JP6695476B2 - 燃料噴射装置 - Google Patents

燃料噴射装置 Download PDF

Info

Publication number
JP6695476B2
JP6695476B2 JP2019089472A JP2019089472A JP6695476B2 JP 6695476 B2 JP6695476 B2 JP 6695476B2 JP 2019089472 A JP2019089472 A JP 2019089472A JP 2019089472 A JP2019089472 A JP 2019089472A JP 6695476 B2 JP6695476 B2 JP 6695476B2
Authority
JP
Japan
Prior art keywords
injection hole
fuel
valve body
convex portion
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019089472A
Other languages
English (en)
Other versions
JP2019124225A (ja
Inventor
知幸 保坂
知幸 保坂
石井 英二
英二 石井
助川 義寛
義寛 助川
泰介 杉井
泰介 杉井
一樹 吉村
一樹 吉村
一浩 押領司
一浩 押領司
猿渡 匡行
匡行 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2019089472A priority Critical patent/JP6695476B2/ja
Publication of JP2019124225A publication Critical patent/JP2019124225A/ja
Application granted granted Critical
Publication of JP6695476B2 publication Critical patent/JP6695476B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、ガソリンエンジン等の内燃機関に用いられる燃料噴射装置及びその制御装置に関する。
近年、自動車におけるガソリンエンジンは燃費改善の要求が高まっており、燃費に優れたエンジンとして、燃焼室内に燃料を直接噴射し、噴射された燃料と吸入空気との混合気を点火プラグで点火して爆発させる筒内噴射式エンジンが普及してきている。しかし、筒内噴射式エンジンは燃料が燃焼室内に付着しやすく、温度の低い壁面に付着した燃料が不完全燃焼することで発生する粒子状物質(Particle Matter:PM)の抑制が課題となっている。この課題を解決し、低燃費かつ低排ガスの直噴エンジンを開発するためには、燃焼室内の燃焼の最適化が必要である。
自動車の運転には、高負荷運転、低負荷運転、冷間始動等、様々な運転状況が存在する。燃焼の最適化には、運転状態に応じて、エンジン筒内に噴射された燃料噴霧と空気の最適な混合気の形成が重要である。燃料噴霧を最適化する有力な方法のひとつとして、燃料噴霧の長さ(ペネトレーション)を変化させる可変噴霧がある。運転状態によって燃焼室内の環境が異なるため、たとえば、高負荷運転時に大きな出力を得るために、ペネトレーションを長くすることで燃焼室全体に燃料噴霧を行き渡らせる均質燃焼が必要であり、低負荷運転時には燃料使用量を抑えるため、ペネトレーションを短くすることで点火プラグ近傍に燃料の濃い領域を作る成層燃焼が必要である。このため、燃料噴霧の形状を最適化する燃料噴射装置及びその制御装置の提供が求められている。
また、筒内噴射式エンジンでは、狭い燃焼室内で燃料噴射が行われるため、燃料がピストンや燃焼室内などに付着しやすい。燃料が短時間で気化すれば壁面に付着する燃料を減らすことが可能であるため、筒内噴射式エンジンでは、燃料噴射圧を高くして燃料噴霧の微粒化を促進している。しかし、燃料噴射圧を高く設定すると、噴射速度が上がり、ペネトレーションが長くなる傾向がある。このため、PM排出量削減の観点から、特にペネトレーションを短くする要求が高まっている。
たとえば特許文献1には、燃料噴射装置の弁体のリフト量(移動量)を制御することで燃料噴射のペネトレーションを変化させることが可能な燃料噴射装置が記載されている。この特許文献1に記載の燃料噴射装置においては、弁体のリフト量を大リフト量と小リフト量の複数に設定可能であり、噴射孔を開閉させる弁体のうち、噴射孔各々に対向する部分に突起部を備え、突起部を回り込むように噴射孔の側方部や下流部から流入させ、噴射孔から噴射する燃料に旋回成分を与えることで、小リフト量においてペネトレーションが短くなるように制御される。大リフト量においては旋回流が発生せずペネトレーションが長くなるため、リフト量に応じてペネトレーションを変化させることができる。
特開2009−121342号公報
特許文献1には、燃料噴霧のペネトレーションを変化させることが可能な燃料噴射装置が記載されている。しかし、一般的に燃料噴射装置における噴射孔内の速度場は、噴射孔軸に平行な面内での旋回方向速度成分(旋回方向成分)に対して、噴射孔軸方向の速度成分が相対的に非常に大きく、旋回流を利用する特許文献1に記載の方法ではペネトレーションが短くなる効果は限定的である。
以上の課題を鑑みて、本発明の目的は、ペネトレーションを短くすることが可能な燃料噴射装置を提供することである。
上記課題を解決するために、本発明の燃料噴射装置は、弁体側シート面が形成された弁体と、前記弁体側シート面と当接する弁座側シート面と、前記弁体側シート面と前記弁座側シート面とが当接する位置よりも下流側に設けられた噴射孔と、を有する。そして、前記弁体は前記弁体側シート面から前記噴射孔に向かって形成される凸部が形成され、シート間の燃料流れ方向における前記凸部の大きさが前記噴射孔の上流開口面の半径よりも小さくなるように形成されることを特徴とする。
本発明によれば、燃料噴霧のペネトレーションを短くすることが可能な燃料噴射装置を提供することが可能となる。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。
本発明に係る燃料噴射装置の実施例を示す断面図である。 本発明の第1実施例に係る燃料噴射装置の弁体先端の近傍を拡大した断面図である。 本発明の第1実施例に係る燃料噴射装置の弁体が閉弁位置にあるときの弁体先端の近傍を拡大した断面図である。 本発明の第1実施例に係る燃料流れを説明するための、図2の矢視図である。 本発明の第1実施例に係る燃料噴射装置の弁体の斜視図である。 本発明の第1実施例との比較のための従来の燃料噴射装置の弁体先端の近傍を拡大した断面図である。 本発明の第1実施例に係る燃料噴射装置の噴射孔出口における速度分布を示した図である。 本発明の第1実施例に係る燃料噴射装置を用いて形成される噴霧形状を説明した図である。 本発明の第1実施例に係る燃料噴射装置の噴射孔におけるキャビテーションの発生を示した図である。 図6の構成に係る燃料流れを説明するための、図4と同視点の図である。 本発明の第1実施例に係る燃料噴射装置を用いて構成されるエンジンの燃焼室を説明した図である。 本発明の第2実施例に係る燃料噴射装置の弁体先端の近傍を拡大した断面図である。 本発明の第3実施例に係る燃料噴射装置の弁体先端の近傍を拡大した断面図である。 本発明の第3実施例に係る燃料噴射装置の弁体先端の近傍を拡大した断面図である。
以下、本発明に係る実施例を説明する。
本発明の第1の実施例に係る燃料噴射装置及びその制御装置について、図1から図11を用いて以下説明する。
図1は、本実施例の燃料噴射装置(電磁式燃料噴射弁)の断面図である。図1を用いて燃料噴射装置の基本的な動作を説明する。図1において、燃料は燃料供給口112から供給され、燃料噴射装置100の内部に供給される。図1に示す燃料噴射装置100は、通常時閉型の電磁駆動式の燃料噴射弁であって、コイル108に通電がないときには、弁体101がスプリング110によって付勢され、ノズル体104に溶接などで接合されたシート部材102に押し付けられ、燃料がシールされるようになっている。このとき、本実施例のような筒内噴射用の燃料噴射装置100では、コモンレールから供給される燃料圧力がおよそ1MPaから50MPaの範囲である。
図1に示したコネクタ111を介してコイル108に通電されると、燃料噴射装置100の磁気回路を構成するコア(固定コア)107、ヨーク109、アンカー106に磁束密度が生じて、空隙のあるコア107とアンカー106の間に磁気吸引力を生じる。磁気吸引力が、スプリング110の付勢力と前述の燃料圧力により付勢される力との合算値よりも大きくなると、弁体101はガイド部材103、弁体ガイド105にガイドされながらアンカー106によってコア107側に吸引され、開弁状態となる。
開弁状態となると、シート部材102と弁体101との間に隙間が生じ、燃料の噴射が開始される。燃料の噴射が開始されると、燃料圧力として与えられたエネルギは運動エネルギに変換され、燃料噴射装置100の下端部に空いた噴射孔に至り噴射される。
次に、弁体101の詳細形状について図2を用いて説明する。図2は、燃料噴射装置100の下端部の拡大断面図であり、弁体側シート面207が形成された弁体101と、弁体側シート面207と当接する弁座側シート面204と、弁体側シート面207と弁座側シート面204とが当接する位置よりも下流側に設けられた噴射孔201と、を備える。弁座側シート面204はシート部材102の弁体側端面に形成される。なお、図示していないが、噴射孔201はシート部材102に複数、形成されており、複数の噴射孔201が円周上に配置される。
弁座側シート面204及び弁体101は弁体中心軸205を中心に軸対称に配置されている。燃料噴射装置100において上流側から流れてきた燃料は、図2の矢印208に示すように弁体側シート面207と弁座側シート面204の隙間を通り、噴射孔201から噴射される。燃料の一部は噴射孔より先端側のサック室202に回りこみ、矢印221の経路から噴射孔に流入する。弁体は大リフト量と小リフト量に設定が可能であり、大リフト量での弁体位置は101a、小リフト量での弁体位置は101bである。
燃料噴射装置100の閉弁状態について、図3を用いて説明する。図3は図2と同様、燃料噴射装置100の下端部の拡大断面図である。弁体101はシート位置209においてシート部材102と線接触し、燃料噴射装置100において上流側から流れてきた燃料をシールする。このとき、弁体側シート面207から噴射孔201に向かって形成されるガイド部206の先端256は、シート部材102と接触しないようにする。これにより、シート位置209において燃料をシールすることができる。
図4(a)は図2の矢視Zを示した図である。なお、図2は図4(a)におけるS―S'断面図にあたる。図2、図4(a)に示すように本実施例では、弁体101の円錐形状に形成される弁体側シート面207に、弁体側シート面207から噴射孔201に向かって形成されるガイド部206が形成される。図4(a)に示すようにガイド部206により断面積が小さくなる領域250が環状に形成されている。図4(a)ではガイド部206は上流側端面272から下流側端面271に向かって形成され、この領域を斜線で示す。上流側端面272、下流側端面271のぞれぞれで噴射孔201に対応する端部を上流側端部257、下流側端部256と呼ぶ。なお、ガイド部206は弁体101において弁体側シート面207から噴射孔201に向かって凸となるように形成される凸部である。あるいは段差部と呼んでもよい。
図5に、弁体101の先端形状の斜視図を示す。本実施例では、弁体側シート面207は球面で形成される。斜線で示すガイド部206は弁体101の中心軸205を軸として環状に形成されており、ガイド部206の先端部256も同様に環状に形成される。なお、環状のガイド部206は弁体101の切削加工時に付与される。
凸部206によるペネトレーションへの影響を説明するために、まず、弁体が凸部を持たない構成での、小リフト量における燃料の流動と噴射孔出口での速度分布について、図6を用いて説明する。図6の構成では、燃料流れは噴射孔201に流入する際、噴射孔入口の噴射孔エッジ223から剥離し、噴射孔201内下流側に矢印222の経路を通って流入する。このとき、噴射孔201内上流側には剥離渦224が形成され、燃料の流れは噴射孔201内下流側の壁面に押し付けられる。その結果、噴射孔出口面内では速度分布226のように、噴射孔201内下流側に速度の速い領域を持つ速度分布を形成する。ここで速度分布226は、矢印開始地点における速度の大きさを、矢印の長さによって表現している。図6の構成では、噴射孔出口で短い矢印で表される速度の遅い領域(低速領域)と、長い矢印で表される速度の速い領域(高速領域)が現れる。
次に本実施例による、小リフト量における燃料の流動と噴射孔出口での速度分布にいて、図7を用いて説明する。図7に示す様に、本実施例においてはシート間の燃料流れ方向における凸部206の大きさLが噴射孔201の上流開口面244の半径Rよりも小さくなるように形成される。より具体的には噴射孔201に対応する位置において、凸部206の上流側端部257が噴射孔201の上流開口面244の上流側端部(噴射孔エッジ223)よりも上流側に位置する。また凸部206の下流側端部256が噴射孔201の上流開口面244の上流側端部(噴射孔エッジ223)と上流開口面244の中心との間に位置するように形成される。
これにより凸部206は噴射孔エッジ223の上流側からの燃料に対して所定のガイド角度でガイドして流れの向きを変えて噴射孔エッジ223の下流側に流すことができる。したがって、噴射孔エッジ223を燃料の流れが回り込むことで、流れが噴射孔201内上流側に流れ込む。結果として、噴射孔出口の速度分布220は局所的な速度の大きさの偏りが少なくなり、図6の速度分布226に比べて噴射孔出口面内における速度分布が均一になり、これを平坦化することが可能である。流れの向きは、凸部206の開始位置(上流側端部257)から凸部206の最先端部(下流側端部256)まで変わり、流れの向きの変化は長さLの範囲である。
ここで噴射孔201の中心軸である噴射孔軸線203よりも噴射孔入口における流路の上流側(噴射孔内上流側)と、下流側(噴射孔内下流側)の2領域を定義する。なお、噴射孔軸線203は上流開口面244の中心と下流開口面258の中心とを結ぶ直線で形成される。本実施例の噴射孔201にはザグリが形成されており、噴射孔軸線203として、下流開口面258ではなくてザグリ下流開口面270を用いても良い。そして噴射孔内上流側に向けて燃料が流入するには、効果範囲が噴射孔内上流側に含まれている必要がある。そのため本実施例においては、噴射孔内上流側の噴射孔入口の大きさである半径長さRよりもシート間の燃料流れ方向における凸部の大きさLが小さくなるようにしている。これにより燃料が噴射孔201内上流側に流入するようになり、噴射孔内上流側に燃料を流入させることが可能になる。
ここで噴射孔出口面内における速度分布の平坦化によるペネトレーションに対する効果を、図8を用いて説明する。図8(a)は、凸部を持たない図6の構成における噴射孔から噴射される噴霧形状230aとそのペネトレーションの長さ231aの例を示す。図8(b)は、図7における噴射孔201から噴射される噴霧形状230bとそのペネトレーションの長さ231bの例を示す。ペネトレーションの長さは、噴射孔出口面内での最大速度が大きいほど長くなる。そのため、図6で示した構成のように、速度分布が局所的に高速領域を持つ場合、ペネトレーションが長くなる。
これに対して図7で示した本実施例における速度分布220は速度が面内で平坦であり局所的な高速領域を持たないため、ペネトレーションが短くなる。さらに、本実施例によると、凸部206によって燃料の速度が向上するので、燃料噴射圧、燃料温度などの諸条件を好適に選択することによってキャビテーションを発生させることができ、さらにペネトレーションを短くすることが可能である。
次に本実施例におけるキャビテーションの発生メカニズムとその効果について、図9を用いて説明する。図9は、噴射孔入口エッジ223においてキャビテーション243が発生する様子を示している。図9において、噴射孔201内上流側の内壁に沿った直線240と凸部206aの接線241a又は206bの接線241bのなすガイド傾斜角θとする。あるいは、ガイド傾斜角θは噴射孔軸線203と凸部206(206a又は206b)の接線241とのなす角度として定義しても良い。なお、凸部206が曲面で構成されている場合、接線241は凸部206の接線のうち、直線240とのなすガイド傾斜角θが最も小さくなる接線が、流れの向きの変化に寄与する接線である。なお、ガイド傾斜角θ=0°のとき噴射孔軸線203と凸部206(206a又は206b)の接線241とが平行となる。そして本実施例では、ガイド傾斜角θをたとえば0°<θ<90°などとして、小さい角度になるように設定する。
これにより、噴射孔エッジ223近傍を流れが急激に曲がるように凸部206によりガイドされるため、周囲の圧力が大きく低下する。凸部206によって流れの向きが変わると、矢印208の流路を通って噴射孔201に燃料が流入する。すると噴射孔エッジ223近傍で発生する剥離が小さくなり、流れが噴射孔エッジ223近傍で急激に曲がることで、付近の圧力低下が顕著になる。局所圧力が燃料の飽和蒸気圧を下回ったとき、キャビテーション243が発生する。キャビテーション243は噴射孔内の乱れを促進し、燃料噴霧が微粒化する。燃料噴霧の微粒化により液滴の拡散が促進され、燃料噴霧のペネトレーションが短くなる。
たとえば、小リフト量となる際の凸部206bの接線241bと噴射孔軸線203とのなすガイド傾斜角θを0°<θ<90°とすることで、キャビテーションを発生させ、燃料噴霧のペネトレーションをさらに短くすることが可能である。
また、流れの向きを好適に変えるために、凸部206が噴射孔エッジ223近傍に位置し、さらに噴射孔エッジ223より下流に位置していることが望ましい。具体的には、噴射孔201に対応する位置において、凸部206の下流側端部Aよりも上流側に形成される接線241のうち、噴射孔201の噴射孔軸線203となす角度が最少となる接線241が噴射孔201の上流開口面244の上流側と交差するように形成される。
本実施例の比較対象として、図10を用いて突起部254を噴射孔201の上流側に設けた場合について説明する。突起部254は弁体側シート面207から噴射孔201に向かって突出して球面形状で形成され、各噴射孔201に対応して、この球面形状の突起部254が形成される。突起部254は球面形状であるため、図10の突起部254の下流側端面271は長手方向において、弁体側シート面207からの高さが一端で最も低く中央側で高くなり、そして他端で再び最も低くなるように形成される。
突起部254は上流からの燃料の流れを抑制するように機能し、矢印255は噴射孔201に流入する燃料流れを示している。流れ抑制部254を迂回する流れを生み出すことで、噴射孔201に流入する流れに旋回方向速度成分を与える。しかし、一般的に噴射孔内の速度場は、旋回方向速度成分に対して、噴射孔軸方向速度成分が相対的に非常に大きく、旋回流を利用する図10に記載の方法ではペネトレーションが短くなる効果は限定的である。
これに対して本実施例の図4に示す形状は、ガイド部(凸部206)の下流側端面271は、噴射孔201の上流開口面244の径(2×R)よりも大きい領域において、弁体側シート面207からの高さがほぼ同じになるように形成される。具体的には図4(a)に示す様に、凸部206は弁体101の弁体側シート面207に環状に形成され、これにより弁体側シート面207からの高さ(突出長さ)がほぼ一定となるように形成される。あるいは図4(b)に示すようにそれぞれに凸部251が形成されるが、噴射孔201と対応しない位置においてはこれが形成されないようにすると良い。あるいは、環状に形成された凸部251は噴射孔201と対応しない位置において切り欠きが形成されるようにすると良い。なお、図4(b)の凸部251の下流側において一端と他端を結んだ直線をガイド領域273と呼ぶ。
本実施例ではこのガイド領域が上流開口面244の径(2×R)よりもさらに大きく、このガイド領域の全域に渡って、弁体側シート面207からの高さ(突出長さ)がほぼ一定となるように形成される。そのため、図10で示したように旋回流が起きるのを抑制することができる。また本実施例ではガイド領域のうち噴射孔201に対応する位置に形成される凸部206の下流側端部256は、噴射孔201の上流開口面244の中心よりも上流側に位置する。よって、噴射孔出口面での速度分布が平坦化でき、軸方向の最大速度を抑制することが可能であり、ペネトレーションを短くする効果が高い。
また、図10に記載の方法は、流れ抑制部254を流れが迂回するため、流れ抑制部254の位置と噴射孔位置の関係により旋回流が大きく変わる。このため、加工には厳密な位置決め精度が求められ、加工誤差に対する誤差が大きいと考えられる。これに対し、本実施例の上記した図4(a)又は(b)の構成によれば、上流からの燃料流れを噴射孔に直接、ガイドすることができるため、加工誤差や弁体の軸方向回転に効果が左右されにくい。
次に、本実施例の燃料噴射装置の制御方法について図11を用いて説明を行う。図11は車両用内燃機関の燃焼室を示した図である。燃料噴射装置100により燃料が燃焼室260に噴射され、混合気を形成する。燃焼室260内の混合気は、点火プラグ262による火花点火によって着火し、燃焼する。
本実施例でのピストン263の挙動は、エンジンの回転数によって決められている。エンジンの回転数が低い場合は、燃焼室260内の空気流動が緩慢であり、燃料が燃焼室壁面やピストンに付着しやすい。このとき、ペネトレーションは短くなることが望ましいため、小リフト量になるように制御する。逆に、エンジンの回転数が高い場合は、燃焼室260内の空気流動が活発なため、混合気形成が促進される。このとき、ペネトレーションを長くし、空気流動による混合気形成を促すことが望ましいため、大リフト量になるように制御する。
すなわち、弁体101は小リフト量と大リフト量との少なくとも2つのリフト量で制御される。そして図2、図9に示すように、弁体101bが小リフト量で開弁する場合、凸部206bの下流側端部256bよりも上流側に形成される接線のうち、噴射孔201の噴射孔軸線203となす角度が最少となる接線241bが噴射孔201の上流開口面244の上流側と交差するように構成される。一方で弁体101aが大リフト量で開弁する場合には、噴射孔201の噴射孔軸線203となす角度が最少となる接線241aが噴射孔201の上流開口面244の下流側と交差するように構成される。
また、燃焼室260内の空燃比によって、リフト量を制御することも可能である。空燃比が所定の値よりも低い場合、燃焼は希薄な状態になるので、点火プラグの周囲に空燃比がリッチな状態を作り、着火し易くすることが望ましい。このとき、ペネトレーションは短くなることが望ましいため、小リフト量になるように制御する。逆に、燃焼室260内の空燃比が所定の値よりも高い場合、燃焼室260内に均質な混合気を作り、燃焼室内全体で燃焼が行われることが望ましい。このとき、ペネトレーションを長くし、燃焼室内全体に混合気を形成することが望ましいため、大リフト量になるように制御する。
また、冷却水温または油温によって制御することも可能である。機関の冷却水温または油温が所定の温度よりも低い場合、温度が低いことで完全燃焼し難くなり、PMや未燃炭化水素の発生が増加する。このとき、小リフト量になるように制御し、ペネトレーションを短くして壁面付着を可能な限り抑える。
さらに、ピストン263の位置により制御を行っても良い。燃焼噴射時期におけるピストン263と燃料噴射装置100の距離が所定よりも短い場合、ピストンへの燃料の付着を防ぐため、小リフト量になるように制御する。燃焼噴射時期におけるピストン263と燃料噴射装置100の距離が所定よりも長い場合、燃料の分散を促進するため、大リフト量になるように制御する。
なお、本実施例で示した制御法は、短パルス噴射や、短パルス噴射を使用した多段噴射でも利用できる。短パルス噴射ではリフト量が小さくなるため、空燃比、冷却水温または油温、ピストンの位置による制御が可能である。短パルス噴射では1パルスあたりの噴射量が減るので、多段噴射により必要な燃料量を噴射するのが良い。多段噴射の場合も、上記の制御が可能である。
本発明の第2の実施例に係る燃料噴射装置について、図12を用いて以下説明する。図12に示す第2の実施例では、凸部206は開始位置である上流側端部257から下端位置である下流側端部256に向かって流路が狭くなるように形成される。実施例1においては、凸部206は上流側端部257から下流側端部256まで弁体側シート面207から噴射孔201に向かうように構成されていた。これに対して本実施例では、下流側端部256より下流で流路の広がりを持たないように構成される。すなわち、凸部206は上流側端部257から下流側端部256まで弁体側シート面207から噴射孔201に向かうように構成される。そして、弁体側シート面207は下流側端部256からさらに下流において弁座側シート面204と平行に沿うように構成される。なお、凸部206は、円錐で構成されていても良い。その他の構成については、実施例1と同様である。
本発明の第3の実施例に係る燃料噴射装置について、図13を用いて以下説明する。本実施例では、凸部206は開始位置である上流側端部257から下端位置である下流側端部256に向かって形成され、凸部206の接線241が流路の上流に向いている。このとき、凸部206により流れが遮られることによって、噴射孔に向かう流れの向きが変わる。結果として噴射孔内上流に流れが誘導され、実施例1と同様の効果が得られる。なお、図14に示すように、凸部206の接線241が噴射孔201内上流側の内壁に沿った直線240と水平になっていても良い。その他の構成については、実施例1と同様である。
100…燃料噴射装置、101…弁体、102…シート部材、104…ノズル体、108…コイル、110…スプリング、201…噴射孔、202…サック室、203…噴射孔の中心軸である噴射孔軸線、204…弁座側シート面、206…凸部(ガイド部)、207…弁体側シート面207、233…噴射孔エッジ、241…凸部(ガイド部)に形成される接線、244…噴射孔の上流開口面、256…下流側端部、257…上流側端部、258…噴射孔の下流開口面、271…下流側端面271、272…上流側端面。

Claims (2)

  1. 弁体側シート面が形成された弁体と、
    前記弁体側シート面と当接する弁座側シート面と、
    前記弁体側シート面と前記弁座側シート面とが当接する位置よりも下流側に設けられた噴射孔と、を有する燃料噴射装置において、
    前記弁体は前記弁体側シート面から前記噴射孔に向かって形成される凸部が形成され、
    シート間の燃料流れ方向における前記凸部の大きさが前記噴射孔の上流開口面の半径よりも小さくなるように形成され、
    前記凸部は前記弁体側シート面に環状に形成され、
    環状に形成された前記凸部は前記噴射孔と対応しない位置において切り欠きが形成され、
    前記凸部の下流側において一端と他端を結んだ直線をガイド領域とした場合に、当該ガイド領域の長さが前記上流開口面の直径よりも大きく形成され、当該ガイド領域の全域に渡って前記凸部は前記弁体側シート面からの高さが一定となるように形成されることを特徴とする燃料噴射装置。
  2. 請求項1に記載の燃料噴射装置において、
    前記噴射孔に対応する位置において、前記凸部の上流側端部が前記噴射孔の上流開口面の上流側端部よりも上流側に位置し、
    前記凸部の前記下流側端部が前記噴射孔の前記上流開口面の上流側端部と中心との間に位置するように形成されることを特徴とする燃料噴射装置。
JP2019089472A 2019-05-10 2019-05-10 燃料噴射装置 Active JP6695476B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019089472A JP6695476B2 (ja) 2019-05-10 2019-05-10 燃料噴射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089472A JP6695476B2 (ja) 2019-05-10 2019-05-10 燃料噴射装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015086386A Division JP2016205197A (ja) 2015-04-21 2015-04-21 燃料噴射装置

Publications (2)

Publication Number Publication Date
JP2019124225A JP2019124225A (ja) 2019-07-25
JP6695476B2 true JP6695476B2 (ja) 2020-05-20

Family

ID=67398392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089472A Active JP6695476B2 (ja) 2019-05-10 2019-05-10 燃料噴射装置

Country Status (1)

Country Link
JP (1) JP6695476B2 (ja)

Also Published As

Publication number Publication date
JP2019124225A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
JP4508142B2 (ja) 内燃機関用燃料噴射弁
JP2008280981A (ja) 燃料噴射装置およびそれを搭載した内燃機関
JP6186130B2 (ja) 燃料噴射弁及び燃料噴射弁の製造方法
JP4072402B2 (ja) 燃料噴射弁およびそれを搭載した内燃機関
JP3879909B2 (ja) 燃料噴射装置
JP2004353661A (ja) 燃料噴射弁及びそれを備えた筒内噴射式内燃機関
WO2019111643A1 (ja) 燃料噴射弁
JP6695476B2 (ja) 燃料噴射装置
US7264181B2 (en) Fuel injection valve with restriction wall, and internal combustion engine equipped therewith
WO2018221076A1 (ja) 燃料噴射弁及びエンジンシステム
JP4224666B2 (ja) 燃料噴射ノズルおよびその加工方法
JP2003148299A (ja) 燃料噴射弁およびそれを搭載した内燃機関
JP2005155547A (ja) 燃料噴射弁
WO2016170999A1 (ja) 燃料噴射装置
JP4038767B2 (ja) 燃料噴射装置
JP6779143B2 (ja) 燃料噴射弁
EP1476651A1 (en) Fuel injector flow director plate retainer
JP7032256B2 (ja) 燃料噴射弁
JP4789913B2 (ja) 燃料噴射装置及びこれを備えた内燃機関
JP2017031952A (ja) 燃料噴射装置
JP6758521B2 (ja) 燃料噴射弁
WO2017217156A1 (ja) 燃料噴射弁
JP4021403B2 (ja) 燃料噴射弁
JP2004324596A (ja) 燃料噴射弁およびそれを搭載した内燃機関
JP2013160213A (ja) 燃料噴射弁

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200421

R150 Certificate of patent or registration of utility model

Ref document number: 6695476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250