WO2016170910A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016170910A1
WO2016170910A1 PCT/JP2016/059531 JP2016059531W WO2016170910A1 WO 2016170910 A1 WO2016170910 A1 WO 2016170910A1 JP 2016059531 W JP2016059531 W JP 2016059531W WO 2016170910 A1 WO2016170910 A1 WO 2016170910A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
package
stacks
packages
unit
Prior art date
Application number
PCT/JP2016/059531
Other languages
English (en)
French (fr)
Inventor
伸也 大原
加藤 修治
井上 重徳
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016170910A1 publication Critical patent/WO2016170910A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14339Housings specially adapted for power drive units or power converters specially adapted for high voltage operation

Definitions

  • the present invention relates to a power converter, and more particularly to a power converter suitable for a configuration in which unit converters are connected in cascade.
  • a power converter configured by connecting unit converters in series is known as a technique for converting direct current and alternating current in the field of high voltage handling power systems and the like.
  • a multilevel waveform close to a sine wave is obtained as its serial output, and it is preferable in that it can output a high voltage exceeding the withstand voltage of the constituent switching elements. It is used.
  • a device using a pressure contact type semiconductor element is known as a switching element constituting the unit converter.
  • the pressure-contact type semiconductor elements are stacked in one direction, and the stacked pressure-contact type semiconductor elements are pressed from both ends using screws or the like through plates or the like.
  • Such a thing is called a stack.
  • a large number of switching elements are required as a power conversion device. Therefore, it is relatively easy to configure a power conversion device if several switching elements can be handled as a stack. Become.
  • Such a technique is described in, for example, US 2011/0038193.
  • the stack is used as a part of the unit converter.
  • the two stacks are simply arranged in the vertical direction, and the switching element at the end of one stack is arranged. And only the switching elements at the end of other stacks arranged in the vertical direction are connected. That is, in the above-described conventional technology, the connection between the stacks is not conscious, and therefore, there arises a problem that the entire power conversion device becomes large. In addition, the impedance tends to be uneven, causing a problem that the balance of the current flowing through the switching elements constituting the unit converter is lost.
  • An object of the present invention is to provide a power conversion device that can be downsized as a whole device and that can balance the current flowing through the switching element.
  • a diode is connected in parallel to a semiconductor element to form a package, and a plurality of the packages are arranged.
  • a stack is formed by applying pressure contact force from both ends, and the predetermined package constituting the stack is insulated from any of the other packages different from the predetermined, and has a plurality of stacks,
  • a relative arrangement change is possible under a predetermined condition, and at least two of the plurality of stacks are arranged so that side surfaces thereof face each other, and a package of the predetermined stack of the stacks is:
  • the unit converter is configured by being electrically connected to a predetermined package of any other stack, and other units of the predetermined stack are configured.
  • the cage constitutes another unit converter by being electrically connected to another package of the other stack, the unit converter includes a capacitor, and the unit converter includes a semiconductor element. By operating, the power of the capacitor can be output.
  • a plurality of IGBT stacks that collectively press-contact a plurality of pressure-contact type semiconductor elements and metal plates and insulating plates are arranged in parallel on the same plane.
  • a plurality of unit power converters in which the pressure contact type semiconductor elements are connected in parallel are configured by electrically connecting the pressure contact type semiconductor elements constituting the different IGBT stacks.
  • a plurality of unit power converters of the modular multilevel power converter are configured in the plurality of IGBT stacks by cascading the unit power converters.
  • the structure constituting the stack can be miniaturized, and the current flowing through the switching element can be balanced.
  • the present embodiment is directed to a power conversion device (modular multilevel power conversion device, hereinafter referred to as MMC) configured by connecting a plurality of unit power converters (or simply referred to as unit converters) in cascade.
  • MMC modular multilevel power conversion device
  • the MMC 100 mainly includes a power converter 101, an arm reactor 201, and a circuit breaker 202.
  • the MMC 100 includes a control circuit, an initial charging circuit, a protection circuit, and the like not shown.
  • the arm reactor 201 functions as an interconnection impedance, and an interconnection transformer may be used instead.
  • the power converter 100 includes three arms 102 (102U, 102V, 102W). Each arm 102 is configured by connecting a plurality of unit power converters 103 in series (in a cascade). A group of several unit power converters 103 is called an arm module 400.
  • connection point where the arms 102U, 102V, 102W of the power converter 101 are connected to each other is defined as a reference potential
  • connection point where the arms 102U, 102V, 102W of the power converter 101 are connected to the three-phase power system 203 is defined.
  • the potential is defined as the output voltage of each phase and the potential at the connection point is defined as the arm voltage
  • the interchanged power between the power converter 101 and the three-phase power system 203 is the amplitude of the arm voltage.
  • the phase is controlled by adjusting the system voltage as a reference.
  • the arm voltage is a combined voltage of the output voltages of the unit cells 103 constituting each arm 102U, 102V, 102W
  • the output voltage of each unit cell 103 constituting each arm 102U, 102V, 102W is controlled by controlling the output voltage.
  • the amount of power interchange between the three-phase power system 203 and the power converter 101 can be controlled.
  • STATCOM will be described as an example, but the application is not necessarily limited to STATCOM, and can be applied to, for example, DC power transmission.
  • the electric circuit of the unit power converter 103 is shown in FIG.
  • the unit power converter 103 constitutes a so-called full bridge, and is mainly constituted by a DC capacitor 300 and a pressure contact type IGBT package (or simply referred to as a package) 301P to 304N.
  • a diode is connected in reverse parallel to the pressure contact type IGBT package, and the integrated unit is referred to as a pressure contact type IGBT package.
  • the pressure contact type IGBT packages 301P to 304N are described as pressure contact type semiconductor elements (or simply referred to as semiconductor elements), but other types such as a pressure contact type GTO, which is a self-excited semiconductor element, are used instead of the pressure contact type IGBTs.
  • the effect of this embodiment can be realized even with a pressure-contact power semiconductor element.
  • the unit power converter 103 is a unit power converter configured to be able to increase the power accommodation capacity per unit power converter, and is configured by connecting pressure-contact IGBT packages in parallel.
  • the pressure contact type IGBT package 301P and the pressure contact type IGBT package 302P form a parallel structure
  • the other pressure contact type IGBT packages (301N and 302N, 303P and 304P, and 303N and 304N) are also respectively arranged.
  • a parallel circuit is formed.
  • Unit power converter output terminals 305P and 305N are interconnected with terminals of other adjacent unit power converters 103, thereby realizing series connection (or cascade connection) of unit power converters.
  • one of the output terminals 305P and 305N of the unit power converter located at both ends of the arm 102 is connected to the arm reactor 201 or the unit power converter 102 of another arm as shown in FIG.
  • the operation of the arm unit power converter 102 will be described.
  • the switching element of the pressure contact IGBT package constituting the arm unit power converter 102 is turned on / off by a control signal from a control circuit (not shown).
  • the output voltage is a voltage applied between the output terminal 305P and the output terminal 305N, and is an output voltage of the unit converter 103 of the full bridge circuit system.
  • the current flows from one of the output terminal 305P and the output terminal 305N of the unit converter 103 to the other.
  • Switching elements of the pressure contact type IGBT packages 301P and 302P are turned on, switching elements of the pressure contact type IGBT packages 301N and 302N are turned off, switching elements of the pressure contact type IGBT packages 303P and 304P are turned on, and switching elements of the pressure contact type IGBT packages 303N and 304 are turned on. By turning it off, the output voltage can be controlled to be approximately equal to zero regardless of the current between terminals.
  • the switching elements of the pressure contact type IGBT packages 301P and 302P are turned on, the switching elements of the pressure contact type IGBT packages 301N and 302N are turned off, the switching elements of the pressure contact type IGBT packages 303P and 304P are turned off, and the switching elements of the pressure contact type IGBT packages 303N and 304 are turned off.
  • the output voltage can be controlled to be approximately equal to the voltage of the capacitor 300 regardless of the current between the terminals.
  • Switching elements of the pressure contact type IGBT packages 301P and 302P are turned off, switching elements of the pressure contact type IGBT packages 301N and 302N are turned on, switching elements of the pressure contact type IGBT packages 303P and 304P are turned on, and switching elements of the pressure contact type IGBT packages 303N and 304 are turned on.
  • the output voltage can be controlled to be approximately equal to the reverse polarity voltage of the capacitor 300 regardless of the current between the terminals.
  • Switching elements of the pressure contact type IGBT packages 301P and 302P are turned off, switching elements of the pressure contact type IGBT packages 301N and 302N are turned on, switching elements of the pressure contact type IGBT packages 303P and 304P are turned off, and switching elements of the pressure contact type IGBT packages 303N and 304 are turned off.
  • the output voltage can be controlled to be approximately equal to zero regardless of the current between terminals.
  • FIG. 3 illustrates the hardware configuration that implements the MMC 100 of this embodiment.
  • the arm 102 of the MMC 100 is configured by the arm module 400 shown in FIG. 3 or a combination of the arm modules 400.
  • the arm module 400 is mainly composed of a plurality of IGBT stacks 401 and 402 and a DC capacitor 300 (300A, 300B).
  • the pressure contact type IGBT packages 301, 302, 303, and 304, the cooling fins 407, and the insulators 408 are arranged in a plurality of linear directions. Further, the IGBT stacks 401 and 402 are configured by sandwiching between the upper pressure contact plate 403 and the lower pressure contact plate 404 which are support members from both ends in the linear direction, and further applying pressure in the linear direction using the support rod 404. A disc spring 405 is inserted into one of the pressed structures so that a pressing force is constantly applied.
  • the plurality of IGBT stacks are arranged in parallel in a vertical plane with respect to the ground, and the press-contact type IGBT package constituting them is electrically connected so as to form an element parallel structure.
  • an insulator 408 is inserted every four pressure contact type IGBT packages 301 to 304 to ensure electrical insulation.
  • Eight pressure-contact type IGBT packages 301 to 304 of two IGBT stacks 401 and 402 sandwiched between the insulating bands constitute a full bridge having an element parallel structure.
  • the pressure contact IGBT packages 301P, 301N, 303N, and 303P are arranged in the order from the top.
  • the top and bottom two and the bottom two are arranged so that each has a different polarity. That is, the pressure contact type IGBT packages 301P and 301N are arranged such that the collector ("C" in the figure) faces upward, and the pressure contact type IGBT packages 303N and 303P face the emitter ("E" in the figure) upward. Further, adjacent pressure contact IGBT packages are electrically connected.
  • the pressure contact type IGBT package 301P and the pressure contact type IGBT package 302P which are elements having a parallel structure, are arranged at symmetrical positions with respect to the central axes of the two IGBT stacks 401 and 402.
  • the other six pressure-contact type IGBT packages are similarly arranged in a pair of pressure-contact type IGBT packages having an element parallel structure at symmetrical positions with respect to the central axes of the IGBT stacks 401 and 402. Further, a pair of pressure contact IGBT packages having an element parallel structure is electrically connected.
  • the positive electrode of the DC capacitor 300A is electrically connected to the collector of the IGBT 301P between the press-contact type IGBT packages, and the negative electrode of the DC capacitor 300A is electrically connected to the emitter of the IGBT 301N between the press-contact type IGBT packages.
  • the positive electrode of the DC capacitor 300B is electrically connected to the collector of the IGBT 303P between the press contact type IGBT packages, and the negative electrode of the DC capacitor 300B is electrically connected to the emitter of the IGBT 301N between the press contact type IGBT packages. Further, the positive electrode of DC capacitor 300A and the positive electrode of DC capacitor 300B are electrically connected.
  • a unit power converter 103 of a full bridge circuit having an element parallel structure is configured by the structure of the above-described pressure contact IGBT package and DC capacitors 300A and 300B.
  • a plurality of unit power converters 103 can be configured in the IGBT stacks 401 and 402, and these are connected in series (cascade) to configure the arm 102 of the MMC 100 or a part of the arm 102.
  • Cooling fins 407 made of metal are provided at both ends of the pressure contact type IGBT packages 301 to 304 in order to remove heat generated during operation of the power converter 101.
  • the cooling fin 407 is also used as an electrical conductor.
  • the bus bars 305P, 305N, 306P, and 306N By connecting the bus bars 305P, 305N, 306P, and 306N to the cooling fin 407, the bus bars 305 and 306 and the pressure contact type IGBT packages 301 to 304 are connected. The electrical connection between them is realized.
  • the bus bar is pressed together with the other elements of the IGBT stacks 401 and 402 in addition to the cooling fins 407 to realize electrical connection between the press-contact type IGBT packages 301 to 304 and the outside. Is also possible.
  • bus bars 306P and 306N and DC capacitors 300A and 300B for electrically connecting the DC capacitor and the pressure contact IGBT package are not drawn symmetrically for convenience of drawing, but as will be described later, Connect symmetrically.
  • FIG. 4 shows the arrangement of the DC capacitor 300 constituting the MMC 100 of the present embodiment.
  • a plurality of DC capacitors 300A and 300B are arranged in one direction.
  • the heights of the individual DC capacitors 300A and 300B are desirably the same height as the unit power converters 103 constituting the IGBT stacks 401 and 402.
  • the DC capacitors 300A and 300B are preferably about half as high as the unit power converter 103. Further, in the configuration of the present embodiment, as shown in FIG.
  • FIG. 5 is an overhead view of the arm module 400 of this embodiment.
  • the bus bars 306P and 306N that electrically connect the capacitor and the pressure contact IGBT package can be configured to be short.
  • the cooling fins 407 that connect the press-contact type IGBT package 301P and the press-contact type IGBT package 301N, and the cooling fins 407 that connect the press-contact type IGBT package 302P and the press-contact type IGBT package 302N pass through the bus bar on the front side in the drawing.
  • cooling fin 407 that connects the press-contact type IGBT package 303N and the press-contact type IGBT package 303P, and the cooling fin 407 that connects the press-contact type IGBT package 304N and the press-contact type IGBT package 304P are output through the bus bar on the front side in the drawing. It is connected to the bus bar 305N constituting the end.
  • collector-side cooling fins 407 of the pressure-contact type IGBT package 301P and the collector-side cooling fins 407 of the pressure-contact type IGBT package 302P are connected to each other via a bus bar on the rear side of the paper (in addition, the collector of the pressure-contact type IGBT package 303P).
  • the cooling fins 407 on the side and the cooling fins 407 on the collector side of the pressure contact type IGBT package 304P are also connected via a bus bar on the rear side in the drawing.
  • the cooling fins 407 that connect the press-contact type IGBT package 301N and the press-contact type IGBT package 303N, and the cooling fins 407 that connect the press-contact type IGBT package 302N and the press-contact type IGBT package 304N are connected via a bus bar on the rear side of the drawing. These bus bars are connected to both ends of the DC capacitor 300A.
  • the internal inductance of the unit power converter 103 can be reduced.
  • the MMC 100 of the present embodiment uses a parallel structure of IGBT elements, and by making the current sharing among the IGBT elements connected in parallel as uniform as possible, the performance of the IGBT elements can be utilized to the maximum.
  • the MMC 100 according to the present embodiment is characterized by the arrangement of the bus bars 305 and 306 connecting the inside of the arm module 400 in order to easily realize current sharing.
  • bus bars 305 and 306 are arranged so as to be bilaterally symmetric with respect to the central axis of the IGBT stacks 401 and 402 in a plane parallel to the IGBT stacks 401 and 402 arranged in parallel.
  • bus bars 306P and 306N for electrically connecting the DC capacitor and the pressure contact IGBT package are not drawn symmetrically for convenience of drawing, but the centers of the IGBT stacks 401 and 402 are shown in FIG. It is possible to arrange them symmetrically with respect to the axis. This symmetric configuration becomes more apparent in FIG. 6 when the arm module 400 is viewed from the ceiling direction. That is, as shown in FIG.
  • the bus bars 306P and 306N for electrically connecting the DC capacitor and the pressure contact IGBT package are arranged so as to be symmetrical with respect to the central axis of the IGBT stacks 401 and 402 arranged in parallel. .
  • the output terminals 305P and 305N are arranged to be symmetrical.
  • the maximum number of elements of the pressure contact type IGBT package that can be configured in each IGBT stack 401, 402 is limited by the mechanical strength of the IGBT stack 401, 402, and the like. For this reason, the number of unit power converters 103 required by the arms 102 of the MMC 100 may exceed the unit power converters 103 allowed for the IGBT stacks 401 and 402. In this case, as shown in FIG. 7, a plurality of arm modules 400 are configured and connected in series to secure the necessary number of unit power converters 103 in series.
  • the IGBT stacks 401 and 402 are configured by stacking the pressure contact type IGBT packages in a direction perpendicular to the ground is shown.
  • the DC capacitors 300A and 300B are also preferably arranged in parallel to the ground.
  • the bus bar 305 and 306 are used for electrical connection.
  • this electrical connection can be realized even with a flexible conductor (or a flexible conductor) or a cable.
  • the IGBT stack expands and contracts in the stacking direction of the pressure contact IGBT package due to the outside air temperature or the heat generated by the pressure contact IGBT package.
  • a flexible conductor (or a flexible conductor) or a cable there is an effect of absorbing the expansion and contraction of the IGBT stack and maintaining an electrical connection.
  • the embodiment has been described above using the MMC 101 configured as a full-bridge unit power converter shown in FIG. 1 and operating as STATCOM.
  • the effect of the present embodiment is also effective for applications other than STATCOM as long as it is an MMC configured by connecting full-bridge unit power converters in series.
  • the present embodiment can also be applied to an MMC applied to a power converter for a direct current power transmission system (HVDC) constituted by an MMC and a large-capacity drive system.
  • HVDC direct current power transmission system
  • the effect of the present embodiment is not limited to the electrical circuit topology of FIG. 1, and the present embodiment can be applied to any power conversion device configured by connecting full-bridge unit power converters in series.
  • a second embodiment of the present invention will be described with reference to FIGS.
  • the difference between the second embodiment and the first embodiment is the difference in the configuration of the arm module 400, and the other configurations are the same as those in the first embodiment.
  • symbols having the same figure number in the drawings represent the same elements, their descriptions are omitted.
  • the arm module 400 is composed of four IGBT stacks 501 to 504.
  • FIG. 8 shows a schematic configuration and electrical connection of the arm module 400.
  • the arm module 400 includes a plurality of unit power converters 103 in the IGBT stacks 501 to 504, and the plurality of unit power converters 103 are connected in series (cascade) as in the first embodiment.
  • the structure in which the insulator 408 is added every time two pressure contact IGBT packages are arranged is repeated. For example, in the IGBT stack 501, the pressure contact type IGBT package 303P and then the pressure contact type IGBT package 303N are stacked in the vertical direction so as to have the same polarity in the vertical direction.
  • FIG. 8 shows a schematic configuration and electrical connection of the arm module 400.
  • the arm module 400 includes a plurality of unit power converters 103 in the IGBT stacks 501 to 504, and the plurality of unit power converters 103 are connected in series (cascade) as in the first embodiment.
  • all the pressure contact type IGBT packages are arranged such that the upper side is the collector (“C” in the figure) and the lower side is the emitter (“E” in the figure).
  • the electrical connection is made by sandwiching a cooling fin 407 made of metal between the two elements, as in the first embodiment.
  • the IGBT stack 501 is sandwiched between upper and lower pressure contact plates 403 and 404 that are support members from both ends in the linear direction, and further, pressure is applied in the linear direction using the support rod 406. Further, the point that the pressure contact force is constantly applied by inserting a disc spring 405 into either one of the pressure-contacted structures is the same as in the first embodiment.
  • Four IGBT stacks configured as described above are arranged in parallel.
  • the collector side of the pressure contact type IGBT packages 301P, 302P, 303P, and 304P on the upper side among the plurality of pressure contact type IGBT packages arranged vertically is electrically connected.
  • the emitter side of the press-contact type IGBT packages 301N, 302N, 303N, and 304N in the lower part is also electrically connected.
  • the emitter side of the pressure contact type IGBT packages 301P and 302P arranged vertically in the two inner IGBT stacks 502 and 503 is electrically connected, and this is connected to the output terminal 305P.
  • the outer two IGBT stacks 501 and 504 are electrically connected to the emitter side of the press-contact IGBT packages 303P and 304P arranged vertically, and this is connected to the output terminal. 305N.
  • the pressure-contact type IGBT package that constitutes the two inner IGBT stacks 502 and 503 and the pressure-contact type IGBT package that constitutes the two outer IGBT stacks 501 and 504 are respectively included in the four IGBT stacks.
  • An element parallel circuit is configured.
  • the unit power converter 103 is configured by connecting the DC capacitor 300 in parallel to the above structure. With the configuration as described above, a plurality of unit power converters 103 can be configured in four IGBT stacks. Therefore, compared to a case where an IGBT stack is configured for each unit power converter 103, the structure is reduced. It can be reduced, and the space of the IGBT stack can be saved.
  • FIG. 9 shows the arrangement of the DC capacitor 300 of this embodiment.
  • a plurality of DC capacitors 300 are arranged in one direction.
  • the height of each DC capacitor 300 is preferably the same as that of the unit power converter 103 that constitutes the IGBT stacks 501 to 502.
  • the casings of the individual DC capacitors 300A and 300B are electrically insulated by means such as securing a spatial distance or sandwiching an insulator or the like between the capacitors 300A and 300B (not shown).
  • the unit power converter 103 and the DC capacitor 300 at the same height can be connected by the short-length bus bars 306P and 306N.
  • the internal inductance of the full bridge circuit in the unit power converter 103 is obtained. This is because it leads to reduction of Also, with the above configuration, the entire system including the DC capacitor 300 can be realized in a space-saving manner.
  • the bus bars 306P and 306N for electrically connecting the DC capacitor 300 and the pressure contact IGBT package and the DC capacitor 300 are not drawn symmetrically.
  • the circuit impedance caused by the wiring becomes equal between the parallel elements, and it becomes easy to realize equal current sharing between the parallel elements.
  • This left-right symmetric configuration becomes more apparent in FIG. 11 when the arm module 400 is viewed from the ceiling direction.
  • a third embodiment of the present invention will be described with reference to FIGS.
  • the difference of the third embodiment from the first embodiment is the difference in the configuration of the arm module 400, and the other configurations are the same as those in the first embodiment.
  • symbols having the same figure number in the drawings represent the same elements, their descriptions are omitted.
  • the arm module 400 includes eight IGBT stacks 601 to 608.
  • FIG. 12 shows a schematic configuration and electrical connection of the arm module 400.
  • the eight IGBT stacks 601 to 608 are arranged in parallel on a certain plane (in this example, on a plane perpendicular to the ground).
  • the arm module 400 includes a plurality of unit power converters 103 in the IGBT stacks 601 to 608, and the plurality of unit power converters 103 are connected in series (cascade) as in the first embodiment.
  • a pressure-contact type IGBT package sandwiched from two sides by two cooling fins 407 constitutes one set, and a structure constituted by this set and the insulator 407 is repeatedly stacked in the vertical direction to form IGBT stacks 601 to 608.
  • Configure. With the configuration as described above, a plurality of unit power converters 103 can be configured in eight IGBT stacks. Therefore, compared to a case where an IGBT stack is configured for each unit power converter 103, the structure is reduced. It can be reduced, and the space of the IGBT stack can be saved.
  • the four pressure contact IGBT packages 301P, 301N, 303P, and 303N at the same height of the four IGBT stacks 601 to 604 on the left side with respect to the central axis are one full.
  • four pressure-contact type IGBT packages 302P, 302N, 304P, and 304N at the same height of the four IGBT stacks 605 to 608 on the right side with respect to the central axis are one.
  • the press-contact type IGBT package 301P and the press-contact type IGBT package 302P are arranged at target positions with respect to the central axis.
  • the IGBT stacks 601 to 604 are arranged in parallel from left to right, the IGBT stack 601 is the pressure contact type IGBT package 303P, the IGBT stack 602 is the pressure contact type IGBT package 303N, and the IGBT stack.
  • Reference numeral 603 denotes a pressure-contact type IGBT package 301N, and further, an IGBT stack 604 forms a pressure-contact type IGBT package 301P.
  • the pressure contact type IGBT packages 303P and 301P are arranged such that the upper side is the collector ("C" in the figure), and the pressure contact type IGBT packages 303N and 301N are the upper side the emitter ("E" in the figure).
  • the positive electrode of DC capacitor 300 is connected to the collector side of pressure contact IGBT packages 303P and 301P via a bus bar
  • the negative electrode of DC capacitor 300 is connected to the emitter side of pressure contact IGBT packages 303N and 301N via a bus bar.
  • the lower ends of the pressure contact type IGBT package 301P and the pressure contact type IGBT package 301N are electrically connected by a bus bar to constitute an output terminal 305P.
  • the lower end of the press contact type IGBT package 303P and the press contact type IGBT package 303N are electrically connected by a bus bar to constitute an output terminal 305N.
  • the IGBT stacks 605 to 608 are arranged in parallel from left to right from the right side of the IGBT stack 604. At this time, the four IGBT stacks are arranged so as to be symmetric with respect to a virtual central axis on the right side of the IGBT stack 604. That is, the IGBT stack 608 is arranged symmetrically with the IGBT stack 601, the IGBT stack 607 is arranged symmetrically with the IGBT stack 602, the IGBT stack 606 is arranged symmetrically with the IGBT stack 603, and the IGBT stack 605 is arranged symmetrically with the IGBT stack 604.
  • the bus bar connecting the DC capacitor 300 and the compression contact IGBT is also arranged so as to be symmetric with respect to the central axis.
  • the bus bars 306P and 306N for electrically connecting the DC capacitor 300 and the press-contact type IGBT package and the DC capacitor 300 are not drawn symmetrically for convenience of drawing, but are shown in the first and second embodiments.
  • DC capacitor 300 with 8 IGBT stacks 6 By configuring unit power converters arranged in parallel with 05 to 608, it is possible to create a symmetrical structure. By adopting such a configuration, the circuit impedance caused by the wiring becomes equal between the parallel elements, and an even current sharing between the parallel elements can be realized. In other words, it is easy to realize equal current sharing among the parallel elements.
  • the DC capacitors 300 are stacked in the stacking direction of the multi-pressure contact IGBT package as in the first and second embodiments. At this time, it is desirable that the dimension of each DC capacitor 300 in the height direction is the same as that of each unit power converter 103 constituted by an IGBT stack. This leads to the construction of a unit power converter that can reduce the length of the bus bar when the unit power converter 103 and the DC capacitor 300 at the same height are connected by the bus bars 306P and 306N. This is because the internal inductance of the full bridge circuit in the converter 103 is reduced. Also, with the above configuration, the entire system including the DC capacitor 300 can be realized in a space-saving manner.
  • FIG. 13 the structure shown in FIG. 13 can be realized.
  • the eight IGBT stacks 601 to 604 arranged in parallel constitute a plurality of unit power converters of a full bridge circuit having an element parallel structure for each stage of the pressure-contact IGBT package. This is the same as the embodiment shown.
  • FIG. 13 differs in that the positions of the pressure contact IGBT package 301N, the pressure contact IGBT package 301P, the pressure contact IGBT package 302P, and the pressure contact IGBT package 302N are reversed from FIG. In the structure shown in FIG.
  • the features in which the press-contact type IGBT package pair and the bus bar forming the element parallel structure are arranged on the left and right sides with respect to the central axis of the IGBT stack are the same.
  • the circuit impedance caused by the wiring becomes equal between the parallel elements, and it is easy to realize equal current sharing between the parallel elements.
  • a fourth embodiment of the present invention will be described with reference to FIGS.
  • the difference of the fourth embodiment from the first embodiment is in the configuration of the unit power converter 103 and the arm module 400, and the other configurations are the same as those of the first embodiment.
  • symbols having the same figure number in the drawings represent the same elements, their descriptions are omitted.
  • the unit power converter 103 is composed of a half bridge circuit 103 whose module has an element parallel structure.
  • the half-bridge circuit 103 includes four pressure contact IGBT packages 601P, 602N, 602P, and 602N, a DC capacitor 300, and bus bars 605 (605N and 605P) and 606 (606N and 606P) that connect them. To do.
  • a plurality of unit power converters 103 shown in FIG. 14 are configured in the two IGBT stacks 701 and 702 shown in FIG.
  • two sets of pressure contact IGBT packages are arranged in the vertical direction, and one set in which insulators 408 are arranged on the upper and lower sides thereof, and a plurality of such sets are stacked in the vertical direction to form IGBT stacks 701 and 702. Constitute.
  • the pressure-contact type IGBT packages are stacked for the same polarity in the vertical direction.
  • all the pressure contact type IGBT packages are arranged so that the upper side is a collector (“C” in the figure).
  • the electrical connection is made by sandwiching a cooling fin 407 made of metal between the two elements, as in the first embodiment.
  • the IGBT stack 701 is sandwiched between the upper press contact plate 403 and the lower press contact plate 404 which are support members from both ends in the linear direction, and further pressure is applied in the linear direction using the support rod 406. Further, the point that the pressure contact force is constantly applied by inserting a disc spring 405 into either one of the pressure-contacted structures is the same as in the first embodiment.
  • Two IGBT stacks configured as described above are arranged in parallel.
  • the collectors ("C” in the figure) and the emitters ("E” in the figure) of the pressure-contact type IGBT packages 601P and 602P arranged in the upward direction and the pressure-contact type IGBT packages 601N and 602N arranged in the downward direction are respectively electrically connected.
  • the positive electrode and the negative electrode of the DC capacitor 300 are connected to the upper part (collector) of the pressure contact type IGBT packages 601P and 602P and the lower part (emitter) of the pressure contact type IGBT packages 601N and 601N, respectively.
  • the bus bar of the output terminal 605P is electrically connected to the lower (emitter) side of the pressure contact type IGBT packages 601P and 602P.
  • the unit power converter 103 configured by the element-parallel half bridge circuit shown in FIG. 14 can be configured.
  • a plurality of unit power converters 103 can be configured in the two IGBT stacks 701 and 702. Therefore, the structure can be reduced as compared with the case where an IGBT stack is configured for each unit power converter 103. , Space saving of the IGBT stack can be achieved.
  • the feature that the pair of pressure-contact type IGBT packages and the bus bars that form an element parallel structure with respect to the central axis of the IGBT stack are arranged on the left and right sides is the same as that of the first embodiment.
  • the circuit impedance caused by the wiring becomes equal between the parallel elements, and it is easy to realize equal current sharing between the parallel elements.
  • each DC capacitor 300 insulated in the same manner as in the first and second embodiments are stacked in the stacking direction of the multiple pressure contact IGBT package.
  • the dimension of each DC capacitor 300 in the height direction is the same as that of each unit power converter 103 constituted by an IGBT stack. This is because when the unit power converter 103 and the DC capacitor 300 at the same height are connected by the bus bars 306P and 306N, the length of the bus bar is reduced, resulting in the unit power converter. This is because the internal inductance of the full bridge circuit is reduced. Also, with the above configuration, the entire system including the DC capacitor 300 can be realized in a space-saving manner.
  • the embodiment has been described above using the MMC 101 configured as a half-bridge type unit power converter shown in FIG. 1 and operating as STATCOM.
  • the effect of the present embodiment is also effective for applications other than STATCOM.
  • the present invention can also be applied to a power converter for a direct current power transmission system (HVDC) constituted by an MMC and an MMC applied to a large-capacity drive system.
  • HVDC direct current power transmission system
  • the topology of the electrical circuit of the MMC is not limited to the MMC topology of FIG. 1, and the present invention can be applied to any MMC configured by connecting half-bridge unit power converters in series.
  • a fifth embodiment of the present invention will be described with reference to FIG.
  • the difference of the fifth embodiment from the fourth embodiment is that the half-bridge unit power converter 104 is configured in four IGBT stacks. Since the other configuration is the same as that of the fourth embodiment, description thereof is omitted. Further, in the fifth embodiment, symbols having the same figure numbers as those in the fourth embodiment represent the same elements, and thus description thereof is omitted.
  • a structure in which a pressure-contact type IGBT package is sandwiched between two cooling fins 407 from both sides is formed, and further, an insulator 407 is disposed on both ends of the structure as one set.
  • This set is repeatedly stacked in the vertical direction to form IGBT stacks 801-804.
  • the cooling fins 407 are made of metal, and the electrical connection is the same as in the first embodiment.
  • the IGBT stacks 801 to 804 are sandwiched between the upper press contact plate 403 and the lower press contact plate 404 as support members from both ends in the vertical direction, and further, pressure is applied in a linear direction using the support rod 406.
  • the point that the pressure contact force is constantly applied by inserting a disc spring 405 into either one of the pressure-contacted structures is the same as in the first embodiment.
  • a plurality of unit power converters 103 can be configured in the four IGBT stacks. Therefore, the structure is reduced as compared with the case where each unit power converter 103 is configured with an IGBT stack. In addition, the space of the IGBT stack can be saved.
  • the inner two and the outer two are arranged in different directions.
  • the inner pressure contact type IGBT packages 601P and 602P are arranged so that the upper side is the emitter ("E" in the figure), and the outer side contact type IGBTs 601N and 602N are the upper side are the collectors ("C" in the figure).
  • the upper part of the four pressure-contact type IGBT packages is electrically connected, and further the bus bar is electrically connected to form the output terminal 605P.
  • the unit power converter 103 of a half bridge circuit having an element parallel structure can be configured with four pressure contact IGBT packages at the same height.
  • the bus bars constituting the unit power converter 103 are arranged symmetrically with respect to the central axes of the four IGBT stacks 801 to 804. With this arrangement structure, the circuit impedance caused by the wiring becomes equal between the left and right parallel elements, and it is easy to realize equal current sharing between the parallel elements.
  • DC capacitors 300 insulated in the same manner as in the first and second embodiments are stacked in the stacking direction of the multiple pressure contact IGBT package.
  • the dimension of each DC capacitor 300 in the height direction is the same as that of each unit power converter 103 constituted by an IGBT stack. This is because when the unit power converter 103 and the DC capacitor 300 at the same height are connected by a bus bar, the length of the bus bar is reduced and the unit power converter is connected. As a result, the full bridge in the unit power converter 103 is connected. This is because the internal inductance of the circuit is reduced. Also, with the above configuration, the entire system including the DC capacitor 300 can be realized in a space-saving manner.
  • Multi-level power converter DESCRIPTION OF SYMBOLS 101 ...
  • Power converter 102 (102U, 102V, 102W) ... Arm 103 ...
  • Unit power converter 201 ...
  • Arm reactor 202 ... Circuit breaker 203 ...
  • Power system 300, 300A, 300B ... DC capacitors 301P, 301N, 302P, 302N, 303P, 303N, 304P, 304N ... Pressure contact type IGBT packages 305, 305P, 305N ... Busbars 306, 306P, 306N constituting output terminals or output terminals ..Bus bar 307P for electrically connecting DC capacitor and pressure contact IGBT package... DC capacitor positive terminal 307N... DC capacitor negative terminal 400...
  • MMC Multi-level power converter
  • Arm module 401 402. ... Upper pressure contact plate 404 ... Lower Pressure contact plate 405 ... Belleville spring 406 ... Support rod 407 ... Cooling fin 408 ... Insulator 501, 502, 503, 504 ... IGBT stack 601P, 601N, 602P, 602N ... Pressure contact IGBT Packages 605, 605P, 605N ... Bus terminals 606, 606P, 606N constituting the output terminals or the output terminals 701, 702 ... Electrically connecting the DC capacitor and the pressure contact type IGBT package 701, 702 ... IGBT stacks 801, 802 , 803, 804 ... IGBT stack

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)

Abstract

体積を抑えた素子並列構造をもつ圧接型半導体素子を用いたモジュラー・マルチレベレル電力変換装置を提供する。 複数の圧接型半導体素子および金属板,絶縁板を一括で圧接するIGBTスタックを,同一平面内に複数平行に配置する。前記の異なるIGBTスタック間を構成する圧接型半導体素子をそれぞれ電気的に接続することで圧接型半導体素子を並列に接続した単位電力変換器を複数構成する。さらに各々の単位電力変換器をカスケード接続することで,前記複数のIGBTスタック内にモジュラー・マルチレベル電力変換装置の単位電力変換器を複数構成する。

Description

電力変換装置
 本発明は,電力変換装置に関し,特に,単位変換器をカスケードに接続した構成に好適な電力変換装置に関する。
 近年では交流と直流を互いに変換する電力変換装置が注目されている。この電力変換装置のなかで,電力系統等を扱う高電圧の分野において直流と交流を互いに変換する技術として単位変換器を直列に接続して構成する電力変換装置が知られている。この技術では,単位変換器の各々が電力変換機能を持つので,その直列した出力として正弦波に近いマルチレベル波形が得られ,また構成するスイッチング素子の耐圧以上の高電圧を出力できる点で好ましく用いられている。
 ここで,単位変換器を構成するスイッチング素子として圧接型半導体素子を用いたものが知られている。圧接型半導体素子を一方向に積層させ,その積層した圧接型半導体素子を両端から板等を介してねじ止等を利用して圧接するものである。このようなものはスタックと呼ばれる。電力系統等の高電圧の分野においては,電力変換装置として多数のスイッチング素子が必要となるので,いくつかのスイッチング素子をスタックとして一纏めで扱えると電力変換装置を構成するのに比較的に容易になる。このような技術は、例えば、米国2011/0038193号公報に記載されている。
米国2011/0038193号公報
 上記の従来技術では,スタックを単位変換器の一部として用いることが示されているものの,そのスタック間の接続に関しては,2つのスタックを単に縦方向に並べ,一方のスタックの端のスイッチング素子と,縦方向に並んだ他のスタックの端のスイッチング素子を接続したにすぎない。すなわち,上記の従来技術では,スタック間の接続について意識されてなく,そのため,電力変換装置全体が大型になるとの問題が生じる。また,インピーダンスが不揃いになる傾向があり,単位変換器を構成するスイッチング素子に流れる電流のバランスが崩れるとの問題が生じる。
 本発明の目的は,装置全体として小型化でき,さらに,スイッチング素子に流れる電流のバランスをとることが可能な電力変換装置を提供することにある。
 上記目的を達成するために,本発明では,単位変換器をカスケードに接続して構成される電力変換装置において,半導体素子にダイオードを逆並列接続してパッケージを構成し,前記パッケージを複数配列して両端から圧接力を加えてスタックを構成し,前記スタックを構成する所定のパッケージは前記所定とは異なる他のパッケージのいずれかと絶縁されており,前記スタックを複数有し,前記複数のスタックは所定の条件下で相対的な配置変更が可能になっており,前記の複数スタックのうちの少なくとも2は互いに側面が対向して配置されており,前記スタックのうちの所定のスタックのパッケージは,他のいずれかのスタックの所定のパッケージと電気的に接続されることで前記単位変換器を構成し,前記所定のスタックの他のパッケージは,前記他のスタックの他のパッケージと電気的に接続されることで他の前記単位変換器を構成し,前記単位変換器はコンデンサを有しており,前記単位変換器は半導体素子を動作させることで前記コンデンサの電力を出力可能に構成する。
 具体的には,複数の圧接型半導体素子および金属板,絶縁板を一括で圧接するIGBTスタックを,同一平面内に複数平行に配置する。前記の異なるIGBTスタック間を構成する圧接型半導体素子をそれぞれ電気的に接続することで圧接型半導体素子を並列に接続した単位電力変換器を複数構成する。さらに各々の単位電力変換器をカスケード接続することで,前記複数のIGBTスタック内にモジュラー・マルチレベル電力変換装置の単位電力変換器を複数構成する。
 本発明によれば,スタックを構成する構造物として小型が可能となり,さらに,スイッチング素子に流れる電流のバランスをとることが可能となる。
マルチレベレル電力変換装置(MMC)の全体構成を示した図。 MMCを構成する素子並列のフルブリッジ回路の単位電力変換器の電気回路図。 第一の実施例におけるアーム・モジュールの構成を示した図。 第一の実施例における直流コンデンサの配置を示した図。 第一の実施例におけるアーム・モジュールの斜視図。 第一の実施例におけるアーム・モジュールを上から俯瞰した図。 第一の実施例における複数のアーム・モジュールの接続例を示した図。 第二の実施例におけるアーム・モジュールの構成を示した図。 第二の実施例における直流コンデンサの配置を示した図。 第二の実施例におけるアーム・モジュールの斜視図。 第二の実施例におけるアーム・モジュールを上から俯瞰した図。 第三の実施例におけるアーム・モジュールの構成を示した図。 第三の実施例におけるアーム・モジュールの別の構成を示した図。 MMCを構成する素子並列のハーフブリッジ回路の単位電力変換器の電気回路図。 第四の実施例におけるアーム・モジュールの構成を示した図。 第五の実施例におけるアーム・モジュールの構成を示した図。
 以下,実施例を図面を用いて説明する。
 本実施例は複数の単位電力変換器(あるいは単に単位変換器とも称す)をカスケード状に接続して構成する電力変換装置(モジュラー・マルチレベレル電力変換装置,以下MMCと称す)を対象とする。
 第一の実施例では図1に示すSTATCOM(無効電力補償装置)として動作するMMCを例として,本実施例の実施形態を説明する。本実施例のMMC100は,主に電力変換器101,アームリアクトル201,遮断器202で構成される。MMC100はこの他に図示されていない制御回路や初充電回路,保護回路等で構成される。アームリアクトル201は連系インピーダンスとして機能し,連系トランスで代用しても良い。電力変換器100は3個のアーム102(102U,102V,102W)で構成する。個々のアーム102は,複数の単位電力変換器103を直列に(カスケードに)接続して構成する。複数の単位電力変換器103をいくつかまとめたものをアーム・モジュール400と呼ぶ。
 次に動作について説明する。電力変換器101のアーム102U,102V,102Wが互いに接続される接続点を基準電位と定義し,電力変換器101のアーム102U,102V,102Wが三相電力系統203と接続される連系点の電位を各相出力電圧と定義し,接続点の電位をアーム電圧と定義すると,電力変換器101の通常動作では,電力変換器101と三相電力系統203間の融通電力は,アーム電圧の振幅と位相を系統電圧を基準に調整することにより制御される。アーム電圧は,各アーム102U,102V,102Wを構成する各単位セル103の出力電圧の合成電圧であるので,各アーム102U,102V,102Wを構成する各単位セル103の出力電圧を制御することにより,三相電力系統203と電力変換器101の間の電力融通量を制御できる。
 本実施例では,STATCOMを例に挙げて説明するが,必ずしも用途としてSTATCOMに限定されるものではなく,例えば,直流送電等に応用できる。
 単位電力変換器103の電気回路を図2に示す。単位電力変換器103は所謂フルブリッジを構成し,主に直流コンデンサ300と圧接型IGBTパッケージ(或いは単にパッケージとも称する)301P~304Nで構成する。なお本実施例では圧接型IGBTパッケージにはIGBTの他にダイオードが逆並列に接続されており,これら一体を圧接型IGBTパッケージと呼ぶ。
 本実施例で圧接型半導体素子(或いは単に半導体素子とも称する)として圧接型IGBTパッケージ301P~304Nを用いて説明するが,圧接型IGBTの代わりに自励式半導体素子である圧接型GTO等の他の圧接型パワー半導体素子であっても本実施例の効果は実現可能である。単位電力変換器103は単位電力変換器当りの電力融通容量を増大させることが可能に構成される単位電力変換器のため,圧接型IGBTパッケージを並列接続して構成する。本実施例では圧接型IGBTパッケージ301Pと圧接型IGBTパッケージ302Pが並列構造を構成しており,この他の相対する圧接型IGBTパッケージ間(301Nと302N,303Pと304Pおよび303Nと304N間)もそれぞれ並列回路を形成する。単位電力変換器出力端子305Pおよび305Nは隣接する他の単位電力変換器103の端子と相互接続することで,単位電力変換器の直列接続(あるいはカスケード接続)を実現する。またアーム102の両端に位置する単位電力変換器の出力端子305Pおよび305Nのいずれか一方は,図1に示すようにアームリアクトル201あるいは他のアームの単位電力変換器102に接続する。
 アーム単位電力変換器102の動作を説明する。アーム単位電力変換器102を構成する圧接型IGBTパッケージのスイッチング素子は,図示しない制御回路~の制御信号でオン/オフ動作がなされる。
 出力電圧は,出力端子305Pと出力端子305Nとの間に印加された電圧であり,かつ,フルブリッジ回路方式の単位変換器103の出力電圧である。電流は,単位変換器103の出力端子305Pと出力端子305Nの一方から他方に流れる。
 以下,出力電圧と,圧接型IGBTパッケージ(301Pと302P,301Nと302N,303Pと304P,303Nと304)のスイッチング素子のオン・オフ状態の関係を説明する。
 圧接型IGBTパッケージ301P,302Pのスイッチング素子をオン,圧接型IGBTパッケージ301Nと302Nのスイッチング素子をオフ,圧接型IGBTパッケージ303Pと304Pのスイッチング素子をオン,圧接型IGBTパッケージ303Nと304のスイッチング素子をオフとすることで,端子間電流に関わらず,出力電圧を零と概ね等しくなるように制御できる。
 圧接型IGBTパッケージ301P,302Pのスイッチング素子をオン,圧接型IGBTパッケージ301Nと302Nのスイッチング素子をオフ,圧接型IGBTパッケージ303Pと304Pのスイッチング素子をオフ,圧接型IGBTパッケージ303Nと304のスイッチング素子をオンとすることで,端子間電流に関わらず,出力電圧をコンデンサ300の電圧と概ね等しくなるように制御できる。
 圧接型IGBTパッケージ301P,302Pのスイッチング素子をオフ,圧接型IGBTパッケージ301Nと302Nのスイッチング素子をオン,圧接型IGBTパッケージ303Pと304Pのスイッチング素子をオン,圧接型IGBTパッケージ303Nと304のスイッチング素子をオフとすることで,端子間電流に関わらず,出力電圧をコンデンサ300の逆極性の電圧と概ね等しくなるように制御できる。
 圧接型IGBTパッケージ301P,302Pのスイッチング素子をオフ,圧接型IGBTパッケージ301Nと302Nのスイッチング素子をオン,圧接型IGBTパッケージ303Pと304Pのスイッチング素子をオフ,圧接型IGBTパッケージ303Nと304のスイッチング素子をオンとすることで,端子間電流に関わらず,出力電圧を概ね零に等しくなるように制御できる。
 以降で本実施例の特徴である,複数のIGBTスタック(あるいは単にスタックとも称する)を平行に配置し,これらIGBTスタック間に素子並列構造を持つ単位電力変換器を複数並べることでMMCの体積を減らす構造について説明する。図3は本実施例のMMC100を実現するハードウェアの構成にを描いたものである。MMC100のアーム102は,図3に示すアーム・モジュール400あるいはアーム・モジュール400の組み合わせによって構成する。アーム・モジュール400は主に複数のIGBTスタック401,402および直流コンデンサ300(300A,300B)によって構成する。IGBTスタック401,402は圧接型IGBTパッケージ301,302,303,304,冷却フィン407および碍子408を複数直線方向に配置する。さらに直線方向の両端から支持部材である上部圧接板403および下部圧接板404で挟み,さらに支持棒404を用いて直線方向に圧力をかけることでIGBTスタック401,402を構成する。なお圧接した構造物のどちらか一方には皿バネ405を挿入することで,圧接力を恒常的に印加する。本実施例ではこれら複数のIGBTスタックを地面に対する垂直面内に平行に並べ,これらを構成する圧接型IGBTパッケージを素子並列構造をなすように電気的に接続することで実現する。具体的には,圧接型IGBTパッケージ301~304を4つ配置するごとに碍子408を挿入して電気的な絶縁を確保する。この絶縁帯で挟まれた2つのIGBTスタック401,402の圧接型IGBTパッケージ301~304が8つで素子並列構造のフルブリッジを構成する。IGBTスタック401内では,上方向から圧接型IGBTパッケージ301P,301N,303N,303Pの順番で並べる。このうち上下2つと下部2つはそれぞれ極性が異なるように並べる。つまり圧接型IGBTパッケージ301Pと301Nは上方向にコレクタ(図中“C”)が,圧接型IGBTパッケージ303Nと303Pは上方向にエミッタ(図中“E”)が向くように配置する。さらに隣接する圧接型IGBTパッケージ間を電気的に接続する。並列構造をなす素子である圧接型IGBTパッケージ301Pと圧接型IGBTパッケージ302Pは,2つのIGBTスタック401,402の中心軸に対して対称な位置に配置する。この他の6つの圧接型IGBTパッケージも同様に素子並列構造をなす対の圧接型IGBTパッケージはIGBTスタック401,402の中心軸に対して対称な位置に配置する。さらに素子並列構造をなす対の圧接型IGBTパッケージ間を電気的に接続する。この圧接型IGBTパッケージの構造体において,さらに圧接型IGBTパッケージ間IGBT301Pのコレクタに直流コンデンサ300Aの正極,圧接型IGBTパッケージ間IGBT301Nのエミッタに直流コンデンサ300Aの負極を電気的に接続する。同様に圧接型IGBTパッケージ間IGBT303Pのコレクタに直流コンデンサ300Bの正極,圧接型IGBTパッケージ間IGBT301Nのエミッタに直流コンデンサ300Bの負極を電気的に接続する。さらに直流コンデンサ300Aの正極と直流コンデンサ300Bの正極を電気的に接続する。以上の圧接型IGBTパッケージと直流コンデンサ300A,300Bの構造体で,素子並列構造を持つフルブリッジ回路の単位電力変換器103を構成する。この単位電力変換器103がIGBTスタック401および402内に複数構成でき
,これらを直列(カスケード)に接続することで,MMC100のアーム102あるいはアーム102の一部を構成する。
 圧接型IGBTパッケージ301~304の両端には,電力変換器101が運転時に発生する熱を除くために,金属で構成する冷却フィン407を設ける。本実施例では冷却フィン407が電気的な導体としても使用されており,冷却フィン407にブスバー305P,305N,306P,306Nを接続することで,ブスバー305,306と圧接型IGBTパッケージ301~304の間の電気的な接続を実現している。なお本実施例には示していないが,冷却フィン407に加えてブスバーをIGBTスタック401,402の他の要素とともに圧接し,圧接型IGBTパッケージ301~304と外部との電気的接続を実現することも可能である。本実施例のように2本のIGBTスタック401,402内に2素子並列構造をもつ単位電力変換器103を複数構成することが可能であり,圧接構造を実現するために必要な構造部材を低減でき,小スペースな電力変換器101を構成できる。さらにIGBTスタックを平行に並べることで並列構造を実現できるので,システムの拡張性が高い。また本実施形態においては,圧接型IGBTパッケージ301Nと303Nの間,および302Nと304Nの間に絶縁物が不要であるため,IGBTスタック401および402の縦方向の長さを低減できる効果がある。なお図3上では図面の都合上,直流コンデンサと圧接型IGBTパッケージを電気的に接続するブスバー306P,306Nおよび直流コンデンサ300A,300Bが左右対称に描かれていないが,以降で説明するように左右対称になるように接続する。
 本実施例の第2の特徴である直流コンデンサの配置方法について説明する。図4は本実施例のMMC100を構成する直流コンデンサ300の配置を描いたものである。本実施例では複数の直流コンデンサ300A,300Bを一方向に並べて構成する。個々の直流コンデンサ300A,300Bの高さは,IGBTスタック401,402を構成する単位電力変換器103と同等の高さであることが望ましい。なお本実施例では単位電力変換器103当たりに2つのコンデンサを積み上げたものを利用するので,直流コンデンサ300A,300Bの高さは単位電力変換器103の半分程度が望ましい。また本実施例の構成では,図3に示すように単位電力変換器103の上部および下部に直流コンデンサ300の正極(図中のP)および単位電力変換器103の中間部に負極(図中のN)が配置される。このため直流コンデンサ300A,300Bは図4に示すように正極端子と負極端子の向きが一段づつ反転するように積み重ねることが好ましい。またそれぞれの直流コンデンサ300A,300Bの筺体は,空間距離を確保する,あるいは図示されていないが絶縁物などをコンデンサの間に挟むなどの手段で電気的に絶縁する。図5は本実施例のアーム・モジュール400を斜め方向から俯瞰したものである。図4に示した複数の直流コンデンサ300A,300BはIGBTスタック401,402と平行に配置し,また高さ方向は対応する単位電力変換器103とおよそ同じ高さの位置に固定することで,直流コンデンサと圧接型IGBTパッケージを電気的に接続するブスバー306P,306Nを短く構成することができる。
 このように、圧接型IGBTパッケージ301Pと圧接型IGBTパッケージ301Nを接続する冷却フィン407と、圧接型IGBTパッケージ302Pと圧接型IGBTパッケージ302Nを接続する冷却フィン407とは、紙面前側で、ブスバーを介して出力端を構成するブスバー305Pに接続される。
 また、圧接型IGBTパッケージ303Nと圧接型IGBTパッケージ303Pを接続する冷却フィン407と、圧接型IGBTパッケージ304Nと圧接型IGBTパッケージ304Pを接続する冷却フィン407とは、紙面前側で、ブスバーを介して出力端を構成するブスバー305Nに接続される。
 また、圧接型IGBTパッケージ301Pのコレクタ側の冷却フィン407と圧接型IGBTパッケージ302Pのコレクタ側の冷却フィン407とは紙面後側でブスバーを介して接続される(さらに、圧接型IGBTパッケージ303Pのコレクタ側の冷却フィン407と圧接型IGBTパッケージ304Pのコレクタ側の冷却フィン407とも紙面後側でブスバーを介して接続される)。圧接型IGBTパッケージ301Nと圧接型IGBTパッケージ303Nを接続する冷却フィン407と、圧接型IGBTパッケージ302Nと圧接型IGBTパッケージ304Nを接続する冷却フィン407とは紙面後側でブスバーを介して接続される。これらのブスバーは、直流コンデンサ300Aの両端に接続される。
 このように、単位電力変換器103が持つ内部インダクタンスを小さくすることができる。
 次に本実施例の第3の特徴である並列接続した圧接型IGBTパッケージ間の均等な電流分担を実現する構成について述べる。圧接型IGBTパッケージ301~304は流すことのできる最大の電流値が決まっている。本実施例のMMC100はIGBT素子の並列構造を用いており,並列接続したIGBT素子間での電流分担をなるべく均等にすることで,IGBT素子の性能を最大限に利用することができる。本実施例のMMC100は電流分担を簡易に実現するため,アーム・モジュール400内を接続するブスバー305,306の配置に特徴を持たせる。つまり平行に配置したIGBTスタック401,402と平行な面内において,両IGBTスタック401,402の中心軸に対して左右対称になるようにブスバー305,306を配置する。なお図3上では図面の都合上,直流コンデンサと圧接型IGBTパッケージを電気的に接続するブスバー306P,306Nが左右対称に描かれていないが,図5に示すようにIGBTスタック401,402の中心軸に対して左右対称になるように配置することが可能である。この左右対称な構成はアーム・モジュール400を天井方向から俯瞰した図6でより明らかになる。つまり図6に示したように,直流コンデンサと圧接型IGBTパッケージを電気的に接続するブスバー306P,306Nが平行に配置したIGBTスタック401,402の中心軸に対して左右対称になるように配置する。また出力端子305P,305Nも同様に左右対称になるように配置する。以上のブスバー配置によって,単位電力変換器103内の出力端子305Pから圧接型IGBTパッケージ301~304を通り出力端子305Nに至るまでの電流経路が持つインピーダンスが,並列接続された素子間で等しくなり,簡易に並列素子間の電流分担を簡易に実現できる。
 なお一つ当たりのIGBTスタック401,402内に構成するできる圧接型IGBTパッケージの素子の最大数は,IGBTスタック401,402の機械強度などによって制限される。このためMMC100のアーム102が必要とする単位電力変換器103の直列数が,IGBTスタック401,402に許容できる単位電力変換器103を超過する場合がる。この場合は図7に示すようにアーム・モジュール400を複数構成し,これらを直列に接続することで,必要な単位電力変換器103の直列数を確保する。
 また本実施例では圧接型IGBTパッケージを地面に対して垂直方向に積み重ねてIGBTスタック401,402を構成する例を示した。しかしながら圧接型IGBTパッケージを地面に対して水平方向に並べて接続する場合であっても,本実施例の効果は実現できる。この場合,直流コンデンサ300A,300Bも地面に対して平行に並べることが好ましい。
 また本実施例では電気的な接続にブスバー305,306を用いた構成を示したが,この電気的な接続はフレキシブル導体(あるいは可とう導体)やケーブルであっても実現可能である。得にIGBTスタックは外気温度,あるいは圧接型IGBTパッケージが発生する熱により,圧接型IGBTパッケージの積み重ね方向に伸縮する。フレキシブル導体(あるいは可とう導体)やケーブルを用いることで,このIGBTスタックの伸縮を吸収し,電気的な接続を保つ効果がある。
 以上は図1に示すフルブリッジ型の単位電力変換器で構成されSTATCOMとして動作するMMC101を用いて,実施例について説明した。本実施例の効果はフルブリッジ型の単位電力変換器を直列に接続して構成するMMCであれば,STATCOM以外の適用に対しても効果を発揮する。例えばMMCで構成する直流送電システム(HVDC)向けの電力変換装置や大容量のドライブシステムに適用するMMCについても,本実施例は適用可能である。また本実施例の効果は図1の電気回路トポロジーに限定されず,フルブリッジ型の単位電力変換器を直列に接続して構成する電力変換装置であれば,本実施例は適用可能である。
 本発明の第二の実施例について図8から図11を用いて説明する。第二の実施例の第一の実施例との違いは,アーム・モジュール400の構成の違いにあり,その他の構成については第一の実施例と同じである。また図面中の同じ図番号を持つ記号は同じ要素を表しているため,これらの説明は省略する。
 第二の実施例においてはアーム・モジュール400は4本のIGBTスタック501~504で構成する。アーム・モジュール400の概略構成と電気的な結線を示したものが図8である。アーム・モジュール400はIGBTスタック501~504の内部に単位電力変換器103を複数構成し,これら複数の単位電力変換器103を直列(カスケード)に接続する点は実施例1と同じである。第二の実施例では圧接型IGBTパッケージを2個配置するごとに絶縁体408を加える構造を繰り返す。例えばIGBTスタック501では,上方向より圧接型IGBTパッケージ303P,次に圧接型IGBTパッケージ303Nを垂直方向に極性が同じになるように積み重ねる。図8中では全ての圧接型IGBTパッケージの上側がコレクタ(図中“C”),下側にエミッタ(図中“E”)が並ぶように配置する。なおこの2素子の間には金属で構成された冷却フィン407を挟むことで,電気的な接続を作ることは実施例1と同様である。IGBTスタック501は直線方向の両端から支持部材である上部圧接板403および下部圧接板404で挟み,さらに支持棒406を用いて直線方向に圧力をかける。また圧接した構造物のどちらか一方には皿バネ405を挿入することで,圧接力を恒常的に印加する点は実施例1と同様である。上記のように構成したIGBTスタックを4つ平行に配置する。IGBTスタック501~504の中の2素子をそれぞれ電気的に接続することで,素子並列のフルブリッジ回路を構成する。具体的には図8に示すように,縦に二つ並べた複数の圧接型IGBTパッケージの内,上部にある圧接型IGBTパッケージ301P,302P,303P,304Pのコレクタ側を電気的に接続する。また下部にある圧接型IGBTパッケージ301N,302N,303N,304Nのエミッタ側も電気的に接続する。さらに4つ平行に並べたIGBTスタックの内,内側2本のIGBTスタック502,503の縦に二つ並べた圧接型IGBTパッケージ301P,302Pのエミッタ側を電気的に接続し,これを出力端子305Pとする。同時にさらに4つ平行に並べたIGBTスタックの内,外側2本のIGBTスタック501,504の縦に二つ並べた圧接型IGBTパッケージ303P,304Pのエミッタ側を電気的に接続し,これを出力端子305Nとする。上記のような構成により,4つのIGBTスタックの内,内側2本のIGBTスタック502,503を構成する圧接型IGBTパッケージ,および外側2本のIGBTスタック501,504を構成する圧接型IGBTパッケージがそれぞれ素子並列の回路を構成する。さらに上記の構造物に直流コンデンサ300を並列に接続することで,単位電力変換器103を構成する。上記のような構成にすることで,複数の単位電力変換器103を4本のIGBTスタックの中に構成できるため,単位電力変換器103ごとにIGBTスタックを構成する場合に比べて,構造物を低減でき,またIGBTスタックの省スペース化が図れる。
 図9は本実施例の直流コンデンサ300の配置を描いたものである。本実施例では複数の直流コンデンサ300を一方向に並べて構成する。個々の直流コンデンサ300の高さは,IGBTスタック501~502を構成する単位電力変換器103と同等の高さであることが望ましい。また個々の直流コンデンサ300A,300Bの筺体は,空間距離を確保する,あるいは図示されていないが絶縁物などをコンデンサ300A,300Bの間に挟むなどの手段で電気的に絶縁する。この結果,同じ高さにある単位電力変換器103と直流コンデンサ300を短い長さのブスバー306P,306Nでつなぐことが出来るので,結果的に単位電力変換器103内のフルブリッジ回路が持つ内部インダクタンスを低減することにつながるためである。また上記の構成により,直流コンデンサ300を含めたシステム全体を省スペースに実現できる。
 なお図8上では図面の都合上,直流コンデンサ300と圧接型IGBTパッケージを電気的に接続するブスバー306P,306Nおよび直流コンデンサ300が左右対称に描かれていないが,図10に示すように平行に並べた複数のIGBTスタックの中心軸に対して左右対称になるように配置する。このような構成を採ることで,配線に起因する回路インピーダンスが並列素子間で等しくなり,並列素子間での均等な電流分担が実現し易くなる。この左右対称な構成はアーム・モジュール400を天井方向から俯瞰した図11でより明らかになる。
 本発明の第三の実施例について図12から図13を用いて説明する。第三の実施例の第一の実施例との違いは,アーム・モジュール400の構成の違いにあり,その他の構成については第一の実施例と同じである。また図面中の同じ図番号を持つ記号は同じ要素を表しているため,これらの説明は省略する。
 第三の実施例においてアーム・モジュール400は8本のIGBTスタック601~608で構成する。アーム・モジュール400の概略構成と電気的な結線を示したものが図12である。8本のIGBTスタック601~608はある平面上(本例では地面に対して垂直な面上)に平行に配置される。アーム・モジュール400はIGBTスタック601~608の内部に単位電力変換器103を複数構成し,これら複数の単位電力変換器103を直列(カスケード)に接続する点は実施例1と同じである。第三の実施例では圧接型IGBTパッケージを2つの冷却フィン407で両側から挟んだものを1セットとし,このセットと絶縁体407で構成する構造物を縦方向に繰り返し積み重ねてIGBTスタック601~608を構成する。上記のような構成にすることで,複数の単位電力変換器103を8本のIGBTスタックの中に構成できるため,単位電力変換器103ごとにIGBTスタックを構成する場合に比べて,構造物を低減でき,またIGBTスタックの省スペース化が図れる。
 8本のIGBTスタック601~608のうち,中心軸に対して左側にある4本のIGBTスタック601~604の同じ高さにある4つの圧接型IGBTパッケージ301P,301N,303P,303Nが一つのフルブリッジ回路を構成する。同様に8本のIGBTスタック601~608のうち,中心軸に対して右側にある4本のIGBTスタック605~608の同じ高さにある4つの圧接型IGBTパッケージ302P,302N,304P,304Nが一つのフルブリッジ回路を構成する。この際,図2に示す素子並列回路を構成する2つの圧接型IGBTパッケージは,必ず8本のIGBTスタック601~608の中心軸に対して左右対称な位置に配置されるよう構成する。例えば圧接型IGBTパッケージ301Pと圧接型IGBTパッケージ302Pは中心軸に対して対象な位置に配置する。
 より具体的には図12に示すようにIGBTスタック601~604を左から右に平行に配置し,IGBTスタック601が圧接型IGBTパッケージ303Pを,IGBTスタック602が圧接型IGBTパッケージ303Nを,IGBTスタック603が圧接型IGBTパッケージ301Nを,さらにIGBTスタック604が圧接型IGBTパッケージ301Pを内部に構成する。この際圧接型IGBTパッケージ303Pおよび301Pは上側がコレクタ(図中“C”),圧接型IGBTパッケージ303Nおよび301Nは上側がエミッタ(図中“E”)になるように配置する。さらに圧接型IGBTパッケージ303Pおよび301Pのコレクタ側に直流コンデンサ300の正極をブスバーを介して接続し,また圧接型IGBTパッケージ303Nおよび301Nのエミッタ側に直流コンデンサ300の負極をブスバーを介して接続する。圧接型IGBTパッケージ301Pと圧接型IGBTパッケージ301Nの下端はブスバーで電気的に接続し,出力端子305Pを構成する。また圧接型IGBTパッケージ303Pと圧接型IGBTパッケージ303Nの下端はブスバーで電気的に接続し,出力端子305Nを構成する。
 さらにIGBTスタック605~608をIGBTスタック604の右隣から左から右に平行に配置する。この際,IGBTスタック604の右隣にある仮想的な中心軸に対して,4つのIGBTスタックが対称になるように配置する。つまりIGBTスタック608はIGBTスタック601に,IGBTスタック607はIGBTスタック602に,IGBTスタック606はIGBTスタック603に,IGBTスタック605はIGBTスタック604に対称になるように配置する。さらに直流コンデンサ300とこれと圧説接型IGBTを接続するブスバーも中心軸に左右対称になるように配置する。なお図12上では図面の都合上,直流コンデンサ300と圧接型IGBTパッケージを電気的に接続するブスバー306P,306Nおよび直流コンデンサ300が左右対称に描かれていないが,実施例1,2で示したように直流コンデンサ300を8つのIGBTスタック6
05~608と平行に配置される単位電力変換器を構成することで,左右対称構造を作ることが可能である。このような構成を採ることで,配線に起因する回路インピーダンスが並列素子間で等しくなり,並列素子間での均等な電流分担が実現できる。言いかえると,並列素子間での均等な電流分担が実現し易くなる。
 また図示されていないが,実施例一,二と同様に直流コンデンサ300はそれぞれ絶縁されたものを複数圧接型IGBTパッケージの積上げ方向に積み重ねる。この際個々の直流コンデンサ300の高さ方向の寸法は,IGBTスタックで構成される個々の単位電力変換器103と同等の高さであることが望ましい。これは同じ高さにある単位電力変換器103と直流コンデンサ300をブスバー306P,306Nでつなぐ際,このブスバーの長さを低減される単位電力変換器を構成することにつながり,結果的に単位電力変換器103内のフルブリッジ回路が持つ内部インダクタンスを低減することにつながるためである。また上記の構成により,直流コンデンサ300を含めたシステム全体を省スペースに実現できる。
 なお別の形態として,図13に示す構造も実現可能である。図13において,8本の平行に配置されたIGBTスタック601~604が,圧接型IGBTパッケージの1段ごとに素子並列構造を持つフルブリッジ回路の単位電力変換器を複数構成する点は図12に示した実施例と同様である。図13においては圧接型IGBTパッケージ301Nと圧接型IGBTパッケージ301Pおよび圧接型IGBTパッケージ302Pと圧接型IGBTパッケージ302Nの位置が,それぞれ図12から逆になった点が異なる。図13に示した構造においても,IGBTスタックの中心軸に対して,素子並列構造をなす圧接型IGBTパッケージ対およびブスバーが左右対象に配置される特徴は同一である。結果的に配線に起因する回路インピーダンスが並列素子間で等しくなり,並列素子間での均等な電流分担が実現し易くなる。
 本発明の第四の実施例について図14,図15を用いて説明する。第四の実施例の第一の実施例との違いは,単位電力変換器103とアーム・モジュール400の構成の違いにあり,その他の構成については第一の実施例と同じである。また図面中の同じ図番号を持つ記号は同じ要素を表しているため,これらの説明は省略する。
 第四の実施例では,単位電力変換器103はモジュールが素子並列構造を持つハーフブリッジ回路103で構成される。図14が示すようにハーフブリッジ回路103は4つの圧接型IGBTパッケージ601P,602N,602P,602Nおよび直流コンデンサ300,およびこれらを接続するブスバー605(605N,605P),606(606N,606P)で構成する。
 本実施例においては図14に示す単位電力変換器103を,図15に示す2本のIGBTスタック701,702の中に複数構成する。図15に示すように圧接型IGBTパッケージを垂直方向に2個配置し,さらにその上下に絶縁体408を配置したものを1セットし,このセットを縦方向に複数積上げてIGBTスタック701,702を構成する。この際,圧接型IGBTパッケージは垂直方向に対して極性が同じ用に積み重ねる。図15では全ての圧接型IGBTパッケージの上側がコレクタ(図中“C”)になるように配置している。なおこの2素子の間には金属で構成された冷却フィン407を挟むことで,電気的な接続を作ることは実施例1と同様である。IGBTスタック701は直線方向の両端から支持部材である上部圧接板403および下部圧接板404で挟み,さらに支持棒406を用いて直線方向に圧力をかける。また圧接した構造物のどちらか一方には皿バネ405を挿入することで,圧接力を恒常的に印加する点は実施例1と同様である。上記のように構成したIGBTスタックを2つ平行に配置する。さらに上方向に配置した圧接型IGBTパッケージ601Pと602P,および下方向に配置した圧接型IGBTパッケージ601Nと602Nのコレクタ(図中“C”)とエミッタ(図中“E”)をそれぞれ電気的に接続する。さらに圧接型IGBTパッケージ601Pと602Pの上部(コレクタ)と圧接型IGBTパッケージ601Nと601Nの下部(エミッタ)にそれぞれ直流コンデンサ300の正極と負極を接続する。また圧接型IGBTパッケージ601Pと602Pの下部(エミッタ)側に出力端子605Pのブスバーを電気的に接続する。圧接型IGBTパッケージ601Nと602Nの下部(エミッタ)側に出力端子605Nのブスバーを電気的に接続することで,図14に示す素子並列のハーフブリッジ回路で構成する単位電力変換器103を構成できる。上述した構成により,2本のIGBTスタック701,702の中に複数の単位電力変換器103を構成できるので,単位電力変換器103ごとにIGBTスタックを構成する場合に比べて,構造物を低減でき,IGBTスタックの省スペース化が図れる。またIGBTスタックの中心軸に対して,素子並列構造をなす圧接型IGBTパッケージ対およびブスバーが左右対象に配置される特徴は第一の実施例と同一である。結果的に配線に起因する回路インピーダンスが並列素子間で等しくなり,並列素子間での均等な電流分担が実現し易くなる。
 また図示されていないが,実施例一,二と同様にそれぞれ絶縁された直流コンデンサ300を複数圧接型IGBTパッケージの積上げ方向に積み重ねる。この際個々の直流コンデンサ300の高さ方向の寸法は,IGBTスタックで構成される個々の単位電力変換器103と同等の高さであることが望ましい。これは同じ高さにある単位電力変換器103と直流コンデンサ300をブスバー306P,306Nでつなぐ際,このブスバーの長さを低減さ単位電力変換器ことにつながり,結果的に単位電力変換器103内のフルブリッジ回路が持つ内部インダクタンスを低減することにつながるためである。また上記の構成により,直流コンデンサ300を含めたシステム全体を省スペースに実現できる。
 以上は図1に示すハーフブリッジ型の単位電力変換器で構成されSTATCOMとして動作するMMC101を用いて,実施例について説明した。本実施例の効果はSTATCOM以外の適用に対しても効果を発揮する。例えばMMCで構成する直流送電システム(HVDC)向けの電力変換装置や大容量のドライブシステムに適用するMMCについても,適用可能である。またMMCの電気回路のトポロジーについても,図1のMMCトポロジーに限定されず,ハーフブリッジ型の単位電力変換器を直列に接続して構成するMMCであれば,本発明は適用可能である。
 本発明の第五の実施例について図16を用いて説明する。第五の実施例の第四の実施例との違いは,ハーフブリッジの単位電力変換器104を4本のIGBTスタック内に構成する点である。この他の構成は第四の実施例と同一であるため,説明は省略する。また第五の実施例のうち第四の実施例と同じ図番号を持つ記号は同じ要素を表しているため,これらの説明は省略する。
 第五の実施例では圧接型IGBTパッケージを2つの冷却フィン407で両側から挟んだ構造物をつくり,更にこの構造物の両端に絶縁体407を配置したものを1セットとする。このセットを縦方向に繰り返し積み重ねてIGBTスタック801~804を構成する。なおこ冷却フィン407は金属で作られており,電気的な接続を作ることは実施例1と同様である。IGBTスタック801~804は垂直方向の両端から支持部材である上部圧接板403および下部圧接板404で挟み,さらに支持棒406を用いて直線方向に圧力をかける。また圧接した構造物のどちらか一方には皿バネ405を挿入することで,圧接力を恒常的に印加する点は実施例1と同様である。上記のような構成にすることで,単位電力変換器103を4本のIGBTスタックの中に複数構成できるため,単位電力変換器103ごとにIGBTスタックを構成する場合に比べて,構造物を低減でき,またIGBTスタックの省スペース化が図れる。
 より詳細には同じ高さにある圧接型IGBTパッケージ4つのうち,内側の2つと外側の2つはそれぞれ別の向きに配置する。第五の実施例では内側の圧接型IGBTパッケージ601Pと602Pは上側がエミッタ(図中“E”),外側の接型IGBT601Nと602Nは上側がコレクタ(図中“C”)になるように配置する。さらに4つの圧接型IGBTパッケージの上部を電気的に接続し,さらにブスバーを電気的に接続することで出力端子605Pとする。一方,内側に配置された接型IGBT601Pと602Pの下部(コレクタ)を電気的に接続し,さらにコンデンサ300の正極を電気的に接続する。外側に配置された接型IGBT601Nと602Nの下部(エミッタ)にはコンデンサ300の負極を電気的に接続すし,さらにブスバーを電気的に接続することで出力端子605Nとする。上記の接続構成により,同じ高さにある圧接型IGBTパッケージ4つで素子並列構造を持つハーフブリッジ回路の単位電力変換器103を構成できる。この際,単位電力変換器103を構成するブスバーは4つのIGBTスタック801~804の中心軸に対して,左右対称に配置する。この配置構造により配線に起因する回路インピーダンスが左右の並列素子間で等しくなり,並列素子間での均等な電流分担が実現し易くなる。
 また図示していないが,実施例一,二と同様にそれぞれ絶縁された直流コンデンサ300を複数圧接型IGBTパッケージの積上げ方向に積み重ねる。この際個々の直流コンデンサ300の高さ方向の寸法は,IGBTスタックで構成される個々の単位電力変換器103と同等の高さであることが望ましい。これは同じ高さにある単位電力変換器103と直流コンデンサ300をブスバーでつなぐ際,このブスバーの長さを低減さ単位電力変換器ことにつながり,結果的に単位電力変換器103内のフルブリッジ回路が持つ内部インダクタンスを低減することにつながるためである。また上記の構成により,直流コンデンサ300を含めたシステム全体を省スペースに実現できる。
100・・・マルチレベレル電力変換装置(MMC)
101・・・電力変換器
102(102U,102V,102W)・・・アーム
103・・・単位電力変換器
201・・・    アームリアクトル
202・・・遮断器
203・・・電力系統
300,300A,300B・・・直流コンデンサ
301P,301N,302P,302N, 303P,303N, 304P,304N・・・圧接型IGBTパッケージ
305,305P,305N・・・出力端子あるいは出力端子を構成するブスバー
306,306P,306N・・・直流コンデンサと圧接型IGBTパッケージを電気的に接続するブスバー
307P・・・直流コンデンサの正極端子
307N・・・直流コンデンサの負極端子
400・・・アーム・モジュール
401,402・・・IGBTスタック
403・・・上部圧接板
404・・・下部圧接板
405・・・皿バネ
406・・・支持棒
407・・・冷却フィン
408・・・碍子
501,502,503,504・・・IGBTスタック
601P,601N,602P,602N・・・圧接型IGBTパッケージ
605,605P,605N・・・出力端子あるいは出力端子を構成するブスバー
606,606P,606N・・・直流コンデンサと圧接型IGBTパッケージを電気的に接続する
701,702・・・IGBTスタック
801,802,803,804・・・IGBTスタック

Claims (11)

  1.  単位変換器をカスケードに接続して構成される電力変換装置において,半導体素子にダイオードを逆並列接続してパッケージを構成し,前記パッケージを複数配列して両端から圧接力を加えてスタックを構成し,前記スタックを構成する所定のパッケージは前記所定とは異なる他のパッケージのいずれかと絶縁されており,前記スタックを複数有し,前記複数のスタックは所定の条件下で相対的な配置変更が可能になっており,前記の複数スタックのうちの少なくとも2は互いに側面が対向して配置されており,前記スタックのうちの所定のスタックのパッケージは,他のいずれかのスタックの所定のパッケージと電気的に接続されることで前記単位変換器を構成し,前記所定のスタックの他のパッケージは,前記他のスタックの他のパッケージと電気的に接続されることで他の前記単位変換器を構成し,前記単位変換器はコンデンサを有しており,前記単位変換器は半導体素子を動作させることで前記コンデンサの電力を出力可能に構成されることを特徴とする電力変換装置。
  2.  請求項1に,前記コンデンサのパッケージ配置方向の高さはおよそ前記単位電力変換器の高さと同程度であり,前記パッケージと同程度の高さにある前記コンデンサを各々電気的に接続することで前記単位電力変換器を構成することを特徴とする電力変換装置。
  3.  請求項2において,前記スタックを互いに平行に配置し,前記スタックを左右に分類した中心軸について,前記中心軸に対して片側にある一つ以上の前記スタックを含んでフルブリッジあるいはハーフブリッジの電気回路を構成し,前記中心軸に対してもう一方の側にフルブリッジあるいはハーフブリッジの電気回路を構成することを特徴とする電力変換装置。
  4.  請求項3において,前記スタックは少なくとも2つで構成し,前記パッケージを少なくとも4つ積み重ねるごとに前記絶縁板を重ねることで前記単位変換器を構成し,前記単位変換器を構成する両端の前記パッケージに前記コンデンサの正極あるは負極を接続し,前記単位電力変換器を構成する複数の前記パッケージの中間部に前記コンデンサのもう一方の極を接続して構成することを特徴とする電力変換装置。
  5.  請求項3において,前記スタックを少なくとも4つで構成し,前記パッケージを少なくとも2つ積み重ねるごとに絶縁板を重ねることで前記単位変換器を構成し,前記単位変換器を構成する前記パッケージの片側にコンデンサの正極あるは負極を接続し,2段の前記パッケージのもう一方側に前記コンデンサのもう一方の極を接続し,前記の少なくとも4つの前記スタックの内,内側の2つの前記スタックを構成する前記パッケージを素子並列構造をなすように電気的接続部材により接続し,外側の2つの前記スタックを構成する前記パッケージ素子を素子並列構造をなすように前記電気的接続部材により接続して構成することを特徴とする電力変換装置。
  6.  請求項3において,前記スタックを少なくとも8つで構成し,前記パッケージを1つ積み重ねることに絶縁板を重ねることでフルブリッジ回路の前記単位電力変換器を構成することを特徴とする電力変換装置。
  7.  請求項3において,前記スタックを少なくとも2つで構成し,前記パッケージを2つ積み重ねるごとに絶縁板を重ねることでハーフブリッジの前記単位電力変換器を構成することを特徴とする電力変換装置。
  8.  請求項3において,前記スタックを少なくとも4つで構成し,前記パッケージを1つ積み重ねることに絶縁板を重ねることでハーフブリッジの前記単位電力変換器を構成することを特徴とする電力変換装置。
  9.  請求項1乃至7のいずれかにおいて,金属板は前記パッケージの冷却機能と電気的接続を担う機能を持つことを特徴とする電力変換装置。
  10.  請求項3乃至7のいずれかにおいて,電気的接続はブスバー,可とう胴体あるいはケーブル,あるいはこれらの組み合わせであることを特徴とする電力変換装置。
  11.  請求項1乃至は7のいずれかにおいて,前記半導体素子はIGBTかIGCTあるいはGTOであることを特徴とする電力変換装置。
PCT/JP2016/059531 2015-04-24 2016-03-25 電力変換装置 WO2016170910A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-088886 2015-04-24
JP2015088886A JP2016208706A (ja) 2015-04-24 2015-04-24 電力変換装置

Publications (1)

Publication Number Publication Date
WO2016170910A1 true WO2016170910A1 (ja) 2016-10-27

Family

ID=57143167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059531 WO2016170910A1 (ja) 2015-04-24 2016-03-25 電力変換装置

Country Status (2)

Country Link
JP (1) JP2016208706A (ja)
WO (1) WO2016170910A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116527A1 (ja) * 2016-12-22 2018-06-28 三菱電機株式会社 電力変換装置
CN108933536A (zh) * 2018-07-24 2018-12-04 全球能源互联网研究院有限公司 一种用于断路器的二极管全桥双级子模块
WO2019042524A1 (de) * 2017-08-28 2019-03-07 Siemens Aktiengesellschaft Stromrichter mit stromrichterzweig
EP3547484A1 (en) * 2018-03-30 2019-10-02 LSIS Co., Ltd. Switch assembly for a reactive power compensation apparatus
EP3547485A1 (en) * 2018-03-30 2019-10-02 LSIS Co., Ltd. Switch assembly for a reactive power compensation apparatus
EP3547814A1 (en) * 2018-03-30 2019-10-02 LSIS Co., Ltd. Switch assembly for a reactive power compensation apparatus
CN110959251A (zh) * 2017-08-11 2020-04-03 株式会社电装 电力转换装置
US20210273576A1 (en) * 2018-07-20 2021-09-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
WO2022102412A1 (ja) * 2020-11-13 2022-05-19 株式会社日立製作所 電力変換装置
JP7101921B1 (ja) * 2021-11-22 2022-07-15 三菱電機株式会社 電力変換システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828425B2 (ja) * 2016-12-26 2021-02-10 東芝三菱電機産業システム株式会社 電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110038193A1 (en) * 2008-03-20 2011-02-17 ABB Technololgy AG Voltage source converter
JP2011135643A (ja) * 2009-12-22 2011-07-07 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2014523227A (ja) * 2011-06-29 2014-09-08 シーメンス インダストリー インコーポレイテッド モジュール式電子モジュールを用いた電源のパッケージ化

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110038193A1 (en) * 2008-03-20 2011-02-17 ABB Technololgy AG Voltage source converter
JP2011135643A (ja) * 2009-12-22 2011-07-07 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2014523227A (ja) * 2011-06-29 2014-09-08 シーメンス インダストリー インコーポレイテッド モジュール式電子モジュールを用いた電源のパッケージ化

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116527A1 (ja) * 2016-12-22 2018-06-28 三菱電機株式会社 電力変換装置
JPWO2018116527A1 (ja) * 2016-12-22 2019-03-14 三菱電機株式会社 電力変換装置
CN110959251A (zh) * 2017-08-11 2020-04-03 株式会社电装 电力转换装置
CN110959251B (zh) * 2017-08-11 2022-12-06 株式会社电装 电力转换装置
US11368104B2 (en) 2017-08-28 2022-06-21 Siemens Energy Global GmbH & Co. KG Power converter having a power converter path
WO2019042524A1 (de) * 2017-08-28 2019-03-07 Siemens Aktiengesellschaft Stromrichter mit stromrichterzweig
US10727652B2 (en) 2018-03-30 2020-07-28 Lsis Co., Ltd. Switch assembly of reactive power compensation apparatus
EP3547814A1 (en) * 2018-03-30 2019-10-02 LSIS Co., Ltd. Switch assembly for a reactive power compensation apparatus
CN110323754A (zh) * 2018-03-30 2019-10-11 Ls产电株式会社 无功功率补偿装置的开关组件
US10560091B2 (en) 2018-03-30 2020-02-11 Lsis Co., Ltd. Switch assembly of reactive power compensation apparatus
EP3547484A1 (en) * 2018-03-30 2019-10-02 LSIS Co., Ltd. Switch assembly for a reactive power compensation apparatus
EP3547485A1 (en) * 2018-03-30 2019-10-02 LSIS Co., Ltd. Switch assembly for a reactive power compensation apparatus
US10749018B2 (en) 2018-03-30 2020-08-18 Lsis Co., Ltd. Switch assembly of reactive power compensation apparatus
CN110323755A (zh) * 2018-03-30 2019-10-11 Ls产电株式会社 无功功率补偿装置的开关组件
US20210273576A1 (en) * 2018-07-20 2021-09-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
US11901834B2 (en) * 2018-07-20 2024-02-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device supported by intersecting panel
CN108933536A (zh) * 2018-07-24 2018-12-04 全球能源互联网研究院有限公司 一种用于断路器的二极管全桥双级子模块
WO2022102412A1 (ja) * 2020-11-13 2022-05-19 株式会社日立製作所 電力変換装置
JP7101921B1 (ja) * 2021-11-22 2022-07-15 三菱電機株式会社 電力変換システム
WO2023089819A1 (ja) * 2021-11-22 2023-05-25 三菱電機株式会社 電力変換システム

Also Published As

Publication number Publication date
JP2016208706A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
WO2016170910A1 (ja) 電力変換装置
EP2266137B1 (en) A voltage source converter
JP4920677B2 (ja) 電力変換装置およびその組み立て方法
JP4603956B2 (ja) 電力変換装置
CN1108657C (zh) 功率逆变器装置
JP5132175B2 (ja) 電力変換装置
EP2781014B1 (en) Ac/dc multicell power converter for dual terminal hvdc connection
JPS589349A (ja) Gtoスタツク
JP6345361B2 (ja) パワー半導体モジュール
US11736034B2 (en) Power conversion device
JP2017022863A (ja) 電力変換装置及びその保守方法
EP3161954B1 (en) Power converter and assembly method for assembling a power converter
JPH10271803A (ja) 電圧源変換器
JP2010199628A (ja) 半導体装置及びそれを用いた電力変換装置
US10541625B2 (en) Power conversion device
WO2019146179A1 (ja) 電力変換装置および電力変換装置を搭載する電気鉄道車両
US9705418B2 (en) Power converter with oil filled reactors
JP6491528B2 (ja) 電力変換装置
CN115776221A (zh) 飞跨电容三电平变换器及飞跨电容三电平升降压变换器
JP6134798B2 (ja) 電力変換装置
JP2022548601A (ja) モジュラースイッチングセル
JP5520476B2 (ja) インバータユニット及びインバータ
WO2023083505A1 (en) Electric drive
WO1999022437A1 (fr) Convertisseur d'energie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782932

Country of ref document: EP

Kind code of ref document: A1