after administration, the lesions in the tissues of Test Group 2 and Test Group 3 to which HTHQ was administered were alleviated compared to Test Group 1.
  • ⁇ Pathological examination findings 2 (transmission electron microscope)>
  • test group 1 cardiomyocytes on day 7 after administration of doxorubicin, loss of striated pattern, loss of intervening plate, mitochondrial swelling, loss of mitochondrial outer membrane, and cryste withdrawal were observed.
  • Test Group 2 and Test Group 3 to which HTHQ was administered the loss of striated pattern was reduced, and findings similar to normal cells were shown, such as cardiomyocytes and mitochondria being almost uniformly arranged.
  • cardiomyocytes 14 days after doxorubicin administration the same findings were observed in test groups 1 to 3 as on day 7 after administration.
  • the hydroquinone derivative represented by the above general formula (1) of the present invention has an effect of suppressing cardiac fibrosis induced by doxorubicin, and an effect of preventing or treating cardiomyopathy. It was shown that there is. Further, it was found that the use of this hydroquinone derivative and recombinant human erythropoietin in combination further improves the suppression or therapeutic effect of cardiac fibrosis.
  • CPK Creatine phosphokinase
  • Creatine phosphokinase (CPK) is an enzyme that is distributed in large amounts in muscle, brain, and nerves and is involved in energy metabolism. In particular, it is a clinically important index as a deviating enzyme that flows into the blood when skeletal muscle or myocardium is damaged.
  • CPK creatine phosphokinase
  • the CPK values in test group 2 and test group 3 administered with HTHQ are significantly lower than those in test group 1 (p ⁇ 0.05), and in test group 3 administered with HTHQ and rHuEPO, There was no increase. From the above results, it was shown that the hydroquinone derivative represented by the general formula (1) has an action of suppressing myocardial damage induced by doxorubicin, and has an effect of preventing or treating cardiomyopathy. It was also found that the use of this hydroquinone derivative in combination with recombinant human erythropoietin further improves the suppression or therapeutic effect of myocardial injury.
  • the present invention suppresses and improves fibrosis of the lung or heart induced by administration of drugs such as chronic obstructive pulmonary disease (COPD), chronic respiratory diseases such as asthma and interstitial pneumonia, cardiomyopathy and anticancer agents. It is useful for the prevention, treatment or improvement of lung or heart fibrosis caused by side effects of drugs such as chronic respiratory diseases, cardiomyopathy and anticancer agents.
  • COPD chronic obstructive pulmonary disease

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

COPD、間質性肺炎及び喘息といった慢性呼吸器疾患の予防又は治療に有効な新たな薬剤を提供する。 慢性呼吸器疾患治療剤は、 一般式(1) (式中、Rは炭素数4~8のアルキル基を示し、Rは水素原子、炭素数2~6のアルキルカルボニル基または炭素数2~6のアルコキシカルボニル基を示す。)で表されるハイドロキノン誘導体を有効成分として含む。

Description

慢性呼吸器疾患治療剤及び心臓の線維化抑制組成物
 本発明は特定のハイドロキノン誘導体を有効成分とする慢性呼吸器疾患治療剤、慢性呼吸器疾患の予防又は改善用食品組成物、心臓の線維化抑制組成物及び薬剤の副作用軽減組成物に関する。
 慢性呼吸器疾患とは、非感染性の気道や肺組織の慢性疾患であり、主なものとして、慢性閉塞性肺疾患(COPD)、喘息及び間質性肺炎等が挙げられる。このうち、慢性閉塞性肺疾患(COPD)とは、主にタバコの煙や汚染された大気といった有害物質を長期に吸入することによって発症する肺の炎症性疾患であり、進行性の気流閉塞を呈する。COPDの有病率及び死亡率は世界的に高いレベル(世界の死因の第4位、WHO調査、2004年)にあり、今後数十年間は患者数が増加すると予測されている。また、COPDという疾患が一般に広く認知されていない状態であることから、潜在的な患者も相当数いるものと考えられる。
 また、慢性呼吸器疾患のうち、間質性肺炎は、肺の間質組織に炎症が生じた結果、炎症組織の線維化が起こることにより発症する。肺では約3億個ともいわれる肺胞に大気を取り込み、この肺胞に絡み付いた毛細血管を介してガス交換が行われているが、これらを取り囲んで支持する組織が間質である。間質が線維化すると肺全体が硬くなり肺の正常な膨張や収縮が妨げられて肺活量が低下するとともに、肺胞と毛細血管の間で行われるガス交換の効率も低下する。この間質性肺炎には発症原因がすでに明らかになっているものと原因が特定できないものが含まれるが、明らかになっている発症原因の一つに、薬剤によるものがある。例えば、ブレオマイシンはStreptomyces verticillusから分離された抗癌性抗生物質であり、抗癌剤で頻繁にみられる骨髄抑制作用が少なく吐き気や嘔吐が比較的軽いことから多くの種類の癌に対する治療剤として用いられている。しかし、ブレオマイシンは間質性肺炎を誘発しやすいという重篤な副作用を有する。そのため、ブレオマイシンは、間質性肺炎の疾患モデル動物を作製するためにも利用されている。このブレオマイシンの他にも、ゲフィチニブ、エルロチニブ、セツキシマブ、パニツムマブ及びボルテゾミブ等の抗癌剤、シスプラチン及びオキサリプラチン等の白金製剤(抗癌剤)、シクロフォスファミド、アザチオプリン、タクロリムス及びペニシラミン等の免疫抑制剤、メトトレキサート、サラゾスルファピリジン及びレフルノミド等の抗リウマチ薬、ヒドララジン等の血管拡張薬、小柴胡湯等の漢方薬、アミオダロン等の抗不整脈薬のほか、インターフェロン、抗菌剤、抗てんかん剤、利尿剤など非常に多くの薬剤が間質性肺炎の原因物質となることが知られている。さらに、鉱物、陶器又は石材等の粉やアスベスト等の吸引、放射線による被ばく、膠原病や感染症も間質性肺炎の原因となることが知られている。また、原因が特定できない特発性間質性肺炎は国から特定疾患、いわゆる難病に指定されている。
 上述した間質性肺炎のように、臓器の線維化疾患には難治性の疾患が多く含まれ、原因の特定が困難なものや治療方法が確立されていないものが多い。臓器の組織の線維化が進行すると臓器全体が硬くなり、中空臓器の場合には正常な拡張および収縮が困難になり機能不全に陥る。中空臓器の線維化疾患としては、上述した間質性肺炎のほか、心臓における心筋症が挙げられるが、肺と心臓はともに機能不全が死に直結する重要な臓器であるため、間質性肺炎や心筋症は致命的な疾患となる可能性がある。
 心筋症は、様々な原因により心筋細胞に炎症や変性を生じた結果、心筋細胞が壊死して線維性組織に置き換わることにより発症する。心臓の組織が線維化すると正常な収縮機能は失われ、血液を全身に送るポンプとしての心臓の機能に重大な支障を来たすことになる。この心筋症も、原因が明らかなものとそうでないものが含まれるが、上述の間質性肺炎同様に、薬剤の投与により発症することが知られている。例えば、アントラサイクリン系抗癌剤であるドキソルビシン(別名アドリアマイシン)は、Streptomyces Peucetius var.Caeciusから抽出された抗癌性抗生物質であり、強力かつ広い抗癌スペクトラムを有することから臨床で各種の癌の治療剤として用いられている。しかし、ドキソルビシンをはじめとしたアントラサイクリン系抗癌剤は、用量依存的に心筋障害を誘発するという重篤な副作用を有する。具体的には、ドキソルビシンの総投与量の増加とともに、徐々に心筋が線維化して心筋全体が硬化し、心筋症と同様の所見を呈することが知られている。そのため、ドキソルビシンは、心筋症の疾患モデル動物を作製するためにも利用されている。さらに、ウイルス感染、糖尿病、肥満、甲状腺疾患、アルコール等も心筋症の原因となることが知られている。
 一方、下記一般式(1)で表されるハイドロキノン誘導体は、強力な抗酸化作用とNO産生阻害作用を有する物質である。特許文献1~4には、このハイドロキノン誘導体を有効成分とする抗酸化剤(特許文献1)、動脈硬化治療用組成物(特許文献2)、神経変性疾患治療薬(特許文献3)及び肝線維化抑制剤(特許文献4)が記載されている。
Figure JPOXMLDOC01-appb-C000004
特開平5-301836号公報 特開2002-241366号公報 特開2009-102262号公報 特開2009-256226号公報
 上述したように、COPDでは有害物質により気道や肺の炎症反応が増強されており、治療方法としては根治的な治療法はなく、気管支拡張剤や去痰剤による対症療法のみが行われている。そのため、気道や肺の炎症反応を抑制して、深刻な病態に至らないよう、COPDの病状の進行を止めることのできる薬剤が求められていた。また、慢性呼吸器疾患である間質性肺炎や、心筋症といったこれらの線維化疾患はさまざまな原因により発症するということもあり、効果的な治療方法はいまだ検討されている段階である。間質性肺炎の治療薬としては、日本国内ではピルフェニドンのみが有効性が認められているが、光線過敏症や皮膚がんの危険性が高まる等の副作用を有するという問題があった。また、心筋症の治療としては、心臓移植や補助人工心臓等の外科的治療が主であり、根治的な内科的治療が求められていた。
 他方、特許文献1~4に記載されたハイドロキノン誘導体については、各特許文献中に抗酸化剤として用いられるほか、動脈硬化、神経変性疾患及び肝線維化疾患の治療剤として用いられることは記載されているが、肺又は心臓の線維化疾患に関する検討はなされておらず、その有効性は不明であった。
 さらに、薬剤により誘発される肺や心臓の線維化疾患は、その薬剤本来の効能を期待して患者に投与された結果、副作用として生じるものである。例えば、ブレオマイシンやアントラサイクリン系抗癌剤であるドキソルビシンは、いずれも広い抗癌スペクトラムを有することから抗癌剤治療における代表的な治療薬として用いられているが、副作用としてそれぞれ肺又は心臓の線維化疾患を誘発することから、本来の抗癌治療効果は良好であるにもかかわらず、副作用の発生により投薬が中止になったり、副作用が生ずることがないよう総投与量に上限がある等、使用が制限されている。このように、重篤な疾患に有効な治療薬があるにもかかわらず、間質性肺炎や心筋障害という副作用のために、その治療薬を十分に使用できないという問題があった。
 本発明は上述した点に鑑み案出されたもので、その目的は、COPD、間質性肺炎及び喘息といった慢性呼吸器疾患の予防又は治療に有効な新たな薬剤を提供することにある。
 また、本発明の他の目的としては、心臓の線維化疾患の予防又は治療に有効な新たな薬剤を提供することにある。
 また、本発明の他の目的としては、治療薬の投与により副作用として生じる肺又は心臓の線維化疾患の予防、治療又は副作用の低減に有効な新たな薬剤を提供することにある。
 本発明者らはかかる実情に鑑み鋭意研究を重ねた結果、上記一般式(1)で表されるハイドロキノン誘導体がCOPD、喘息及び間質性肺炎を抑制し、喀痰を排出させる作用並びに心筋障害を抑制する作用を有することを見出し、本発明を完成させた。
 上記課題を解決するため、本発明の慢性呼吸器疾患治療剤は、以下一般式(1)(式中、Rは炭素数4~8のアルキル基を示し、Rは水素原子、炭素数2~6のアルキルカルボニル基または炭素数2~6のアルコキシカルボニル基を示す。)で表されるハイドロキノン誘導体を有効成分として含む。
Figure JPOXMLDOC01-appb-C000005
 また、このハイドロキノン誘導体が、2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテルまたは2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル4-アセテートであることも好ましい。これにより、薬理活性及び生体適合性に優れ、特に有効に用いることのできる物質が選択される。
 さらに、慢性呼吸器疾患が、慢性閉塞性肺疾患(COPD)、間質性肺炎及び喘息からなる群より選ばれた少なくとも1つの疾患であることも好ましい。これにより、治療対象として好適な疾患が選択される。このうち、間質性肺炎は、薬剤により惹起されるものであることも好ましい。本発明の治療剤により、薬剤により誘発される肺の組織の炎症が抑制され、間質性肺炎が呈する肺の線維化が有効に抑制される。
 また、上述の薬剤は、ブレオマイシン、ゲフィチニブ、エルロチニブ、セツキシマブ、パニツムマブ、ボルテゾミブ、シスプラチン、オキサリプラチン、シクロフォスファミド、アザチオプリン、タクロリムス、ペニシラミン、メトトレキサート、サラゾスルファピリジン、レフルノミド、ヒドララジン、小柴胡湯、アミオダロン及びインターフェロンからなる群から選ばれる少なくとも1種の薬剤であることが好ましい。これにより、肺の線維化、すなわち、間質性肺炎を誘発する薬剤として、適当なものが選択される。
 また、本発明の慢性呼吸器疾患の予防又は改善用食品組成物は、以下一般式(1)(式中、Rは炭素数4~8のアルキル基を示し、Rは水素原子、炭素数2~6のアルキルカルボニル基または炭素数2~6のアルコキシカルボニル基を示す。)で表されるハイドロキノン誘導体を有効成分として含んでいる。
Figure JPOXMLDOC01-appb-C000006
 また、本発明の慢性呼吸器疾患の予防又は改善用食品組成物の有効成分であるハイドロキノン誘導体が、2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテルまたは2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル4-アセテートであることも好ましい。これにより、薬理活性及び生体適合性に優れ、特に有効に用いることのできる物質が選択される。
 さらに、慢性呼吸器疾患が、慢性閉塞性肺疾患(COPD)、間質性肺炎及び喘息からなる群より選ばれた少なくとも1つの疾患であることも好ましい。これにより、予防又は改善する病態として好適なものが選択される。
 さらに、本発明の心臓の線維化抑制組成物は、以下一般式(1)(式中、Rは炭素数4~8のアルキル基を示し、Rは水素原子、炭素数2~6のアルキルカルボニル基または炭素数2~6のアルコキシカルボニル基を示す。)で表されるハイドロキノン誘導体を有効成分として含む。
Figure JPOXMLDOC01-appb-C000007
 また、このハイドロキノン誘導体が、2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテルまたは2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル4-アセテートであることも好ましい。これにより、薬理活性及び生体適合性に優れ、特に有効に用いることのできる物質が選択される。
 また、本発明の心臓の線維化抑制組成物は、心臓の線維化が、薬剤により惹起されるものであることも好ましい。本発明の線維化抑制組成物により、薬剤により誘発される心臓の組織の炎症が抑制され、心臓の線維化が有効に抑制される。
 また、上述の薬剤は、アントラサイクリン系抗癌剤であることも好ましい。これにより、心臓の線維化を誘発する薬剤として、適当なものが選択される。
 さらに、本発明の薬剤の副作用軽減組成物は、一般式(1)(式中、Rは炭素数4~8のアルキル基を示し、Rは水素原子、炭素数2~6のアルキルカルボニル基または炭素数2~6のアルコキシカルボニル基を示す。)で表されるハイドロキノン誘導体を有効成分として含む。
Figure JPOXMLDOC01-appb-C000008
 さらに、本発明の薬剤の副作用軽減組成物は、薬剤がブレオマイシン、ゲフィチニブ、エルロチニブ、セツキシマブ、パニツムマブ、ボルテゾミブ、シスプラチン、オキサリプラチン、シクロフォスファミド、アザチオプリン、タクロリムス、ペニシラミン、メトトレキサート、サラゾスルファピリジン、レフルノミド、ヒドララジン、小柴胡湯、アミオダロン、インターフェロン及びアントラサイクリン系抗癌剤からなる群から選ばれる少なくとも1種の薬剤であることが好ましい。本発明の副作用軽減組成物により、これらの薬剤により誘発される肺や心臓の組織の炎症が抑制され、心筋障害及び間質性肺炎といった副作用が有効に軽減される。
 さらに、本発明の薬剤の副作用軽減組成物は、上述の薬剤がブレオマイシン又はアントラサイクリン系抗癌剤であることも好ましい。本発明の副作用軽減組成物により、これらの抗癌剤により誘発される肺や心臓の組織の炎症が抑制され、心筋障害及び間質性肺炎といった副作用が有効に軽減される。
 本発明によれば、以下のような優れた効果を有する慢性呼吸器疾患治療剤、慢性呼吸器疾患の予防又は改善用食品組成物、心臓の線維化抑制組成物及び薬剤の副作用軽減組成物を提供することができる。
(1)気道や肺組織の炎症を抑制し、喀痰の排出を促進させて、慢性閉塞性肺疾患(COPD)、喘息及び間質性肺炎といった慢性呼吸器疾患の病状の進行を有効に抑制し、病態を改善することができる。また、安全性の高い物質から構成されているため、これらの疾患の予防又は治療に有効に用いることができる。
(2)心臓の組織の炎症を抑制し、心臓の線維化疾患を有効に抑制することができる。また、安全性の高い物質から構成されているため、疾患の予防又は治療に有効に用いることができる。
(3)2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテルまたは2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル 4-アセテートを選択することにより、薬理活性及び生体適合性に優れ、特に有効に用いることができる組成物を得ることができる。
(4)治療薬剤が原因で生じる肺又は心臓の線維化を抑制することができるため、治療薬剤を有効に投与することができる。
(5)ブレオマイシン又はアントラサイクリン系抗癌剤といった抗癌剤により誘発される肺又は心臓の線維化を抑制し、間質性肺炎又は心筋障害といった副作用を軽減することができるため、抗癌剤の投与を確実に行うことができる。
実施例1における対照群及び各試験群のラットの肺相対重量(%)を示すグラフである。 実施例1の気管支肺胞洗浄検査におけるBAL液中の総細胞数を示すグラフである。 実施例1の気管支肺胞洗浄検査におけるBAL液中の肺胞マクロファージ数を示すグラフである。 実施例1の気管支肺胞洗浄検査におけるBAL液中の好中球数を示すグラフである。 実施例1の気管支肺胞洗浄検査におけるBAL液中のリンパ球数を示すグラフである。 実施例2におけるHTHQ投与群の試験フローを示す説明図である。 実施例2の気管支肺胞洗浄検査におけるBAL液中の炎症細胞数を示すグラフである。 実施例2の気管支肺胞洗浄検査におけるBAL液中の活性酸素(ROS)量を示すグラフである。 実施例2の気管支肺胞洗浄検査におけるBAL液中のTNF-α量を示すグラフである。 実施例2の気管支肺胞洗浄検査におけるBAL液中のIL-6量を示すグラフである。 実施例2における対照群及び各試験群の気管支周辺の肺組織を示す写真である。 実施例3における感作、惹起及び被験物質の投与スケジュールを示す説明図である。 実施例3の気管支肺胞洗浄検査におけるBAL液中の炎症細胞数を示すグラフである。 実施例3の気管支肺胞洗浄検査におけるBAL液中のIL-4量を示すグラフである。 実施例3の気管支肺胞洗浄検査におけるBAL液中のIL-5量を示すグラフである。 実施例3の気管支肺胞洗浄検査におけるBAL液中のIL-13量を示すグラフである。 実施例3における血清中の総IgE含量を示すグラフである。 実施例3における血清中の卵白アルブミン特異的IgE含量を示すグラフである。 実施例4における対照群及び各試験群の喀痰排出能を示すグラフである。
 以下、本発明を詳細に説明する。
 上述の一般式(1)で表されるハイドロキノン誘導体において、Rで示される炭素数4~8のアルキル基は直鎖状、分岐状、環状のいずれであってもよく、その例としては各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などを挙げることができる。このアルキル基としては、薬理活性の面から、炭素数4~7の直鎖状のものが好ましく、特にn-ヘキシル基が好適である。
 また、Rのうちの炭素数2~6のアルキルカルボニル基は直鎖状、分岐状のいずれであってもよく、例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基などが挙げられる。さらに、Rのうちの炭素数2~6のアルコキシカルボニル基は直鎖状、分岐状のいずれであってもよく、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基などが挙げられる。
 この一般式(1)で表わされる化合物のうち、いずれの用途においても、特に薬理活性の点から好ましい化合物としては、2,3,5-トリメチルハイドロキノン-1-ブチルエーテル、2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテルおよび2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル4-アセテートを挙げることができる。
 上述の一般式(1)で表されるハイドロキノン誘導体はたとえば特許文献2に記載の方法で製造することができる。
 本発明の慢性呼吸器疾患治療剤、心臓の線維化抑制組成物及び薬剤の副作用軽減組成物は、前述の一般式(1)で表されるハイドロキノン誘導体を有効成分として含むものであって、慢性閉塞性肺疾患(COPD)、喘息及び間質性肺炎といった慢性呼吸器疾患を予防又は治療し、心臓の線維化を抑制する作用を有する。それゆえ、本発明の慢性呼吸器疾患治療剤、心臓の線維化抑制組成物及び薬剤の副作用軽減組成物は、これらの疾患を予防、治療又は改善するための医薬品、医薬部外品及び食品組成物として用いることができる。慢性呼吸器疾患のうち、COPDの原因としては、有害物質の暴露、すなわち、喫煙(タバコの煙)や、大気汚染、有機燃料煙及び粉塵等の吸入が挙げられるが、本発明においては、これら有害物質の暴露によって発症しうる気道及び肺組織の炎症を有効に抑制させると共に、喀痰の排出を促して症状を改善させることができる。他方、慢性呼吸器疾患のうち間質性肺炎は肺の線維化によって発症するが、肺の線維化の原因としては、薬剤の副作用のほか、鉱物、陶器又は石材等の粉やアスベスト等の吸引、放射線による被ばく、膠原病や感染症等がある。また、心臓の線維化の原因としては、薬剤の副作用のほか、ウイルス感染、糖尿病、肥満、甲状腺疾患、アルコール等がある。なお、肺及び心臓の線維化には、発症原因が特定されていないものも含まれる。本発明においては、さまざまな原因による肺又は心臓の線維化を抑制するが、特に、薬剤により惹起される肺又は心臓の線維化、すなわち、薬剤により惹起される間質性肺炎又は心筋症を好適に抑制することができる。この種の薬剤としては、肺又は心臓の線維化を惹起する薬剤であればよいが、一例として抗癌剤、免疫抑制剤、抗リウマチ薬、血管拡張薬、抗不整脈薬、漢方薬、インターフェロン、抗菌剤、抗てんかん剤、利尿剤又は抗生物質等が挙げられる。具体的には、抗癌剤としては、心臓の線維化を惹起するものとして、アントラサイクリン系抗癌剤が挙げられ、肺の線維化を惹起するものとして、ブレオマイシン、ゲフィチニブ、エルロチニブ、セツキシマブ、パニツムマブ、ボルテゾミブ、ビノレルビン、ペプロマイシン、ブスルファン、イリノテカン、シスプラチン、オキサリプラチン又はカルボプラチン等が挙げられる。そのうち、アントラサイクリン系抗癌剤としてはドキソルビシン(アドリアマイシン)、ダウノルビシン、ピラルビシン、エピルビシン、イダルビシン、アクラルビシン、アムルビシン、バルルビシン又はミトキサントロン等が挙げられる。また、免疫抑制剤としては、肺の線維化を惹起するものとして、シクロフォスファミド、アザチオプリン、タクロリムス又はペニシラミン等が挙げられ、抗リウマチ薬としては、肺の線維化を惹起するものとして、メトトレキサート、サラゾスルファピリジン又はレフルノミド等が挙げられる。これらの薬剤は、悪性腫瘍やリウマチ等の疾患の治療のために使用されるが、副作用として肺や心臓の線維化を引き起こす。それゆえ、本発明の慢性呼吸器疾患治療剤又は心臓の線維化抑制組成物をこの種の薬剤の投与の前に、あるいはこの種の薬剤の投与と同時に又は時間差をおいて摂取することにより、肺又は心臓の線維化といった副作用を低減することができる。
 本発明の治療剤又は組成物の投与量は、目標とする予防又は治療効果、投与方法、年齢、体重などによって変化するので一概には規定できないが、通常一日の非経口的な投与量は、上述のハイドロキノン誘導体として約0.01~100mg/kg体重であり、好ましくは約0.05~50mg/kg体重である。また、本発明の治療剤又は組成物の投与量は、経口的には上述のハイドロキノン誘導体として約0.1~500mg/kg体重であり、好ましくは約0.5~200mg/kg体重であり、これを1~3回に分割して投与すればよい。他の薬剤による肺や心臓の線維化を抑制するために本発明の治療剤又は組成物を使用する場合には、本発明の治療剤又は組成物の投与は、肺や心臓の線維化を引き起こす抗癌剤等の薬剤の投与の前に予め行っておくことが好ましいが、薬剤の投与と同時に又は別々に行ってもよい。
 なお、肺や心臓の線維化を引き起こす抗癌剤や免疫抑制剤等の薬剤と、本発明の治療剤又は組成物の有効成分である上述のハイドロキノン誘導体とを同時に投与するために、肺や心臓の線維化を引き起こすこの種の薬剤とハイドロキノン誘導体とを組み合わせた配合薬としてもよい。
 さらに、本発明の慢性呼吸器疾患治療剤、心臓の線維化抑制組成物及び薬剤の副作用軽減組成物には、前述の一般式(1)で表されるハイドロキノン誘導体に加えて、遺伝子組み換えヒトエリスロポエチン(EPO)を含有させることができる。これにより、より向上した線維化抑制効果及び炎症抑制効果が得られる。上述のハイドロキノン誘導体とヒトエリスロポエチンを組み合わせた際のヒトエリスロポエチンとしての投与量は、目標とする治療効果、投与方法、年齢、体重などによって変化するので一概には規定できないが、通常一日の非経口的な投与量は、約0.1~100IU/kg体重であり、好ましくは約0.5~50IU/kg体重である。経口的には約1~1000IU/kg体重であり、好ましくは約5~500IU/kg体重であり、これを1~3回に分割して投与すればよい。上述のハイドロキノン誘導体と上述のヒトエリスロポエチンとを組み合わせてなる組成物や治療剤は、これらの有効成分を別々に、又は同時に、医薬組成物として経口的又は非経口的に投与することができる。なお、有効成分であるハイドロキノン誘導体とヒトエリスロポエチンとを別々に製剤化した場合、別々に製剤化したものを使用時に混合して投与することができるほか、別々に製剤化したものを、別々に、あるいは同時に、または時間差をおいて同一対象に投与してもよい。
 本発明の慢性呼吸器疾患治療剤、心臓の線維化抑制組成物及び薬剤の副作用軽減組成物は、従来慣用されている方法により種々の形態に調製することができる。この場合、通常製剤用の担体や賦形剤など、医薬品の添加剤として許容されている添加剤を用いて製剤化することができる。また、本化合物のバイオアベイラビリティーや安定性を向上させるために、マイクロカプセル、微粉末化、シクロデキストリン等を用いた包接化などの製剤技術を含むドラッグデリバリーシステムを用いることもできる。
 上記組成物を経口投与製剤として用いる場合には、錠剤、顆粒剤、カプセル剤又は内服用液剤等の形態で用いることができるが、消化管からの吸収に適した形態で用いることが好ましい。また、流通性、保存性などの理由により所望される形態での製剤を提供する場合にも従来の製剤技術を用いることができる。また、非経口投与剤として用いる場合には、注射剤、坐剤およびテープ、パップなどの経皮吸収剤等の形態とすることができるが、流通性、保存性などの理由から固形製剤を使用時に適当な溶剤で溶解してから用いることもでき、液剤および半固形剤の形態で提供することも従来の製剤技術により可能である。
 また、前述の一般式(1)で表されるハイドロキノン誘導体を有効成分として含む、慢性呼吸器疾患、心臓の線維化疾患又は薬剤の副作用の予防・改善用の食品組成物は、錠剤やカプセル剤、顆粒剤、シロップ剤などのサプリメント形態、飲料、菓子、パン、粥、シリアル、麺類、ゼリー、スープ、乳製品、調味料、食用油等のあらゆる形態で用いることができる。また、食品組成物として用いる際には、本発明の有効成分の効能に影響を与えない範囲において、他の有効成分や、ビタミン、ミネラル若しくはアミノ酸等の栄養素等を種々組み合わせることも可能である。本発明の食品組成物から展開される食品には、サプリメント、健康食品、機能性食品、特定保健用食品等が含まれる。また、本発明の食品組成物の摂取量は、上述のハイドロキノン誘導体として約0.1~500mg/kg体重とすることが好ましく、約0.5~200mg/kg体重とすることがより好ましく、これを1~3回に分割して摂取することが好ましい。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。
 [実施例1]
 1.ブレオマイシンにより誘発される肺線維症に対する作用の検討
 ブレオマイシンは、間質性肺炎の疾患モデル動物を作製するために利用されている。このブレオマイシンを生後10週齢の雄SDラットに投与すると共に、本発明の上述の一般式(1)で表されるハイドロキノン誘導体として2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル(HTHQ)を投与し、その作用効果を調べた。試験群の構成は、対照群:滅菌生理食塩水を投与、試験群1:ブレオマイシン(7.5mg/kg体重)を単独投与、試験群2:ブレオマイシン(7.5mg/kg体重)及びHTHQ(50mg/kg体重/日)を併用投与、試験群3:ブレオマイシン(7.5mg/kg体重)及びHTHQ(200mg/kg体重/日)を併用投与、とした。
 試験群1~3について、ブレオマイシンの投与は単回とし、投与は経口にて行った。また、試験群2及び3について、2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル(HTHQ)の投与はブレオマイシンの投与24時間後から行い、10日間又は20日間に亘り、毎日経口投与することによって行った。また、試験群1については、ブレオマイシン投与24時間後から、HTHQの溶媒として用いたオリーブ油を10mL/kg/日となるように毎日経口投与した。各群の動物数は1群当たり16頭とした。ブレオマイシン投与10日目及び投与20日目に各群について8頭ずつ屠殺し、体重測定、肺剖検、肺の病理組織検査及び気管支肺胞洗浄検査を行った。
 <体重及び肺相対重量>
 対照群のラットの体重は試験期間中経時的に増加した。他方、ブレオマイシンを投与した試験群1~3は試験期間中、徐々に体重が減少していた。次に、肺相対重量の結果を図1に示す。肺の間質組織は線維化することにより重量が増加し、肺相対重量が増大する傾向を示す。グラフ中の数字は、対応する試験群を示しており、バー上に記載された##は、対照群と比較したときのp値がp<0.01であることを示し、*は、試験群1と比較したときのp値がp<0.05であることを示している。図1に示すように、ブレオマイシンを投与した試験群1~3の肺相対重量は、対照群に比べて有意に増加した(p<0.01)。しかし、投与後20日における肺相対重量についてみると、HTHQを投与した試験群2及び3の肺相対重量は、ブレオマイシン単独投与群(試験群1)に比べ有意に低かった(p<0.05)。これにより、HTHQを投与した試験群2及び3のラットは、試験群1のラットよりも肺の線維化が進行していないことが推測された。
 <肺の肉眼的所見>
 肺の剖検を行い、肉眼的所見を観察した結果、試験群1(ブレオマイシン単独投与群)の投与20日目のラットの肺では、肺門部を中心に境界明瞭な結節が観察されたほか、暗赤色及び淡赤色の出血班点が多数観察され、肺表面は陥没していた。一方、HTHQを投与した試験群2及び試験群3のラットの肺にはこのような病変が軽減されていた。
 <肺の病理組織検査所見>
 試験群1(ブレオマイシン単独投与群)の投与10日後のラットの主な肺病変としては、気管支及び細気管支周囲の肺胞拡大、肺胞壁の肥厚、肺胞壁と間質組織における単核球とリンパ球の浸潤、肺胞腔内に肺胞マクロファージの滲出が観察された。試験群2及び3(HTHQ投与群)のラットでは、これらの所見は試験群1の組織に比べ軽減されていた。さらに、試験群1では、核小体が明確ではない大きな核を持つ肺胞上皮の異型(Atypia)が認められ、肺胞の形態がまだ維持されている部位の肺胞腔内には泡沫状の肺胞マクロファージが観察される等、肺の線維化が進行していることがわかった。
 ブレオマイシン投与20日目の対照群及び各試験群の肺の病理組織検査結果を以下表1に示す。重症度スコアは、「-」はなし、「+」は軽度、「++」は中等度、「+++」は重篤を示している。試験群1(ブレオマイシン単独投与群)の所見では、投与10日目の組織よりも、気管支の周囲及び隣接する肺胞壁の肥厚と線維化が顕著となり、リンパ球及び好中球の浸潤によって肺胞の形態は殆ど消失した。また、肺胞腔内に浸潤した肺胞マクロファージは周囲組織によって埋没していた。他方、HTHQ投与群である試験群2及び3では、肺胞の形態を見ることができる部位の肺胞腔内において、空胞を含む肺胞マクロファージ、細気管支周囲における細胞浸潤及び肺胞壁の肥厚が認められたが、その程度はブレオマイシン単独投与群である試験群1と比べると、いずれも軽度であった。
Figure JPOXMLDOC01-appb-T000009
 <気管支肺胞洗浄(BAL)検査>
 対照群及び各試験群のラットについて、気管支肺胞洗浄(BAL)検査を行った。気管支肺胞洗浄液内の総細胞数の測定結果を図2に示す。間質性肺炎に罹患すると炎症細胞浸潤が起こり、BAL液中の総細胞数が増加する。ブレオマイシン投与後10日の総細胞数についてみると、対照群は2×10個、試験群1(ブレオマイシン単独投与群)は9×10個、試験群2(低用量HTHQ投与群、50mg/kg体重)は6.5×10個、試験群3(高用量HTHQ投与群、200mg/kg体重)は10.5×10個であり、ブレオマイシン投与10日目には、HTHQ投与による効果は認められなかった。しかし、ブレオマイシン投与20日後には、ブレオマイシン単独投与群の総細胞数は12.8×10個、低用量HTHQ投与群は7.9×10個、高用量HTHQ投与群は3.8×10個と減少した。これにより、HTHQは用量依存的に肺細胞の滲出を抑制することがわかった。
 また、気管支肺胞洗浄液内の肺胞マクロファージ数の測定結果を図3に示す。間質性肺炎に罹患すると間質組織への肺胞マクロファージの浸潤がおこり、BAL液中の肺胞マクロファージ数が増加する。ブレオマイシン投与後10日の肺胞マクロファージ数についてみると、対照群は1.45×10個、試験群1(ブレオマイシン単独投与群)は4.5×10個、試験群2(低用量HTHQ投与群)は1.99×10個、試験群3(高用量HTHQ投与群)は3.24×10個であり、ブレオマイシン投与10日目においてはHTHQ投与による効果は認められなかった。しかし、投与20日目には、ブレオマイシン単独投与群の肺胞マクロファージ数は5.5×10個であるのに対し、低用量HTHQ投与群は3×10個、そして、高容量HTHQ投与群は2×10個と低減した。これにより、HTHQは用量依存的に肺胞マクロファージの滲出を抑制することがわかった。
 さらに、気管支肺胞洗浄液内の好中球数の測定結果を図4に示す。間質性肺炎に罹患すると間質組織への好中球の炎症細胞浸潤がおこり、BAL液中の好中球数が増加する。ブレオマイシン投与後10日目の好中球数についてみると、対照群は1.04×10個、試験群1(ブレオマイシン単独投与群)は2.28×10個、試験群2(低用量HTHQ投与群)は1.44×10個、試験群3(高用量HTHQ投与群)は5.83×10個であり、ブレオマイシン投与10日目においてはHTHQの効果は認められなかった。しかし、投与後20日目には、ブレオマイシン単独投与群が4.97×10個であるのに対し、低用量HTHQ投与群は4.34×10個、そして、高用量HTHQ投与群は1.49×10個と顕著に減少した。このことから、HTHQを高用量で投与することによって、好中球数を顕著に減少させることができることがわかった。
 続いて、気管支肺胞洗浄液内のリンパ球数の測定結果を図5に示す。間質性肺炎に罹患すると間質組織へのリンパ球の炎症細胞浸潤がおこり、BAL液中のリンパ球数が増加する。ブレオマイシン投与10日目のリンパ球数についてみると、対照群は4.42×10個、試験群1(ブレオマイシン単独投与群)は2.72×10個、試験群2(低用量HTHQ投与群)は3.07×10個、試験群3(高用量HTHQ投与群)は1.43×10個であり、投与10日目の段階ではHTHQ投与の効果は認められなかった。しかし、投与後20日目にはブレオマイシン単独投与群は2.09×10個であるのに対し、低用量HTHQ投与群は0.53×10個、高用量HTHQ投与群は0.3×10個と顕著に減少し、HTHQはリンパ球の滲出を用量依存的に抑制することがわかった。
 これらの病理組織検査及び気管支肺胞洗浄検査等の結果から、本発明の上述の一般式(1)で表されるハイドロキノン誘導体は、ブレオマイシンが誘発する肺の線維化を効果的に抑制し、間質性肺炎を予防又は治療する効果があることがわかった。
 [実施例2]
 2.タバコの煙により誘発される肺の炎症に対する作用の検討
 体重20~25gの6週齢 SPF C57BL/6N 雄マウスをコアテック株式会社(韓国)より購入した。約1週間の検疫及び適応期間を経たのち、マウスを以下表2に示す5つの群に分けた。
Figure JPOXMLDOC01-appb-T000010
 試験は次のようにして行った。試験群のうち、COPD(慢性閉塞性肺疾患)モデル群については、1日のうち1時間タバコの煙(8本のタバコ/day)に暴露させることを10日間行い、試験開始から8日目にLPS(5μg/50μL/マウス)を鼻腔内に投与した。陽性対照物質投与群については、陽性対照物質であるロフルミラストを経口で10mg/kg体重/day投与してから1時間後にタバコの煙に1時間暴露させることを10日間行った。また、試験開始から8日目にLPS(5μg/50μL/マウス)を鼻腔内に投与した。ここで、ロフルミラストとは選択的ホスフォジエステラーゼ4阻害剤であり、COPD及び喘息の治療薬として用いられている物質(欧州、米国にて承認、日本では未承認)である。他方、HTHQ投与群についても、図6に示すように、試験物質である2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル(HTHQ)を経口で低用量群は10mg/kg体重/day、高用量群は20mg/kg体重/dayをそれぞれ投与してから1時間後にタバコの煙に1時間暴露させることを10日間行った。また、8日目にLPS(5μg/50μL/マウス)を鼻腔内に投与した。すべての動物は11日目に安楽死させ、気管支肺胞洗浄(BAL)検査及び肺の病理組織検査を実施した。実験期間中は、正常対照群及び試験群の各マウスには滅菌した水道水とげっ歯類用標準飼料を与えた。全ての実験手続きは韓国生命工学研究院のIACUC承認を受けた後に行った。
 <気管支肺胞洗浄(BAL)検査>
 各試験群のマウスについてはLPS投与72時間後、正常対照群のマウスについては試験開始11日目に、ペントバルビタール(ハンリム製薬、韓国)を腹腔内に50mg/kg注射して安楽死させた後、気管支を切除した。気管支肺胞洗浄液(BAL液)を採取するため、氷冷した700μLのPBSを肺に注入した後、これを回収することを2回実施し、1.4mLのBAL液を採取した。採取したBAL液を4℃、1500rpm×5分の条件にて遠心分離した。後で炎症性サイトカイン分析(TNF-α及びIL-6)を行うために上清を採取し、-70℃の超低温槽に保管した。他方、遠心分離により沈殿した細胞に1mLのPBSを注入し、軽くたたいて懸濁させ、BAL細胞液とした。サイトスピン(4℃、1000rpm×5分)を利用して、BAL細胞液100μLからスライド標本を作った後、ディフ・クイック染色キットを利用して、BAL液内に存在する炎症細胞(好中球、マクロファージ)の細胞数をカウントした。結果を図7に示す。図7に示すように、タバコの煙によって誘発されたCOPDモデル群には炎症細胞の浸潤が認められた。他方、HTHQ投与群のマウスは、COPDモデル群と比べて炎症細胞の浸潤が効果的に減少していた。HTHQの投与用量による効能の差は観察されず、陽性対照物質であるロフルミラスト(ROF)投与群とも同程度の効能を示した。
 次に、BAL細胞液中の活性酸素(ROS)量を測定した。BAL細胞液が5×10/100μL/ウェルとなるように96ウェルプレートの各ウェルにBAL細胞液を入れた後、ROS指示薬として20mMのDCF-DAを各ウェルに10μLずつ添加し、30分間振とうした。蛍光プレート分析機(パーキンエルマー社製品)にて、励起485nm/蛍光530nmの波長にて細胞内の活性酸素(ROS)量を測定した。結果を図8に示す。図8に示すように、タバコの煙によって誘発されたCOPDモデル群には高い活性酸素の生成が認められた。他方、HTHQ投与群のマウスは、COPD群と比べて活性酸素が効果的に減少しており、陽性対照物質(ロフルミラスト、ROF)投与群との比較では、おおむね同様の効能を示した。
 また、保管していたBAL液の上清を超低温槽から取り出し、上清内の炎症性サイトカイン量として、TNF-α及びIL-6の量を測定した。測定には、定量ELISAキット(インビトロジェン社製品)及びELISA分析機(モレキュラーデバイス社製品)を用い、測定波長は450nmとした。TNF-α量の結果を図9に、IL-6量の結果を図10に示す。図9に示すように、COPDモデル群のBAL液にはTNF-αが高いレベルで含まれることがわかった。他方、HTHQ投与群については、COPDモデル群と比べるとTNF-α量が効果的に減少しており、陽性対照物質(ロフルミラスト、ROF)投与群との比較では、陽性対象物質とおおむね同様の効能を示した。また、IL-6については、図10に示すように、COPDモデル群のBAL液にはIL-6が非常に高いレベルで含まれていた。HTHQ投与群については、COPDモデル群と比べるとIL-6量が顕著に減少しており、ROF(ロフルミラスト)との比較では同様の効能を示すことがわかった。
 <肺の病理組織検査>
 正常対照群及び各試験群のマウスについて、気管支肺胞洗浄液(BAL液)を採取した後、気管支周辺の肺組織を10%中性ホルマリン液で固定した。肺組織をパラフィンで包埋した後、4μmの厚さにスライスし、ヘマトキシリン・エオジン染色して観察を行った。正常対照群(写真中「NC」)及び各試験群の気道周辺の肺組織の写真を図11に示す。図11の各写真において、炎症細胞の浸潤が生じている部分(HE染色により濃色に染色された部分)を矢印で示す。図11の写真に示すように、タバコの煙によって誘発されたCOPDモデル群(写真中、「COPD」)には広範囲に多数の炎症細胞の浸潤が認められた。他方、HTHQ投与群(写真中、「HTHQ10」及び「HTHQ20」)は、COPDモデル群と比べ、用量依存的に炎症細胞の浸潤が著しく減少していた。また、陽性対照物質として使用されたロフルミラスト投与群(写真中、「ROF」)との比較では、同様の効能を示した。
 これらの気管支肺胞洗浄検査及び病理組織検査の結果から、本発明の上述の一般式(1)で表されるハイドロキノン誘導体は、タバコの煙が誘発する肺組織の炎症、すなわち、COPDの進行を効果的に抑制し、COPDを予防又は治療する効果があることがわかった。また、本実施例において、本発明のハイドロキノン誘導体は、陽性対照物質として用いたロフルミラストと同様の効能を示したことから、COPDの予防及び治療に有効であることが示された。
 [実施例3]
 3.喘息に対する作用の検討
 卵白アルブミン感作によるマウスにおけるアレルギー性喘息モデルを用い、本発明の上述の一般式(1)で表されるハイドロキノン誘導体の喘息に対する有効性を検討した。
 6週齢のBALB/c 雌マウスを購入し、約2週間の馴化飼育を経た後、マウスを以下表3に示す5つの群に5匹ずつ配した。
Figure JPOXMLDOC01-appb-T000011
 試験は図12に示す感作、惹起及び被験物質の投与スケジュールで行った。図12における「IP」とは卵白アルブミン/水酸化アルミニウム腹腔内投与による卵白アルブミン感作処置を示し、「IH」とは卵白アルブミンの吸入暴露処置を示し、「PO」とは各被験物質の投与を示している。具体的には、正常対照群を除く4群のすべてのマウスに対し、卵白アルブミン20μg及びアジュバントとして水酸化アルミニウム2mgを加えて乳化させたPBS(pH7.4)200μLを腹腔内投与した(初回感作、試験1日目)。次いで2週間後(試験14日目)に初回感作と同様の方法で2回目の感作処置を行った。さらに、試験21~23日目に、超音波ネブライザーを用いて、マウスに卵白アルブミン1%含有PBSを各日1時間ずつ吸入暴露させた。他方、試験18~23日目に被験物質の経口投与を各日行った。具体的には、正常対照群にはPBSを、卵白アルブミン感作対照群には後述するHTHQの溶媒に用いた3%Tween80含有生理食塩水を経口投与し、陽性対照物質投与群にはPBSに溶かしたモンテルカスト(シグマアルドリッチ社製品)を30mg/kg体重/dayで経口投与した。ここで、モンテルカストとは、ロイコトリエン受容体拮抗剤であり、気管支喘息の治療薬として用いられている物質である。また、HTHQ投与群については、試験物質である2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル(HTHQ)を3%Tween80に溶かし、低用量群は20mg/kg体重/day、高用量群は40mg/kg体重/dayでそれぞれ経口投与した。試験25日目に、すべてのマウスの眼窩静脈叢から血液をそれぞれ採取し、その後安楽死させ、気管支肺胞洗浄(BAL)検査及び血清中の総IgE含量および卵白アルブミン特異的IgE含量の測定を行った。
 <気管支肺胞洗浄(BAL)検査>
 すべてのマウスについて、試験25日目にペントバルビタール(ハンリム製薬、韓国)を50mg/kg腹腔内注射して安楽死させ、気管支を切除した。気管支肺胞洗浄液(BAL液)を採取するため、氷冷した700μLのPBSを肺に注入した後、これを回収することを2回実施し、1.4mLのBAL液を採取した。採取したBAL液を4℃、1500rpm×5分の条件にて遠心分離した。後で炎症性サイトカインの分析を行うために上清を採取し、-70℃の超低温槽に保管した。遠心分離により沈殿した細胞に1mLのPBSを注入し、軽くたたいて懸濁させ、BAL細胞液とした。サイトスピン(4℃、1000rpm×5分)を利用して、BAL細胞液100μLからスライド標本を作った後、ディフ・クイック染色キットを利用して、BAL液内に存在する炎症細胞(好酸球、マクロファージ、リンパ球、好中球)の細胞数をカウントした。結果を図13に示す。図13のグラフのバー上に記載された#は、正常対照群と比較したときのp値がp<0.01であることを示し、**は、卵白アルブミン感作対照群と比較したときのp値がp<0.01であることを示している。図13に示すように、卵白アルブミンの腹腔内投与により感作され、卵白アルブミンの吸入によりアレルギー性喘息が惹起された卵白アルブミン感作対照群「OVA」は、正常対照群「NC」と比べて好酸球、マクロファージおよび炎症細胞の総数が増加していた。これに対し、HTHQ投与群では上述した炎症細胞数が有意に、かつ、HTHQの用量依存的に減少しており、その炎症細胞数の抑制作用は気管支喘息の治療薬として使用されている、陽性対照物質のモンテルカスト(陽性対照物質投与群「Mon」参照)に匹敵するものであることがわかった。
 また、保管していたBAL液の上清を超低温槽から取り出し、BAL液上清中の炎症性サイトカイン含量として、IL-4、IL-5およびIL-13の量を測定した。測定には、定量ELISAキット(R&Dシステム社製品)とマイクロプレートリーダー(バイオラッド社製品)を用い、測定波長は450nmとした。IL-4の結果を図14に、IL-5の結果を図15に、IL-13の結果を図16に示す。図14~図16のグラフのバー上に記載された#は、正常対照群と比較したときのp値がp<0.01であることを示し、*は、卵白アルブミン感作対照群と比較したときのp値がp<0.05であることを示し、**は、卵白アルブミン感作対照群と比較したときのp値がp<0.01であることを示している。図14~図16に示すように、卵白アルブミン感作対照群「OVA」のBAL液は、正常対照群「NC」と比べて、IL-4、IL-5およびIL-13の含有量が顕著に増加していた。これに対し、HTHQ投与群では、これらのサイトカイン量が卵白アルブミン感作対照群「OVA」と比べて有意に減少することが示され、陽性対照物質投与群「Mon」でも同様に有意な減少が認められた。
 <血清中の総IgE含量および卵白アルブミン特異的IgE含量>
 試験25日目にマウスの眼窩静脈叢から採取した血液を用い、血清中の総IgEおよび卵白アルブミン特異的IgE含量を測定した。測定には、IgE測定用ELISAキット(バイオレジェンド社製品)を用い、マイクロプレートリーダー(バイオラッド社製品)を用いて波長450nmにて測定した。血清中の総IgE含量の結果を図17に、血清中の卵白アルブミン特異的IgE含量を図18に示す。図17及び図18のグラフのバー上に記載された#は、正常対照群と比較したときのp値がp<0.01であることを示し、*は、卵白アルブミン感作対照群と比較したときのp値がp<0.05であることを示している。図17及び図18に示すように、卵白アルブミン感作対照群「OVA」では血清中の総IgE量および卵白アルブミン特異的IgE量が、正常対照群「NC」と比べて明らかに増加した。これに対し、HTHQ投与群では、図17に示す総IgE量では、HTHQの20mg/kg体重/day投与群「HTHQ20」で有意な減少が認められ、HTHQの40mg/kg体重/day投与群「HTHQ40」でも減少傾向が見られた。他方、図18に示す卵白アルブミン特異的IgE量ではHTHQ投与による有意差は認められなかったが、減少傾向が見られた。
 以上の結果から、HTHQは、気管支喘息治療薬としてすでに臨床で使用されているロイコトリエン受容体拮抗薬であるモンテルカストに匹敵する作用を有すること、すなわち、アレルギー反応に基づく気道の炎症を有効に抑制する作用を有することが認められた。よって、本発明の上述の一般式(1)で表されるハイドロキノン誘導体は、気管支喘息の治療に有効であることが示された。
 [実施例4]
 4.喀痰排出作用の検討
 8週齢の雄ICRマウスに本発明のハイドロキノン誘導体を単回経口投与し、Englerらによる方法(Engler H、Szelenyi I、J.Pharmacol.Moth.11、151~157、1984)に準じて、喀痰の排出作用を評価した。まず、8週齢のICR雄マウスを以下表4に示す5つの群に8匹ずつ配した。
Figure JPOXMLDOC01-appb-T000012
 具体的に、試験は次のようにして行った。対照群及び各試験群のマウスに被験物質を経口投与した。すなわち、陰性対照群には2%アラビアゴム水溶液を投与し、HTHQ投与群には、試験物質である2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル(HTHQ)を100mg/kg体重、200mg/kg体重、400mg/kg体重でそれぞれ経口投与した。また、Ambroxol投与群にはアンブロキソール(シグマアルドリッチ社製品)を250mg/kg体重で経口投与した。ここで、アンブロキソールとは、去痰作用を有する物質であり、陽性対照物質として選択している。被験物質の経口投与30分後に、フェノールレッド(シグマアルドリッチ社製品)を0.05g/mLの濃度で溶かした生理食塩水を15 mL/kg腹腔内投与した。そして、フェノールレッドの投与30分後に、二酸化炭素吸入によりマウスを安楽死させ、気管をそれぞれ摘出した。摘出された気管の所定の部位を一定の大きさに切って気管片を得た。得られた気管片を各々遠心チューブに入れ、1mLの生理食塩水を添加し、超音波洗浄機を用いて15分間超音波処理を実施した。10000rpmで5分間遠心分離した後、上層液0.5mLを遠心チューブに分注し、0.05mLの1N水酸化ナトリウムを添加した。ボルテックスミキサーで攪拌した後、0.2mLのサンプルを96ウェルプレートに分注し、マイクロプレートリーダー(バイオテック社製品)を用いて546nmで吸光度を測定した。測定された吸光度をフェノールレッド標準品(75.0、37.5、18.8、9.4、7.4、2.3及び1.2ng/mL)の吸光度に基づく検量線に代入して、対照群及び各試験群のマウス気管片から排出されたフェノールレッド量を算出した。この気管片から排出されたフェノールレッドの量を次式に代入して被験物質の喀痰排出能を求めた。喀痰排出能を求める式は、「喀痰排出能(%)={(A/B)-1}×100」、A:各被験物質投与群のフェノールレッド量(平均値)、B:陰性対照群のフェノールレッド量(平均値)、である。
 本実施例の結果を図19に示す。図19のグラフのバー上に記載された*は、陰性対照群と比較したときのp値がp<0.05であることを示し、**は陰性対照群と比較したときのp値がp<0.01であることを示している。HTHQ投与群の喀痰排出能はそれぞれ24.6%(HTHQ100mg/kg)、30.0%(HTHQ200mg/kg)及び36.2%(HTHQ400mg/kg)であり、200mg/kg投与群および400mg/kg投与群では陰性対照群と比較して有意な増加が認められた。同様に、陽性対照であるAmbroxol群の喀痰排出能は41.1%であり、陰性対照群と比較して有意な増加が認められた。以上の結果から、HTHQにはアンブロキソール同様に喀痰の排出を促進する作用、すなわち、去痰作用を有することが認められた。それゆえ、HTHQは、アンブロキソール同様にカゼや急性気管支炎といった呼吸器疾患のほか、COPD、喘息及び間質性肺炎といった慢性呼吸器疾患に起因する喀痰の排出も促進することができ、これらの疾患の治療や改善に有効であることが示された。
 [実施例5]
 5.ドキソルビシンにより誘発される心筋障害に対する作用の検討
 ドキソルビシンは、心筋症の疾患モデル動物を作製するために利用されている。このドキソルビシンを生後4週齢の雌SDラットに投与すると共に、本発明の上述の一般式(1)で表されるハイドロキノン誘導体として2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル(HTHQ)を投与し、その作用効果を調べた。試験群の構成は、対照群:滅菌生理食塩水を投与、試験群1:ドキソルビシン(13mg/kg体重)を単独投与、試験群2:ドキソルビシン(13mg/kg体重)及びHTHQ(50mg/kg体重)を併用投与、試験群3:ドキソルビシン(13mg/kg体重)、HTHQ(50mg/kg体重)及び組み換えヒトエリスロポエチン(400IU/kg体重)を併用投与、とした。なお、組み換えヒトエリスロポエチン(rHuEPO)は、主に腎性貧血治療等に用いられているが、心筋保護効果を有する。試験群3は、HTHQとrHuEPOとの併用による心筋障害抑制効果の有無を確認するものである。
 試験群1~3について、ドキソルビシンの投与は単回とし、投与は経口にて行った。また、試験群2及び3について、2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル(HTHQ)の投与はドキソルビシン投与3日前とドキソルビシン投与当日の計2回とし、投与は経口にて行った。また、試験群3について、組み換えヒトエリスロポエチンはドキソルビシン投与3日前から毎日投与を行い、投与は静脈内注射にて行った。各群の動物数は1群当たり16頭とした。ドキソルビシン投与7日目及び投与14日目に各群について8頭ずつ採血した後屠殺し、心臓剖検、心臓相対重量の算出、心臓の病理組織検査及び血液検査を行った。
 <心臓相対重量>
 心筋は線維化することにより肥大して心筋重量が増加し、心臓相対重量が増大する傾向を示す。対照群及び試験群1~3のラットの心臓相対重量の結果を以下表5に示す。ドキソルビシン投与後7日目において、試験群2の心臓相対重量が試験群1よりも大きな値を示したが、投与後14日目においては、試験群2の心臓相対重量は試験群1と比べて有意差はなかった。また、その他の群間についても、投与後7日目及び14日目ともに有意差は認められなかった(p<0.05)。
Figure JPOXMLDOC01-appb-T000013
 <心臓剖検及び心臓の肉眼的所見>
 心臓剖検を行い、肉眼的所見を観察した結果、対照群と比較して、試験群1~3のドキソルビシン投与群には明らかな病変は観察されなかった。
 <病理組織検査所見1(光学顕微鏡)>
 心臓の病理組織検査結果を以下表6に示す。表の重症度スコアは、「-」はなし、「+」は軽度、「++」は中等度、「+++」は重篤を示している。ドキソルビシン投与後7日目の心臓の組織についてみると、試験群1において心筋細胞の変性、心筋線維の喪失と組織崩壊、心筋壊死、横紋の喪失及び間質組織における細胞浸潤等が観察された。しかし、HTHQを投与した試験群2では試験群1に比べてこれらの病変が軽減されており、HTHQ及びrHuEPOを投与した試験群3はさらにこれらの病変が軽減され、ほぼ正常の心筋組織に近い所見を示した。ドキソルビシン投与後14日目の組織の病変は、試験群1では投与後7日目のものよりもさらに進行しており、心筋細胞と間質組織における高度の空胞変性、心筋線維の肥大と萎縮、心筋線維の喪失と組織崩壊、心筋壊死及び横紋の喪失等の所見が観察された。投与後14日目においても、投与後7日目と同様に、HTHQを投与した試験群2と試験群3の組織の病変は試験群1に比べ軽減されていた。
Figure JPOXMLDOC01-appb-T000014
 <病理組織検査所見2(透過電子顕微鏡)>
 ドキソルビシン投与後7日目における試験群1の心筋細胞では、横紋の喪失、介在板の喪失、ミトコンドリアの腫脹、ミトコンドリア外膜の喪失及びクリステの離脱などが観察された。しかし、HTHQを投与した試験群2と試験群3では横紋の喪失が軽減されており、心筋細胞とミトコンドリアがほぼ均一に配列してする等、正常な細胞と近い所見を示した。ドキソルビシン投与後14日目の心筋細胞においても、試験群1~3は投与後7日目と同様な所見が観察された。
 これらの病理組織検査の所見から、本発明の上述の一般式(1)で表されるハイドロキノン誘導体は、ドキソルビシンが誘発する心臓の線維化を抑制する効果があり、心筋症を予防又は治療する効果があることが示された。また、このハイドロキノン誘導体と組み換えヒトエリスロポエチンとを合わせて用いることにより、心臓の線維化の抑制または治療効果がさらに向上することがわかった。
 <クレアチンホスホキナーゼ;CPK>
 クレアチンホスホキナーゼ(CPK)は筋肉、脳、神経に多量に分布し、エネルギー代謝に関与する酵素である。特に骨格筋や心筋に障害が起きたときに血中に流出する逸脱酵素として臨床上重要な指標となっている。ドキソルビシン投与後14日目におけるクレアチンホスホキナーゼ(CPK)値を測定したところ、対照群に比べ、試験群1及び試験群2の値が有意に高い値を示した(p<0.05)。しかしながら、HTHQを投与した試験群2と試験群3のCPK値は試験群1と比べて有意に低い値であり(p<0.05)、HTHQ及びrHuEPOを投与した試験群3ではCPK値の増加が見られなかった。以上の結果から、一般式(1)で表されるハイドロキノン誘導体は、ドキソルビシンが誘発する心筋の障害を抑制する作用があり、心筋症を予防又は治療する効果があることが示された。また、このハイドロキノン誘導体と組み換えヒトエリスロポエチンとを合わせて用いることにより、心筋障害の抑制または治療効果がさらに向上することがわかった。
 本発明は、上記の実施形態又は実施例に限定されるものでなく、特許請求の範囲に記載された発明の要旨を逸脱しない範囲内での種々、設計変更した形態も技術的範囲に含まれるものである。
 本発明は、慢性閉塞性肺疾患(COPD)、喘息及び間質性肺炎といった慢性呼吸器疾患、心筋症及び抗癌剤等の薬剤の投与により誘発される肺又は心臓の線維化を抑制、改善することができ、慢性呼吸器疾患、心筋症及び抗癌剤等の薬剤の副作用による肺又は心臓の線維化疾患の予防、治療又は改善のために有用である。

 

Claims (14)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素数4~8のアルキル基を示し、Rは水素原子、炭素数2~6のアルキルカルボニル基または炭素数2~6のアルコキシカルボニル基を示す。)で表されるハイドロキノン誘導体を有効成分として含むことを特徴とする慢性呼吸器疾患治療剤。
  2.  前記ハイドロキノン誘導体が、2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテルまたは2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル 4-アセテートであることを特徴とする請求項1に記載の慢性呼吸器疾患治療剤。
  3.  前記慢性呼吸器疾患が、慢性閉塞性肺疾患(COPD)、間質性肺炎及び喘息からなる群より選ばれた少なくとも1つの疾患であることを特徴とする請求項1又は2に記載の慢性呼吸器疾患治療剤。
  4.  前記慢性呼吸器疾患が、慢性閉塞性肺疾患(COPD)であることを特徴とする請求項1又は2に記載の慢性呼吸器疾患治療剤。
  5.  前記間質性肺炎が、薬剤により惹起されるものであることを特徴とする請求項3に記載の慢性呼吸器疾患治療剤。
  6.  前記薬剤が、ブレオマイシン、ゲフィチニブ、エルロチニブ、セツキシマブ、パニツムマブ、ボルテゾミブ、シスプラチン、オキサリプラチン、シクロフォスファミド、アザチオプリン、タクロリムス、ペニシラミン、メトトレキサート、サラゾスルファピリジン、レフルノミド、ヒドララジン、小柴胡湯、アミオダロン及びインターフェロンからなる群から選ばれる少なくとも1種の薬剤であることを特徴とする請求項5に記載の慢性呼吸器疾患治療剤。
  7.  一般式(1)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは炭素数4~8のアルキル基を示し、Rは水素原子、炭素数2~6のアルキルカルボニル基または炭素数2~6のアルコキシカルボニル基を示す。)で表されるハイドロキノン誘導体を有効成分として含む慢性呼吸器疾患の予防又は改善用食品組成物。
  8.  前記ハイドロキノン誘導体が、2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテルまたは2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル 4-アセテートであることを特徴とする請求項7に記載の慢性呼吸器疾患の予防又は改善用食品組成物。
  9.  前記慢性呼吸器疾患が、慢性閉塞性肺疾患(COPD)、間質性肺炎及び喘息からなる群より選ばれた少なくとも1つの疾患であることを特徴とする請求項7又は8に記載の慢性呼吸器疾患の予防又は改善用食品組成物。
  10.  前記慢性呼吸器疾患が、慢性閉塞性肺疾患(COPD)であることを特徴とする請求項7又は8に記載の慢性呼吸器疾患の予防又は改善用食品組成物。
  11.  一般式(1)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは炭素数4~8のアルキル基を示し、Rは水素原子、炭素数2~6のアルキルカルボニル基または炭素数2~6のアルコキシカルボニル基を示す。)で表されるハイドロキノン誘導体を有効成分として含むことを特徴とする心臓の線維化抑制組成物。
  12.  前記ハイドロキノン誘導体が、2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテルまたは2,3,5-トリメチルハイドロキノン-1-ヘキシルエーテル 4-アセテートであることを特徴とする請求項11に記載の心臓の線維化抑制組成物。
  13.  前記心臓の線維化が、薬剤により惹起されるものであることを特徴とする請求項11又は12に記載の心臓の線維化抑制組成物。
  14.  前記薬剤が、アントラサイクリン系抗癌剤であることを特徴とする請求項13に記載の心臓の線維化抑制組成物。

     
PCT/JP2016/062256 2015-04-23 2016-04-18 慢性呼吸器疾患治療剤及び心臓の線維化抑制組成物 WO2016171102A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680021457.8A CN107530299A (zh) 2015-04-23 2016-04-18 慢性呼吸系统疾病治疗剂和心脏纤维化抑制组合物
JP2017514112A JP6647716B2 (ja) 2015-04-23 2016-04-18 慢性閉塞性肺疾患(copd)の治療剤及び予防又は改善用食品組成物
KR1020177025686A KR101969451B1 (ko) 2015-04-23 2016-04-18 만성 호흡기 질환 치료제 및 만성 호흡기 질환의 예방 또는 개선용 식품 조성물.
EP16783123.9A EP3287128A4 (en) 2015-04-23 2016-04-18 THERAPEUTIC FOR CHRONIC RESPIRATORY DISEASE AND COMPOSITION FOR SUPPRESSING PREVIOUS LIVING ROOMS
KR1020197000964A KR20190006102A (ko) 2015-04-23 2016-04-18 심장의 섬유화 억제 조성물
US15/787,999 US20180049996A1 (en) 2015-04-23 2017-10-19 Therapeutic agent for chronic respiratory disease and composition for inhibiting cardiac fibrosis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-088697 2015-04-23
JP2015088697 2015-04-23
JPPCT/JP2015/078962 2015-10-13
PCT/JP2015/078962 WO2016170704A1 (ja) 2015-04-23 2015-10-13 慢性呼吸器疾患治療剤及び心臓の線維化抑制組成物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/787,999 Continuation US20180049996A1 (en) 2015-04-23 2017-10-19 Therapeutic agent for chronic respiratory disease and composition for inhibiting cardiac fibrosis

Publications (1)

Publication Number Publication Date
WO2016171102A1 true WO2016171102A1 (ja) 2016-10-27

Family

ID=57142970

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/078962 WO2016170704A1 (ja) 2015-04-23 2015-10-13 慢性呼吸器疾患治療剤及び心臓の線維化抑制組成物
PCT/JP2016/062256 WO2016171102A1 (ja) 2015-04-23 2016-04-18 慢性呼吸器疾患治療剤及び心臓の線維化抑制組成物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078962 WO2016170704A1 (ja) 2015-04-23 2015-10-13 慢性呼吸器疾患治療剤及び心臓の線維化抑制組成物

Country Status (6)

Country Link
US (1) US20180049996A1 (ja)
EP (1) EP3287128A4 (ja)
JP (1) JP6647716B2 (ja)
KR (2) KR20190006102A (ja)
CN (1) CN107530299A (ja)
WO (2) WO2016170704A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301836A (ja) * 1991-03-28 1993-11-16 Nippon High Potsukusu:Kk 新規ハイドロキノン誘導体
JP2001504483A (ja) * 1996-11-20 2001-04-03 ヘキスト・マリオン・ルセル・インコーポレイテツド 抗酸化剤として有用な置換フェノールおよびチオフェノール
JP2004352661A (ja) * 2003-05-29 2004-12-16 Nippon Hypox Lab Inc 難治性炎症性疾患治療剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749562B2 (ja) 2001-02-16 2011-08-17 株式会社日本ハイポックス ハイドロキノン誘導体および動脈硬化治療用組成物
CN101102788A (zh) * 2005-01-24 2008-01-09 克霖固鲁制药股份有限公司 移植器官纤维化抑制剂
JP5198827B2 (ja) 2007-10-23 2013-05-15 株式会社日本ハイポックス 神経変性疾患治療薬
JP4630914B2 (ja) * 2008-04-14 2011-02-09 株式会社日本ハイポックス 肝線維化抑制剤
JP2013067605A (ja) * 2011-07-20 2013-04-18 Univ Of Tokyo 心不全抑制剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301836A (ja) * 1991-03-28 1993-11-16 Nippon High Potsukusu:Kk 新規ハイドロキノン誘導体
JP2001504483A (ja) * 1996-11-20 2001-04-03 ヘキスト・マリオン・ルセル・インコーポレイテツド 抗酸化剤として有用な置換フェノールおよびチオフェノール
JP2004352661A (ja) * 2003-05-29 2004-12-16 Nippon Hypox Lab Inc 難治性炎症性疾患治療剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Interstitial Pneumonia (pneumonitis, alveolitis, pulmonary fibrosis", JUTOKU FUKUSAYO SHIKKAN- BETSU TAIO MANUAL, November 2006 (2006-11-01), pages 1 - 33, XP009507238 *
See also references of EP3287128A4 *

Also Published As

Publication number Publication date
KR20170117174A (ko) 2017-10-20
KR101969451B1 (ko) 2019-04-16
US20180049996A1 (en) 2018-02-22
EP3287128A1 (en) 2018-02-28
WO2016170704A1 (ja) 2016-10-27
KR20190006102A (ko) 2019-01-16
JP6647716B2 (ja) 2020-02-14
CN107530299A (zh) 2018-01-02
EP3287128A4 (en) 2019-03-27
JPWO2016171102A1 (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
JP5575655B2 (ja) 腎保護剤としての中鎖長脂肪酸およびグリセリド
US20110212909A1 (en) Use of Ginsenoside Compound K in the Preparation of a Medicament for the Prevention and Treatment of Atherosclerosis
Lee et al. Pulmonary protective functions of rare ginsenoside Rg4 on particulate matter-induced inflammatory responses
JP6853783B2 (ja) シリビンを含有する薬物組成物
CN113116929A (zh) 无细胞脂肪提取液对脂肪肝及其并发症的治疗作用
US20140120181A1 (en) Composition comprising phosphatidylcholine as an active ingredient for attenuating toxicity of anticancer agent
WO2015019193A2 (en) Acylated derivatives of phloridzin and isoquercetrin as anticancer therapeutics and methods of use thereof
JP6151454B2 (ja) モノアセチルジアシルグリセロール化合物を有効性分として含有する慢性閉塞性肺疾患の予防または治療用組成物
KR101044961B1 (ko) 황기 및 단삼을 유효성분으로 하는 항암제 부작용 완화용, 항전이 및 항피로 조성물
US9931355B2 (en) Combination of compounds derived from gallic acid for the treatment of cancer
EP3064203B1 (en) Pharmaceutical composition for preventing or treating nonalcoholic steatohepatitis, containing batyl alcohol as effective component
WO2016171102A1 (ja) 慢性呼吸器疾患治療剤及び心臓の線維化抑制組成物
CA2809031C (en) Use of glycyrrhetinic acid, glycyrrhizic acid and related compounds for prevention and/or treatment of pulmonary fibrosis
WO2015156409A1 (ja) 抗癌剤および副作用軽減剤
WO2022028375A1 (zh) 无细胞脂肪提取液对肺部疾病的治疗用途
US8927601B2 (en) Uses of N-butylidenephthalide in treating a liver injury and improving liver function
JP2019509994A (ja) 芦根抽出物を有効成分として含む抗癌剤副作用による疾患の予防、改善または治療用組成物
JP2016079163A (ja) 腫瘍を処置するための組成物およびその製造方法
JP2020132625A (ja) 肝臓癌に対するサフラナールとソラフェニブの併用療法
EP3821949B1 (en) Pharmaceutical composition for use in the treatment of a cancer associated with the activation of galectin-1
WO2021228146A1 (zh) 一种lsd1抑制剂的用途
WO2022039206A1 (ja) 非アルコール性脂肪肝炎治療用医薬組成物
JP2017119677A (ja) 肺癌の治療に用いられる医薬組成物
WO2021159076A1 (en) Uses of glycyrrhetinic acid, glycyrrhizic acid for treatment of pneumonitis/pneumonia/pulmonary fibrosis
Tian et al. Experimental studies of the therapeutic effect of Gypsophila oldhamiana gypsogenin on Lewis lung cancer in mice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514112

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177025686

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016783123

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE