WO2018042676A1 - 無人飛翔体 - Google Patents

無人飛翔体 Download PDF

Info

Publication number
WO2018042676A1
WO2018042676A1 PCT/JP2016/076050 JP2016076050W WO2018042676A1 WO 2018042676 A1 WO2018042676 A1 WO 2018042676A1 JP 2016076050 W JP2016076050 W JP 2016076050W WO 2018042676 A1 WO2018042676 A1 WO 2018042676A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
power
unmanned flying
rotor blade
information
Prior art date
Application number
PCT/JP2016/076050
Other languages
English (en)
French (fr)
Inventor
佐藤弘男
Original Assignee
株式会社アドテックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドテックス filed Critical 株式会社アドテックス
Priority to JP2018536680A priority Critical patent/JPWO2018042676A1/ja
Priority to PCT/JP2016/076050 priority patent/WO2018042676A1/ja
Publication of WO2018042676A1 publication Critical patent/WO2018042676A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present invention relates to an unmanned flying object having a plurality of rotor blades.
  • a typical unmanned flying vehicle includes a multicopter having a plurality of rotor blades.
  • an unmanned flying object having a plurality of rotor blades arranged radially via a shaft can be mentioned.
  • a plurality of rotor blades are simultaneously rotated in a well-balanced manner to fly.
  • ascending / descending is performed by, for example, increasing / decreasing the rotational speed of the rotary wing, and forward / backward movement can be achieved by tilting the aircraft through increasing / decreasing the rotational speed of the rotating wing.
  • fixed-pitch rotor blades are often used, and counterclockwise counteracts have been counteracted by alternating clockwise and counterclockwise ones.
  • the balance of a plurality of rotor blades is normally controlled by a device called a flight controller provided in one unmanned flying object.
  • the flight controller determines the rotation speed and rotation direction of each rotor blade, and the determined rotation speed and rotation direction are transmitted to each rotor blade.
  • Each of the rotor blades is provided with a control device that supplies electric power to the motor of one rotor blade.
  • a command for the number of rotations and the direction of rotation of each rotor blade determined by the flight controller is input to a control device provided alongside the rotor blade, and the power supplied to the rotor blade is determined so as to realize the command.
  • a command related to rotation is issued from the flight controller to each rotor blade, and the issued command is supplied to each rotor blade by a control device attached to each rotor blade. Converted to.
  • the present invention is to provide an unmanned flying vehicle that can make the flight time as long as possible.
  • the flight controller sends a control command to each controller, and the plurality of control devices receive the control received.
  • the power for realizing the command is supplied to the motor of the connected rotor blade, and the flight controller is configured so that at least the first and second control modes can be selected.
  • Each control device includes an arithmetic device, a storage device, a data output device, and a voltage detection device.
  • A receiving control contents for a rotor blade motor to be controlled from a flight controller, supplying power for realizing the control contents to the rotor motor, and storing information on the supplied power in a storage device;
  • B receiving voltage information from the voltage detection device and storing the information in the storage device;
  • C operating the output device to output any information stored in the storage device outside the control device.
  • the storage device is configured to store the power information and the voltage information received from the arithmetic device, and the data output device is configured to output the information from the arithmetic device to the outside of the control device.
  • each control device has an abnormality display device, and the arithmetic device is configured so that the abnormality display device displays an abnormality when voltage information received from the voltage detection device matches a predetermined abnormality condition.
  • the arithmetic device ignores the control content received in the above (A) and supplies a predetermined power to the rotor blade motor.
  • the unmanned flying vehicle of [3] configured to be supplied.
  • each control device has a current detection device, and the current detection device is configured to acquire the drive current of the rotor blade motor every predetermined time and send the data of the drive current to the arithmetic device,
  • An arithmetic device accumulates drive current data received from the current detection device in a storage device, and an abnormality display device when the drive current data received from the current detection device meets a predetermined abnormal condition
  • the unmanned flying vehicle according to [2] which is configured to emit a signal to an abnormality display device so as to make an abnormality display.
  • the arithmetic device ignores the control content received in the above (A) when the drive current data received from the current detection device matches the predetermined abnormal condition, and generates a predetermined power.
  • the unmanned flying vehicle configured to be supplied to the motor.
  • the flight controller has a plurality of modes, and in particular, in the first mode, the amount of change per hour in the power supplied to the rotor blades becomes small.
  • the first mode the overshoot and undershoot of the rotation speed, voltage, and current are suppressed by slightly reducing the followability to commands such as sudden acceleration and sudden deceleration, resulting in a reduction in power consumption. Can be less. That is, compared to the second mode, the first mode can be evaluated as the “power saving mode”, and by appropriately adopting such a power saving mode, the power consumption of the unmanned flying vehicle can be evaluated.
  • each data passing through the computing device is stored in the storage device, which is useful for later analysis of failure modes and the like.
  • an early solution is achieved by promptly displaying the abnormality, and according to a further preferred embodiment, the output of a specific rotor blade is reduced when the abnormality occurs.
  • FIG. 1 is a schematic diagram of an example of the unmanned flying vehicle of the present invention.
  • the unmanned flying object of the present invention is configured to fly by a remote operation without a human being boarded, and has at least two rotating wings.
  • the power source of the rotor blade is assumed to be electric power.
  • the electric power is a storage battery (not shown) provided near each rotor blade.
  • the unmanned flying vehicle of FIG. 1 includes four shafts 30 extending radially from the center, a rotary blade 20 provided at the tip of each shaft 30, a control device 10 provided in each rotary blade 20, and a center. And a flight controller 40 provided. As long as it has a plurality of rotor blades, the structure of the unmanned flying object is not particularly limited. The number of shafts and flying objects is preferably 4-10.
  • the flight controller 40 determines the rotation speed and rotation direction of each rotor blade 20 from time to time.
  • the rotation speed and rotation direction of the rotor blade 20 are calculated by the flight controller 40 in accordance with the traveling direction and speed desired for the unmanned flying object.
  • the rotation speed and rotation direction of each rotor blade calculated by the flight controller 40 are transmitted to each rotor blade 20 every moment. The transmission is made via the control device 10.
  • the rotation speed and the rotation direction command calculated by the flight controller 40 are mainly supplied to the power supplied to the drive motor (not shown) of the rotor blade 20. Is converted.
  • the exchange between the flight controller 40 and the operator can be performed by remote operation using radio waves such as radio waves.
  • control device 10 and the rotor blade 20 typically correspond one-to-one.
  • one control device 10 is provided to control one rotor blade 20.
  • the connection between the control device 10 and the flight controller 40 and the connection between the control device 10 and the rotor blade 20 are not particularly limited, and a communication cable or the like can be used, and depiction is omitted in the drawings.
  • the adjustment of the traveling direction, the speed, the altitude, etc. is embodied as information on the power supplied from the flight controller 40 to the drive motor of the rotor 20 via each control device 10.
  • the for example when sudden acceleration or sudden change of direction is desired, a sudden change in power supplied to the drive motor is required.
  • there is an upper limit to the rate of change of the supplied power per time for the design specifications of each control device, rotor blade motor, and other reasons.
  • a command to change the supply power that exceeds such an upper limit is issued from the flight controller 40 to each control device 10, which may hinder stable flight. Therefore, in the present invention, there are at least two modes for determining the upper limit of the power supply per hour for the control command from the flight controller 40 to each control device 10.
  • the above two modes are called the first and second modes.
  • the first mode the upper limit of the amount of change in supplied power per time is set smaller than in the second mode.
  • the change in the power supplied to the rotor motor is caused by the flight controller due to at least a “gradual” level than in the second mode. Ordered from Therefore, in the first mode, it is difficult for overshoot and undershoot to occur, and as a result, useless energy consumption is reduced and flight is possible for a long time.
  • the amount of change in the supplied power per time is, for example, 100 W when there is power supplied to the rotor blades, and if the power supplied after 1 second is 110 W, it is (110 W minus 100 W) / 1 second.
  • the amount of change per hour is calculated to be “10 W / second”.
  • the second mode allows a maximum change of “20 W / second”
  • the first mode allows a maximum change of “10 W / second”
  • the first mode It can be said that the upper limit of the amount of change in the supplied power per hour is smaller than in the second mode.
  • the unit time of interest for example, “1 second” can be cited.
  • the second mode In the second mode, the upper limit of the amount of change in power supply per hour is larger than that in the first mode. Therefore, from the viewpoint of comparison with the first mode, the second mode can be evaluated as a mode capable of, for example, rapid acceleration, rapid increase, and quick change of direction.
  • first and second modes conventional means such as electric control can be referred to as appropriate for the means for determining the upper limit of the amount of change in power supply per hour.
  • more than two modes such as the third, fourth, and so on may be selected.
  • FIG. 2 is a schematic explanatory diagram of a part of the control system used in the present invention.
  • a preferable example of one control device 10 among a plurality of control devices is depicted in detail within a dotted line, and the other control devices 10 are depicted in a simplified manner.
  • the control device used in the present invention has an arithmetic device.
  • the CPU / IC 11 is assumed as the arithmetic device.
  • the configuration of the arithmetic device is not particularly limited as long as it is configured to have the following functions, and examples thereof include a CPU, an IC, an FPGA, and an ASIC.
  • the “rotary blade motor to be controlled” is a motor for driving the rotor blade 20 to be controlled.
  • the control content is an instruction on how to drive the driving motor, and specifically, the rotational speed and rotational direction of the rotary blade 20.
  • the specific calculation contents for converting the control contents such as the rotation speed and the rotation direction of the rotor blade 20 which may vary from moment to moment into the power supplied to the drive motor refer to the prior art such as motor control as appropriate. it can.
  • the upper limit of the time change amount of the power supply from the flight controller 40 to the rotor blade 20 is determined according to the mode.
  • information on the power supplied to the drive motor for the rotor blade 20 is stored in the storage device.
  • the “power information” may be time-dependent changes in the current and voltage values supplied to the drive motor, or may be information on the number of rotations and the direction of rotation of the rotor blade 20. These pieces of information are preferably stored in a storage device to be described later every predetermined time, for example, every 1 to 5 seconds.
  • Another function that the arithmetic device is desired to perform is (B) receiving voltage information from the voltage detection device and storing the information in the storage device.
  • This function is mainly to monitor the voltage of the battery 50 (mainly a storage battery) that is a power source of the rotor blade 20.
  • the voltage detection device can be connected to a power supply apparatus (battery 50 or the like) outside the control apparatus 10, acquires voltage information from the power supply apparatus (voltage detection 14), and supplies the acquired voltage information to the arithmetic device.
  • the supply of voltage information is preferably performed every predetermined time, for example, every 1 to 5 seconds.
  • the detected voltage value is preferably stored in a storage device described later.
  • the battery 50 With the power consumption of the battery 50, a drop in the voltage value is confirmed, and the remaining amount of the battery 50 can be estimated.
  • the battery 50 is composed of an assembly of a plurality of cell units, when one or more cell units fail, the voltage value drops rapidly. Therefore, a sudden drop in the voltage value is strongly inferred from a cell unit failure at that time.
  • the voltage information data is useful for knowing the time at which the cell unit failed when verifying the defect of the unmanned flying vehicle later.
  • known techniques such as a voltage measuring device can be referred to as appropriate.
  • Another function desired to be performed by the computing device is (C) activating the output device to output any information stored in the storage device to the outside of the control device.
  • various types of information are stored in the storage device including the nonvolatile memory 15 and the like. It is one of the functions that the arithmetic device should fulfill that such information can be extracted from a data output terminal such as a USB terminal and supplied to the repeater 60.
  • the repeater 60 is configured to be able to collectively output various information input from a plurality of control devices to an external terminal (not shown) such as a personal computer, and for this purpose, processing means including a microcomputer or the like. (Not shown).
  • One of the preferable functions in the arithmetic device is (D) accumulating the accumulated usage time of the control device 10 and exceeding the predetermined usage time when supplying electric power to the rotating blade motor stopped. If this is the case, no power is supplied to the rotor motor. In short, if the lifetime of the control device 10 is exceeded, the start of a new flight is prohibited. Various electronic parts are mounted on the control device, and they have a lifetime. It is dangerous for the control device 10 to reach the end of its life while the unmanned flying object is flying.
  • the “predetermined time” for the cumulative usage time of the control device 10 is preferably, for example, a time obtained by subtracting one flightable time from the life of the control device 10.
  • the cumulative usage time exceeds the time set as such, the start of a new flight is prohibited. Specifically, power is not supplied to the stopped rotor motor. Even if the unmanned flying object reaches the “predetermined time” during the flight, it is inappropriate to immediately stop the power supply because it causes the unmanned flying object to crash.
  • Known techniques relating to circuit design techniques can be referred to as appropriate for accumulation of accumulated usage time, determination circuit for cutting off power supply, and the like.
  • the control device 10 preferably has a storage device.
  • the nonvolatile memory 15 corresponds to a storage device.
  • the storage device is configured to store the power information and voltage information received from the computing device.
  • the memory technology and the like can be referred to as appropriate for the specific configuration of the storage device.
  • Power information is information on the power supplied to the rotor blade motor, and this information may be converted into information on the number of rotations and the direction of rotation of the rotor blade 20. This information is preferably stored as data at predetermined time intervals (eg every 1 to 5 seconds). By referring to this data later, the actual state of power supply to the rotor blade 20 at a specific flight time or at a specific time can be grasped, which is useful for analysis of a failure mode, for example.
  • Voltage information is information on the voltage value obtained by the voltage detection 14 of the battery 50.
  • the voltage value is also preferably stored as data at predetermined time intervals (eg, every 1 to 5 seconds). By referring to this data later, it is possible to grasp the state (particularly, the failure state) of the battery 50 at a specific flight time or a specific time.
  • the control device 10 preferably has a data output device.
  • the data output device may be a data output terminal 16 exemplified by a USB terminal, for example.
  • the data output device may be wired or wireless. Through the data output device, various data acquired by the control device 10 and various data stored in the storage device can be taken out and used for verification when a defect occurs.
  • the control device 10 preferably has an abnormality display device.
  • the arithmetic device issues a signal to the abnormality display device so that the abnormality display device displays an abnormality when the voltage information received from the voltage detection device matches a predetermined abnormality condition.
  • the “predetermined abnormal condition” is, for example, a voltage value close to the life of the battery 50, or, for example, data indicating that one or more of a plurality of cells are broken, that is, a rapid change in a short time. When a significant voltage drop is observed.
  • Examples of the abnormality display device include, but are not limited to, lighting of LEDs and the like.
  • the calculation device forcibly reduces the power supply to the rotor blade motor.
  • the minimum electric power that does not cause a crash is supplied to the rotor blade motor and the state is observed for a while.
  • the control device received from the flight controller 40 ignores the control content and supplies predetermined power to the rotor blade motor.
  • the “predetermined power” is assumed to be, for example, power for performing a minimum drive that does not cause the rotor blade 20 to crash.
  • the control device 10 preferably has a current detection device.
  • the current detection device acquires the driving current of the rotor blade motor every predetermined time, for example, every 1 to 5 seconds.
  • the acquired drive current data is sent to the arithmetic device.
  • the current detection device includes, for example, a detection circuit 13 and detects a drive current to the rotor blade motor.
  • the computing device operates to store the data of the drive current received from the current detection device in the storage device.
  • the arithmetic device issues a signal to the abnormality display device so that the abnormality display device performs an abnormality display when the drive current data received from the current detection device matches a predetermined abnormality condition.
  • the “predetermined abnormal condition” includes, for example, an abnormal current value that may occur when a part of the rotor motor is lost. Alternatively, when the average load current increases or decreases abnormally, it may be incorporated as a “predetermined abnormal condition”.
  • the abnormality display device may be shared with the abnormality display device for indicating the abnormality of the battery 50 described above, or another device may be used.
  • the arithmetic device forcibly reduce the power supply to the rotor blade motor.
  • the minimum power level that does not cause a crash is supplied to the rotor blade motor and the state is observed for a while.
  • the control device received from the flight controller 40 ignores the control content and supplies predetermined power to the rotor blade motor.
  • the “predetermined power” is assumed to be, for example, power for performing a minimum drive that does not cause the rotor blade 20 to crash.
  • the control device 10 preferably has a temperature detection device 17.
  • the temperature detection device 17 acquires one or both of the temperature of the outside air and the temperature in the vicinity of the device every predetermined time, for example, every 1 to 5 seconds.
  • the acquired temperature data is sent to the computing device.
  • known techniques of temperature observation means can be referred to as appropriate.
  • the “temperature near the device” is intended to monitor the thermal runaway of the CPU and motor control circuit that make up the device, and it is important to measure the temperature in the vicinity to meet that purpose. Examples of the temperature include the temperature of a CPU and a motor control circuit.
  • the computing device preferably operates to accumulate temperature data received from the temperature sensing device 17 in the storage device.
  • the arithmetic device issues a signal to the abnormality display device so that the abnormality display device displays an abnormality when the temperature data received from the temperature detection device 17 matches a predetermined abnormality condition.
  • the “predetermined abnormal condition” includes, for example, an abnormal high or low value of the outside air temperature, or a high temperature at which a failure of the computing device is expected in the vicinity of the computing device.
  • the abnormality display device may be shared with the abnormality display device used to indicate abnormality of other information (current, voltage, etc.) described above, or another device may be used.
  • the arithmetic device forcibly reduces the power supply to the rotor blade motor.
  • the minimum power that does not cause a crash is supplied to the rotor motor and the situation is observed for a while.
  • the control device received from the flight controller 40 ignores the control content and supplies predetermined power to the rotor blade motor.
  • the “predetermined power” is assumed to be, for example, power for performing a minimum drive that does not cause the rotor blade 20 to crash.
  • the operator of the unmanned flying object can operate the unmanned flying object by controlling the flight controller 40 attached to the unmanned flying object using a remote controller or the like.
  • the remote controller is configured such that the “energy saving mode” can be selected, and when the mode is selected, the flight controller 40 is configured to select the first mode described above. It is preferable.
  • control device 10 and the rotor blade 20 typically correspond one-to-one.
  • one control device 10 is provided to control one rotor blade 20.
  • the unmanned flying object may be provided with a GPS device.
  • the unmanned flying vehicle may be provided with a “home function”.
  • the “home function” is a function for predetermining the location of “home” and automatically heading to the location of “home” in response to a return instruction to “home”.
  • the unmanned flying vehicle since the unmanned flying vehicle is configured so that an operation mode in which overshoot or undershoot of power supply, which is a concern about energy waste, is unlikely to occur can be selected, according to the operator's request. Thus, it is expected to extend the time of one flight of the unmanned air vehicle by flying in the energy saving mode.
  • Control device 20 Rotor blade 30: Shaft 40: Flight controller 50: Battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本発明は、無人飛翔体の飛行時間をより長くすることを目的としていて、本発明の、無人飛翔体は、複数の回転翼と、各回転翼に接続された複数の制御装置と、フライトコントローラとを備え、フライトコントローラは各制御装置に制御命令を送出し、複数の制御装置は受領した前記制御命令を実現するための電力を接続された回転翼のモーターへ供給し、フライトコントローラは少なくとも第1及び第2の制御モードが選択可能であるように構成されていて、各制御装置が供給する上記電力の時間当たりの変化量の許容される上限について、第1のモードの方が第2のモードよりも小さい。

Description

無人飛翔体
 本発明は複数の回転翼を有する無人飛翔体に関する。
 近時、ドローンなどと呼ばれる無人飛翔体の開発が盛んである。典型的な無人飛翔体として、回転翼を複数個備えるマルチコプターが挙げられる。例えば、シャフトを介して放射状に配置される複数の回転翼をもつ無人飛翔体が挙げられる。こういった無人飛翔体においては、複数の回転翼を同時にバランスよく回転させることによって飛行する。飛翔体の飛行において、上昇・下降は例えば回転翼の回転数の増減によって行い、前進・後進などは、回転翼の回転数の増減を介して機体を傾けることによって成し得る。従来、固定ピッチの回転翼がよく使われ、右回り、左回りのものが交互に配置されることで、回転の反作用を打ち消しあっていた。
 複数の回転翼のバランスについては、通常は、無人飛翔体に1つ備えられるフライトコントローラと称する装置によって制御される。フライトコントローラによって各回転翼の回転数・回転方向が定められ、定められた回転数・回転方向が各回転翼に伝達される。回転翼の各々には、1つの回転翼のモーターに電力を供給する制御装置が併設される。フライトコントローラによって定められた各回転翼の回転数・回転方向の命令は、回転翼に併設された制御装置に入力され、そこで、上記命令を実現するように回転翼への供給電力が定められる。このように、無人飛翔体全体のバランスを考慮してフライトコントローラから各回転翼に回転に関する命令が発せられ、発せられた命令は各回転翼に併設された制御装置によって各回転翼への供給電力へと変換される。
 無人飛翔体においては、ひとたび飛行を開始すると、通常は、飛行を終了するまで充電等によるエネルギーの補充は不可能である。そのことが、飛行時間を延ばすことの制限の一因になっている。無人飛翔体の応用が種々提案されるにつれて、飛行時間を長くすることが切望されてきている、本発明は、1回の飛行時間をできるだけ長くすることができるような無人飛翔体の提供を課題とする。
 本発明者らが鋭意検討した結果、以下の内容の本発明を完成した。
[1]複数の回転翼と、各回転翼に接続された複数の制御装置と、フライトコントローラとを備え、フライトコントローラは各制御装置に制御命令を送出し、複数の制御装置は受領した前記制御命令を実現するための電力を接続された回転翼のモーターへ供給し、フライトコントローラは少なくとも第1及び第2の制御モードが選択可能であるように構成されていて、各制御装置が供給する上記電力の時間当たりの変化量の許容される上限について、第1のモードの方が第2のモードよりも小さい、無人飛翔体。
[2]各制御装置は演算デバイスと記憶デバイスとデータ出力デバイスと電圧検知デバイスとを有し、演算デバイスは、
(A)制御すべき回転翼モーターへの制御内容をフライトコントローラから受け取って前記制御内容を実現するための電力を回転翼モーターへ供給し、前記供給した電力の情報を記憶デバイスに蓄積させること、
(B)電圧検知デバイスからの電圧情報を受け取って前記情報を記憶デバイスに蓄積させること、および
(C)記憶デバイスに蓄積された任意の情報を当該制御装置外へ出力するために出力デバイスを作動させること、
を成すよう構成されていて、
 記憶デバイスは演算デバイスから受け取った上記電力の情報及び電圧情報を蓄積するよう構成されていて、データ出力デバイスは演算デバイスからの情報を当該制御装置外へ出力するよう構成されていて、電圧検知デバイスは当該制御装置外の電源装置と接続可能であって前記電源装置から電圧情報を取得して前記電圧情報を演算デバイスに供給するよう構成されている、[1]の無人飛翔体。
[3]さらに、各制御装置は異常表示デバイスを有し、演算デバイスは、上記電圧検知デバイスから受けた電圧情報が予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出するよう構成されている[2]の無人飛翔体。
[4]演算デバイスは、上記電圧検知デバイスから受けた電圧情報が予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている[3]の無人飛翔体。
[5]さらに、各制御装置は電流検知デバイスを有し、電流検知デバイスは回転翼モーターの駆動電流を所定時間毎に取得して前記駆動電流のデータを演算デバイスへ送るよう構成されていて、演算デバイスは、上記電流検知デバイスから受けた駆動電流のデータを記憶デバイスに蓄積させること、および、上記電流検知デバイスから受けた駆動電流のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出すること、を成すよう構成されている[2]の無人飛翔体。
[6]演算デバイスは、上記電流検知デバイスから受けた駆動電流のデータが予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている[5]の無人飛翔体。
 本発明によれば、フライトコントローラは複数のモードをもち、特に、第1のモードでは回転翼への供給電力の時間当たりの変化量が小さくなるようになっている。このことは、第1のモードでは、急加速や急減速などの命令に対する追随性をやや鈍くすることにより、回転数、電圧、電流のオーバーシュートやアンダーシュートが抑制され、結果として、電力消費を少なくし得る。すなわち、第2のモードと比して、第1のモードは「省電力モード」であると評価することができ、そのような省電力モードを適切に採用することにより、無人飛翔体の消費電力を減らして飛行時間を長くすることが期待される。好適態様においては、各制御装置において、演算デバイスを経る各データは記憶デバイスに蓄積されるから、後から故障モード等の解析に有用である。別の好適態様によれば、各データに異常が生じたときに、その異常をいち早く表示させることにより早期解決が図られ、さらなる好適態様によれば、異常時に特定の回転翼の出力を全体のバランスを失しない程度に下げることにより、突然の墜落や制御不能状態をできるだけ回避することができる。
本発明の無人飛翔体の一例の模式図である。 本発明の無人飛翔体における制御の流れの模式説明図である。
 以下、図面を適宜参照しながら本発明を詳しく説明する。図示された態様は本発明を限定するためのものではなく、あくまで例示である。
 図1は本発明の無人飛翔体の一例の模式図である。本発明の無人飛翔体は、人間が乗り込まずに遠隔操作によって飛翔するよう構成されていて、回転翼を少なくとも2つ有する。本発明では、回転翼の動力源は電力を想定している。典型的には、電力は各回転翼近傍に設けられた蓄電池(図示せず)である。
 図1の無人飛翔体は、中心から放射状に延びる4本のシャフト30と、各シャフト30の先端に備えられた回転翼20と、それぞれの回転翼20に併設された制御装置10と、中心に設けられたフライトコントローラ40とを有する。複数の回転翼を有する限り、無人飛翔体の構造は特に限定は無い。シャフト及び飛翔体の数は好ましくは4~10である。
 フライトコントローラ40は各回転翼20の回転数や回転方向が時々刻々定められる。回転翼20の回転数や回転方向は、無人飛翔体として所望される進行方向や速度に応じてフライトコントローラ40において算出される。フライトコントローラ40で算出された各回転翼の回転数や回転方向は時々刻々各それぞれの回転翼20に伝達される。その伝達は制御装置10を介して成され、制御装置10では主として、フライトコントローラ40にて算出された回転数や回転方向の命令が回転翼20の駆動モーター(図示せず)への供給電力へと変換される。フライトコントローラ40と操作者とのやりとりは、ラジオ波等の電波を用いた遠隔操作によって行うことができる。
 本発明によれば、制御装置10と回転翼20とは典型的には1対1に対応する。具体的には、1つの制御装置10は1つの回転翼20を制御するために設けられる。制御装置10とフライトコントローラ40との接続や、制御装置10と回転翼20との接続は特に限定は無く、通信ケーブル等を用いることができ、図面では描写を省略している。
 上述のように、無人飛翔体の飛行において、進行方向、速度や高度等の調節は、フライトコントローラ40から各制御装置10を介した回転翼20の駆動モーターへの供給電力の情報として具現化される。例えば、急加速や急な方向転換などが所望される場合は、駆動モーターへの供給電力の急変が求められる。しかし、各制御装置や回転翼モーター等の設計仕様その他の理由から、前記供給電力の時間当たりの変化率には上限がある。そのような上限を超えるような供給電力の変化の命令がフライトコントローラ40から各制御装置10へ発出されることは安定的な飛行の妨げになり得る。よって、本発明では、フライトコントローラ40から各制御装置10への制御命令について、時間当たりの供給電力の上限を定めるモードが少なくとも2つ存在する。
 上記2つのモードを第1及び第2のモードとよぶ。第1のモードでは、第2のモードよりも、時間当たりの供給電力の変化量の上限が小さく設定される。第1のモードでは、急加速や急な方向転換などが所望された場合であっても、少なくとも第2のモードよりは「緩やかな」レベルにより、回転翼モーターへの供給電力の変化がフライトコントローラから命令される。したがって、第1のモードでは、オーバーシュートやアンダーシュートが発生しにくくなり、結果的に、無駄なエネルギー消費が減り、長時間飛行が可能になる。
 時間当たりの供給電力の変化量は、例えば、回転翼への供給電力がある時点で100Wであり、1秒後の供給電力が110Wであれば、(110Wマイナス100W)/1秒であり、すなわち、時間当たりの変化量は、「10W/秒」であると算出される。ここで、仮に、第2のモードでは最大で「20W/秒」の変化が許容されて、第1のモードでは最大で「10W/秒」の変化が許容されるとすれば、第1のモードは、第2のモードよりも、時間当たりの供給電力の変化量の上限が小さい、ということができる。着目する単位時間については例えば、「1秒」などが挙げられる。
 なお、第2のモードは、第1のモードよりも時間当たりの供給電力の変化量の上限が大きい。よって、第1のモードとの対比の観点から、第2のモードは例えば、急加速、急上昇や迅速な方向転換が可能なモードであると評価することもできる。
 第1、第2の各モードにおいて、時間当たりの供給電力の変化量の上限を定める手段については、電気制御等の従来技術を適宜参照することができる。本発明においては、第1及び第2の2つのモードに加えて、さらに、第3、第4、、、のように2つより多いモードが選択されるように構成されていてもよい。
 図2は本発明で用いる制御システムの一部の模式説明図である。図2には、複数存在する制御装置のうちの1つの制御装置10の好適例を点線内に詳しく描写され、他の制御装置10については簡易的に描写されている。
 好適には、本発明で用いる制御装置は演算デバイスを有する。図2では演算デバイスはCPU・IC11が想定されている。演算デバイスは以下の機能を成すよう構成されていればその形態は特に限定は無く、CPUやICやFPGAやASICなどが挙げられる。
 演算デバイスの果たすことが望まれる機能の一つは、(A)制御すべき回転翼モーターへの制御内容をフライトコントローラ40から受け取って、その制御内容を実現するための電力を回転翼モーターへ供給し、前記供給した電力の情報を記憶デバイスに蓄積させることである。「制御すべき回転翼モーター」とは、制御対象の回転翼20の駆動用モーターのことである。制御内容は、前記駆動用モーターの駆動のさせ方の命令であり、具体的には回転翼20の回転数や回転方向などである。時々刻々変動してもよい回転翼20の回転数や回転方向といった制御内容を、駆動用モーターへの供給電力へと変換する具体的な演算内容はモーター制御等の従来技術を適宜参照することができる。ここで、上述した第1及び第2のモードが適用されている場合には、そのモードに応じて、フライトコントローラ40からの回転翼20への電力供給の時間変化量の上限が定められる。
 本発明によれば、回転翼20の駆動用モーターへ供給した電力の情報は、記憶デバイスに蓄積される。前記「電力の情報」は、駆動用モーターへ供給した電流、電圧値の時間変化であってもよいし、回転翼20の回転数や回転方向の情報であってもよい。これらの情報は好ましくは所定時間ごと、例えば1~5秒ごとに、後述する記憶デバイスに蓄積される。
 演算デバイスの果たすことが望まれる機能の別の一つは、(B)電圧検知デバイスからの電圧情報を受けとって前記情報を記憶デバイスに蓄積させることである。この機能は、主として、回転翼20の動力源であるバッテリー50(主として、蓄電池)の電圧を監視することである。電圧検知デバイスは制御装置10の外部にある電源装置(バッテリー50等)と接続可能であって電源装置から電圧情報を取得して(電圧検出14)、取得した電圧情報を演算デバイスに供給する。電圧情報の供給は、所定時間毎、例えば1~5秒ごとに、行われることが好ましい。検出された電圧値は後述する記憶デバイスに蓄積することが好ましい。バッテリー50の電力消費に伴い、電圧値の降下が確認され、バッテリー50の残量を見積もることができる。バッテリー50が複数個のセル単位の集合体からなるとき、その1つ以上のセル単位が故障すると、電圧値が急激に降下する。よって、電圧値の急激な降下は、その時点でのセル単位の故障が強く推察される。無人飛翔体の不具合を後から検証する際に、セル単位が故障した時刻を知る際に電圧情報のデータが役立つ。電圧検知デバイスの具体的な構成は電圧測定器などの公知技術を適宜参照することができる。
 演算デバイスの果たすことが望まれる機能の別の一つは、(C)記憶デバイスに蓄積された任意の情報を当該制御装置外へ出力するために出力デバイスを作動させることである。上述したように不揮発性メモリ15等からなる記憶デバイスには各種情報が蓄積される。これらの情報は、USB端子等からなるデータ出力端子から取り出せるようにして、中継器60へと供給できるようにすることも演算デバイスが果たすべき機能の一つである。中継器60は複数の制御装置から入力される各種情報をまとめてパーソナルコンピューター等の外部端末(図示せず)へと出力することができるように構成されていて、そのためにマイコン等からなる処理手段(図示せず)が備えられている。
 演算デバイスにおける好ましい機能の一つは、(D)当該制御装置10の累積使用時間を蓄積し、停止している上記回転翼モーターへ電力を供給するにあたって前記累積使用時間が予め定めた時間を超えていたら上記回転翼モーターへ電力を供給しないことである。簡潔にいえば、制御装置10の寿命を超えた場合には、新たな飛行開始を禁じる、ということである。制御装置には種々の電子部品が搭載されていて、それらには寿命がある。無人飛翔体が飛行している最中に制御装置10が寿命に至ることは危険である。制御装置10の累積使用時間についての「予め定めた時間」は、例えば、制御装置10の寿命から1回の飛行可能時間を減じた時間などが好ましく挙げられる。累積使用時間がそのように定めた時間を超えていたとしたら、新たな飛行の開始が禁じられる。具体的には、停止している回転翼モーターへの電力の供給が行われない、ということである。なお、無人飛翔体が飛行中に上記「予め定めた時間」に達したとしても、ただちに電力供給を停止することは無人飛翔体の墜落を招来するため不適切である。累積使用時間の蓄積や、電力供給を遮断する判断回路などについては回路設計技術に関する公知技術を適宜参照することができる。
 制御装置10は好適には記憶デバイスを有する。図2の態様では、不揮発メモリ15が記憶デバイスに該当する。記憶デバイスは演算デバイスから受け取った上記電力の情報及び電圧情報を蓄積するよう構成されている。記憶デバイスの具体的な構成等はメモリ技術などを適宜参照することができる。「電力の情報」は回転翼モーターへ供給した電力の情報であり、この情報は回転翼20の回転数、回転方向の情報に変換されていてもよい。この情報は好ましくは所定の時間間隔(例えば、1~5秒ごと)ごとのデータとして蓄積される。後からこのデータを参照することにより、特定の飛行時間又は特定の時刻における、回転翼20への電力供給の実態を把握することができ、例えば、故障モードの解析に有用である。
 「電圧情報」は、バッテリー50の電圧検出14により得られた電圧値の情報である。電圧値もまた好ましくは所定の時間間隔(例えば、1~5秒ごと)ごとのデータとして蓄積される。後からこのデータを参照することにより、特定の飛行時間又は特定の時刻における、バッテリー50の状態(特に故障状態)を把握することができる。
 制御装置10は好適にはデータ出力デバイスを有する。データ出力デバイスは例えばUSB端子などに例示されるデータ出力端子16であってもよい。データ出力デバイスは有線であってもよいし、無線であってもよい。データ出力デバイスを介することにより、制御装置10が取得した各種データや記憶デバイスに蓄積された各種データを外部に取り出して、不良発生時の検証などに役立てることができる。
 制御装置10は、好ましくは、異常表示デバイスを有する。このとき、演算デバイスは、電圧検知デバイスから受けた電圧情報が予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出する。「予め定めた異常条件」は、例えば、バッテリー50の寿命に近い電圧値であったり、例えば、複数個のセルのうちの1つ以上が壊れたことを示すデータ、つまり、短時間での急激な電圧降下が見られたとき、などが挙げられる。異常表示デバイスは例えばLEDなどの点灯が非限定的に挙げられる。
 電圧検知デバイスで検出した電圧情報が上述の「予め定めた異常条件」に合致したときには、演算デバイスは、強制的に回転翼モーターへの電力供給を低減させることが好ましい。バッテリー50の寿命や故障が推察される事態においては、墜落しない程度の最低限度の電力を回転翼モーターへ供給してしばらく様子をみる、ということである。この場合は、フライトコントローラ40から受け取った制御内容を演算デバイスは無視して予め定めた電力を回転翼モーターへ供給するよう構成されることが好ましい。「予め定めた電力」は、例えば、回転翼20が墜落しない程度の最低限度の駆動を行うための電力などが想定される。
 制御装置10は好ましくは電流検知デバイスを有する。電流検知デバイスは回転翼モーターの駆動電流を所定時間毎、例えば1~5秒ごとに取得する。取得した駆動電流のデータは演算デバイスへ送られる。電流検知デバイスは例えば検知回路13から構成され、回転翼モーターへの駆動電流を検知する。ここで、演算デバイスは、電流検知デバイスから受けた駆動電流のデータを記憶デバイスに蓄積させるよう作動する。さらに、演算デバイスは、電流検知デバイスから受けた駆動電流のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出する。「予め定めた異常条件」は、例えば、回転翼モーターの一部が欠損する場合に起こり得る異常電流値などが挙げられる。あるいは、負荷電流の平均が異常に増減する場合も「予め定めた異常条件」として組み込んでおいてもよい。異常表示デバイスは上述したバッテリー50の異常を示す際の異常表示デバイスと共用してもよいし、別のデバイスを用いてもよい。
 電流検知デバイスで検出した駆動電流情報が上述の「予め定めた異常条件」に合致したときには、演算デバイスは、強制的に回転翼モーターへの電力供給を低減させることが好ましい。回転翼モーターの異常が推察される事態においては、墜落しない程度の最低限度の電力を回転翼モーターへ供給してしばらく様子をみる、ということである。この場合は、フライトコントローラ40から受け取った制御内容を演算デバイスは無視して予め定めた電力を回転翼モーターへ供給するよう構成されることが好ましい。「予め定めた電力」は、例えば、回転翼20が墜落しない程度の最低限度の駆動を行うための電力などが想定される。
 制御装置10は好ましくは温度検知デバイス17を有する。温度検知デバイス17は外気の温度、デバイス近傍の温度の一方又は両方を所定時間毎、例えば1~5秒ごとに取得する。取得した温度のデータは演算デバイスへ送られる。温度検知デバイスの具体的な構成は温度観測手段の公知技術を適宜参照することができる。「デバイス近傍の温度」は、デバイスを構成するCPUやモーター制御回路の熱暴走等を監視することを目的としており、その目的に適う程度の近傍の温度を測定することが重要であり、具体的には、例えば、CPUやモーター制御回路の温度などが挙げられる。ここで、演算デバイスは、好ましくは、温度検知デバイス17から受けた温度のデータを記憶デバイスに蓄積させるよう作動する。演算デバイスは、温度検知デバイス17から受けた温度のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出する。「予め定めた異常条件」は、例えば、外気温の異常な高値、低値や、演算デバイス近傍において、演算デバイスの故障が見込まれるような高温などが挙げられる。異常表示デバイスは上述した他の情報(電流、電圧等)の異常を示す際の異常表示デバイスと共用してもよいし、別のデバイスを用いてもよい。
 温度検知デバイス17で検出した温度情報が上述の「予め定めた異常条件」に合致したときには、演算デバイスは、強制的に回転翼モーターへの電力供給を低減させることが好ましい。異常な外気温や、演算デバイスの熱暴走が推察される事態においては、墜落しない程度の最低限度の電力を回転翼モーターへ供給してしばらく様子をみる、ということである。この場合は、フライトコントローラ40から受け取った制御内容を演算デバイスは無視して予め定めた電力を回転翼モーターへ供給するよう構成されることが好ましい。「予め定めた電力」は、例えば、回転翼20が墜落しない程度の最低限度の駆動を行うための電力などが想定される。
 無人飛翔体の操作者は、リモートコントローラなどを用いて、無人飛翔体に取り付けられているフライトコントローラ40を制御することにより、無人飛翔体を操作することができる。リモートコントローラは、例えば、「省エネルギーモード」が選択可能であるように構成されていて、当該モードを選択した際には、フライトコントローラ40において、上述の第1のモードが選択されるように構成されていることが好ましい。
 無人飛翔体において、制御装置10と回転翼20とは典型的には1対1に対応する。具体的には、1つの制御装置10は1つの回転翼20を制御するために設けられる。無人飛翔体には、GPS装置が備えられていてもよい。無人飛翔体は「ホーム機能」が備えられていてもよい。「ホーム機能」は、「ホーム」の場所を予め定めておき、「ホーム」への帰還命令を受けて自動的に「ホーム」の場所へ向かう機能である。
 本発明によれば、エネルギー浪費が懸念される電力供給のオーバーシュートやアンダーシュートが生じにくいような操作モードを選択可能であるように無人飛翔体が構成されているため、操作者の要望に応じて、省エネルギーモードで飛行させることにより、無人飛翔体の1回の飛行時間を延ばすことが期待される。
10:制御装置            20:回転翼
30:シャフト            40:フライトコントローラ
50:バッテリー           

Claims (6)

  1.  複数の回転翼と、各回転翼に接続された複数の制御装置と、フライトコントローラとを備え、
     フライトコントローラは各制御装置に制御命令を送出し、
     複数の制御装置は受領した前記制御命令を実現するための電力を接続された回転翼のモーターへ供給し、
     フライトコントローラは少なくとも第1及び第2の制御モードが選択可能であるように構成されていて、
     各制御装置が供給する上記電力の時間当たりの変化量の許容される上限について、第1のモードの方が第2のモードよりも小さい、
     無人飛翔体。
  2.  各制御装置は演算デバイスと記憶デバイスとデータ出力デバイスと電圧検知デバイスとを有し、
     演算デバイスは、
    (A)制御すべき回転翼モーターへの制御内容をフライトコントローラから受け取って前記制御内容を実現するための電力を回転翼モーターへ供給し、前記供給した電力の情報を記憶デバイスに蓄積させること、
    (B)電圧検知デバイスからの電圧情報を受け取って前記情報を記憶デバイスに蓄積させること、および
    (C)記憶デバイスに蓄積された任意の情報を当該制御装置外へ出力するために出力デバイスを作動させること、
    を成すよう構成されていて、
     記憶デバイスは演算デバイスから受け取った上記電力の情報及び電圧情報を蓄積するよう構成されていて、
     データ出力デバイスは演算デバイスからの情報を当該制御装置外へ出力するよう構成されていて、
     電圧検知デバイスは当該制御装置外の電源装置と接続可能であって前記電源装置から電圧情報を取得して前記電圧情報を演算デバイスに供給するよう構成されている、
     請求項1記載の無人飛翔体。
  3.  さらに、各制御装置は異常表示デバイスを有し、
     演算デバイスは、上記電圧検知デバイスから受けた電圧情報が予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出するよう構成されている請求項2記載の無人飛翔体。
  4.  演算デバイスは、上記電圧検知デバイスから受けた電圧情報が予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている請求項3記載の無人飛翔体。
  5.  さらに、各制御装置は電流検知デバイスを有し、電流検知デバイスは回転翼モーターの駆動電流を所定時間毎に取得して前記駆動電流のデータを演算デバイスへ送るよう構成されていて、
     演算デバイスは、上記電流検知デバイスから受けた駆動電流のデータを記憶デバイスに蓄積させること、および、上記電流検知デバイスから受けた駆動電流のデータが予め定めた異常条件に合致したときに異常表示デバイスが異常表示を成すように異常表示デバイスへ信号を発出すること、を成すよう構成されている請求項2記載の無人飛翔体。
  6.  演算デバイスは、上記電流検知デバイスから受けた駆動電流のデータが予め定めた前記異常条件に合致したときには上述の(A)において受け取った制御内容を無視して予め定めた電力を回転翼モーターへ供給するよう構成されている請求項5記載の無人飛翔体。
PCT/JP2016/076050 2016-09-05 2016-09-05 無人飛翔体 WO2018042676A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018536680A JPWO2018042676A1 (ja) 2016-09-05 2016-09-05 無人飛翔体
PCT/JP2016/076050 WO2018042676A1 (ja) 2016-09-05 2016-09-05 無人飛翔体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076050 WO2018042676A1 (ja) 2016-09-05 2016-09-05 無人飛翔体

Publications (1)

Publication Number Publication Date
WO2018042676A1 true WO2018042676A1 (ja) 2018-03-08

Family

ID=61301831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076050 WO2018042676A1 (ja) 2016-09-05 2016-09-05 無人飛翔体

Country Status (2)

Country Link
JP (1) JPWO2018042676A1 (ja)
WO (1) WO2018042676A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162926A (ja) * 2018-03-19 2019-09-26 三菱日立パワーシステムズ株式会社 無人飛行体
CN112912312A (zh) * 2018-10-19 2021-06-04 安炳烈 具备防止冲突以及回收功能的无人机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105461A (ja) * 2010-11-10 2012-05-31 Honda Motor Co Ltd 電動車両用制御装置
JP2015226381A (ja) * 2014-05-28 2015-12-14 富士重工業株式会社 バッテリ電圧の制御装置及びバッテリ電圧の制御方法
JP5857326B1 (ja) * 2015-04-18 2016-02-10 株式会社アドテックス 無人飛翔体及びそのための制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105461A (ja) * 2010-11-10 2012-05-31 Honda Motor Co Ltd 電動車両用制御装置
JP2015226381A (ja) * 2014-05-28 2015-12-14 富士重工業株式会社 バッテリ電圧の制御装置及びバッテリ電圧の制御方法
JP5857326B1 (ja) * 2015-04-18 2016-02-10 株式会社アドテックス 無人飛翔体及びそのための制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162926A (ja) * 2018-03-19 2019-09-26 三菱日立パワーシステムズ株式会社 無人飛行体
JP7033969B2 (ja) 2018-03-19 2022-03-11 三菱重工業株式会社 無人飛行体
CN112912312A (zh) * 2018-10-19 2021-06-04 安炳烈 具备防止冲突以及回收功能的无人机

Also Published As

Publication number Publication date
JPWO2018042676A1 (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
JP5857326B1 (ja) 無人飛翔体及びそのための制御装置
JP6164573B2 (ja) 無人飛翔体及びそのための制御システム
RU2556055C2 (ru) Способ помощи пилоту однодвигательного винтокрылого летательного аппарата в режиме авторотации
WO2016067489A1 (ja) ヘリコプター
JP5543585B2 (ja) ホバリング可能な航空機のための電子飛行制御システム
CN102105807B (zh) 风能设备的变桨距系统的监视装置
CN111348202A (zh) 在发动机故障期间辅助单发旋翼飞行器的辅助方法
US9849996B2 (en) Engine electrical load shed control
CN105539421A (zh) 增程式电动汽车的增程器停机控制方法及系统
JP2007222991A (ja) 電動工具
WO2018042676A1 (ja) 無人飛翔体
US20170089261A1 (en) Electrical augmentation of a gas turbine engine
US20190291883A1 (en) Flying vehicle emergency procedures
JP7093958B2 (ja) 充電器
US11203378B2 (en) Vehicle control device, control method, and non-transitory computer readable medium
WO2012133066A1 (ja) アクチュエータ監視システム
JP7276253B2 (ja) 電動垂直離着陸機および電動垂直離着陸機の制御装置
US9522740B2 (en) Method and a device for protecting an overspeeding rotorcraft engine
JP2016199153A (ja) 車載二次電池の冷却システム
WO2021039381A1 (ja) 電動垂直離着陸機および電動垂直離着陸機の制御装置
US9199181B2 (en) Controlling communication system
JP4683273B2 (ja) 電力均衡制御型車両用電源系
KR102004123B1 (ko) 직렬 하이브리드 전력 장치 및 운용 방법
JP2013048512A (ja) 二次電池モジュール、二次電池装置、および、車両
JP2021030967A (ja) 電動垂直離着陸機および電動垂直離着陸機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018536680

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16915231

Country of ref document: EP

Kind code of ref document: A1