WO2016170565A1 - 無人飛翔体及びそのための制御装置 - Google Patents

無人飛翔体及びそのための制御装置 Download PDF

Info

Publication number
WO2016170565A1
WO2016170565A1 PCT/JP2015/061918 JP2015061918W WO2016170565A1 WO 2016170565 A1 WO2016170565 A1 WO 2016170565A1 JP 2015061918 W JP2015061918 W JP 2015061918W WO 2016170565 A1 WO2016170565 A1 WO 2016170565A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
control
information
rotor blade
detection device
Prior art date
Application number
PCT/JP2015/061918
Other languages
English (en)
French (fr)
Inventor
佐藤弘男
粳田安正
横山勉
Original Assignee
株式会社アドテックス
株式会社ヨコヤマ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドテックス, 株式会社ヨコヤマ・コーポレーション filed Critical 株式会社アドテックス
Priority to JP2015539975A priority Critical patent/JP5857326B1/ja
Priority to US15/127,008 priority patent/US10150559B2/en
Priority to PCT/JP2015/061918 priority patent/WO2016170565A1/ja
Priority to CN201580014727.8A priority patent/CN106458324B/zh
Publication of WO2016170565A1 publication Critical patent/WO2016170565A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/56Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated
    • B64C27/57Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated automatic or condition responsive, e.g. responsive to rotor speed, torque or thrust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present invention relates to a control device for a rotor blade motor and an unmanned flying object including the control device and the rotor blade.
  • a typical unmanned flying vehicle includes a multicopter having a plurality of rotor blades.
  • an unmanned flying object having a plurality of rotor blades arranged radially via a shaft can be mentioned.
  • a plurality of rotor blades are simultaneously rotated in a well-balanced manner to fly.
  • ascending / descending is performed by, for example, increasing / decreasing the rotational speed of the rotary wing, and forward / backward movement can be achieved by tilting the aircraft through increasing / decreasing the rotational speed of the rotating wing.
  • fixed-pitch rotor blades are often used, and counterclockwise counteracts have been counteracted by alternating clockwise and counterclockwise ones.
  • the balance of a plurality of rotor blades is normally controlled by a device called a flight controller provided in one unmanned flying object.
  • the flight controller determines the rotation speed and rotation direction of each rotor blade, and the determined rotation speed and rotation direction are transmitted to each rotor blade.
  • Each of the rotor blades is provided with a control device that supplies electric power to the motor of one rotor blade.
  • a command for the number of rotations and the direction of rotation of each rotor blade determined by the flight controller is input to a control device provided alongside the rotor blade, and the power supplied to the rotor blade is determined so as to realize the command.
  • a command related to rotation is issued from the flight controller to each rotor blade, and the issued command is supplied to each rotor blade by a control device attached to each rotor blade. Converted to.
  • each rotor In an unmanned flying vehicle, the operation of each rotor may become unstable, resulting in an unexpected crash or loss of control. In order to further improve the unmanned flying vehicle, it is necessary to grasp the cause of such a defective state and take measures. In addition, in order to minimize the damage to people and property due to the crash, early detection is possible when a minor failure occurs, and it is also possible to automatically perform actions that avoid the crash as much as possible. preferable. In view of these, it is an object of the present invention to provide a control device having a function that can later elucidate the cause of equipment failure and preferably prevent a crash, and an unmanned flying vehicle having such a control device. .
  • a control device for a rotor blade motor provided in an unmanned flying object having a plurality of rotor blades, the control device for controlling one rotor blade motor, and the control device is an arithmetic device.
  • the control contents for the rotor blade motor to be controlled are received from outside the control device, the power for realizing the control contents is supplied to the rotor blade motor, and the information on the supplied power is stored in the storage device.
  • the storage device is configured to store the power information and the voltage information received from the arithmetic device
  • the data output device is configured to output the information from the arithmetic device to the outside of the control device.
  • an abnormality display device is provided, and the arithmetic device is set to the abnormality display device so that the abnormality display device performs an abnormality display when the voltage information received from the voltage detection device matches a predetermined abnormality condition.
  • the control device according to [1], configured to issue a signal.
  • the arithmetic device ignores the control content received in the above (A) and supplies the predetermined power to the rotor blade motor.
  • the control device configured to supply.
  • it has a current detection device, and the current detection device is configured to acquire the drive current of the rotor blade motor every predetermined time and send the data of the drive current to the calculation device.
  • the drive current data received from the current detection device is stored in a storage device, and the drive display data received from the current detection device is displayed abnormally when the drive current data meets a predetermined abnormal condition.
  • the control device according to [2], wherein the control device is configured to issue a signal to the abnormality display device.
  • the arithmetic device ignores the control content received in the above (A) when the drive current data received from the current detection device matches the predetermined abnormal condition, and supplies the predetermined power to the rotor blade.
  • the control device configured to supply to the motor.
  • the temperature detection device is configured to acquire the temperature of the outside air and / or the temperature in the vicinity of the calculation device every predetermined time, and send the temperature data to the calculation device
  • the arithmetic device is configured to issue a signal to the abnormality display device so that the abnormality display device displays an abnormality when the temperature data received from the temperature detection device matches a predetermined abnormality condition [ 2] to [5].
  • the arithmetic device ignores the control content received in the above (A) when the temperature data received from the temperature detection device matches the predetermined abnormal condition, and generates a predetermined power.
  • the control device according to claim 6, wherein the control device is configured to supply the motor.
  • the computing device further accumulates (D) the accumulated usage time of the control device, and when the accumulated usage time exceeds a predetermined time in supplying power to the stopped rotating blade motor.
  • the control device according to [1] to [7], which is configured not to supply electric power to the rotor blade motor.
  • An unmanned flying object including a plurality of rotor blades and a control device of [1] to [8] connected to each of the rotor blades.
  • each data passing through the arithmetic device is stored in the storage device, it is useful for later analysis of failure modes and the like, and external data analysis means such as a personal computer via the data output device. It is easy to retrieve data from
  • the abnormality when an abnormality occurs in each data, the abnormality is promptly displayed by promptly displaying the abnormality, and according to a further preferred embodiment, the output of a specific rotor blade is entirely displayed at the time of abnormality.
  • the total usage time of the control device is recorded and is configured such that no new flight is possible when the control device is nearing its end of life, so that the life of the control device during flight is reduced. Concerns about running out are significantly reduced.
  • FIG. 1 is a schematic diagram of an example of the unmanned flying vehicle of the present invention.
  • the unmanned flying object of the present invention is configured to fly by a remote operation without a human being boarded, and has at least two rotating wings.
  • the power source of the rotor blade is assumed to be electric power.
  • the electric power is a storage battery (not shown) provided near each rotor blade.
  • the unmanned flying vehicle of FIG. 1 includes four shafts 30 extending radially from the center, a rotary blade 20 provided at the tip of each shaft 30, a control device 10 provided in each rotary blade 20, and a center. And a flight controller 40 provided. As long as it has a plurality of rotor blades, the structure of the unmanned flying object is not particularly limited. The number of shafts and flying objects is preferably 4-10.
  • the flight controller 40 determines the rotation speed and rotation direction of each rotor blade 20 from time to time.
  • the rotation speed and rotation direction of the rotor blade 20 are calculated by the flight controller 40 in accordance with the traveling direction and speed desired for the unmanned flying object.
  • the rotation speed and rotation direction of each rotor blade calculated by the flight controller 40 are transmitted to each rotor blade 20 every moment. The transmission is made via the control device 10.
  • the rotation speed and the rotation direction command calculated by the flight controller 40 are mainly supplied to the power supplied to the drive motor (not shown) of the rotor blade 20. Is converted.
  • the exchange between the flight controller 40 and the operator can be performed by remote operation using radio waves such as radio waves.
  • control device 10 and the rotor blade 20 typically correspond one-to-one.
  • one control device 10 is provided to control one rotor blade 20.
  • the connection between the control device 10 and the flight controller 40 and the connection between the control device 10 and the rotor blade 20 are not particularly limited, and a communication cable or the like can be used, and depiction is omitted in the drawings.
  • FIG. 2 is a schematic explanatory diagram of the control device 10 of the present invention.
  • the control apparatus of the present invention has an arithmetic device.
  • the CPU / IC 11 is assumed as the arithmetic device.
  • the configuration of the arithmetic device is not particularly limited as long as it is configured to have the following functions, and examples thereof include a CPU, an IC, an FPGA, and an ASIC.
  • One of the functions to be performed by the arithmetic device is (A) receiving control contents for the rotor blade motor to be controlled from the outside of the control device 10 and supplying electric power for realizing the control contents to the rotor blade motor. , Storing the supplied power information in a storage device.
  • the “rotary blade motor to be controlled” is a motor for driving the rotor blade 20 to be controlled.
  • the control content is an instruction on how to drive the driving motor, and specifically, the rotational speed and rotational direction of the rotary blade 20.
  • the control content is received from the flight controller 40 in the example of FIG.
  • the meaning of “from outside the control device 10” means that the flight controller 40 exists outside the control device 10. It should be noted that the control content, which may change from moment to moment, such as the number of rotations and the direction of rotation of the rotor blade 20 into the power supplied to the drive motor, is calculated using conventional techniques such as motor control. Reference can be made as appropriate.
  • information on the power supplied to the drive motor for the rotor blade 20 is stored in the storage device.
  • the “power information” may be time-dependent changes in the current and voltage values supplied to the drive motor, or may be information on the number of rotations and the direction of rotation of the rotor blade 20. These pieces of information are preferably stored in a storage device to be described later every predetermined time, for example, every 1 to 5 seconds.
  • Another function to be performed by the arithmetic device is (B) receiving voltage information from the voltage detection device and storing the information in the storage device.
  • This function is mainly to monitor the voltage of the battery 50 (mainly a storage battery) that is a power source of the rotor blade 20.
  • the voltage detection device can be connected to a power supply apparatus (battery 50 or the like) outside the control apparatus 10, acquires voltage information from the power supply apparatus (voltage detection 14), and supplies the acquired voltage information to the arithmetic device.
  • the supply of voltage information is preferably performed every predetermined time, for example, every 1 to 5 seconds.
  • the detected voltage value is preferably stored in a storage device described later.
  • the battery 50 With the power consumption of the battery 50, a drop in the voltage value is confirmed, and the remaining amount of the battery 50 can be estimated.
  • the battery 50 is composed of an assembly of a plurality of cell units, when one or more cell units fail, the voltage value drops rapidly. Therefore, a sudden drop in the voltage value is strongly inferred from a cell unit failure at that time.
  • the voltage information data is useful for knowing the time at which the cell unit failed when verifying the defect of the unmanned flying vehicle later.
  • known techniques such as a voltage measuring device can be referred to as appropriate.
  • Another one of the functions to be performed by the arithmetic device is (C) operating the output device to output any information stored in the storage device to the outside of the control device.
  • various types of information are stored in the storage device including the nonvolatile memory 15 and the like.
  • One of the functions that the arithmetic device should fulfill is that these pieces of information can be extracted from a data output terminal such as a USB terminal and can be supplied to an external terminal 60 such as a personal computer.
  • One of the preferable functions in the arithmetic device is (D) accumulating the accumulated usage time of the control device 10 and exceeding the predetermined usage time when supplying electric power to the rotating blade motor stopped. If this is the case, no power is supplied to the rotor motor. In short, if the lifetime of the control device 10 is exceeded, the start of a new flight is prohibited. Various electronic parts are mounted on the control device, and they have a lifetime. It is dangerous for the control device 10 to reach the end of its life while the unmanned flying object is flying.
  • the “predetermined time” for the cumulative usage time of the control device 10 is preferably, for example, a time obtained by subtracting one flightable time from the life of the control device 10.
  • the cumulative usage time exceeds the time set as such, the start of a new flight is prohibited. Specifically, power is not supplied to the stopped rotor motor. Even if the unmanned flying object reaches the “predetermined time” during the flight, it is inappropriate to immediately stop the power supply because it causes the unmanned flying object to crash.
  • Known techniques relating to circuit design techniques can be referred to as appropriate for accumulation of accumulated usage time, determination circuit for cutting off power supply, and the like.
  • the control device 10 has a storage device.
  • the nonvolatile memory 15 corresponds to a storage device.
  • the storage device is configured to store the power information and voltage information received from the computing device.
  • the memory technology and the like can be referred to as appropriate for the specific configuration of the storage device.
  • Power information is information on the power supplied to the rotor blade motor, and this information may be converted into information on the number of rotations and the direction of rotation of the rotor blade 20. This information is preferably stored as data at predetermined time intervals (eg every 1 to 5 seconds). By referring to this data later, the actual state of power supply to the rotor blade 20 at a specific flight time or at a specific time can be grasped, which is useful for analysis of a failure mode, for example.
  • Voltage information is information on the voltage value obtained by the voltage detection 14 of the battery 50.
  • the voltage value is also preferably stored as data at predetermined time intervals (eg, every 1 to 5 seconds). By referring to this data later, it is possible to grasp the state (particularly, the failure state) of the battery 50 at a specific flight time or a specific time.
  • the control device 10 has a data output device.
  • the data output device may be a data output terminal 16 exemplified by a USB terminal, for example.
  • the data output device is configured to output information from the arithmetic device to the outside of the control device 10.
  • “outside of the control device 10” includes an external terminal 60 such as a personal computer.
  • the data output device may be wired or wireless. Through the data output device, various data acquired by the control device 10 and various data stored in the storage device can be taken out and used for verification when a defect occurs.
  • the control device 10 preferably has an abnormality display device.
  • the arithmetic device issues a signal to the abnormality display device so that the abnormality display device displays an abnormality when the voltage information received from the voltage detection device matches a predetermined abnormality condition.
  • the “predetermined abnormal condition” is, for example, a voltage value close to the life of the battery 50, or, for example, data indicating that one or more of a plurality of cells are broken, that is, a rapid change in a short time. When a significant voltage drop is observed.
  • Examples of the abnormality display device include, but are not limited to, lighting of an LED or the like.
  • the calculation device forcibly reduces the power supply to the rotor blade motor.
  • the minimum electric power that does not cause a crash is supplied to the rotor blade motor and the state is observed for a while.
  • the control device received from the flight controller 40 ignores the control content and supplies predetermined power to the rotor blade motor.
  • the “predetermined power” is assumed to be, for example, power for performing a minimum drive that does not cause the rotor blade 20 to crash.
  • the control device 10 preferably has a current detection device.
  • the current detection device acquires the driving current of the rotor blade motor every predetermined time, for example, every 1 to 5 seconds.
  • the acquired drive current data is sent to the arithmetic device.
  • the current detection device includes, for example, a detection circuit 13 and detects a drive current to the rotor blade motor.
  • the computing device operates to store the data of the drive current received from the current detection device in the storage device.
  • the arithmetic device issues a signal to the abnormality display device so that the abnormality display device performs an abnormality display when the drive current data received from the current detection device matches a predetermined abnormality condition.
  • the “predetermined abnormal condition” includes, for example, an abnormal current value that may occur when a part of the rotor motor is lost. Alternatively, when the average load current increases or decreases abnormally, it may be incorporated as a “predetermined abnormal condition”.
  • the abnormality display device may be shared with the abnormality display device for indicating the abnormality of the battery 50 described above, or another device may be used.
  • the arithmetic device forcibly reduce the power supply to the rotor blade motor.
  • the minimum power level that does not cause a crash is supplied to the rotor blade motor and the state is observed for a while.
  • the control device received from the flight controller 40 ignores the control content and supplies predetermined power to the rotor blade motor.
  • the “predetermined power” is assumed to be, for example, power for performing a minimum drive that does not cause the rotor blade 20 to crash.
  • the control device 10 preferably has a temperature detection device 17.
  • the temperature detection device 17 acquires one or both of the temperature of the outside air and the temperature in the vicinity of the device every predetermined time, for example, every 1 to 5 seconds.
  • the acquired temperature data is sent to the computing device.
  • known techniques of temperature observation means can be referred to as appropriate.
  • the “temperature near the device” is intended to monitor the thermal runaway of the CPU and motor control circuit that make up the device, and it is important to measure the temperature in the vicinity to meet that purpose. Examples of the temperature include the temperature of a CPU and a motor control circuit.
  • the computing device preferably operates to accumulate temperature data received from the temperature sensing device 17 in the storage device.
  • the arithmetic device issues a signal to the abnormality display device so that the abnormality display device displays an abnormality when the temperature data received from the temperature detection device 17 matches a predetermined abnormality condition.
  • the “predetermined abnormal condition” includes, for example, an abnormal high or low value of the outside air temperature, or a high temperature at which a failure of the computing device is expected in the vicinity of the computing device.
  • the abnormality display device may be shared with the abnormality display device used to indicate abnormality of other information (current, voltage, etc.) described above, or another device may be used.
  • the arithmetic device forcibly reduces the power supply to the rotor blade motor.
  • the minimum power that does not cause a crash is supplied to the rotor motor and the situation is observed for a while.
  • the control device received from the flight controller 40 ignores the control content and supplies predetermined power to the rotor blade motor.
  • the “predetermined power” is assumed to be, for example, power for performing a minimum drive that does not cause the rotor blade 20 to crash.
  • control device 10 An unmanned flying vehicle including the control device 10 as described above is also an embodiment of the present invention.
  • the control device 10 and the rotary blade 20 typically correspond one-to-one.
  • one control device 10 is provided to control one rotor blade 20.
  • the unmanned flying vehicle may be equipped with a GPS device.
  • the unmanned flying vehicle may be provided with a “home function”.
  • the “home function” is a function for predetermining the location of “home” and automatically heading to the location of “home” in response to a return instruction to “home”.
  • Control device 20 Rotor blade 30: Shaft 40: Flight controller

Abstract

本発明は、後から機器不良の原因を解明でき、好ましくは墜落を未然に防げるような機能を有する制御装置及びそのような制御装置をもつ無人飛翔体の提供を課題とする。本発明の制御装置は1つの回転翼モーターを制御するためのものであり、演算デバイスと記憶デバイスとデータ出力デバイスと電圧検知デバイスとを有し、演算デバイスは各種情報を取得、出力し、記憶デバイスは演算デバイスから受け取った各種情報を蓄積し、データ出力デバイスは演算デバイスからの情報を制御装置外へ出力し、電圧検知デバイスはバッテリ等の電圧情報を取得して演算デバイスに供給する。 

Description

無人飛翔体及びそのための制御装置
 本発明は回転翼モーター用の制御装置及び、この制御装置と回転翼とを有する無人飛翔体に関する。
 近時、ドローンなどと呼ばれる無人飛翔体の開発が盛んである。典型的な無人飛翔体として、回転翼を複数個備えるマルチコプターが挙げられる。例えば、シャフトを介して放射状に配置される複数の回転翼をもつ無人飛翔体が挙げられる。こういった無人飛翔体においては、複数の回転翼を同時にバランスよく回転させることによって飛行する。飛翔体の飛行において、上昇・下降は例えば回転翼の回転数の増減によって行い、前進・後進などは、回転翼の回転数の増減を介して機体を傾けることによって成し得る。従来、固定ピッチの回転翼がよく使われ、右回り、左回りのものが交互に配置されることで、回転の反作用を打ち消しあっていた。
 複数の回転翼のバランスについては、通常は、無人飛翔体に1つ備えられるフライトコントローラと称する装置によって制御される。フライトコントローラによって各回転翼の回転数・回転方向が定められ、定められた回転数・回転方向が各回転翼に伝達される。回転翼の各々には、1つの回転翼のモーターに電力を供給する制御装置が併設される。フライトコントローラによって定められた各回転翼の回転数・回転方向の命令は、回転翼に併設された制御装置に入力され、そこで、上記命令を実現するように回転翼への供給電力が定められる。このように、無人飛翔体全体のバランスを考慮してフライトコントローラから各回転翼に回転に関する命令が発せられ、発せられた命令は各回転翼に併設された制御装置によって各回転翼への供給電力へと変換される。
 無人飛翔体においては、各回転翼の動作が不安定になるなどして予期せぬ墜落や制御不能に陥ることがある。無人飛翔体のさらなる改善のためには、そのような不良状態の原因を把握して対策を講じることが求められる。また、墜落に伴う人や財産への損傷を最小限にするために、軽微な故障が生じたときには早期発見が可能であり、また、墜落をなるべく回避するような動作を自動的に行うことも好ましい。これらを鑑みて、本発明は、後から機器不良の原因を解明でき、好ましくは墜落を未然に防げるような機能を有する制御装置及びそのような制御装置をもつ無人飛翔体の提供を課題とする。
 本発明者らが鋭意検討した結果、以下の内容の本発明を完成した。
[1]複数の回転翼をもつ無人飛翔体に備えられる回転翼モーター用の制御装置であって、当該制御装置は1つの回転翼モーターを制御するためのものであり、当該制御装置は演算デバイスと記憶デバイスとデータ出力デバイスと電圧検知デバイスとを有し、演算デバイスは、
(A)制御すべき回転翼モーターへの制御内容を当該制御装置外から受け取って前記制御内容を実現するための電力を回転翼モーターへ供給し、前記供給した電力の情報を記憶デバイスに蓄積させること、(B)電圧検知デバイスからの電圧情報を受けとって前記情報を記憶デバイスに蓄積させること、および(C)記憶デバイスに蓄積された任意の情報を当該制御装置外へ出力するために出力デバイスを作動させること、を成すよう構成されていて、
 記憶デバイスは演算デバイスから受け取った上記電力の情報及び電圧情報を蓄積するよう構成されていて、データ出力デバイスは演算デバイスからの情報を当該制御装置外へ出力するよう構成されていて、電圧検知デバイスは当該制御装置外の電源装置と接続可能であって前記電源装置から電圧情報を取得して前記電圧情報を演算デバイスに供給するよう構成されている、前記制御装置。
[2]さらに、異常表示デバイスを有し、演算デバイスは、上記電圧検知デバイスから受けた電圧情報が予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出するよう構成されている[1]の制御装置。
[3]演算デバイスは、上記電圧検知デバイスから受けた電圧情報が予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている[2]の制御装置。
[4]さらに、電流検知デバイスを有し、電流検知デバイスは回転翼モーターの駆動電流を所定時間毎に取得して前記駆動電流のデータを演算デバイスへ送るよう構成されていて、演算デバイスは、上記電流検知デバイスから受けた駆動電流のデータを記憶デバイスに蓄積させること、および、上記電流検知デバイスから受けた駆動電流のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出すること、を成すよう構成されている[2]の制御装置。
[5]演算デバイスは、上記電流検知デバイスから受けた駆動電流のデータが予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている[4]の制御装置。
[6]さらに、温度検知デバイスを有し、温度検知デバイスは外気の温度及び/又は演算デバイス近傍の温度を所定時間毎に取得して前記温度のデータを演算デバイスへ送るよう構成されていて、演算デバイスは、上記温度検知デバイスから受けた前記温度のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出するよう構成されている[2]~[5]の制御装置。
[7]演算デバイスは、上記温度検知デバイスから受けた前記温度のデータが予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている請求項6記載の制御装置。
[8]演算デバイスは、さらに、(D)当該制御装置の累積使用時間を蓄積し、停止している上記回転翼モーターへ電力を供給するにあたって前記累積使用時間が予め定めた時間を超えていたら上記回転翼モーターへ電力を供給しないよう構成されている[1]~[7]の制御装置。
[9]複数の回転翼と前記回転翼のそれぞれに対して1つずつ接続された[1]~[8]の制御装置とをもつ無人飛翔体。
 本発明によれば、演算デバイスを経る各データは記憶デバイスに蓄積されるから、後から故障モード等の解析に有用であり、また、データ出力デバイスを介してパーソナルコンピューター等の外部データ解析手段等へのデータの取り出しも容易である。本発明の好適態様によれば、各データに異常が生じたときに、その異常をいち早く表示させることにより早期解決が図られ、さらなる好適態様によれば、異常時に特定の回転翼の出力を全体のバランスを失しない程度に下げることにより、突然の墜落や制御不能状態をできるだけ回避することができる。別の好適態様によれば、この制御装置の総使用時間が記録され、制御装置の寿命が近づいたときに新たな飛行ができないように構成されており、その結果、飛行中に制御装置の寿命が尽きるという懸念が著しく低減される。
本発明の無人飛翔体の一例の模式図である。 本発明の制御装置の模式説明図である。
 以下、図面を適宜参照しながら本発明を詳しく説明する。図示された態様は本発明を限定するためのものではなく、あくまで例示である。
 図1は本発明の無人飛翔体の一例の模式図である。本発明の無人飛翔体は、人間が乗り込まずに遠隔操作によって飛翔するよう構成されていて、回転翼を少なくとも2つ有する。本発明では、回転翼の動力源は電力を想定している。典型的には、電力は各回転翼近傍に設けられた蓄電池(図示せず)である。
 図1の無人飛翔体は、中心から放射状に延びる4本のシャフト30と、各シャフト30の先端に備えられた回転翼20と、それぞれの回転翼20に併設された制御装置10と、中心に設けられたフライトコントローラ40とを有する。複数の回転翼を有する限り、無人飛翔体の構造は特に限定は無い。シャフト及び飛翔体の数は好ましくは4~10である。
 フライトコントローラ40は各回転翼20の回転数や回転方向が時々刻々定められる。回転翼20の回転数や回転方向は、無人飛翔体として所望される進行方向や速度に応じてフライトコントローラ40において算出される。フライトコントローラ40で算出された各回転翼の回転数や回転方向は時々刻々各それぞれの回転翼20に伝達される。その伝達は制御装置10を介して成され、制御装置10では主として、フライトコントローラ40にて算出された回転数や回転方向の命令が回転翼20の駆動モーター(図示せず)への供給電力へと変換される。フライトコントローラ40と操作者とのやりとりは、ラジオ波等の電波を用いた遠隔操作によって行うことができる。
 本発明によれば、制御装置10と回転翼20とは典型的には1対1に対応する。具体的には、1つの制御装置10は1つの回転翼20を制御するために設けられる。制御装置10とフライトコントローラ40との接続や、制御装置10と回転翼20との接続は特に限定は無く、通信ケーブル等を用いることができ、図面では描写を省略している。
 図2は本発明の制御装置10の模式説明図である。
 本発明の制御装置は演算デバイスを有する。図2では演算デバイスはCPU・IC11が想定されている。演算デバイスは以下の機能を成すよう構成されていればその形態は特に限定は無く、CPUやICやFPGAやASICなどが挙げられる。
 演算デバイスの果たすべき機能の一つは、(A)制御すべき回転翼モーターへの制御内容を制御装置10の外部から受け取って、その制御内容を実現するための電力を回転翼モーターへ供給し、前記供給した電力の情報を記憶デバイスに蓄積させることである。「制御すべき回転翼モーター」とは、制御対象の回転翼20の駆動用モーターのことである。制御内容は、前記駆動用モーターの駆動のさせ方の命令であり、具体的には回転翼20の回転数や回転方向などである。制御内容は、図1の例ではフライトコントローラ40から受け取る。「制御装置10の外部から」の意味内容は、フライトコントローラ40は制御装置10の外部の存在することである。なお、制御内容は時々刻々変動してもよい回転翼20の回転数や回転方向といった制御内容を、駆動用モーターへの供給電力へと変換する具体的な演算内容はモーター制御等の従来技術を適宜参照することができる。
 本発明によれば、回転翼20の駆動用モーターへ供給した電力の情報は、記憶デバイスに蓄積される。前記「電力の情報」は、駆動用モーターへ供給した電流、電圧値の時間変化であってもよいし、回転翼20の回転数や回転方向の情報であってもよい。これらの情報は好ましくは所定時間ごと、例えば1~5秒ごとに、後述する記憶デバイスに蓄積される。
 演算デバイスの果たすべき機能の別の一つは、(B)電圧検知デバイスからの電圧情報を受けとって前記情報を記憶デバイスに蓄積させることである。この機能は、主として、回転翼20の動力源であるバッテリー50(主として、蓄電池)の電圧を監視することである。電圧検知デバイスは制御装置10の外部にある電源装置(バッテリー50等)と接続可能であって電源装置から電圧情報を取得して(電圧検出14)、取得した電圧情報を演算デバイスに供給する。電圧情報の供給は、所定時間毎、例えば1~5秒ごとに、行われることが好ましい。検出された電圧値は後述する記憶デバイスに蓄積することが好ましい。バッテリー50の電力消費に伴い、電圧値の降下が確認され、バッテリー50の残量を見積もることができる。バッテリー50が複数個のセル単位の集合体からなるとき、その1つ以上のセル単位が故障すると、電圧値が急激に降下する。よって、電圧値の急激な降下は、その時点でのセル単位の故障が強く推察される。無人飛翔体の不具合を後から検証する際に、セル単位が故障した時刻を知る際に電圧情報のデータが役立つ。電圧検知デバイスの具体的な構成は電圧測定器などの公知技術を適宜参照することができる。
 演算デバイスの果たすべき機能の別の一つは、(C)記憶デバイスに蓄積された任意の情報を当該制御装置外へ出力するために出力デバイスを作動させることである。上述したように不揮発性メモリ15等からなる記憶デバイスには各種情報が蓄積される。これらの情報は、USB端子等からなるデータ出力端子から取り出せるようにして、パーソナルコンピューター等の外部端末60へと供給できるようにすることも演算デバイスが果たすべき機能の一つである。
 演算デバイスにおける好ましい機能の一つは、(D)当該制御装置10の累積使用時間を蓄積し、停止している上記回転翼モーターへ電力を供給するにあたって前記累積使用時間が予め定めた時間を超えていたら上記回転翼モーターへ電力を供給しないことである。簡潔にいえば、制御装置10の寿命を超えた場合には、新たな飛行開始を禁じる、ということである。制御装置には種々の電子部品が搭載されていて、それらには寿命がある。無人飛翔体が飛行している最中に制御装置10が寿命に至ることは危険である。制御装置10の累積使用時間についての「予め定めた時間」は、例えば、制御装置10の寿命から1回の飛行可能時間を減じた時間などが好ましく挙げられる。累積使用時間がそのように定めた時間を超えていたとしたら、新たな飛行の開始が禁じられる。具体的には、停止している回転翼モーターへの電力の供給が行われない、ということである。なお、無人飛翔体が飛行中に上記「予め定めた時間」に達したとしても、ただちに電力供給を停止することは無人飛翔体の墜落を招来するため不適切である。累積使用時間の蓄積や、電力供給を遮断する判断回路などについては回路設計技術に関する公知技術を適宜参照することができる。
 制御装置10は記憶デバイスを有する。図2の態様では、不揮発メモリ15が記憶デバイスに該当する。記憶デバイスは演算デバイスから受け取った上記電力の情報及び電圧情報を蓄積するよう構成されている。記憶デバイスの具体的な構成等はメモリ技術などを適宜参照することができる。「電力の情報」は回転翼モーターへ供給した電力の情報であり、この情報は回転翼20の回転数、回転方向の情報に変換されていてもよい。この情報は好ましくは所定の時間間隔(例えば、1~5秒ごと)ごとのデータとして蓄積される。後からこのデータを参照することにより、特定の飛行時間又は特定の時刻における、回転翼20への電力供給の実態を把握することができ、例えば、故障モードの解析に有用である。
 「電圧情報」は、バッテリー50の電圧検出14により得られた電圧値の情報である。電圧値もまた好ましくは所定の時間間隔(例えば、1~5秒ごと)ごとのデータとして蓄積される。後からこのデータを参照することにより、特定の飛行時間又は特定の時刻における、バッテリー50の状態(特に故障状態)を把握することができる。
 制御装置10はデータ出力デバイスを有する。データ出力デバイスは例えばUSB端子などに例示されるデータ出力端子16であってもよい。データ出力デバイスは演算デバイスからの情報を当該制御装置10の外へ出力するよう構成されている。「制御装置10の外」は、具体的には、パーソナルコンピューター等の外部端末60などが例示される。データ出力デバイスは有線であってもよいし、無線であってもよい。データ出力デバイスを介することにより、制御装置10が取得した各種データや記憶デバイスに蓄積された各種データを外部に取り出して、不良発生時の検証などに役立てることができる。
 制御装置10は、好ましくは、異常表示デバイスを有する。このとき、演算デバイスは、電圧検知デバイスから受けた電圧情報が予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出する。「予め定めた異常条件」は、例えば、バッテリー50の寿命に近い電圧値であったり、例えば、複数個のセルのうちの1つ以上が壊れたことを示すデータ、つまり、短時間での急激な電圧降下が見られたとき、などが挙げられる。異常表示デバイスは例えばLEDなどの点灯が非限定的に挙げられる。
 電圧検知デバイスで検出した電圧情報が上述の「予め定めた異常条件」に合致したときには、演算デバイスは、強制的に回転翼モーターへの電力供給を低減させることが好ましい。バッテリー50の寿命や故障が推察される事態においては、墜落しない程度の最低限度の電力を回転翼モーターへ供給してしばらく様子をみる、ということである。この場合は、フライトコントローラ40から受け取った制御内容を演算デバイスは無視して予め定めた電力を回転翼モーターへ供給するよう構成されることが好ましい。「予め定めた電力」は、例えば、回転翼20が墜落しない程度の最低限度の駆動を行うための電力などが想定される。
 制御装置10は好ましくは電流検知デバイスを有する。電流検知デバイスは回転翼モーターの駆動電流を所定時間毎、例えば1~5秒ごとに取得する。取得した駆動電流のデータは演算デバイスへ送られる。電流検知デバイスは例えば検知回路13から構成され、回転翼モーターへの駆動電流を検知する。ここで、演算デバイスは、電流検知デバイスから受けた駆動電流のデータを記憶デバイスに蓄積させるよう作動する。さらに、演算デバイスは、電流検知デバイスから受けた駆動電流のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出する。「予め定めた異常条件」は、例えば、回転翼モーターの一部が欠損する場合に起こり得る異常電流値などが挙げられる。あるいは、負荷電流の平均が異常に増減する場合も「予め定めた異常条件」として組み込んでおいてもよい。異常表示デバイスは上述したバッテリー50の異常を示す際の異常表示デバイスと共用してもよいし、別のデバイスを用いてもよい。
 電流検知デバイスで検出した駆動電流情報が上述の「予め定めた異常条件」に合致したときには、演算デバイスは、強制的に回転翼モーターへの電力供給を低減させることが好ましい。回転翼モーターの異常が推察される事態においては、墜落しない程度の最低限度の電力を回転翼モーターへ供給してしばらく様子をみる、ということである。この場合は、フライトコントローラ40から受け取った制御内容を演算デバイスは無視して予め定めた電力を回転翼モーターへ供給するよう構成されることが好ましい。「予め定めた電力」は、例えば、回転翼20が墜落しない程度の最低限度の駆動を行うための電力などが想定される。
 制御装置10は好ましくは温度検知デバイス17を有する。温度検知デバイス17は外気の温度、デバイス近傍の温度の一方又は両方を所定時間毎、例えば1~5秒ごとに取得する。取得した温度のデータは演算デバイスへ送られる。温度検知デバイスの具体的な構成は温度観測手段の公知技術を適宜参照することができる。「デバイス近傍の温度」は、デバイスを構成するCPUやモーター制御回路の熱暴走等を監視することを目的としており、その目的に適う程度の近傍の温度を測定することが重要であり、具体的には、例えば、CPUやモーター制御回路の温度などが挙げられる。ここで、演算デバイスは、好ましくは、温度検知デバイス17から受けた温度のデータを記憶デバイスに蓄積させるよう作動する。演算デバイスは、温度検知デバイス17から受けた温度のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出する。「予め定めた異常条件」は、例えば、外気温の異常な高値、低値や、演算デバイス近傍において、演算デバイスの故障が見込まれるような高温などが挙げられる。異常表示デバイスは上述した他の情報(電流、電圧等)の異常を示す際の異常表示デバイスと共用してもよいし、別のデバイスを用いてもよい。
 温度検知デバイス17で検出した温度情報が上述の「予め定めた異常条件」に合致したときには、演算デバイスは、強制的に回転翼モーターへの電力供給を低減させることが好ましい。異常な外気温や、演算デバイスの熱暴走が推察される事態においては、墜落しない程度の最低限度の電力を回転翼モーターへ供給してしばらく様子をみる、ということである。この場合は、フライトコントローラ40から受け取った制御内容を演算デバイスは無視して予め定めた電力を回転翼モーターへ供給するよう構成されることが好ましい。「予め定めた電力」は、例えば、回転翼20が墜落しない程度の最低限度の駆動を行うための電力などが想定される。
 上述したような制御装置10を備える無人飛翔体もまた本発明の一実施態様である。ここで、制御装置10と回転翼20とは典型的には1対1に対応する。具体的には、1つの制御装置10は1つの回転翼20を制御するために設けられる。
 無人飛翔体には、GPS装置が備えられていてもよい。無人飛翔体は「ホーム機能」が備えられていてもよい。「ホーム機能」は、「ホーム」の場所を予め定めておき、「ホーム」への帰還命令を受けて自動的に「ホーム」の場所へ向かう機能である。
 本発明によれば、無人飛翔体の飛行中の各種データを蓄積しているから、不具合が生じたときに後から検証することが容易であり、無人飛翔体の改良に大いに役立つ。また、異常なデータが検知されたときに、その回転翼だけを強制的に低負荷の回転にて駆動させることにより、予期せぬ墜落を防ぎ、人や財産への損害を最小限にとどめることが期待される。
10:制御装置            20:回転翼
30:シャフト            40:フライトコントローラ

Claims (9)

  1.  複数の回転翼をもつ無人飛翔体に備えられる回転翼モーター用の制御装置であって、
     当該制御装置は1つの回転翼モーターを制御するためのものであり、
     当該制御装置は演算デバイスと記憶デバイスとデータ出力デバイスと電圧検知デバイスとを有し、
     演算デバイスは、
    (A)制御すべき回転翼モーターへの制御内容を当該制御装置外から受け取って前記制御内容を実現するための電力を回転翼モーターへ供給し、前記供給した電力の情報を記憶デバイスに蓄積させること、
    (B)電圧検知デバイスからの電圧情報を受けとって前記情報を記憶デバイスに蓄積させること、および
    (C)記憶デバイスに蓄積された任意の情報を当該制御装置外へ出力するために出力デバイスを作動させること、
    を成すよう構成されていて、
     記憶デバイスは演算デバイスから受け取った上記電力の情報及び電圧情報を蓄積するよう構成されていて、
     データ出力デバイスは演算デバイスからの情報を当該制御装置外へ出力するよう構成されていて、
     電圧検知デバイスは当該制御装置外の電源装置と接続可能であって前記電源装置から電圧情報を取得して前記電圧情報を演算デバイスに供給するよう構成されている、
     前記制御装置。
  2.  さらに、異常表示デバイスを有し、
     演算デバイスは、上記電圧検知デバイスから受けた電圧情報が予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出するよう構成されている請求項1記載の制御装置。
  3.  演算デバイスは、上記電圧検知デバイスから受けた電圧情報が予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている請求項2記載の制御装置。
  4.  さらに、電流検知デバイスを有し、電流検知デバイスは回転翼モーターの駆動電流を所定時間毎に取得して前記駆動電流のデータを演算デバイスへ送るよう構成されていて、
     演算デバイスは、上記電流検知デバイスから受けた駆動電流のデータを記憶デバイスに蓄積させること、および、上記電流検知デバイスから受けた駆動電流のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出すること、を成すよう構成されている請求項2記載の制御装置。
  5.  演算デバイスは、上記電流検知デバイスから受けた駆動電流のデータが予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている請求項4記載の制御装置。
  6.  さらに、温度検知デバイスを有し、温度検知デバイスは外気の温度及び/又は演算デバイス近傍の温度を所定時間毎に取得して前記温度のデータを演算デバイスへ送るよう構成されていて、
     演算デバイスは、上記温度検知デバイスから受けた前記温度のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出するよう構成されている請求項2記載の制御装置。
  7.  演算デバイスは、上記温度検知デバイスから受けた前記温度のデータが予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている請求項6記載の制御装置。
  8.  演算デバイスは、さらに、(D)当該制御装置の累積使用時間を蓄積し、停止している上記回転翼モーターへ電力を供給するにあたって前記累積使用時間が予め定めた時間を超えていたら上記回転翼モーターへ電力を供給しないよう構成されている請求項1記載の制御装置。
  9.  複数の回転翼と前記回転翼のそれぞれに対して1つずつ接続された請求項1~8のいずれか1項記載の制御装置とをもつ無人飛翔体。
PCT/JP2015/061918 2015-04-18 2015-04-18 無人飛翔体及びそのための制御装置 WO2016170565A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015539975A JP5857326B1 (ja) 2015-04-18 2015-04-18 無人飛翔体及びそのための制御装置
US15/127,008 US10150559B2 (en) 2015-04-18 2015-04-18 Unmanned flying object and control device therefor
PCT/JP2015/061918 WO2016170565A1 (ja) 2015-04-18 2015-04-18 無人飛翔体及びそのための制御装置
CN201580014727.8A CN106458324B (zh) 2015-04-18 2015-04-18 无人飞行物体及其控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061918 WO2016170565A1 (ja) 2015-04-18 2015-04-18 無人飛翔体及びそのための制御装置

Publications (1)

Publication Number Publication Date
WO2016170565A1 true WO2016170565A1 (ja) 2016-10-27

Family

ID=55300975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061918 WO2016170565A1 (ja) 2015-04-18 2015-04-18 無人飛翔体及びそのための制御装置

Country Status (4)

Country Link
US (1) US10150559B2 (ja)
JP (1) JP5857326B1 (ja)
CN (1) CN106458324B (ja)
WO (1) WO2016170565A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215796A (ja) * 2015-05-19 2016-12-22 株式会社アドテックス 無人飛翔体及びそのための制御システム
JP2018107934A (ja) * 2016-12-27 2018-07-05 日本電産株式会社 モータ寿命推定方法、モータ制御システム、送風機システム、およびマルチコプターシステム
KR20190014741A (ko) * 2017-08-03 2019-02-13 엘지이노텍 주식회사 드론 및 드론의 제어방법
WO2019189076A1 (ja) * 2018-03-27 2019-10-03 株式会社ナイルワークス 無人飛行体、その制御システムおよび制御プログラム
JPWO2019172061A1 (ja) * 2018-03-07 2020-12-03 株式会社ナイルワークス 無人飛行体、移動体
US11377198B2 (en) 2017-10-06 2022-07-05 Panasonic Intellectual Property Corporation Of America Unmanned flying object

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574634B1 (ko) * 2016-07-22 2023-09-05 엘지이노텍 주식회사 드론 및 드론의 제어방법
WO2018042676A1 (ja) * 2016-09-05 2018-03-08 株式会社アドテックス 無人飛翔体
US10358230B2 (en) * 2016-09-12 2019-07-23 Qualcomm Incorporated Thermal arm for drone
WO2018061823A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 マルチコプターの制御システム
JP6217054B1 (ja) 2016-11-04 2017-10-25 株式会社松屋アールアンドディ エアバッグ付きドローン
JP7094779B2 (ja) * 2017-10-06 2022-07-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 制御装置、制御システム及び制御方法
JP2019085104A (ja) * 2017-11-06 2019-06-06 株式会社エアロネクスト 飛行体及び飛行体の制御方法
CN208350340U (zh) * 2018-04-27 2019-01-08 深圳市大疆创新科技有限公司 一种折叠设备
KR102167332B1 (ko) * 2018-10-19 2020-10-19 안병열 충돌 방지 및 회수 기능을 구비한 드론
CN114286784A (zh) * 2019-08-28 2022-04-05 株式会社电装 电动垂直起降机及电动垂直起降机的控制装置
JP2021041820A (ja) * 2019-09-11 2021-03-18 株式会社アドテックス 無人飛翔体及びそのためのコンピュータプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717492A (ja) * 1993-07-01 1995-01-20 Japan Aviation Electron Ind Ltd 遠隔操縦方式の無人ヘリコプタシステム
JP2006082774A (ja) * 2004-09-17 2006-03-30 Hiroboo Kk 無人飛行体及び無人飛行体制御方法
JP2013079034A (ja) * 2011-10-05 2013-05-02 Zero:Kk 空撮用回転翼機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156976A (en) 1991-06-07 1992-10-20 Ciba Corning Diagnostics Corp. Evanescent wave sensor shell and apparatus
GB2468345B (en) * 2009-03-05 2014-01-15 Cranfield Aerospace Ltd Unmanned air vehicle (uav) control system and method
US8296036B2 (en) * 2009-09-23 2012-10-23 Aerovironment, Inc. Aircraft power management
CN102412530B (zh) * 2011-12-23 2014-04-09 北京国网富达科技发展有限责任公司 线航两栖电力线路综合维护机器人的线路维护方法
CN202961884U (zh) * 2012-02-27 2013-06-05 友域企业管理咨询(上海)有限公司 用于模型飞机的飞行控制的电路板和模型飞机
CN102737416A (zh) * 2012-06-08 2012-10-17 清华大学 无人飞行器的数据记录仪
CN102854881B (zh) * 2012-09-19 2015-09-30 苏州工业园区职业技术学院 无人机uav自动控制系统
CN103324203A (zh) * 2013-06-08 2013-09-25 西北工业大学 基于智能手机的无人飞机航电系统
CN103332296B (zh) * 2013-07-17 2017-02-08 国家电网公司 无人机电源
CN103963963B (zh) * 2014-04-22 2016-01-13 深圳市大疆创新科技有限公司 多旋翼飞行器的飞行控制方法及系统
CN113232547B (zh) * 2014-08-08 2023-07-18 深圳市大疆创新科技有限公司 无人飞行器电池更换系统及方法
US10427781B2 (en) * 2015-04-19 2019-10-01 Prodrone Co., Ltd. Unmanned aerial vehicle
CN108139445B (zh) * 2015-10-05 2023-07-14 株式会社村田制作所 余量测定装置、电池组、电动工具、电动式飞机、电动车辆以及电源装置
US11095129B2 (en) * 2016-02-12 2021-08-17 Capacitor Sciences Incorporated Capacitor based power system and unmanned vehicle with the capacitor based power system thereof
US20180086472A1 (en) * 2016-09-25 2018-03-29 Impossible Aerospace Corporation Aircraft Battery Systems and Aircraft Including Same
US11017679B2 (en) * 2017-01-13 2021-05-25 Skydio, Inc. Unmanned aerial vehicle visual point cloud navigation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717492A (ja) * 1993-07-01 1995-01-20 Japan Aviation Electron Ind Ltd 遠隔操縦方式の無人ヘリコプタシステム
JP2006082774A (ja) * 2004-09-17 2006-03-30 Hiroboo Kk 無人飛行体及び無人飛行体制御方法
JP2013079034A (ja) * 2011-10-05 2013-05-02 Zero:Kk 空撮用回転翼機

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215796A (ja) * 2015-05-19 2016-12-22 株式会社アドテックス 無人飛翔体及びそのための制御システム
JP2018107934A (ja) * 2016-12-27 2018-07-05 日本電産株式会社 モータ寿命推定方法、モータ制御システム、送風機システム、およびマルチコプターシステム
CN108258952A (zh) * 2016-12-27 2018-07-06 日本电产株式会社 电机寿命推测方法、电机控制系统、送风机系统及多旋翼直升机系统
KR20190014741A (ko) * 2017-08-03 2019-02-13 엘지이노텍 주식회사 드론 및 드론의 제어방법
KR102383562B1 (ko) * 2017-08-03 2022-04-06 엘지이노텍 주식회사 드론 및 드론의 제어방법
US11377198B2 (en) 2017-10-06 2022-07-05 Panasonic Intellectual Property Corporation Of America Unmanned flying object
JPWO2019172061A1 (ja) * 2018-03-07 2020-12-03 株式会社ナイルワークス 無人飛行体、移動体
WO2019189076A1 (ja) * 2018-03-27 2019-10-03 株式会社ナイルワークス 無人飛行体、その制御システムおよび制御プログラム
JPWO2019189076A1 (ja) * 2018-03-27 2020-09-17 株式会社ナイルワークス 無人飛行体、その制御システムおよび制御プログラム
US11797000B2 (en) 2018-03-27 2023-10-24 Nileworks Inc. Unmanned aerial vehicle, control system thereof and control program

Also Published As

Publication number Publication date
CN106458324A (zh) 2017-02-22
JP5857326B1 (ja) 2016-02-10
CN106458324B (zh) 2020-12-15
US10150559B2 (en) 2018-12-11
US20180170535A1 (en) 2018-06-21
JPWO2016170565A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5857326B1 (ja) 無人飛翔体及びそのための制御装置
JP6164573B2 (ja) 無人飛翔体及びそのための制御システム
CN102105807B (zh) 风能设备的变桨距系统的监视装置
RU2556055C2 (ru) Способ помощи пилоту однодвигательного винтокрылого летательного аппарата в режиме авторотации
CN109195867B (zh) 无人飞行器
US9849996B2 (en) Engine electrical load shed control
JP2007222991A (ja) 電動工具
JP5945064B2 (ja) 異常診断装置
EP3183796B1 (en) Battery monitoring system
KR20190092787A (ko) 무인 비행체용 이상상태 감지 장치
JP7093958B2 (ja) 充電器
US20150082071A1 (en) Smart Monitoring Apparatus
US20180045791A1 (en) Power supply condition monitor
CN104660440A (zh) 一种刀片服务器管理系统及其控制方法
WO2018042676A1 (ja) 無人飛翔体
KR20180010873A (ko) 드론 및 드론의 제어방법
JP7276253B2 (ja) 電動垂直離着陸機および電動垂直離着陸機の制御装置
US9199181B2 (en) Controlling communication system
JP2021037935A5 (ja)
WO2019172061A1 (ja) 無人飛行体、移動体
JP7090292B2 (ja) 補機クラッチの故障を検出するためのシステムおよび方法
WO2021039381A1 (ja) 電動垂直離着陸機および電動垂直離着陸機の制御装置
WO2017161492A1 (zh) 一种独立式电梯坠落防护系统及其防护方法
JP6754277B2 (ja) 航空機のトルク推定装置、航空機、航空機のトルク推定プログラム及びトルク推定方法
JP2020124932A (ja) 無人飛行体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015539975

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15127008

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889806

Country of ref document: EP

Kind code of ref document: A1