WO2016170999A1 - 燃料噴射装置 - Google Patents
燃料噴射装置 Download PDFInfo
- Publication number
- WO2016170999A1 WO2016170999A1 PCT/JP2016/061470 JP2016061470W WO2016170999A1 WO 2016170999 A1 WO2016170999 A1 WO 2016170999A1 JP 2016061470 W JP2016061470 W JP 2016061470W WO 2016170999 A1 WO2016170999 A1 WO 2016170999A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- injection hole
- upstream
- fuel injection
- valve body
- injection device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/04—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
- F02M61/10—Other injectors with elongated valve bodies, i.e. of needle-valve type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/162—Means to impart a whirling motion to fuel upstream or near discharging orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1873—Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/06—Fuel-injection apparatus having means for preventing coking, e.g. of fuel injector discharge orifices or valve needles
Definitions
- the present invention relates to a fuel injection device used for an internal combustion engine such as a gasoline engine and a control device for the same.
- a cylinder injection engine fuel is injected in a narrow combustion chamber, so that the fuel tends to adhere to the piston, the combustion chamber, and the like. If the fuel vaporizes in a short time, it is possible to reduce the fuel adhering to the wall surface. Therefore, in the cylinder injection engine, the fuel injection pressure is increased to promote atomization of the fuel spray. However, when the fuel injection pressure is set high, the injection speed increases and the penetration tends to be long. For this reason, the request
- Patent Document 1 describes a fuel injection device capable of changing the fuel injection penetration by controlling the lift amount (movement amount) of the valve body of the fuel injection device.
- the lift amount of the valve body can be set to a plurality of large lift amounts and small lift amounts, and each of the injection holes is opposed to each of the injection holes among the valve bodies that open and close the injection holes.
- Protrusion part is provided in the part, it flows from the side part and the downstream part of the injection hole so as to go around the protrusion part, and the swirl component is given to the fuel injected from the injection hole so that the penetration is shortened with a small lift amount Be controlled. Since the swirl flow does not occur at a large lift amount and the penetration becomes longer, the penetration can be changed according to the lift amount.
- Patent Document 1 describes a fuel injection device capable of changing the penetration of fuel spray.
- the velocity field in the injection hole in the fuel injection device is such that the velocity component in the injection hole axis direction is relative to the rotation direction velocity component (the rotation direction component) in a plane parallel to the injection hole axis.
- the effect of shortening the penetration is limited.
- an object of the present invention is to provide a fuel injection device capable of shortening the penetration.
- a fuel injection device includes a valve body on which a valve body side seat surface is formed, a valve seat side seat surface that comes into contact with the valve body side seat surface, the valve body side seat surface, And an injection hole provided on the downstream side of the position where the valve seat side seat surface abuts.
- the valve body has a convex portion formed from the valve body-side seat surface toward the injection hole, and the size of the convex portion in the fuel flow direction between the sheets is the radius of the upstream opening surface of the injection hole. It is characterized by being formed so as to be smaller.
- FIG. 3 is an arrow view of FIG. 2 for explaining the fuel flow according to the first embodiment of the present invention. It is a perspective view of the valve body of the fuel injection device concerning the 1st example of the present invention.
- a fuel injection device and a control device thereof according to a first embodiment of the present invention will be described below with reference to FIGS.
- FIG. 1 is a cross-sectional view of the fuel injection device (electromagnetic fuel injection valve) of this embodiment.
- the fuel is supplied from the fuel supply port 112 and supplied into the fuel injection device 100.
- a fuel injection device 100 shown in FIG. 1 is a normally closed electromagnetic drive type fuel injection valve.
- the valve body 101 is biased by a spring 110 and welded to the nozzle body 104.
- the fuel is sealed by being pressed against the sheet member 102 joined by, for example.
- the fuel pressure supplied from the common rail is in the range of approximately 1 MPa to 50 MPa.
- valve body 101 is an enlarged cross-sectional view of the lower end portion of the fuel injection device 100.
- the valve seat side seat surface 204 is formed on the valve element side end surface of the seat member 102.
- a plurality of injection holes 201 are formed in the sheet member 102, and the plurality of injection holes 201 are arranged on the circumference.
- the valve seat side seat surface 204 and the valve body 101 are arranged symmetrically about the valve body central axis 205.
- the fuel flowing from the upstream side in the fuel injection device 100 is injected from the injection hole 201 through the gap between the valve body side seat surface 207 and the valve seat side seat surface 204 as indicated by an arrow 208 in FIG.
- Part of the fuel flows into the sac chamber 202 on the tip side from the injection hole and flows into the injection hole from the path indicated by the arrow 221.
- the valve body can be set to a large lift amount and a small lift amount.
- the valve body position at the large lift amount is 101a, and the valve body position at the small lift amount is 101b.
- FIG. 3 is an enlarged cross-sectional view of the lower end portion of the fuel injection device 100 as in FIG.
- the valve body 101 is in line contact with the seat member 102 at the seat position 209 and seals the fuel flowing from the upstream side in the fuel injection device 100.
- the front end 256 of the guide portion 206 formed from the valve element side seat surface 207 toward the injection hole 201 is prevented from coming into contact with the seat member 102. Thereby, the fuel can be sealed at the seat position 209.
- FIG. 4A is a diagram showing an arrow Z in FIG. Note that FIG. 2 corresponds to a cross-sectional view taken along line SS ′ in FIG.
- Part 206 is formed.
- the guide portion 206 forms a region 250 having a reduced cross-sectional area in an annular shape.
- the guide portion 206 is formed from the upstream end surface 272 toward the downstream end surface 271, and this region is indicated by hatching.
- the guide part 206 is a convex part formed so that it may become convex toward the injection hole 201 from the valve body side seat surface 207 in the valve body 101. Or you may call a level
- FIG. 5 shows a perspective view of the tip shape of the valve body 101.
- the valve body side seat surface 207 is formed as a spherical surface.
- a guide portion 206 indicated by hatching is formed in an annular shape with the central axis 205 of the valve body 101 as an axis, and a distal end portion 256 of the guide portion 206 is also formed in an annular shape.
- the annular guide portion 206 is provided when the valve body 101 is cut.
- a speed distribution having a high speed region on the downstream side in the injection hole 201 is formed on the outlet surface of the injection hole like a speed distribution 226.
- the velocity distribution 226 represents the magnitude of the velocity at the arrow start point by the length of the arrow.
- a low speed region (low speed region) represented by a short arrow and a high speed region (high speed region) represented by a long arrow appear at the outlet of the injection hole.
- the size L of the convex portion 206 in the fuel flow direction between the seats is formed to be smaller than the radius R of the upstream opening surface 244 of the injection hole 201. More specifically, at the position corresponding to the injection hole 201, the upstream end 257 of the projection 206 is positioned upstream of the upstream end (injection hole edge 223) of the upstream opening surface 244 of the injection hole 201. . Further, the downstream end portion 256 of the convex portion 206 is formed so as to be positioned between the upstream end portion (injection hole edge 223) of the upstream opening surface 244 of the injection hole 201 and the center of the upstream opening surface 244.
- the convex portion 206 can flow at the predetermined guide angle with respect to the fuel from the upstream side of the injection hole edge 223 to change the flow direction and flow to the downstream side of the injection hole edge 223. Therefore, the flow of the fuel flows around the injection hole edge 223, so that the flow flows into the upstream side of the injection hole 201.
- the velocity distribution 220 at the injection hole outlet is less uneven in local velocity, and the velocity distribution in the injection hole outlet surface is uniform compared to the velocity distribution 226 in FIG. Is possible.
- the flow direction changes from the start position of the convex portion 206 (upstream end portion 257) to the most distal portion (downstream end portion 256) of the convex portion 206, and the change in the flow direction is in the range of the length L.
- the injection hole axis 203 is formed by a straight line connecting the center of the upstream opening surface 244 and the center of the downstream opening surface 258.
- Counterbore is formed in the injection hole 201 of this embodiment, and the counterbore downstream opening surface 270 may be used as the injection hole axis 203 instead of the downstream opening surface 258.
- the effective range needs to be included in the upstream side in the injection hole.
- the size L of the convex portion in the fuel flow direction between the seats is made smaller than the radius length R which is the size of the injection hole inlet on the upstream side in the injection hole.
- FIG. Fig.8 (a) shows the example of the spray shape 230a injected from the injection hole in the structure of FIG. 6 which does not have a convex part, and the penetration length 231a.
- FIG. 8B shows an example of the spray shape 230b injected from the injection hole 201 in FIG. 7 and the penetration length 231b thereof.
- the length of the penetration becomes longer as the maximum speed in the outlet surface of the injection hole is larger. Therefore, when the velocity distribution has a local high-speed region as in the configuration shown in FIG. 6, the penetration becomes long.
- the velocity distribution 220 in the present embodiment shown in FIG. 7 has a flat velocity in the plane and does not have a local high-speed region, so that the penetration is shortened. Further, according to the present embodiment, since the fuel speed is improved by the convex portion 206, cavitation can be generated by suitably selecting various conditions such as the fuel injection pressure and the fuel temperature, and the penetration is further shortened. It is possible.
- FIG. 9 shows how cavitation 243 occurs at the injection hole inlet edge 223.
- the guide inclination angle ⁇ is defined by a straight line 240 along the inner wall on the upstream side in the injection hole 201 and a tangent 241a of the convex portion 206a or a tangent 241b of the 206b.
- the guide inclination angle ⁇ may be defined as an angle formed by the injection hole axis 203 and the tangent 241 of the convex portion 206 (206a or 206b).
- the tangent 241 is a tangent that contributes to a change in the flow direction, among the tangent lines of the convex portion 206, the tangent that has the smallest guide inclination angle ⁇ with the straight line 240. It is.
- the guide inclination angle ⁇ 0 °
- the injection hole axis 203 and the tangent 241 of the convex portion 206 (206a or 206b) are parallel to each other.
- the guide inclination angle ⁇ is set to be a small angle, for example, 0 ° ⁇ ⁇ 90 °.
- the guide inclination angle ⁇ between the tangent 241b of the convex portion 206b and the injection hole axis 203 is a small lift amount to 0 ° ⁇ ⁇ 90 °, cavitation is generated and fuel spray penetration is performed. Further shortening is possible.
- the convex portion 206 is located in the vicinity of the injection hole edge 223 and further downstream of the injection hole edge 223. Specifically, at the position corresponding to the injection hole 201, the angle formed with the injection hole axis 203 of the injection hole 201 is the smallest of the tangent lines 241 formed on the upstream side of the downstream end A of the convex portion 206. The tangent line 241 is formed so as to intersect the upstream side of the upstream opening surface 244 of the injection hole 201.
- the protruding portion 254 protrudes from the valve element side seat surface 207 toward the injection hole 201 and is formed in a spherical shape, and the spherical protrusion 254 is formed corresponding to each injection hole 201. Since the protruding portion 254 has a spherical shape, the downstream end surface 271 of the protruding portion 254 in FIG. 10 has a height from the valve body-side seat surface 207 that is lowest at one end and higher at the center in the longitudinal direction, and at the other end. It is formed to be the lowest again.
- the protrusion 254 functions to suppress the flow of fuel from the upstream, and the arrow 255 indicates the fuel flow flowing into the injection hole 201.
- a swirl direction velocity component is given to the flow that flows into the injection hole 201.
- the velocity field in the injection hole has a relatively large velocity component in the injection hole axial direction relative to the velocity component in the swirling direction, and the method shown in FIG. 10 using swirl flow has a short penetration. The effect is limited.
- the shape shown in FIG. 4 of the present embodiment is such that the downstream end surface 271 of the guide portion (convex portion 206) is larger than the diameter (2 ⁇ R) of the upstream opening surface 244 of the injection hole 201. It is formed so that the height from the valve body side seat surface 207 is substantially the same.
- the convex portion 206 is formed in an annular shape on the valve body side seat surface 207 of the valve body 101, whereby the height (projection length) from the valve body side seat surface 207 is increased. It is formed so as to be substantially constant.
- FIG. 4A the convex portion 206 is formed in an annular shape on the valve body side seat surface 207 of the valve body 101, whereby the height (projection length) from the valve body side seat surface 207 is increased. It is formed so as to be substantially constant.
- FIG. 4A the convex portion 206 is formed in an annular shape on the valve body side seat surface 207 of the valve body 101, whereby the height (projection length) from the valve body side
- the convex portions 251 are formed on each of them, but it is preferable not to form them at positions that do not correspond to the injection holes 201. Or it is good for the convex part 251 formed cyclically
- FIG. A straight line connecting one end and the other end on the downstream side of the convex portion 251 in FIG. 4B is referred to as a guide region 273.
- this guide region is larger than the diameter (2 ⁇ R) of the upstream opening surface 244, and the height (projection length) from the valve element side seat surface 207 is substantially constant over the entire guide region. It is formed to become. Therefore, it is possible to prevent the swirling flow from occurring as shown in FIG. Further, in the present embodiment, the downstream end portion 256 of the convex portion 206 formed at a position corresponding to the injection hole 201 in the guide region is located upstream from the center of the upstream opening surface 244 of the injection hole 201. Therefore, the speed distribution at the exit surface of the injection hole can be flattened, the maximum speed in the axial direction can be suppressed, and the effect of shortening the penetration is high.
- FIG. 11 is a view showing a combustion chamber of a vehicle internal combustion engine. Fuel is injected into the combustion chamber 260 by the fuel injection device 100 to form an air-fuel mixture. The air-fuel mixture in the combustion chamber 260 is ignited by the spark ignition by the spark plug 262 and burned.
- the behavior of the piston 263 in this embodiment is determined by the engine speed.
- the air flow in the combustion chamber 260 is slow, and the fuel tends to adhere to the combustion chamber wall surface and the piston.
- the control is performed so that the lift amount is small.
- the engine speed is high, the air flow in the combustion chamber 260 is active, so that the mixture formation is promoted.
- the control is performed so that the lift amount is large.
- the valve body 101 is controlled by at least two lift amounts, a small lift amount and a large lift amount. As shown in FIGS. 2 and 9, when the valve body 101b opens with a small lift amount, the injection of the injection hole 201 among the tangent lines formed upstream of the downstream end portion 256b of the convex portion 206b. A tangent line 241 b that minimizes the angle formed with the hole axis 203 is configured to intersect the upstream side of the upstream opening surface 244 of the injection hole 201.
- the lift amount can be controlled by the air-fuel ratio in the combustion chamber 260.
- the air-fuel ratio is lower than a predetermined value, the combustion becomes lean. Therefore, it is desirable to create a rich air-fuel ratio around the spark plug to facilitate ignition. At this time, since the penetration is desirably short, the control is performed so that the lift amount is small.
- the air-fuel ratio in the combustion chamber 260 is higher than a predetermined value, it is desirable that a homogeneous air-fuel mixture is created in the combustion chamber 260 and combustion is performed in the entire combustion chamber. At this time, since it is desirable to lengthen the penetration and form an air-fuel mixture in the entire combustion chamber, control is performed so as to achieve a large lift amount.
- cooling water temperature or oil temperature When the cooling water temperature or oil temperature of the engine is lower than a predetermined temperature, complete combustion is difficult due to the low temperature, and generation of PM and unburned hydrocarbons increases. At this time, control is performed so that the amount of lift is small, and the penetration is shortened to suppress wall surface adhesion as much as possible.
- control may be performed according to the position of the piston 263.
- control is performed so that the amount of lift is small in order to prevent the fuel from adhering to the piston.
- control is performed so as to increase the lift amount in order to promote fuel dispersion.
- control method shown in this embodiment can also be used for short pulse injection and multistage injection using short pulse injection. Since the lift amount is small in the short pulse injection, control by the air-fuel ratio, the coolant temperature or the oil temperature, and the piston position is possible. In short pulse injection, since the injection amount per pulse decreases, it is preferable to inject a necessary fuel amount by multistage injection. The above control is also possible in the case of multi-stage injection.
- the convex portion 206 is formed so that the flow path becomes narrower from the upstream end portion 257 which is the start position toward the downstream end portion 256 which is the lower end position.
- the convex portion 206 is configured to go from the valve body side seat surface 207 to the injection hole 201 from the upstream end portion 257 to the downstream end portion 256.
- this embodiment is configured so that the flow path does not expand downstream from the downstream end portion 256.
- the convex portion 206 is configured to go from the valve body side seat surface 207 to the injection hole 201 from the upstream end portion 257 to the downstream end portion 256.
- the valve body side seat surface 207 is configured to be parallel to the valve seat side seat surface 204 further downstream from the downstream end portion 256.
- the convex part 206 may be comprised by the cone. Other configurations are the same as those in the first embodiment.
- the convex portion 206 is formed from the upstream end portion 257 that is the start position toward the downstream end portion 256 that is the lower end position, and the tangent 241 of the convex portion 206 faces the upstream of the flow path.
- the direction of the flow toward the injection hole is changed by blocking the flow by the convex portion 206.
- the tangent line 241 of the convex portion 206 may be horizontal with a straight line 240 along the inner wall on the upstream side in the injection hole 201.
- Other configurations are the same as those in the first embodiment.
- DESCRIPTION OF SYMBOLS 100 Fuel injection apparatus, 101 ... Valve body, 102 ... Sheet member, 104 ... Nozzle body, 108 ... Coil, 110 ... Spring, 201 ... Injection hole, 202 ... Suck chamber, 203 ... Injection hole which is a central axis of an injection hole Axis 204, valve seat side seat surface, 206 ... convex portion (guide portion), 207 ... valve body side seat surface 207, 233 ... injection hole edge, 241 ... tangent line formed on convex portion (guide portion), 244 ... injection An upstream opening surface of a hole, 256... A downstream end portion, 257... An upstream end portion, 258... A downstream opening surface of an injection hole, 271.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
ペネトレーションを短くすることが可能な燃料噴射装置を提供する。 本発明の燃料噴射装置は、弁体側シート面が形成された弁体と、前記弁体側シート面と当接する弁座側シート面と、前記弁体側シート面と前記弁座側シート面とが当接する位置よりも下流側に設けられた噴射孔と、を有する。そして、前記弁体は前記弁体側シート面から前記噴射孔に向かって形成される凸部が形成され、シート間の燃料流れ方向における前記凸部の大きさが前記噴射孔の上流開口面の半径よりも小さくなるように形成されることを特徴とする。
Description
本発明は、ガソリンエンジン等の内燃機関に用いられる燃料噴射装置及びその制御装置に関する。
近年、自動車におけるガソリンエンジンは燃費改善の要求が高まっており、燃費に優れたエンジンとして、燃焼室内に燃料を直接噴射し、噴射された燃料と吸入空気との混合気を点火プラグで点火して爆発させる筒内噴射式エンジンが普及してきている。しかし、筒内噴射式エンジンは燃料が燃焼室内に付着しやすく、温度の低い壁面に付着した燃料が不完全燃焼することで発生する粒子状物質(Particle Matter:PM)の抑制が課題となっている。この課題を解決し、低燃費かつ低排ガスの直噴エンジンを開発するためには、燃焼室内の燃焼の最適化が必要である。
自動車の運転には、高負荷運転、低負荷運転、冷間始動等、様々な運転状況が存在する。燃焼の最適化には、運転状態に応じて、エンジン筒内に噴射された燃料噴霧と空気の最適な混合気の形成が重要である。燃料噴霧を最適化する有力な方法のひとつとして、燃料噴霧の長さ(ペネトレーション)を変化させる可変噴霧がある。運転状態によって燃焼室内の環境が異なるため、たとえば、高負荷運転時に大きな出力を得るために、ペネトレーションを長くすることで燃焼室全体に燃料噴霧を行き渡らせる均質燃焼が必要であり、低負荷運転時には燃料使用量を抑えるため、ペネトレーションを短くすることで点火プラグ近傍に燃料の濃い領域を作る成層燃焼が必要である。このため、燃料噴霧の形状を最適化する燃料噴射装置及びその制御装置の提供が求められている。
また、筒内噴射式エンジンでは、狭い燃焼室内で燃料噴射が行われるため、燃料がピストンや燃焼室内などに付着しやすい。燃料が短時間で気化すれば壁面に付着する燃料を減らすことが可能であるため、筒内噴射式エンジンでは、燃料噴射圧を高くして燃料噴霧の微粒化を促進している。しかし、燃料噴射圧を高く設定すると、噴射速度が上がり、ペネトレーションが長くなる傾向がある。このため、PM排出量削減の観点から、特にペネトレーションを短くする要求が高まっている。
たとえば特許文献1には、燃料噴射装置の弁体のリフト量(移動量)を制御することで燃料噴射のペネトレーションを変化させることが可能な燃料噴射装置が記載されている。この特許文献1に記載の燃料噴射装置においては、弁体のリフト量を大リフト量と小リフト量の複数に設定可能であり、噴射孔を開閉させる弁体のうち、噴射孔各々に対向する部分に突起部を備え、突起部を回り込むように噴射孔の側方部や下流部から流入させ、噴射孔から噴射する燃料に旋回成分を与えることで、小リフト量においてペネトレーションが短くなるように制御される。大リフト量においては旋回流が発生せずペネトレーションが長くなるため、リフト量に応じてペネトレーションを変化させることができる。
特許文献1には、燃料噴霧のペネトレーションを変化させることが可能な燃料噴射装置が記載されている。しかし、一般的に燃料噴射装置における噴射孔内の速度場は、噴射孔軸に平行な面内での旋回方向速度成分(旋回方向成分)に対して、噴射孔軸方向の速度成分が相対的に非常に大きく、旋回流を利用する特許文献1に記載の方法ではペネトレーションが短くなる効果は限定的である。
以上の課題を鑑みて、本発明の目的は、ペネトレーションを短くすることが可能な燃料噴射装置を提供することである。
上記課題を解決するために、本発明の燃料噴射装置は、弁体側シート面が形成された弁体と、前記弁体側シート面と当接する弁座側シート面と、前記弁体側シート面と前記弁座側シート面とが当接する位置よりも下流側に設けられた噴射孔と、を有する。そして、前記弁体は前記弁体側シート面から前記噴射孔に向かって形成される凸部が形成され、シート間の燃料流れ方向における前記凸部の大きさが前記噴射孔の上流開口面の半径よりも小さくなるように形成されることを特徴とする。
本発明によれば、燃料噴霧のペネトレーションを短くすることが可能な燃料噴射装置を提供することが可能となる。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。
以下、本発明に係る実施例を説明する。
本発明の第1の実施例に係る燃料噴射装置及びその制御装置について、図1から図11を用いて以下説明する。
図1は、本実施例の燃料噴射装置(電磁式燃料噴射弁)の断面図である。図1を用いて燃料噴射装置の基本的な動作を説明する。図1において、燃料は燃料供給口112から供給され、燃料噴射装置100の内部に供給される。図1に示す燃料噴射装置100は、通常時閉型の電磁駆動式の燃料噴射弁であって、コイル108に通電がないときには、弁体101がスプリング110によって付勢され、ノズル体104に溶接などで接合されたシート部材102に押し付けられ、燃料がシールされるようになっている。このとき、本実施例のような筒内噴射用の燃料噴射装置100では、コモンレールから供給される燃料圧力がおよそ1MPaから50MPaの範囲である。
図1に示したコネクタ111を介してコイル108に通電されると、燃料噴射装置100の磁気回路を構成するコア(固定コア)107、ヨーク109、アンカー106に磁束密度が生じて、空隙のあるコア107とアンカー106の間に磁気吸引力を生じる。磁気吸引力が、スプリング110の付勢力と前述の燃料圧力により付勢される力との合算値よりも大きくなると、弁体101はガイド部材103、弁体ガイド105にガイドされながらアンカー106によってコア107側に吸引され、開弁状態となる。
開弁状態となると、シート部材102と弁体101との間に隙間が生じ、燃料の噴射が開始される。燃料の噴射が開始されると、燃料圧力として与えられたエネルギは運動エネルギに変換され、燃料噴射装置100の下端部に空いた噴射孔に至り噴射される。
次に、弁体101の詳細形状について図2を用いて説明する。図2は、燃料噴射装置100の下端部の拡大断面図であり、弁体側シート面207が形成された弁体101と、弁体側シート面207と当接する弁座側シート面204と、弁体側シート面207と弁座側シート面204とが当接する位置よりも下流側に設けられた噴射孔201と、を備える。弁座側シート面204はシート部材102の弁体側端面に形成される。なお、図示していないが、噴射孔201はシート部材102に複数、形成されており、複数の噴射孔201が円周上に配置される。
弁座側シート面204及び弁体101は弁体中心軸205を中心に軸対称に配置されている。燃料噴射装置100において上流側から流れてきた燃料は、図2の矢印208に示すように弁体側シート面207と弁座側シート面204の隙間を通り、噴射孔201から噴射される。燃料の一部は噴射孔より先端側のサック室202に回りこみ、矢印221の経路から噴射孔に流入する。弁体は大リフト量と小リフト量に設定が可能であり、大リフト量での弁体位置は101a、小リフト量での弁体位置は101bである。
燃料噴射装置100の閉弁状態について、図3を用いて説明する。図3は図2と同様、燃料噴射装置100の下端部の拡大断面図である。弁体101はシート位置209においてシート部材102と線接触し、燃料噴射装置100において上流側から流れてきた燃料をシールする。このとき、弁体側シート面207から噴射孔201に向かって形成されるガイド部206の先端256は、シート部材102と接触しないようにする。これにより、シート位置209において燃料をシールすることができる。
図4(a)は図2の矢視Zを示した図である。なお、図2は図4(a)におけるS―S'断面図にあたる。図2、図4(a)に示すように本実施例では、弁体101の円錐形状に形成される弁体側シート面207に、弁体側シート面207から噴射孔201に向かって形成されるガイド部206が形成される。図4(a)に示すようにガイド部206により断面積が小さくなる領域250が環状に形成されている。図4(a)ではガイド部206は上流側端面272から下流側端面271に向かって形成され、この領域を斜線で示す
。上流側端面272、下流側端面271のぞれぞれで噴射孔201に対応する端部を上流側端部257、下流側端部256と呼ぶ。なお、ガイド部206は弁体101において弁体側シート面207から噴射孔201に向かって凸となるように形成される凸部である。あるいは段差部と呼んでもよい。
。上流側端面272、下流側端面271のぞれぞれで噴射孔201に対応する端部を上流側端部257、下流側端部256と呼ぶ。なお、ガイド部206は弁体101において弁体側シート面207から噴射孔201に向かって凸となるように形成される凸部である。あるいは段差部と呼んでもよい。
図5に、弁体101の先端形状の斜視図を示す。本実施例では、弁体側シート面207は球面で形成される。斜線で示すガイド部206は弁体101の中心軸205を軸として環状に形成されており、ガイド部206の先端部256も同様に環状に形成される。なお、環状のガイド部206は弁体101の切削加工時に付与される。
凸部206によるペネトレーションへの影響を説明するために、まず、弁体が凸部を持たない構成での、小リフト量における燃料の流動と噴射孔出口での速度分布について、図6を用いて説明する。図6の構成では、燃料流れは噴射孔201に流入する際、噴射孔入口の噴射孔エッジ223から剥離し、噴射孔201内下流側に矢印222の経路を通って流入する。このとき、噴射孔201内上流側には剥離渦224が形成され、燃料の流れは噴射孔201内下流側の壁面に押し付けられる。その結果、噴射孔出口面内では速度分布226のように、噴射孔201内下流側に速度の速い領域を持つ速度分布を形成する。ここで速度分布226は、矢印開始地点における速度の大きさを、矢印の長さによって表現している。図6の構成では、噴射孔出口で短い矢印で表される速度の遅い領域(低速領域)と、長い矢印で表される速度の速い領域(高速領域)が現れる。
次に本実施例による、小リフト量における燃料の流動と噴射孔出口での速度分布にいて、図7を用いて説明する。図7に示す様に、本実施例においてはシート間の燃料流れ方向における凸部206の大きさLが噴射孔201の上流開口面244の半径Rよりも小さくなるように形成される。より具体的には噴射孔201に対応する位置において、凸部206の上流側端部257が噴射孔201の上流開口面244の上流側端部(噴射孔エッジ223)よりも上流側に位置する。また凸部206の下流側端部256が噴射孔201の上流開口面244の上流側端部(噴射孔エッジ223)と上流開口面244の中心との間に位置するように形成される。
これにより凸部206は噴射孔エッジ223の上流側からの燃料に対して所定のガイド角度でガイドして流れの向きを変えて噴射孔エッジ223の下流側に流すことができる。したがって、噴射孔エッジ223を燃料の流れが回り込むことで、流れが噴射孔201内上流側に流れ込む。結果として、噴射孔出口の速度分布220は局所的な速度の大きさの偏りが少なくなり、図6の速度分布226に比べて噴射孔出口面内における速度分布が均一になり、これを平坦化することが可能である。流れの向きは、凸部206の開始位置(上流側端部257)から凸部206の最先端部(下流側端部256)まで変わり、流れの向きの変化は長さLの範囲である。
ここで噴射孔201の中心軸である噴射孔軸線203よりも噴射孔入口における流路の上流側(噴射孔内上流側)と、下流側(噴射孔内下流側)の2領域を定義する。なお、噴射孔軸線203は上流開口面244の中心と下流開口面258の中心とを結ぶ直線で形成される。本実施例の噴射孔201にはザグリが形成されており、噴射孔軸線203として、下流開口面258ではなくてザグリ下流開口面270を用いても良い。そして噴射孔内上流側に向けて燃料が流入するには、効果範囲が噴射孔内上流側に含まれている必要がある。そのため本実施例においては、噴射孔内上流側の噴射孔入口の大きさである半径長さRよりもシート間の燃料流れ方向における凸部の大きさLが小さくなるようにしている。これにより燃料が噴射孔201内上流側に流入するようになり、噴射孔内上流側に燃料を流入させることが可能になる。
ここで噴射孔出口面内における速度分布の平坦化によるペネトレーションに対する効果を、図8を用いて説明する。図8(a)は、凸部を持たない図6の構成における噴射孔から噴射される噴霧形状230aとそのペネトレーションの長さ231aの例を示す。図8(b)は、図7における噴射孔201から噴射される噴霧形状230bとそのペネトレーションの長さ231bの例を示す。ペネトレーションの長さは、噴射孔出口面内での最大速度が大きいほど長くなる。そのため、図6で示した構成のように、速度分布が局所的に高速領域を持つ場合、ペネトレーションが長くなる。
これに対して図7で示した本実施例における速度分布220は速度が面内で平坦であり局所的な高速領域を持たないため、ペネトレーションが短くなる。さらに、本実施例によると、凸部206によって燃料の速度が向上するので、燃料噴射圧、燃料温度などの諸条件を好適に選択することによってキャビテーションを発生させることができ、さらにペネトレーションを短くすることが可能である。
次に本実施例におけるキャビテーションの発生メカニズムとその効果について、図9を用いて説明する。図9は、噴射孔入口エッジ223においてキャビテーション243が発生する様子を示している。図9において、噴射孔201内上流側の内壁に沿った直線240と凸部206aの接線241a又は206bの接線241bのなすガイド傾斜角θとする。あるいは、ガイド傾斜角θは噴射孔軸線203と凸部206(206a又は206b)の接線241とのなす角度として定義しても良い。なお、凸部206が曲面で構成されている場合、接線241は凸部206の接線のうち、直線240とのなすガイド傾斜角θが最も小さくなる接線が、流れの向きの変化に寄与する接線である。なお、ガイド傾斜角θ=0°のとき噴射孔軸線203と凸部206(206a又は206b)の接線241とが平行となる。そして本実施例では、ガイド傾斜角θをたとえば0°<θ<90°などとして、小さい角度になるように設定する。
これにより、噴射孔エッジ223近傍を流れが急激に曲がるように凸部206によりガイドされるため、周囲の圧力が大きく低下する。凸部206によって流れの向きが変わると、矢印208の流路を通って噴射孔201に燃料が流入する。すると噴射孔エッジ223近傍で発生する剥離が小さくなり、流れが噴射孔エッジ223近傍で急激に曲がることで、付近の圧力低下が顕著になる。局所圧力が燃料の飽和蒸気圧を下回ったとき、キャビテーション243が発生する。キャビテーション243は噴射孔内の乱れを促進し、燃料噴霧が微粒化する。燃料噴霧の微粒化により液滴の拡散が促進され、燃料噴霧のペネトレーションが短くなる。
たとえば、小リフト量となる際の凸部206bの接線241bと噴射孔軸線203とのなすガイド傾斜角θを0°<θ<90°とすることで、キャビテーションを発生させ、燃料噴霧のペネトレーションをさらに短くすることが可能である。
また、流れの向きを好適に変えるために、凸部206が噴射孔エッジ223近傍に位置し、さらに噴射孔エッジ223より下流に位置していることが望ましい。具体的には、噴射孔201に対応する位置において、凸部206の下流側端部Aよりも上流側に形成される接線241のうち、噴射孔201の噴射孔軸線203となす角度が最少となる接線241が噴射孔201の上流開口面244の上流側と交差するように形成される。
本実施例の比較対象として、図10を用いて突起部254を噴射孔201の上流側に設けた場合について説明する。突起部254は弁体側シート面207から噴射孔201に向かって突出して球面形状で形成され、各噴射孔201に対応して、この球面形状の突起部254が形成される。突起部254は球面形状であるため、図10の突起部254の下流側端面271は長手方向において、弁体側シート面207からの高さが一端で最も低く中央側で高くなり、そして他端で再び最も低くなるように形成される。
突起部254は上流からの燃料の流れを抑制するように機能し、矢印255は噴射孔201に流入する燃料流れを示している。流れ抑制部254を迂回する流れを生み出すことで、噴射孔201に流入する流れに旋回方向速度成分を与える。しかし、一般的に噴射孔内の速度場は、旋回方向速度成分に対して、噴射孔軸方向速度成分が相対的に非常に大きく、旋回流を利用する図10に記載の方法ではペネトレーションが短くなる効果は限定的である。
これに対して本実施例の図4に示す形状は、ガイド部(凸部206)の下流側端面271は、噴射孔201の上流開口面244の径(2×R)よりも大きい領域において、弁体側シート面207からの高さがほぼ同じになるように形成される。具体的には図4(a)に示す様に、凸部206は弁体101の弁体側シート面207に環状に形成され、これにより弁体側シート面207からの高さ(突出長さ)がほぼ一定となるように形成される。あるいは図4(b)に示すようにそれぞれに凸部251が形成されるが、噴射孔201と対応しない位置においてはこれが形成されないようにすると良い。あるいは、環状に形成された凸部251は噴射孔201と対応しない位置において切り欠きが形成されるようにすると良い。なお、図4(b)の凸部251の下流側において一端と他端を結んだ直線をガイド領域273と呼ぶ。
本実施例ではこのガイド領域が上流開口面244の径(2×R)よりもさらに大きく、このガイド領域の全域に渡って、弁体側シート面207からの高さ(突出長さ)がほぼ一定となるように形成される。そのため、図10で示したように旋回流が起きるのを抑制することができる。また本実施例ではガイド領域のうち噴射孔201に対応する位置に形成される凸部206の下流側端部256は、噴射孔201の上流開口面244の中心よりも上流側に位置する。よって、噴射孔出口面での速度分布が平坦化でき、軸方向の最大速度を抑制することが可能であり、ペネトレーションを短くする効果が高い。
また、図10に記載の方法は、流れ抑制部254を流れが迂回するため、流れ抑制部254の位置と噴射孔位置の関係により旋回流が大きく変わる。このため、加工には厳密な位置決め精度が求められ、加工誤差に対する誤差が大きいと考えられる。これに対し、本実施例の上記した図4(a)又は(b)の構成によれば、上流からの燃料流れを噴射孔に直接、ガイドすることができるため、加工誤差や弁体の軸方向回転に効果が左右されにくい。
次に、本実施例の燃料噴射装置の制御方法について図11を用いて説明を行う。図11は車両用内燃機関の燃焼室を示した図である。燃料噴射装置100により燃料が燃焼室260に噴射され、混合気を形成する。燃焼室260内の混合気は、点火プラグ262による火花点火によって着火し、燃焼する。
本実施例でのピストン263の挙動は、エンジンの回転数によって決められている。エンジンの回転数が低い場合は、燃焼室260内の空気流動が緩慢であり、燃料が燃焼室壁面やピストンに付着しやすい。このとき、ペネトレーションは短くなることが望ましいため、小リフト量になるように制御する。逆に、エンジンの回転数が高い場合は、燃焼室260内の空気流動が活発なため、混合気形成が促進される。このとき、ペネトレーションを長くし、空気流動による混合気形成を促すことが望ましいため、大リフト量になるように制御する。
すなわち、弁体101は小リフト量と大リフト量との少なくとも2つのリフト量で制御される。そして図2、図9に示すように、弁体101bが小リフト量で開弁する場合、凸部206bの下流側端部256bよりも上流側に形成される接線のうち、噴射孔201の噴射孔軸線203となす角度が最少となる接線241bが噴射孔201の上流開口面244の上流側と交差するように構成される。一方で弁体101aが大リフト量で開弁する場合には、噴射孔201の噴射孔軸線203となす角度が最少となる接線241aが噴射孔201の上流開口面244の下流側と交差するように構成される。
また、燃焼室260内の空燃比によって、リフト量を制御することも可能である。空燃比が所定の値よりも低い場合、燃焼は希薄な状態になるので、点火プラグの周囲に空燃比がリッチな状態を作り、着火し易くすることが望ましい。このとき、ペネトレーションは短くなることが望ましいため、小リフト量になるように制御する。逆に、燃焼室260内の空燃比が所定の値よりも高い場合、燃焼室260内に均質な混合気を作り、燃焼室内全体で燃焼が行われることが望ましい。このとき、ペネトレーションを長くし、燃焼室内全体に混合気を形成することが望ましいため、大リフト量になるように制御する。
また、冷却水温または油温によって制御することも可能である。機関の冷却水温または油温が所定の温度よりも低い場合、温度が低いことで完全燃焼し難くなり、PMや未燃炭化水素の発生が増加する。このとき、小リフト量になるように制御し、ペネトレーションを短くして壁面付着を可能な限り抑える。
さらに、ピストン263の位置により制御を行っても良い。燃焼噴射時期におけるピストン263と燃料噴射装置100の距離が所定よりも短い場合、ピストンへの燃料の付着を防ぐため、小リフト量になるように制御する。燃焼噴射時期におけるピストン263と燃料噴射装置100の距離が所定よりも長い場合、燃料の分散を促進するため、大リフト量になるように制御する。
なお、本実施例で示した制御法は、短パルス噴射や、短パルス噴射を使用した多段噴射でも利用できる。短パルス噴射ではリフト量が小さくなるため、空燃比、冷却水温または油温、ピストンの位置による制御が可能である。短パルス噴射では1パルスあたりの噴射量が減るので、多段噴射により必要な燃料量を噴射するのが良い。多段噴射の場合も、上記の制御が可能である。
本発明の第2の実施例に係る燃料噴射装置について、図12を用いて以下説明する。図12に示す第2の実施例では、凸部206は開始位置である上流側端部257から下端位置である下流側端部256に向かって流路が狭くなるように形成される。実施例1においては、凸部206は上流側端部257から下流側端部256まで弁体側シート面207から噴射孔201に向かうように構成されていた。これに対して本実施例では、下流側端部256より下流で流路の広がりを持たないように構成される。すなわち、凸部206は上流側端部257から下流側端部256まで弁体側シート面207から噴射孔201に向かうように構成される。そして、弁体側シート面207は下流側端部256からさらに下流において弁座側シート面204と平行に沿うように構成される。なお、凸部206は、円錐で構成されていても良い。その他の構成については、実施例1と同様である。
本発明の第3の実施例に係る燃料噴射装置について、図13を用いて以下説明する。本実施例では、凸部206は開始位置である上流側端部257から下端位置である下流側端部256に向かって形成され、凸部206の接線241が流路の上流に向いている。このとき、凸部206により流れが遮られることによって、噴射孔に向かう流れの向きが変わる。結果として噴射孔内上流に流れが誘導され、実施例1と同様の効果が得られる。なお、図14に示すように、凸部206の接線241が噴射孔201内上流側の内壁に沿った直線240と水平になっていても良い。その他の構成については、実施例1と同様である。
100…燃料噴射装置、101…弁体、102…シート部材、104…ノズル体、108…コイル、110…スプリング、201…噴射孔、202…サック室、203…噴射孔の中心軸である噴射孔軸線、204…弁座側シート面、206…凸部(ガイド部)、207…弁体側シート面207、233…噴射孔エッジ、241…凸部(ガイド部)に形成される接線、244…噴射孔の上流開口面、256…下流側端部、257…上流側端部、258…噴射孔の下流開口面、271…下流側端面271、272…上流側端面。
Claims (17)
- 弁体側シート面が形成された弁体と、
前記弁体側シート面と当接する弁座側シート面と、
前記弁体側シート面と前記弁座側シート面とが当接する位置よりも下流側に設けられた噴射孔と、を有する燃料噴射装置において、
前記弁体は前記弁体側シート面から前記噴射孔に向かって形成される凸部が形成され、
シート間の燃料流れ方向における前記凸部の大きさが前記噴射孔の上流開口面の半径よりも小さくなるように形成されることを特徴とする燃料噴射装置。 - 弁体側シート面が形成された弁体と、
前記弁体側シート面と当接する弁座側シート面と、
前記弁体側シート面と前記弁座側シート面とが当接する位置よりも下流側に設けられた噴射孔と、を有する燃料噴射装置において、
前記弁体は前記弁体側シート面から前記噴射孔に向かって形成される凸部が形成され、
開弁状態において、前記凸部の下流側端部よりも上流側に形成される接線のうち、前記噴射孔の噴射孔軸線となす角度が最少となる接線が前記噴射孔の上流開口面の上流側と交差することを特徴とする燃料噴射装置。 - 請求項1に記載の燃料噴射装置において、
前記噴射孔に対応する位置において、前記凸部の上流側端部が前記噴射孔の上流開口面の上流側端部よりも上流側に位置し、
前記凸部の前記下流側端部が前記噴射孔の前記上流開口面の上流側端部と中心との間に位置するように形成されることを特徴とする燃料噴射装置。 - 請求項1に記載の燃料噴射装置において、
前記凸部は前記弁体側シート面に環状に形成されることを特徴とする燃料噴射装置。 - 請求項4に記載の燃料噴射装置において、
環状に形成された前記凸部は前記噴射孔と対応しない位置において切り欠きが形成されることを特徴とする燃料噴射装置。 - 請求項1に記載の燃料噴射装置において、
前記凸部の前記下流側端部よりも上流側に形成される接線のうち、前記噴射孔の噴射孔軸線となす角度が最少となる接線が前記噴射孔の前記上流開口面の上流側と交差することを特徴とする燃料噴射装置。 - 請求項1に記載の燃料噴射装置において、
前記凸部の下流側端部は、前記噴射孔の上流開口面の径よりも大きい領域において、前記弁体側シート面からの高さが同じになるように形成され、
前記噴射孔に対応する位置に形成される前記凸部の下流側端部は、前記噴射孔の上流開口面の中心よりも上流側に位置することを特徴とする燃料噴射装置。 - 請求項1に記載の燃料噴射装置において、
前記弁体は小リフト量と大リフト量との少なくとも2つのリフト量で制御され、
前記弁体が前記小リフト量で開弁する場合、前記凸部の下流側端部よりも上流側に形成される接線のうち、前記噴射孔の噴射孔軸線となす角度が最少となる接線が前記噴射孔の上流開口面の上流側と交差することを特徴とする燃料噴射装置。 - 請求項1に記載の燃料噴射装置において、
前記弁体が前記大リフト量で開弁する場合、前記噴射孔の噴射孔軸線となす角度が最少となる接線が前記噴射孔の上流開口面の下流側と交差することを特徴とする燃料噴射装置。 - 請求項1に記載の燃料噴射装置において、
前記凸部の下流側端部よりも上流側に形成される接線のうち、前記噴射孔の噴射孔軸線となす角度が最少となる接線と、前記噴射孔軸線とでなす角度θが0°<θ<90°であることを特徴とする燃料噴射装置。 - 請求項1に記載の燃料噴射装置において、
開弁状態において、前記凸部の下流側端部よりも上流側に形成される接線のうち、前記噴射孔の噴射孔軸線となす角度が最少となる接線が前記噴射孔の上流開口面の上流側と交差することを特徴とする燃料噴射装置。 - 弁体側シート面が形成された弁体と、
前記弁体側シート面と当接する弁座側シート面と、
前記弁体側シート面と前記弁座側シート面とが当接する位置よりも下流側に設けられた噴射孔と、を有する燃料噴射装置において、
前記弁体は前記弁体側シート面から前記噴射孔に向かって形成されるガイド部が形成され、
前記ガイド部の下流側端面は、前記噴射孔の上流開口面の径よりも大きい領域において、前記弁体側シート面からの高さが同じになるように形成されることを特徴とする燃料噴射装置。 - 請求項12に記載の燃料噴射装置において、
前記噴射孔に対応する位置に形成される前記ガイド部の下流側端部は、前記噴射孔の上流開口面の中心よりも上流側に位置することを特徴とする燃料噴射装置。 - 請求項12に記載の燃料噴射装置において、
前記ガイド部は前記弁体側シート面に環状に形成されることを特徴とする燃料噴射装置。 - 請求項12に記載の燃料噴射装置において、
前記噴射孔に対応する位置に形成される前記ガイド部の下流側端部よりも上流側に形成される接線のうち、前記噴射孔の噴射孔軸線となす角度が最少となる接線が前記噴射孔の前記上流開口面の上流側と交差することを特徴とする燃料噴射装置。 - 請求項12に記載の燃料噴射装置において、
前記ガイド部は、シート間の燃料流れ方向における大きさが前記噴射孔の上流開口面の半径よりも小さくなるように形成されることを特徴とする燃料噴射装置。 - 請求項12に記載の燃料噴射装置において、
前記噴射孔に対応する位置において、前記ガイド部の上流側端部が前記噴射孔の上流開口面の上流側端部よりも上流側に位置し、
前記ガイド部の前記下流側端部が前記噴射孔の前記上流開口面の上流側端部と中心との間に位置するように形成されることを特徴とする燃料噴射装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16783020.7A EP3287633B1 (en) | 2015-04-21 | 2016-04-08 | Fuel injection device |
US15/568,282 US10677208B2 (en) | 2015-04-21 | 2016-04-08 | Fuel injection device |
CN201680022609.6A CN107532557B (zh) | 2015-04-21 | 2016-04-08 | 燃料喷射装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-086386 | 2015-04-21 | ||
JP2015086386A JP2016205197A (ja) | 2015-04-21 | 2015-04-21 | 燃料噴射装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016170999A1 true WO2016170999A1 (ja) | 2016-10-27 |
Family
ID=57143934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/061470 WO2016170999A1 (ja) | 2015-04-21 | 2016-04-08 | 燃料噴射装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10677208B2 (ja) |
EP (1) | EP3287633B1 (ja) |
JP (1) | JP2016205197A (ja) |
CN (1) | CN107532557B (ja) |
WO (1) | WO2016170999A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03182682A (ja) * | 1989-12-12 | 1991-08-08 | Nippondenso Co Ltd | 燃料噴射弁 |
JP2010048140A (ja) * | 2008-08-20 | 2010-03-04 | Toyota Motor Corp | 内燃機関の燃料噴射装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5080287A (en) * | 1986-10-24 | 1992-01-14 | Nippondenso Co., Ltd. | Electromagnetic fuel injection valve for internal combustion engine |
DE3733604A1 (de) * | 1987-10-05 | 1989-04-13 | Bosch Gmbh Robert | Lochkoerper fuer eine kraftstoffeinspritzventil |
DE10155227A1 (de) * | 2001-11-09 | 2003-05-22 | Bosch Gmbh Robert | Kraftstoffeinspritzventil für Brennkraftmaschinen |
DE10354878A1 (de) * | 2003-11-24 | 2005-06-09 | Robert Bosch Gmbh | Kraftstoff-Einspritzvorrichtung, insbesondere für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung, sowie Verfahren zu ihrer Herstellung |
US7360722B2 (en) * | 2005-08-25 | 2008-04-22 | Caterpillar Inc. | Fuel injector with grooved check member |
JP2009121342A (ja) * | 2007-11-14 | 2009-06-04 | Toyota Motor Corp | 可変噴孔ノズル式の燃料噴射弁 |
CN102906414B (zh) * | 2010-03-05 | 2015-07-15 | 丰田自动车株式会社 | 燃料喷射阀 |
DE102010030344A1 (de) * | 2010-06-22 | 2011-12-22 | Robert Bosch Gmbh | Injektor, insbesondere Common-Rail-Injektor, sowie Kraftstoffeinspritzsystem mit einem Injektor |
JP5617892B2 (ja) * | 2012-10-12 | 2014-11-05 | トヨタ自動車株式会社 | 燃料噴射弁 |
-
2015
- 2015-04-21 JP JP2015086386A patent/JP2016205197A/ja active Pending
-
2016
- 2016-04-08 US US15/568,282 patent/US10677208B2/en active Active
- 2016-04-08 WO PCT/JP2016/061470 patent/WO2016170999A1/ja active Application Filing
- 2016-04-08 EP EP16783020.7A patent/EP3287633B1/en active Active
- 2016-04-08 CN CN201680022609.6A patent/CN107532557B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03182682A (ja) * | 1989-12-12 | 1991-08-08 | Nippondenso Co Ltd | 燃料噴射弁 |
JP2010048140A (ja) * | 2008-08-20 | 2010-03-04 | Toyota Motor Corp | 内燃機関の燃料噴射装置 |
Also Published As
Publication number | Publication date |
---|---|
US10677208B2 (en) | 2020-06-09 |
CN107532557B (zh) | 2022-06-21 |
EP3287633A4 (en) | 2018-12-05 |
CN107532557A (zh) | 2018-01-02 |
US20180149127A1 (en) | 2018-05-31 |
EP3287633B1 (en) | 2020-07-01 |
JP2016205197A (ja) | 2016-12-08 |
EP3287633A1 (en) | 2018-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4508142B2 (ja) | 内燃機関用燃料噴射弁 | |
JP5188899B2 (ja) | 燃料噴射弁 | |
JP2008280981A (ja) | 燃料噴射装置およびそれを搭載した内燃機関 | |
JP6186130B2 (ja) | 燃料噴射弁及び燃料噴射弁の製造方法 | |
JP4072402B2 (ja) | 燃料噴射弁およびそれを搭載した内燃機関 | |
JP2007231852A (ja) | 燃料噴射装置 | |
JP5537049B2 (ja) | 筒内噴射式火花点火機関 | |
US7082921B2 (en) | Fuel injection valve and direct-injection engine with the same | |
WO2019111643A1 (ja) | 燃料噴射弁 | |
US7264181B2 (en) | Fuel injection valve with restriction wall, and internal combustion engine equipped therewith | |
WO2018221076A1 (ja) | 燃料噴射弁及びエンジンシステム | |
JP6474694B2 (ja) | 燃料噴射ノズル | |
JP4224666B2 (ja) | 燃料噴射ノズルおよびその加工方法 | |
JP6695476B2 (ja) | 燃料噴射装置 | |
WO2016170999A1 (ja) | 燃料噴射装置 | |
JP2005194929A (ja) | 筒内噴射式内燃機関 | |
JP2003148299A (ja) | 燃料噴射弁およびそれを搭載した内燃機関 | |
JP6029706B1 (ja) | 流体噴射弁およびこれを備えた噴霧生成装置並びにエンジン | |
JP6779143B2 (ja) | 燃料噴射弁 | |
JP2009085041A (ja) | 燃料噴射装置 | |
JP2017031952A (ja) | 燃料噴射装置 | |
JP4789913B2 (ja) | 燃料噴射装置及びこれを備えた内燃機関 | |
JP6758521B2 (ja) | 燃料噴射弁 | |
JP2015101978A (ja) | 燃料噴射弁 | |
JP2020159335A (ja) | 燃料噴射弁 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16783020 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016783020 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15568282 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |