WO2016170794A1 - 合金化溶融亜鉛めっき原板およびその製造方法と合金化溶融亜鉛めっき鋼板 - Google Patents
合金化溶融亜鉛めっき原板およびその製造方法と合金化溶融亜鉛めっき鋼板 Download PDFInfo
- Publication number
- WO2016170794A1 WO2016170794A1 PCT/JP2016/002146 JP2016002146W WO2016170794A1 WO 2016170794 A1 WO2016170794 A1 WO 2016170794A1 JP 2016002146 W JP2016002146 W JP 2016002146W WO 2016170794 A1 WO2016170794 A1 WO 2016170794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- dip galvanized
- hot
- steel sheet
- alloyed hot
- Prior art date
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 14
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 60
- 239000010959 steel Substances 0.000 claims abstract description 60
- 239000002344 surface layer Substances 0.000 claims abstract description 32
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 238000000137 annealing Methods 0.000 claims description 33
- 238000005096 rolling process Methods 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 15
- 238000005097 cold rolling Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 5
- 238000001336 glow discharge atomic emission spectroscopy Methods 0.000 claims description 4
- 238000004993 emission spectroscopy Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 31
- 238000004611 spectroscopical analysis Methods 0.000 abstract 1
- 238000007747 plating Methods 0.000 description 49
- 238000000034 method Methods 0.000 description 16
- 238000005246 galvanizing Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 12
- 238000005098 hot rolling Methods 0.000 description 11
- 238000001953 recrystallisation Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 240000006829 Ficus sundaica Species 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Definitions
- the present invention relates to a plating base plate used for alloying hot dip galvanizing, a manufacturing method thereof, and an alloyed hot dip galvanized steel plate produced using the plating base plate.
- the alloyed hot-dip galvanized steel sheet is suitable mainly for automobile exterior plates because of its excellent surface appearance.
- BH steel sheets alloyed hot-dip galvanized steel sheets having bake hardenability.
- This bake hardenability means that the solid solution C diffuses around the dislocations introduced by the plastic deformation at the time of forming into the steel sheet by heating when the steel sheet is baked. This is a phenomenon in which the dislocation is fixed and the steel sheet is hardened.
- a steel plate having this characteristic has high formability before baking, and has high added value having high dent resistance after baking. Also, the required surface quality level is very strict to reach the end user.
- this type of steel sheet has a problem that a non-uniform plating layer is easily formed, and in particular, a pattern-like surface defect having a white color tone is likely to occur as compared with a normal part of plating.
- Patent Document 1 discloses a technique for preventing streaking by lowering the slab heating temperature before hot rolling in accordance with the Ti content, and making the crystal grain size or texture of the surface iron surface layer uniform. Is disclosed. However, when the slab heating temperature is low, it is difficult to ensure the finishing temperature during hot rolling over the entire length of the coil, and the difference in the plating surface state due to the difference in texture in the longitudinal direction of the coil becomes a problem.
- Patent Document 2 discloses a method of preventing streaks by increasing the hot rolling finish finishing temperature and leaving no unrecrystallized structure after annealing.
- Patent Document 3 discloses a method of controlling the texture after annealing and suppressing the streak pattern by increasing the finish temperature of hot-rolling finishing.
- these methods for increasing the hot rolling finishing temperature have a problem in that surface defects due to the scale are liable to occur because of the occurrence of scale defects.
- the present invention provides an alloyed hot-dip galvanized steel sheet having a good surface property by proposing a method for suppressing the occurrence of pattern-like surface defects without causing the above-mentioned conventional problems.
- the Fe-Zn reaction is promoted mainly by the effect of Mn, resulting in an increase in the amount of plating and an increase in plating thickness, resulting in patterned surface defects. I came to guess that will occur.
- the inventors have intensively studied the influence of the concentration of Mn on the surface of the plating original plate on the occurrence of pattern-like surface defects. As a result, the amount of Mn in the surface layer of the plating original plate does not cause pattern-like surface defects. It came to find the upper limit for tolerance.
- the present invention is based on such novel findings, and the gist of the present invention is as follows.
- the component composition is further in mass% B: 0.0005% to 0.0020% 2.
- the component composition is further in mass% B: 0.0005% to 0.0020% 6.
- the present invention has an excellent appearance without pattern-like surface defects, it is possible to provide a steel plate that is particularly suitable for automotive exterior panel applications.
- the alloyed hot-dip galvanized original plate (also simply referred to as a plated original plate) of the present invention will be described in detail.
- the component composition of the plating original plate will be described in order.
- “%” display in a component composition shall show “mass%” unless there is particular notice.
- C 0.005% or less
- the amount of addition of C increases, a large amount of Ti and Nb is required to fix this as a carbide.
- C also has an adverse effect during continuous annealing due to an increase in recrystallization temperature and the like.
- the upper limit of C is 0.005%.
- it is 0.0030% or less.
- Si 0.03% or less Si is an element effective for increasing the strength of steel, and is preferably added at 0.005% or more, but excessive addition is resistance to secondary work brittleness resistance, chemical conversion treatment, and plating. Deterioration of adhesion. Therefore, the upper limit is set to 0.03%. More preferably, it is 0.02% or less.
- Mn 0.5% or more and 1.0% or less
- Mn is an element that contributes to the bake hardenability that is characteristic of bake hardened steel sheets, and is added with a lower limit of 0.5% to ensure the required bake hardenability. To do. Moreover, Mn has the effect
- Nb 0.005% or more and 0.015% or less
- Nb combines with C to form NbC, and NbC partially re-solidifies during annealing, and solid solution C remains after annealing to impart bake hardenability. It is a contributing element. Furthermore, since deep drawability can also be provided, the addition is essential. For that purpose, addition of 0.005% or more is necessary. On the other hand, if it exceeds 0.015%, the bake hardenability deteriorates. Based on the above, the Nb content was determined to be 0.005% or more and 0.015% or less. Preferably, it is 0.008 to 0.012%.
- P 0.01% or more and 0.05% or less P is added for the purpose of increasing the r value and strengthening the solid solution. If P is less than 0.01%, these effects cannot be obtained sufficiently. On the other hand, if the content exceeds 0.05%, the plating property and appearance are deteriorated, so 0.05% is made the upper limit. Preferably, it is 0.03% or more and 0.04% or less.
- S 0.03% or less S is present in steel as an unavoidable impurity. However, if its content exceeds 0.03%, hot cracking is likely to occur during steel plate production, and a large amount of sulfide is present in the steel. Since it occurs and recrystallization is suppressed, surface defects are likely to occur. Therefore, the upper limit is made 0.03%. Preferably, it is 0.010% or less.
- Al 0.01% or more and 0.08% or less
- Al is an element to be added as a deoxidizer, and 0.01% or more is necessary. However, if it is added in a large amount, a large amount of non-recrystallization due to the pinning effect of nitride remains, and the surface Since defects tend to occur, the upper limit is made 0.08%. Preferably, it is 0.02% or more and 0.05% or less.
- N forms a nitride with Al or Ti, and as a result of non-recrystallization remaining due to the pinning effect of this nitride, surface defects are likely to occur, so 0.005% or less. More preferably, it is 0.003% or less.
- B can be added in the following range as needed.
- B is an element effective for grain boundary strengthening, and is effective to contain 0.0005% or more when secondary work brittleness resistance is required.
- the plating original plate should just contain the above-mentioned component element, and the remainder should just have the component composition of Fe and an unavoidable impurity, contains the above-mentioned component element, and it is preferable that the remainder consists of Fe and an unavoidable impurity. .
- suppressing the element concentration in the surface layer of the plating original plate is extremely effective for suppressing surface defects in the hot dip plated steel plate manufactured using the same. Specifically, it is important that the Mn content in the surface layer of the plating original plate is 3.5 (V) or less in terms of the intensity (unit: V) of Mn by glow discharge optical emission spectrometry (GDS).
- the suppression of element concentration is performed by the regulation of the Mn amount on the surface layer of the plating original plate because the suppression of Mn is most effective in improving the pattern-like surface defects in the present invention. That is, when alloying hot dipping was performed on the plating base plate according to the above-described component composition, a portion where defects were generated in the plating film and a portion where defects were not found were observed. As a result, it was found that the difference between the two parts was caused by element concentration, particularly Mn concentration, in the surface layer of the plating original plate. As shown in FIG. 1, it can be seen that the portion where the surface defect occurs is higher in strength of Mn than the portion where the surface defect does not occur.
- the Mn strength (strength by GDS) on the surface layer of the plating original plate and the surface properties of the plating were investigated.
- the analysis by GDS was performed in a processing chamber into which Ar gas was introduced at a flow rate of 250 cc / min under the conditions of current: 20 mA, measurement interval: 50 ms, and measurement time: 120 s.
- FIG. 2 shows the results of evaluation of this surface property in seven stages.
- evaluation shown in FIG. 2 was performed based on the evaluation in the below-mentioned Example.
- the plating surface state that is not visually recognized as a harmful surface defect is a rating of 2 or less.
- the strength of Mn in the surface layer of the plating original plate is 3.5 (V) or less by GDS. It is clear from the figure that it is necessary.
- the measurement of the strength (unit: V) of Mn by GDS is a component in the plate thickness direction of the steel plate when the Mn amount (%) of the steel plate to be measured is [Mn] under the measurement conditions described above.
- the hot dip galvanized film is formed by setting the Mn peak (Mn strength of the steel sheet surface layer) to 3.5 (V) or less when the surface layer of the plating after recrystallization annealing is analyzed by GDS.
- Mn peak Mn strength of the steel sheet surface layer
- V 3.5
- a plated steel sheet having excellent surface appearance after formation can be obtained.
- the mechanism by which the above-described pattern-like surface defects are suppressed by setting the peak of Mn to a specific value or less is not necessarily clear, but can be inferred as follows.
- the fine Mn oxide deposited on the surface of the steel sheet reduces the wettability between the steel sheet and Zn in the plating bath, inhibits the formation of an Al-enriched layer, and subsequently causes the reaction of Fe-Zn locally.
- a galvanized steel sheet having an excellent surface appearance can be obtained by performing hot dip galvanizing on the above-described plating original plate. Furthermore, by following the above-described component composition, a bake hardening amount (BH amount) of 30 MPa or more can be obtained.
- BH amount bake hardening amount
- hot dip galvanizing treatment need not be particularly limited, but the following conditions are preferably applied. That is, hot dip galvanizing can be performed by a conventional method, and in some cases, an alloying treatment at 500 ° C. to 600 ° C. can be performed.
- the manufacturing method of the above-mentioned plating original plate is demonstrated.
- hot rough rolling is performed on a steel material having the above-described component composition, for example, a steel slab
- hot finishing rolling is performed after descaling with high-pressure water having a discharge pressure of 30 MPa or more, and 640 ° C to 720 ° C
- Mn strength is 3.5 (V) or less by glow discharge optical emission spectrometry (GDS) of the steel sheet surface layer after annealing in the temperature range of is there.
- glow discharge emission spectroscopy (GDS) is the following method.
- the analysis is performed while cutting the surface layer of the sample
- the element distribution on the surface of the steel sheet and in the vicinity thereof can be measured by performing sputtering while generating the glow plasma described above from the steel sheet surface.
- evaluation is performed using the spectrum of Mn.
- the method for melting the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Moreover, after melting, it is preferable to use a slab (steel material) by a continuous casting method because of problems such as segregation, but a slab can also be formed by a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method. good.
- High pressure water descaling Discharge pressure 30MPa or more
- the descaling discharge pressure is less than 30 MPa, the descalability decreases and surface defects such as biting of the scale occur, so the scale of the steel sheet surface generated in the rough rolling stage is on the entry side of the finishing mill. It must be reliably removed with high-pressure water with a discharge pressure of 30 MPa or more. Preferably, it is 50 MPa or more.
- the upper limit of the discharge pressure need not be set, but is preferably 60 MPa from the viewpoint of manufacturability.
- the slab heating prior to hot rolling is preferably performed under the following conditions.
- slab heating temperature 1100 °C to 1300 °C
- the slab is subjected to hot rolling after rough rolling or directly inserted into a hot finish rolling mill.
- the slab heating temperature is preferably set to 1100 ° C. or more from the viewpoint of securing a suitable finishing temperature described later.
- the slab heating temperature is 1300 ° C. or higher, a large amount of nitride is generated and unrecrystallized grains remain after annealing.
- Hot finish rolling under the following conditions.
- Finish rolling temperature 800 °C to 1000 °C
- finish rolling is performed at a finish rolling temperature of 800 ° C to 1000 ° C. That is, when the finish rolling temperature is below 800 ° C., the structure of the steel sheet becomes non-uniform, and the workability and surface appearance may be deteriorated.
- rolling at an excessively high temperature may cause scale wrinkles and damage the surface appearance.
- the steel sheet is wound in a coil shape on the outlet side of the hot rolling, it is necessary to perform the winding under the following conditions.
- Windding temperature: 640 °C to 720 °C When the coiling temperature is lower than 640 ° C., the Mn concentration on the surface layer of the hot rolled coil becomes significant, and the amount of element concentration on the surface layer of the steel sheet after the final annealing increases, so that uneven plating tends to occur. For this reason, the lower limit of the coiling temperature is set to 640 ° C. Moreover, since the scale of the surface layer is likely to grow and cause surface defects at 720 ° C or higher, the temperature is set to 720 ° C or lower. Preferably, they are 660 degreeC or more and 690 degrees C or less.
- the galvannealed steel sheet of the present invention is manufactured by melting steel adjusted to the above-described composition range into a slab, followed by cold rolling and annealing processes after the above hot rolling.
- the rolling reduction during cold rolling is preferably 40% or more and 85% or less. That is, when the rolling reduction during cold rolling is less than 40%, recrystallization in the heating process during annealing occurs non-uniformly, and a uniform fine annealing structure may not be obtained.
- variation in the coil of the hot-rolled sheet structure that can occur normally remains even after cold rolling annealing, and the variation in material may increase.
- the rolling reduction during cold rolling is preferably 40% or more.
- the upper limit of the rolling reduction is about 85%.
- the annealing conditions after cold rolling are desirably maintained at an annealing temperature of 700 to 880 ° C. for 10 to 500 seconds. That is, when the annealing temperature is less than 700 ° C., a recrystallized structure cannot be obtained after annealing, and desired workability may not be obtained. On the other hand, if the annealing temperature exceeds 880 ° C., the ferrite becomes coarse during annealing and the structure becomes coarse, which may cause a problem of rough skin after processing (orange peel). Therefore, the annealing temperature is preferably 700 ° C. or higher and 880 ° C. or lower.
- the holding time in annealing is 10 seconds or more from the viewpoint of progressing recrystallization of ferrite.
- the holding time exceeds 500 seconds, the crystal grain size becomes coarse and there is a possibility that the problem of rough skin after processing (orange peel) may occur. Further, Si and Mn may be concentrated on the surface again, resulting in deterioration of the plating property. Therefore, the annealing holding time is 10 to 500 seconds.
- the hot dip galvanizing process may be performed by a conventional method. Further, after being immersed in a galvanizing bath and subjected to hot dip galvanizing treatment, galvanizing alloying treatment is performed.
- the alloying treatment of galvanizing is preferably performed after the hot dip galvanizing treatment, for example, by heating to a temperature range of 500 to 650 ° C. and holding for several seconds to several tens of seconds.
- the amount of plating is 20 to 70 g / m 2 per side, and when alloying, the Fe concentration in the plating layer is preferably 6 to 15%. Note that the thickness of the steel sheet targeted in the present invention is 0.5 to 0.8 mm.
- the molten steel having the component composition shown in Table 1 was made into a slab by continuous casting after vacuum degassing treatment.
- the slab is heated, rough-rolled after removing the scale, and the scale generated during the rough rolling is removed by high-pressure water descaling under the conditions shown in Table 2 using a high-pressure scale removing device on the finishing mill entry side.
- it was finish-rolled and wound on a coil under the conditions shown in Table 2.
- the steel sheet was unwound from the coil and subjected to cold rolling at a cold rolling rate of 75% after pickling and annealing.
- the Mn strength of the steel sheet surface layer by GDS was measured. The results are shown in Table 2 together with the descaling conditions and winding temperature conditions.
- the analysis conditions by GDS were as follows: sputtering was performed at a current of 20 mA in a processing chamber into which Ar gas was introduced at a flow rate of 250 cc / min, measurement interval during sputtering: 50 ms, measurement time: maximum 120 s, Mn intensity The maximum value of GDS strength (unit: V) was taken as the Mn strength (V) of the steel sheet surface layer. Note that the depth from the surface layer on the horizontal axis in FIG. 1 is 3 ⁇ m because 120 ⁇ s of the reduction in plate thickness due to sputtering after the measurement for 120 seconds was 3 ⁇ m.
- the above plating original plate is annealed (held at 800 ° C. for 60 seconds), followed by hot dip galvanizing treatment to form a plating layer with an adhesion amount of 50 g / m 2 on one side, Alloying was performed at 520 ° C. for 20 seconds to obtain an alloyed hot-dip galvanized steel sheet in which the Fe concentration in the plating layer was adjusted to 9 to 12%.
- the appearance of the galvannealed steel sheet thus obtained was evaluated in seven stages. That is, the appearance evaluation was performed by visually observing the presence or absence of a pattern-like defect, and when there was a pattern, the rating was based on the contrast of the pattern.
- the grades are as follows: 1: No pattern defects (above Class A), 2: Extremely mild (Medium Class A), 3: Extremely Mild (under Class A), 4: Slightly mild (above Class B), 5: Mild (B In the middle), 6: Slightly severe (below Class B), 7: Severe (Class C), visual evaluation was performed in seven stages. A grade of 2 or less is a passing product.
- the amount of bake hardening is the stress when 2% pre-strain is applied to the test piece taken from the galvanized steel sheet from the galvanized steel sheet from the direction perpendicular to the coil rolling direction.
- YP yield point
- the inventive examples had an excellent appearance within an allowable range for automobile exterior use, and had performance suitable for automobile exterior use.
- the appearance was inferior, and plating surface defects that did not satisfy the performance required for automobile exterior use occurred.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
この特徴を有する鋼板は、焼付前は高い成形性を有し、焼付後には高い耐デント性を有する高付加価値のものとなる。また、最終ユーザーの目に触れるため、要求される表面品質レベルは非常に厳格である。
本発明は、かような新規知見に基づくものであり、その要旨構成は、次のとおりである。
C:0.005%以下、
Si:0.03%以下、
Mn:0.5%以上1.0%以下、
Nb:0.005%以上0.015%以下、
P:0.01%以上0.05%以下、
S:0.03%以下、
Al:0.01%以上0.08%以下および
N:0.005%以下
を含有し、残部がFeおよび不可避的不純物の成分組成を有し、グロー放電発光分光分析法(GDS)による鋼板表層のMnの強度が3.5(V)以下である合金化溶融亜鉛めっき原板。
ここで、前記「表層」とは、鋼板の表面から1μmの深さまでの領域を意味し、該領域のMnの最大濃度を鋼板表層のMnの強度とする。
B:0.0005%~0.0020%
を含有する前記1に記載の合金化溶融亜鉛めっき原板。
ここで、前記「焼付け硬化量」は、合金化溶融亜鉛めっき鋼板のコイルの圧延方向と直角の方向から採取したJIS 5号試験片に2%の予歪を付与したときの応力に対する、170℃で20minの熱処理を施した後の降伏点(YP)の増加量である。
C:0.005%以下、
Si:0.03%以下、
Mn:0.5%以上1.0%以下、
Nb:0.005%以上0.015%以下、
P:0.01%以上0.05%以下、
S:0.03%以下、
Al:0.01%以上0.08%以下および
N:0.005%以下
を含有し、残部がFeおよび不可避的不純物の成分組成を有する鋼素材に熱間粗圧延を施し、吐出圧力が30MPa以上の高圧水によるデスケーリングを行ったのち熱間仕上圧延を施し、640℃以上720℃以下の温度範囲にて巻取り、次いで冷間圧延そして焼鈍を行って、該焼鈍後の鋼板表層のグロー放電発光分光分析法(GDS)によるMnの強度を3.5(V)以下とする合金化溶融亜鉛めっき原板の製造方法。
B:0.0005%~0.0020%
を含有する前記5に記載の合金化溶融亜鉛めっき原板の製造方法。
Cの添加量が増すと、これを炭化物として固定するため、多量のTi、Nbが必要となる。そのためには、0.0003%以上で含有させることが好ましい。また、Cは、再結晶温度の上昇等により連続焼鈍時に悪影響を及ぼす。特に、プレス加工を施す自動車外装用の鋼板では、全伸びやランクフォード値を劣化させる。そのため、Cは0.005%を上限とする。好ましくは、0.0030%以下である。
Siは、鋼の強度を上昇させるのに有効な元素であり、好ましくは0.005%以上で添加することが好ましいが、過度の添加は耐2次加工脆性、化成処理性及びめっき付着性を劣化させる。よってその上限を0.03%とする。より好ましくは、0.02%以下である。
Mnは、焼付け硬化型鋼板の特徴である焼付け硬化性を向上するのに寄与する元素であり、必要な焼付け硬化性を確保するために、下限を0.5%として添加する。また、Mnは鋼を強化する作用があり、所望の強度に応じて必要量を含有させる。一方、その含有量が1.0%を超えると強度が高くなりすぎ、延性が劣化する。また、後述する、めっき原板の表層におけるMnの強度を3.5(V)以下とするためにも、その上限を1.0%とする必要がある。好ましくは、0.6%以上0.9%以下である。
Nbは、Cと結合してNbCを生成し、焼鈍時にNbCが部分的に再固溶し、焼鈍後に固溶Cが残ることにより焼付け硬化性を付与するのに寄与する元素である。さらに深絞り性も付与できるため、その添加が必須である。そのためには、0.005%以上の添加が必要である。一方、0.015%を超えると、焼付け硬化性が劣化する。以上のことより、Nb量は、0.005%以上0.015%以下と定めた。好ましく、0.008~0.012%である。
Pは、r値の上昇及び固溶強化を目的として添加される。Pが0.01%未満ではこれらの効果が十分得られない。一方、その含有量が0.05%を超えると、めっき性や外観を劣化させるため、0.05%を上限とする。好ましくは、0.03%以上0.04%以下である。
Sは、不可避的不純物として鋼中に存在するが、その含有量が0.03%を超えると、鋼板製造時の熱間割れが生じ易くなるとともに、鋼中で多量の硫化物が発生して再結晶が抑制されるため、表面欠陥が発生しやすくなる。そのため、上限を0.03%とする。好ましくは、0.010%以下である。
Alは、脱酸剤として添加する元素であり、0.01%以上は必要であるが、多量に添加すると窒化物のピン止め効果による未再結晶が多く残存し、表面欠陥が発生しやすくなるため、上限を0.08%とする。好ましくは、0.02%以上0.05%以下である。
Nは、AlやTiと窒化物を形成し、この窒化物のピン止め効果によって未再結晶が残存する結果、表面欠陥が発生しやすくなるため、0.005%以下とする。より好ましくは0.003%以下とする。
B:0.0005%以上0.0020%以下
Bは、粒界強化に有効な元素であり、耐二次加工脆性が必要とされる場合に0.0005%以上含有すると効果的である。しかし、過剰に含有すると、鋼板製造時の表面性状の劣化や再結晶温度の上昇を引き起こす。よって、含有する場合は、0.0005%以上0.0020%以下とする。
なお、めっき原板は、上記した成分元素を含み、残部はFeおよび不可避的不純物の成分組成を有していれば良く、上記した成分元素を含み、残部はFeおよび不可避的不純物からなることが好ましい。
図1に、その調査結果を示すように、表面欠陥が発生した部分は発生しない部分に比べて、Mnの強度が高いことがわかる。
そこで、めっき原板の表層におけるMnの強度(GDSによる強度)とめっきの表面性状とを調査した。なお、GDSによる分析は、Arガスを250cc/minの流量で導入した処理室内にて、電流:20mA、測定間隔:50msおよび測定時間:120sの条件で行った。この表面性状を7段階にて評価した結果について、図2に示す。なお、図2に示す評価は、後述の実施例における評価に準拠して行った。ここで、目視にて有害な表面欠陥と認識されないめっき表面状態は評点2以下であるが、この評点2以下とするには、めっき原板の表層におけるMnの強度をGDSにて3.5(V)以下にする必要のあることが、同図から明らかである。
なお、GDSによるMnの強度(単位:V)の測定は、前記した測定条件の下で、測定対象とする鋼板のMn量(%)を[Mn]としたとき、鋼板の板厚方向の成分定常部(めっき原板の成分組成におけるMn量である部分)におけるGDSによるMnの強度(電圧:V)がV=(3/8)×[Mn]となるように、GDSによるMnの強度(電圧:V)を調整(フルスケール調整)し、この調整されたスケールにて後述する再結晶焼鈍後のめっき原板表層にて行った。
すなわち、常法により溶融亜鉛めっきを施し、場合により、500℃~600℃の合金化処理を行うことができる。
ここで、グロー放電発光分光分析法(GDS)とは、以下の手法である。すなわち、数100Paのアルゴン雰囲気中で、試料と対電極の間に直流電圧(1000V程度)をかけると安定したグロープラズマが発生する。このプラズマで生成したAr+イオンは、陰極である試料表面に衝突し、その際、スパッタリングを起こして表層の原子が飛び出してくる。この飛び出した原子はグロープラズマ中で励起され、元素特有のスペクトルを発する。この発光の波長と強度(電圧:V)を測定することによって、試料表層の元素とその量を判定する手法である。特に、試料の表層を削りながら分析するため、鋼板表面から前記したグロープラズマを発生させながらスパッタリングを行うことにより、鋼板の表面およびその近傍の元素分布を計測することができる。本発明では、Mnのスペクトルで評価している。
[高圧水デスケーリング:吐出圧力30MPa以上]
デスケーリングの吐出圧力が30MPa未満では、脱スケール性が低下し、スケールの噛み込み等の表面欠陥が発生するため、粗圧延段階で発生した鋼板表面のスケールを、仕上圧延機の入側において、30MPa以上の吐出圧力の高圧水にて、確実に除去する必要がある。好ましくは、50MPa以上である。なお、吐出圧力の上限は特に設定する必要はないが、製造性の観点からは60MPaとすることが好ましい。
[スラブ加熱温度:1100℃以上1300℃以下]
スラブは、粗圧延した後又は直接熱間仕上げ圧延機に挿入し熱間圧延を行う。その際、スラブ加熱温度は後述の好適仕上げ温度を確保する観点から1100℃以上とすることが好ましい。一方、スラブ加熱温度が1300℃以上では、窒化物が多量に発生し、焼鈍後未再結晶粒の残存を招くことになるため、1300℃以下とすることが好ましい。
[仕上げ圧延温度:800℃以上1000℃以下]
熱間圧延では、粗圧延を行った後、仕上げ圧延温度800℃以上1000℃以下で仕上げ圧延を行う。すなわち、仕上げ圧延温度が800℃を下回ると、鋼板の組織が不均一になり、加工性や表面外観が劣化することがある。また、過度に高い温度で圧延するとスケール疵などの原因となり表面外観を損ねることがあるため、1000℃以下とすることが好ましい。
[巻取り温度:640℃以上720℃以下]
巻取り温度が640℃を下回ると、熱延コイル表層のMn濃化が著しくなり、最終焼鈍後の鋼板表層の元素濃化量が増加するため、めっきむらが発生しやすくなる。このため、巻取り温度の下限を640℃とする。また、720℃以上では表層のスケールが成長して表面欠陥の原因となりやすいため、720℃以下とする。好ましくは、660℃以上690℃以下である。
冷間圧延時の圧下率は40%以上85%以下が望ましい。すなわち、冷間圧延時の圧下率が40%未満では、焼鈍時の加熱過程における再結晶が不均一に生じ、均一微細な焼鈍組織が得られない場合がある。これに加えて、通常起こりうる熱延板組織のコイル内ばらつきが冷延焼鈍後にも残存し、材質ばらつきが増大する場合がある。そこで、焼鈍時の加熱過程における再結晶を促進し、コイル内において、より均一な組織を得る観点から、冷間圧延時の圧下率は40%以上とすることが好ましい。一方、圧下率が85%を超えると、圧延時のロールへの負荷も高まり、通板トラブルが発生する懸念がある。このため、圧下率の上限を85%程度とすることが好ましい。
なお、本発明で対象とする鋼板の厚みは、0.5~0.8mmである。
Claims (6)
- mass%で
C:0.005%以下、
Si:0.03%以下、
Mn:0.5%以上1.0%以下、
Nb:0.005%以上0.015%以下、
P:0.01%以上0.05%以下、
S:0.03%以下、
Al:0.01%以上0.08%以下および
N:0.005%以下
を含有し、残部がFeおよび不可避的不純物の成分組成を有し、グロー放電発光分光分析法(GDS)による鋼板表層のMnの強度が3.5(V)以下である合金化溶融亜鉛めっき原板。 - 前記成分組成は、さらにmass%で
B:0.0005%~0.0020%
を含有する請求項1に記載の合金化溶融亜鉛めっき原板。 - 請求項1または2に記載の合金化溶融亜鉛めっき原板の表面に、溶融亜鉛めっき被膜を有する合金化溶融亜鉛めっき鋼板。
- 焼付け硬化量が30MPa以上である請求項3に記載の合金化溶融亜鉛めっき鋼板。
- mass%で
C:0.005%以下、
Si:0.03%以下、
Mn:0.5%以上1.0%以下、
Nb:0.005%以上0.015%以下、
P:0.01%以上0.05%以下、
S:0.03%以下、
Al:0.01%以上0.08%以下および
N:0.005%以下
を含有し、残部がFeおよび不可避的不純物の成分組成を有する鋼素材に熱間粗圧延を施し、吐出圧力が30MPa以上の高圧水によるデスケーリングを行ったのち熱間仕上圧延を施し、640℃以上720℃以下の温度範囲にて巻取り、次いで冷間圧延そして焼鈍を行って、該焼鈍後の鋼板表層のグロー放電発光分光分析法(GDS)によるMnの強度を3.5(V)以下とする合金化溶融亜鉛めっき原板の製造方法。 - 前記成分組成は、さらにmass%で
B:0.0005%~0.0020%
を含有する請求項5に記載の合金化溶融亜鉛めっき原板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680023058.5A CN107532264B (zh) | 2015-04-21 | 2016-04-21 | 合金化热镀锌原板及其制造方法和合金化热镀锌钢板 |
MX2017013463A MX2017013463A (es) | 2015-04-21 | 2016-04-21 | Lamina en bruto galvano-recocida, metodo de produccion para la misma y lamina de acero galvano-recocida. |
JP2016553624A JP6112266B2 (ja) | 2015-04-21 | 2016-04-21 | 合金化溶融亜鉛めっき原板およびその製造方法と合金化溶融亜鉛めっき鋼板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-086995 | 2015-04-21 | ||
JP2015086995 | 2015-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016170794A1 true WO2016170794A1 (ja) | 2016-10-27 |
Family
ID=57143858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/002146 WO2016170794A1 (ja) | 2015-04-21 | 2016-04-21 | 合金化溶融亜鉛めっき原板およびその製造方法と合金化溶融亜鉛めっき鋼板 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6112266B2 (ja) |
CN (1) | CN107532264B (ja) |
MX (1) | MX2017013463A (ja) |
WO (1) | WO2016170794A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112268850A (zh) * | 2020-09-16 | 2021-01-26 | 唐山钢铁集团有限责任公司 | 一种评价涂层钢板耐蚀性方法 |
JP2021508772A (ja) * | 2017-12-24 | 2021-03-11 | ポスコPosco | 常温耐時効性及び焼付硬化性に優れた亜鉛系めっき鋼板及びその製造方法 |
WO2022244591A1 (ja) | 2021-05-21 | 2022-11-24 | 日本製鉄株式会社 | 合金化溶融亜鉛めっき鋼板 |
KR20230171464A (ko) | 2021-05-21 | 2023-12-20 | 닛폰세이테츠 가부시키가이샤 | 합금화 용융 아연 도금 강판 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0841587A (ja) * | 1994-08-01 | 1996-02-13 | Nkk Corp | 表面性状に優れた焼付け硬化型鋼板 |
JPH09316617A (ja) * | 1996-05-31 | 1997-12-09 | Kawasaki Steel Corp | 高加工性めっき鋼板の製造方法 |
JPH11229039A (ja) * | 1998-02-13 | 1999-08-24 | Nkk Corp | 表面外観に優れた合金化溶融亜鉛めっき鋼板の製造方法 |
JP2000054070A (ja) * | 1998-08-05 | 2000-02-22 | Kawasaki Steel Corp | 耐肌荒れ性および耐時効性に優れる缶用鋼板およびその製造方法 |
JP2001140038A (ja) * | 1999-11-16 | 2001-05-22 | Nkk Corp | 表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板およびその製造方法 |
JP2013117043A (ja) * | 2011-12-02 | 2013-06-13 | Nippon Steel & Sumitomo Metal Corp | 合金化溶融亜鉛めっき鋼帯およびその製造方法 |
CN104213020A (zh) * | 2014-09-04 | 2014-12-17 | 河北钢铁股份有限公司邯郸分公司 | 镀锌烘烤硬化钢及其生产方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101151392A (zh) * | 2005-03-31 | 2008-03-26 | 杰富意钢铁株式会社 | 合金化热镀锌钢板及其制造方法 |
JP5660796B2 (ja) * | 2010-03-31 | 2015-01-28 | 日新製鋼株式会社 | 溶融亜鉛系めっき高張力鋼板の製造法 |
-
2016
- 2016-04-21 JP JP2016553624A patent/JP6112266B2/ja active Active
- 2016-04-21 CN CN201680023058.5A patent/CN107532264B/zh active Active
- 2016-04-21 WO PCT/JP2016/002146 patent/WO2016170794A1/ja active Application Filing
- 2016-04-21 MX MX2017013463A patent/MX2017013463A/es unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0841587A (ja) * | 1994-08-01 | 1996-02-13 | Nkk Corp | 表面性状に優れた焼付け硬化型鋼板 |
JPH09316617A (ja) * | 1996-05-31 | 1997-12-09 | Kawasaki Steel Corp | 高加工性めっき鋼板の製造方法 |
JPH11229039A (ja) * | 1998-02-13 | 1999-08-24 | Nkk Corp | 表面外観に優れた合金化溶融亜鉛めっき鋼板の製造方法 |
JP2000054070A (ja) * | 1998-08-05 | 2000-02-22 | Kawasaki Steel Corp | 耐肌荒れ性および耐時効性に優れる缶用鋼板およびその製造方法 |
JP2001140038A (ja) * | 1999-11-16 | 2001-05-22 | Nkk Corp | 表面性状の優れた焼付硬化型合金化溶融亜鉛めっき鋼板およびその製造方法 |
JP2013117043A (ja) * | 2011-12-02 | 2013-06-13 | Nippon Steel & Sumitomo Metal Corp | 合金化溶融亜鉛めっき鋼帯およびその製造方法 |
CN104213020A (zh) * | 2014-09-04 | 2014-12-17 | 河北钢铁股份有限公司邯郸分公司 | 镀锌烘烤硬化钢及其生产方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021508772A (ja) * | 2017-12-24 | 2021-03-11 | ポスコPosco | 常温耐時効性及び焼付硬化性に優れた亜鉛系めっき鋼板及びその製造方法 |
JP7214735B2 (ja) | 2017-12-24 | 2023-01-30 | ポスコホールディングス インコーポレーティッド | 常温耐時効性及び焼付硬化性に優れた亜鉛系めっき鋼板及びその製造方法 |
CN112268850A (zh) * | 2020-09-16 | 2021-01-26 | 唐山钢铁集团有限责任公司 | 一种评价涂层钢板耐蚀性方法 |
WO2022244591A1 (ja) | 2021-05-21 | 2022-11-24 | 日本製鉄株式会社 | 合金化溶融亜鉛めっき鋼板 |
KR20230171464A (ko) | 2021-05-21 | 2023-12-20 | 닛폰세이테츠 가부시키가이샤 | 합금화 용융 아연 도금 강판 |
KR20230172534A (ko) | 2021-05-21 | 2023-12-22 | 닛폰세이테츠 가부시키가이샤 | 합금화 용융 아연 도금 강판 |
Also Published As
Publication number | Publication date |
---|---|
MX2017013463A (es) | 2017-12-07 |
JP6112266B2 (ja) | 2017-04-12 |
CN107532264B (zh) | 2019-03-15 |
CN107532264A (zh) | 2018-01-02 |
JPWO2016170794A1 (ja) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102401156B1 (ko) | 고강도 Zn-Al-Mg계 표면 피복 강판 및 그 제조 방법 | |
JP4449795B2 (ja) | 熱間プレス用熱延鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法 | |
KR20210141432A (ko) | 전기 저항 점용접성이 우수한 고강도 아연도금강판 및 그 제조방법 | |
JP2007277652A (ja) | 加工性、パウダリング性、摺動性の良好な合金化溶融亜鉛メッキ鋼板の製造方法 | |
JP6112266B2 (ja) | 合金化溶融亜鉛めっき原板およびその製造方法と合金化溶融亜鉛めっき鋼板 | |
JP2009167513A (ja) | 高張力冷延鋼板およびその製造方法 | |
JP5446430B2 (ja) | 冷延鋼板と合金化溶融亜鉛めっき鋼板およびそれらの製造方法 | |
JP2011153349A (ja) | 外観特性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法 | |
WO2018142849A1 (ja) | 高強度溶融亜鉛めっき熱延鋼板およびその製造方法 | |
JP2008214681A (ja) | 塗装鮮映性とプレス成形性に優れた合金化溶融亜鉛メッキ鋼板およびその製造方法 | |
KR20110023911A (ko) | 외관이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
US20030155048A1 (en) | Electroplating annealed thin sheets and method for producing the same | |
KR20220024235A (ko) | 표면품질과 점 용접성이 우수한 아연도금강판 및 그 제조방법 | |
JP2006283070A (ja) | 加工性の良好な合金化溶融亜鉛メッキ鋼板の製造方法 | |
JP2019167576A (ja) | 合金化溶融亜鉛めっき鋼板の製造方法 | |
JP2019031727A (ja) | 自動車部品用高強度Zn−Al−Mg系表面被覆鋼板およびそれを用いた自動車部品 | |
JP2019031728A (ja) | 建築部材用高強度Zn−Al−Mg系表面被覆鋼板およびそれを用いた建築部材 | |
JP6237657B2 (ja) | 亜鉛めっき鋼板およびその製造方法 | |
JP5051886B2 (ja) | 冷延鋼板およびめっき鋼板の製造方法 | |
JP2002146475A (ja) | 合金化溶融亜鉛めっき鋼板 | |
JP2010196146A (ja) | 加工性に優れた合金化溶融亜鉛めっき鋼板の製造方法 | |
JP5920281B2 (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
KR102604165B1 (ko) | 전기저항 점용접부의 피로강도가 우수한 아연도금강판 및 그 제조방법 | |
JP5668361B2 (ja) | 高張力冷延鋼板およびその製造方法 | |
JP2004211119A (ja) | 伸びフランジ性、強度−延性バランス、および歪時効硬化特性に優れた複合組織型高張力溶融亜鉛めっき鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016553624 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16782816 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/013463 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16782816 Country of ref document: EP Kind code of ref document: A1 |