WO2016169167A1 - 打印喷头和喷墨打印设备 - Google Patents

打印喷头和喷墨打印设备 Download PDF

Info

Publication number
WO2016169167A1
WO2016169167A1 PCT/CN2015/087515 CN2015087515W WO2016169167A1 WO 2016169167 A1 WO2016169167 A1 WO 2016169167A1 CN 2015087515 W CN2015087515 W CN 2015087515W WO 2016169167 A1 WO2016169167 A1 WO 2016169167A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
plane
nozzle
print head
heads
Prior art date
Application number
PCT/CN2015/087515
Other languages
English (en)
French (fr)
Inventor
代青
胡春静
崔颖
刘则
石守磊
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/913,724 priority Critical patent/US9738073B2/en
Publication of WO2016169167A1 publication Critical patent/WO2016169167A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/1433Structure of nozzle plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm

Definitions

  • the present invention relates to the field of printing equipment, and more particularly to a print head and an ink jet printing apparatus.
  • Inkjet printing devices have been widely used because of their advantages of low cost, friendly manufacturing environment, and simple operation. Print heads are an important part of inkjet printing equipment.
  • the print head includes a substrate 10 and a common ink tank 11 and a plurality of flow guiding grooves (for example, the flow guiding grooves 12 to 16) formed on the substrate 10.
  • a plurality of flow guiding grooves are arranged on the substrate 10 at equal intervals.
  • One end of each of the flow guiding grooves is connected to the common ink tank 11, and the other end is connected to each of the nozzles (for example, the nozzles 12a to 16a), and the protective film 18 and the piezoelectric material are covered over the groove faces of all the flow guiding grooves. 19.
  • the piezoelectric material 19 Since the piezoelectric material 19 has an inverse piezoelectric effect, when a voltage is applied to the piezoelectric material 19, the piezoelectric material 19 is deformed, thereby changing the volume of the corresponding flow guiding groove to complete ink absorption, ink ejection, retraction, and re The cycle of ink absorption. By controlling the deformation of the piezoelectric material 19, ink can be sucked from the common ink tank 11 and the sucked ink can be ejected from the corresponding nozzle to complete printing.
  • the print head according to the prior art has at least the following drawbacks: when there are many nozzles on the print head, the distance between the respective guide grooves on the substrate 10 is relatively close.
  • the deformation of the portion of the piezoelectric material 19 corresponding to the nozzle affects the shape of the piezoelectric material 19 above the adjacent flow guiding groove (as shown in Fig. 1B).
  • the deformation of the portion of the piezoelectric material 19 above the flow guiding groove 13 affects the shape of the piezoelectric material 19 above the flow guiding grooves 12 and 14, thereby causing interference between adjacent nozzles. As the nozzle density increases, this interference becomes more and more serious, which affects the print quality.
  • the adjacent two separators dividing the adjacent nozzles are set to different lengths, that is, the guides adjacent to the nozzles.
  • the flow groove portion is different from the flow guide groove portion connecting the common groove to reduce interference between adjacent nozzles;
  • the circuit signal is optimized to eliminate or reduce the occurrence of interference, that is, inkjet at one nozzle
  • a corresponding reverse compensation drive signal is applied to the nozzle adjacent to the nozzle to counteract interference to adjacent nozzles.
  • the inventors of the present invention have proposed a different manner from the above-described manner of reducing interference.
  • the present invention provides a print head and an ink jet printing apparatus.
  • a print head comprising a plurality of sub-heads, each sub-head including a base and a plurality of guide grooves disposed on the base, one end of each of the guide grooves being connected to one nozzle of the sub-head .
  • the projections of all the guide grooves on the first plane along the first projection direction are arranged at equal intervals, and the first plane is a plane defined by the arrangement direction of the respective flow guiding grooves on the sub-header and the length direction of the guiding groove,
  • the first projection direction is a displacement direction of the print head relative to the printing surface at the time of printing.
  • the spacing between the individual flow channels on each of the sub-jets is greater than the spacing between the projections of all of the flow channels along the first projection direction on the first plane.
  • the guide grooves corresponding to any two adjacent projections on the first plane belong to different sub-heads.
  • each of the sub-heads may further include an ink tank disposed on the substrate in communication with each of the flow guiding grooves.
  • the print head may further include a common ink inlet and a common ink outlet.
  • One end of the ink tank of each sub-head is connected to a common ink inlet, and the other end is connected to a common ink outlet.
  • the arrangement directions of all the flow guiding grooves are parallel.
  • the projections of the starting nozzles of each sub-head in the second plane along the first projection direction are arranged at equal intervals, the starting nozzle being the first of each sub-head in the same direction
  • the nozzle, the second plane is a plane defined by the arrangement direction of each nozzle of the sub-header and the liquid discharge direction of the nozzle.
  • each of the sub-heads may further include a sliding mechanism for Adjusting a relative position between the plurality of sub-heads in the direction in which the flow channels are arranged.
  • the plane determined by the direction, e is the pitch of projection of all nozzles along the first projection direction on the second plane, and f is the pixel pitch.
  • the distance between the top surfaces of any two adjacent sub-heads is equal.
  • the number of nozzles of each sub-head is equal.
  • an ink jet printing apparatus comprising a print head according to the present invention.
  • the number of nozzles on each sub-head is relatively small at the same pixel pitch, and thus the spacing between the guide grooves corresponding to each nozzle is relatively large, thereby reducing The interference caused by the same piezoelectric material between the nozzles improves the print quality.
  • FIG. 1A and 1B are schematic structural views of a printing head in the prior art
  • FIG. 2 is a schematic structural view of a print head according to an exemplary embodiment of the present invention.
  • FIG. 3 is a schematic view showing the projection of the flow guiding groove of the printing head shown in FIG. 2 on the plane of the guiding groove;
  • Figure 4 is a plan view of the print head shown in Figure 3;
  • Figure 5 is a schematic view showing a comparison of a printing head in the prior art and a printing head according to an exemplary embodiment of the present invention
  • FIG. 6 is a schematic structural view of a print head according to another exemplary embodiment of the present invention.
  • Figure 7 is a cross-sectional view of the sub-head in the print head shown in Figure 6;
  • FIG. 8 is a cross-sectional view of a sub-head in a print head according to another exemplary embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a print head according to another exemplary embodiment of the present invention.
  • Figure 10 is a front elevational view of the print head shown in Figure 9;
  • Figure 11 is a front elevational view of a printhead in accordance with another exemplary embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a print head according to another exemplary embodiment of the present invention.
  • FIG. 13 and FIG. 14 are schematic diagrams of printing of the print head shown in FIG. 9;
  • FIG. 15 is a schematic view showing a printing process of a print head according to an exemplary embodiment of the present invention.
  • the print heads may mainly include a piezoelectric head and a bubble head.
  • a piezoelectric head As an example.
  • those skilled in the art can easily apply the inventive concept to a bubble jet after reading the description of the present invention.
  • FIG. 2 is a schematic structural view of a print head according to an exemplary embodiment of the present invention, The dotted arrows in the figure indicate the direction of ink flow.
  • 3 is a schematic view showing the projection of the guide groove of the print head shown in FIG. 2 on the plane of the guide groove.
  • Figure 4 is a plan view of the print head shown in Figure 3.
  • a print head may include a plurality of sub-heads 100 (three sub-heads 100 are shown in FIG. 2).
  • Each of the sub-heads 100 includes a substrate 101 and a plurality of flow guiding grooves 1011 disposed on the substrate 101, and one end of each of the flow guiding grooves 1011 is connected to one nozzle 1012 of the sub-head 100.
  • the substrate 101 may be a silicon-based material.
  • the projections of all the guide grooves 1011 of the respective sub-headers 100 in the first projection direction t on the guide groove plane ⁇ are arranged at equal intervals (see Fig. 4).
  • the flow guiding groove plane ⁇ is a plane defined by the arrangement direction p of each of the flow guiding grooves 1011 on the sub-header 100 and the longitudinal direction c of the flow guiding groove.
  • the first projection direction t is a displacement direction of the print head relative to the printing surface at the time of printing (this direction is also referred to as a printing direction).
  • the spacing between the individual flow channels 1011 on each of the sub-jets 100 is greater than the spacing between the projections of all of the flow channels along the first projection direction t on the flow plane a.
  • a protective film and a piezoelectric material may be covered on the flow guiding groove of each sub-head.
  • the protective film and the piezoelectric material may be adhered to the substrate 101 by an adhesive and cover the flow guiding groove.
  • the inventive concept can be applied to other types of print heads (for example, bubble heads), and thus the protective film and piezoelectric material of the piezoelectric head are not shown in the drawings.
  • the projections 1011a, 1011b, and 1011c of the three sub-heads 100a, 100b, and 100c at the guide groove plane ⁇ are arranged at equal intervals on the guide groove plane ⁇ .
  • the guide groove plane ⁇ is only a theoretical plane, that is, a plane defined by the arrangement direction p of each flow guiding groove and the longitudinal direction c of the flow guiding groove.
  • the flow guiding groove plane ⁇ is shown as the top surface of the sub-head 100a in FIG. 3, the flow guiding groove plane ⁇ may be any plane parallel to the top surface of the sub-head 100a.
  • the guide grooves corresponding to any two adjacent projections belong to different sub-heads. Therefore, for the same pixel pitch, the pitch of each of the guide grooves on the sub-head in the print head according to the embodiment of the present invention is larger than the pitch of each of the guide grooves formed on the same head of all nozzles in the prior art, thereby making the sub-pitch
  • the nozzle is less difficult to manufacture and is due to the spacer between the two adjacent channels on the sub-nozzle for fixing the piezoelectric material ( Figure 3
  • the thickness of the unmarked one is increased, so that the contact area between the piezoelectric material (or the protective film under the piezoelectric material) and the separator is increased, thereby increasing the connection reliability of the piezoelectric material.
  • each of the sub-heads may be provided with an ink tank that communicates with all the flow channels of the sub-head.
  • the sub-head 100a is provided with an ink tank u1
  • the sub-head 100b is provided with an ink tank u2
  • the sub-head 100c is provided with an ink tank u3.
  • Both ends of the ink tanks u1, u2 and u3 are an ink inlet port and an ink outlet port, respectively.
  • Figure 5 is a schematic illustration of a prior art printhead and a printhead in accordance with an exemplary embodiment of the present invention.
  • the pitch q1 of the adjacent nozzles of the printing head in the prior art is smaller than the pitch q2 of the adjacent nozzles of the sub-heads in the printing head according to the exemplary embodiment of the present invention,
  • the print head according to an embodiment of the present invention can reduce interference between adjacent nozzles.
  • the print head of the embodiment of the present invention by arranging the nozzles on the plurality of sub-heads, the number of nozzles on each of the sub-heads is relatively small at the same pixel pitch (ie, each time is lowered)
  • the nozzle density on the sub-heads, and thus the spacing between the guide grooves corresponding to each nozzle is relatively large, thereby reducing the interference caused by the same piezoelectric material between the nozzles, and improving the printing quality.
  • the nozzle density on each sub-head is reduced, the nozzle density of the entire print head is not reduced, thereby ensuring the requirement of print resolution.
  • FIG. 6 is a schematic structural view of a print head according to another exemplary embodiment of the present invention.
  • each of the sub-heads is provided with a slide mechanism 102 for adjusting the relative position between the respective sub-heads.
  • the sliding mechanism 102 can be a sliding track, and each of the sub-heads can slide on a corresponding sliding track to adjust the relative position between the respective sub-heads.
  • the sliding mechanism 102 may also be a strip-shaped plate provided with a plurality of through holes in the arrangement direction z of the nozzles 1012.
  • the sub-heads may be fixed at different positions of the strip plates by screws passing through the through holes, so as to adjust a plurality of sub-heads. The relative position between the nozzles.
  • the nozzle 1012 is generally tubular, the liquid discharge direction y of the nozzle 1012 may coincide with the axial direction of the nozzle 1012, and the arrangement direction z of each nozzle 1012 may be an arrangement direction of the axes of the respective nozzles 1012. Need to explain is that slip
  • the mechanism 102 can also be other mechanisms that can slide the sub-heads, such as a conveyor belt, a roller, a stepping motor, etc., which is not limited by the present invention.
  • Figure 7 is a cross-sectional view of the sub-head in the print head shown in Figure 6.
  • the nozzle plane (i.e., the second plane) is a plane defined by the arrangement direction z of the nozzles 1012 and the liquid discharge direction y of the nozzles 1012. As shown in Fig. 7, when the liquid discharge direction y of the nozzle 1012 coincides with the longitudinal direction c of the flow guide groove, the nozzle plane is parallel to the flow guide groove plane.
  • FIG. 8 is a cross-sectional view of a sub-head in a print head in accordance with another exemplary embodiment of the present invention. As shown in Fig. 8, there is an angle j1 between the liquid discharge direction y of the nozzle 1012 and the longitudinal direction c of the flow guide groove 1011, and an angle j1 is also formed between the nozzle plane and the guide groove plane.
  • FIG. 9 is a schematic structural view of a print head according to another exemplary embodiment of the present invention
  • FIG. 10 is a front view of the print head shown in FIG.
  • the print head according to an exemplary embodiment of the present invention may further include an angle adjustment mechanism (not shown in FIG. 9) for adjusting the arrangement direction p of the guide grooves 1011 of the sub-heads (or the arrangement direction z of the nozzles 1012) and The angle j2 of the first projection direction t.
  • the angle adjustment mechanism may be a disc, and all of the sub-heads are fixed on the disc. When the disc is rotated about its central axis (the rotation direction h shown in FIG. 9), the guide groove of the sub-head can be adjusted.
  • the alignment direction p of 1011 changes the angle j2 between the arrangement direction p of the flow guiding grooves and the first projection direction t.
  • the arrangement directions of the flow guiding grooves of the respective sub-heads are parallel to each other, the distance l between the top surfaces of any two adjacent sub-heads is equal, the number of nozzles 1012 of each sub-head is equal, and the nozzle plane ⁇ and the guide are
  • the flow plane ⁇ is parallel (ie, the liquid discharge direction y of the nozzle is parallel to the longitudinal direction c of the flow guide).
  • the starting nozzles of each sub-head are arranged equidistantly along the projection of the first projection direction t on the nozzle plane ⁇ , and the starting nozzle is the first in the same direction of each sub-head.
  • nozzles r1, r2, and r3 are the starting nozzles of the three sub-heads shown in FIG. 10, respectively, between the projections of the three starting nozzles r1, r2, and r3 along the first projection direction t on the nozzle plane ⁇ .
  • the spacing is e.
  • Figure 11 is a front elevational view of a printhead in accordance with another exemplary embodiment of the present invention.
  • the arrangement direction p' of the flow guiding grooves of one of the sub-heads intersects with the arrangement direction p of the flow guiding grooves of the other two sub-heads.
  • the print head according to the present invention can be realized as long as the projections of the nozzles 1012 of the respective sub-heads in the first projection direction t on the nozzle plane ⁇ are equally spaced.
  • the nozzle plane ⁇ and the arrangement direction p of the flow guiding grooves are parallel to the guiding groove plane ⁇ defined by the longitudinal direction c of the guiding grooves.
  • the projections of the nozzles 1012 along the first projection direction t on the nozzle plane ⁇ are equally spaced, the projections of the guide grooves corresponding to each nozzle 1012 along the first projection direction t on the guide plane ⁇ are also equally spaced. .
  • FIG. 12 is a schematic structural view of a print head according to another exemplary embodiment of the present invention.
  • the print head may further include a common ink inlet port i and a common ink outlet port o.
  • One end of all the ink tanks communicates with the common ink inlet port i, and the other ends of all the ink tanks communicate with the common ink outlet port o.
  • FIG. 13 and 14 are schematic views of printing of the print head shown in Fig. 9.
  • the liquid discharge surface of the nozzle (the plane of the opening of the nozzle) is parallel to the printing surface (i.e., the liquid discharge direction y of the nozzle is perpendicular to the printing surface), and the pixel is located on the printing surface.
  • the liquid discharge faces of the printing pixel dot nozzles shown in Fig. 13 are on the same plane.
  • the print head according to an embodiment of the present invention can make the distance f between the pixel points x smaller than the pitch of the nozzles 1012 on the sub-heads. As shown in FIG.
  • the pitch of each nozzle 1012 on the sub-header is 3e, f is smaller than e, and f is less than 3e, so that the distance f between each pixel point x is smaller than the pitch of each nozzle 1012 on the sub-head. This is particularly advantageous for high resolution printing where the pixel pitch f is small.
  • the peripheral region of the nozzle 1012 may cover the lyophobic functional film 103.
  • the lyophobic functional film 103 is less likely to adhere to a liquid (for example, an ink droplet), so that the cleaning operation for the peripheral region of the nozzle 1012 can be facilitated.
  • the angle k between the nozzle plane ⁇ and the first projection direction t is equal to 90°.
  • the pitch of each nozzle 1012 on the sub-header is 3e, f is equal to e, and f is less than 3e, so that the distance f between each pixel point x is smaller than the pitch of each nozzle 1012 on the sub-header.
  • image data When printing, image data needs to be converted into data for each nozzle. This conversion is called Raster Image Processing (RIP). Usually, image data is positioned in two coordinates of x and y, and thus the data applied to each nozzle is coordinate data.
  • RIP Raster Image Processing
  • FIG. 15 is a schematic view showing a printing process of a print head according to an exemplary embodiment of the present invention.
  • the first nozzles of each sub-head from bottom to top are nozzles V1, V2, and V3, respectively.
  • the dotted line indicates the printing surface, and the Cartesian coordinate system is established with the origin (0, 0) of the upper left corner of the printing surface.
  • the print head travels from position 1 to position 2.
  • the nozzle V1 ejects ink at coordinates (1, 1), (1, 2), (1, 3), and the nozzle V2 ejects ink at coordinates (2, 1), (2, 2), (2, 3),
  • the nozzle V3 ejects ink at coordinates (3, 1), (3, 2), (3, 3), and the other nozzle inkjet coordinates are similarly pushed, so that a rectangular square composed of ink dots as shown in FIG. 15 can be printed.
  • Array
  • the print head according to the embodiments of the present invention increases the spacing of the guide channels on the sub-heads compared with the prior art print heads, thereby increasing the spacing of the nozzles on the sub-heads and reducing the spacing of the nozzles. Manufacturing difficulty.
  • the contact area between the piezoelectric material (or the protective film under the piezoelectric material) and the separator is increased due to the increase in the thickness of the separator for fixing the piezoelectric material between the adjacent two flow guiding grooves on the sub-head. The increase increases the connection reliability of the piezoelectric material.
  • the number of nozzles on each of the sub-heads of the print head according to the embodiments of the present invention is uniform, so that each sub-head can be manufactured according to the same specification at the time of manufacture, which facilitates mass production and reduces manufacturing costs.
  • the print head of each embodiment of the present invention by providing a slide mechanism and an angle adjustment mechanism, it is possible to adjust the projection of the nozzles on the nozzle planes on the nozzle planes.
  • the distance which can meet different pixel pitch requirements, is particularly advantageous for high resolution printing.
  • the print heads of the embodiments of the present invention by providing one ink tank for each of the sub-heads, interference is prevented when the different sub-heads share the ink tank.
  • the print heads of the embodiments of the present invention by disposing the nozzles on the plurality of sub-heads, the number of nozzles on each of the sub-heads is relatively small at the same pixel pitch, and thus corresponding to each nozzle The spacing between the guide channels is relatively large, thereby reducing the interference caused by the same piezoelectric material between the nozzles and improving the print quality.
  • Print heads according to embodiments of the present invention such as the print head of the embodiment shown in FIG. 2, the print head of the embodiment shown in FIG. 6, the print head of the embodiment shown in FIG. 9, and the printing of the embodiment shown in FIG.
  • the head or the print head of the embodiment shown in Fig. 12 can be applied to various ink jet printing apparatuses.

Abstract

一种打印喷头和喷墨打印设备,其中打印喷头包括多个子喷头(100),每个子喷头(100)包括基底(101)和设置在基底(101)上的多个导流槽(1011),每个导流槽(1011)的一端连接至该子喷头(100)的一个喷嘴(1012)。全部导流槽(1011)沿第一投影方向在第一平面上的投影以相等间距排列,所述第一平面为子喷头(100)上的各个导流槽(1011)的排列方向与导流槽(1011)的长度方向所确定的平面,所述第一投影方向为打印时打印喷头相对于打印面的位移方向。每个子喷头(100)上的各个导流槽(1011)之间的间距大于全部导流槽(1011)沿所述第一投影方向在所述第一平面上的投影之间的间距。

Description

打印喷头和喷墨打印设备 技术领域
本发明涉及打印设备领域,特别涉及一种打印喷头和喷墨打印设备。
背景技术
喷墨打印设备具有低成本、制造环境友好、操作简单等优点,已被广泛使用。打印喷头是喷墨打印设备中的重要部件。
图1A和图1B示出了根据现有技术的打印喷头。如图1所示,打印喷头包括基底10和形成在基底10上的公共墨槽11和多个导流槽(例如,导流槽12至16)。多个导流槽以相等间距排列在基底10上。每个导流槽的一端连接至公共墨槽11,另一端分别连接至各个喷嘴(例如,喷嘴12a至16a),并且在所有导流槽的槽面上方都覆盖有保护膜18和压电材料19。
由于压电材料19具有逆压电效应,当为压电材料19施加电压后,压电材料19会发生形变,从而改变对应的导流槽的容积以完成吸墨、喷墨、回缩和再吸墨的循环过程。通过控制压电材料19的形变能够从公共墨槽11中吸墨并将吸取的墨从对应的喷嘴喷出,完成打印。
发明人发现根据现有技术的打印喷头至少存在如下缺陷:当打印喷头上的喷嘴较多时,基底10上各个导流槽之间的距离较近。在一个喷嘴由于压电材料19的形变而喷墨时,与该喷嘴对应的压电材料19的部分的变形会影响相邻的导流槽上方的压电材料19的形状(如图1B所示,导流槽13上方的压电材料19的部分的形变影响导流槽12和14上方的压电材料19的形状),从而在相邻的喷嘴间造成干扰。随着喷嘴密度的提高,这种干扰就会越来越严重,从而影响打印质量。
发明内容
在现有技术中,有两种减小干扰的方式,第一种:通过改变喷嘴部分进墨通道的构造,将分割临近喷嘴的相邻两个分隔体设置成不同长度,即临近喷嘴的导流沟槽部分与连接公用沟槽的导流槽部分不同,以减小相邻喷嘴间的干扰;第二种,通过优化电路信号来消除或减小干扰的发生,即在一个喷嘴喷墨的同时,在与该喷嘴相邻的喷嘴上施加相应的反向补偿驱动信号,以抵消对相邻的喷嘴产生的干扰。
本发明的发明人提出了与上述减小干扰的方式不同的方式。
为了解决现有技术中的上述技术问题,本发明提供了一种打印喷头和喷墨打印设备。
根据本发明的一个方面,提供一种打印喷头,包括多个子喷头,每个子喷头包括基底和设置在基底上的多个导流槽,每个导流槽的一端连接至该子喷头的一个喷嘴。全部导流槽沿第一投影方向在第一平面上的投影以相等间距排列,所述第一平面为子喷头上的各个导流槽的排列方向与导流槽的长度方向所确定的平面,所述第一投影方向为打印时打印喷头相对于打印面的位移方向。每个子喷头上的各个导流槽之间的间距大于全部导流槽沿所述第一投影方向在所述第一平面上的投影之间的间距。
根据本发明的实施例,在所述第一平面上任意两个相邻的投影所对应的导流槽属于不同的子喷头。
根据本发明的实施例,每个子喷头还可以包括设置在基底上与各个导流槽连通的墨槽。
根据本发明的实施例,所述打印喷头还可以包括公共进墨口和公共出墨口。每个子喷头的墨槽的一端连接至公共进墨口,另一端连接至公共出墨口。
根据本发明的实施例,全部导流槽的排列方向平行。
根据本发明的实施例,每个子喷头的起始喷嘴沿所述第一投影方向在第二平面上的投影以相等间距排列,所述起始喷嘴为每个子喷头在同一方向上的第一个喷嘴,所述第二平面为子喷头的各个喷嘴的排列方向与喷嘴的出液方向所确定的平面。
根据本发明的实施例,每个子喷头还可以包括滑动机构,用于 调节所述多个子喷头之间在导流槽的排列方向上的相对位置。
根据本发明的实施例,所述打印喷头还可以包括角度调节机构,用于调节子喷头的各个导流槽的排列方向与所述第一投影方向的夹角,以满足公式:cos(k-90)=f/e,其中,k为第二平面与所述第一投影方向的大于或等于90°的夹角,所述第二平面为子喷头的各个喷嘴的排列方向与喷嘴的出液方向所确定的平面,e为全部喷嘴沿所述第一投影方向在所述第二平面上的投影的间距,f为像素间距。
根据本发明的实施例,任意两个相邻的子喷头的顶面之间的距离相等。
根据本发明的实施例,各个子喷头的喷嘴数量相等。
根据本发明的另一方面,提供一种喷墨打印设备,包括根据本发明的打印喷头。
通过将喷嘴设置在多个子喷头上,因此在相同的像素间距下,使得每个子喷头上的喷嘴数量相对较少,因而与每个喷嘴对应的导流槽间的间距相对较大,从而减小了同一压电材料在各个喷嘴间造成的干扰,提高了打印质量。
附图说明
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。本文的附图并入说明书中并构成本说明书的一部分,示出了本发明各实施例的附图并与说明书一起用于解释本发明的原理。
图1A和图1B是现有技术中的打印喷头的结构示意图;
图2是根据本发明的示例性实施例的打印喷头的结构示意图;
图3是图2所示的打印喷头的导流槽在导流槽平面的投影示意图;
图4是图3所示的打印喷头的俯视图;
图5是现有技术中的打印喷头与根据本发明的示例性实施例的打印喷头的对比示意图;
图6是根据本发明的另一示例性实施例的打印喷头的结构示意 图;
图7是图6所示的打印喷头中的子喷头的剖面示意图;
图8是根据本发明的另一示例性实施例的打印喷头中的子喷头的剖面示意图;
图9是根据本发明的另一示例性实施例的打印喷头的结构示意图;
图10是图9所示的打印喷头的正视图;
图11是根据本发明的另一示例性实施例的打印喷头的正视图;
图12是根据本发明的另一示例性实施例的打印喷头的结构示意图;
图13和图14是图9所示的打印喷头的打印示意图;以及
图15是示出根据本发明的示例性实施例的打印喷头的打印过程的示意图。
通过上述附图示出了本发明的各实施例,并且在下文中将结合附图更详细地进行描述。然而,这些附图和文字描述并不是为了以任何方式限制本发明构思的范围,而是为了使得本公开是彻底和完整的,并且将本发明构思完全传递给本领域技术人员。
具体实施方式
在此将详细地对附图中示出的示例性实施例进行说明。在附图中,会出于清楚的目的而夸大各层和各区域的尺寸和相对尺寸。相同的附图标记始终表示相同的元件。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置或方法的例子。
打印喷头主要可以包括压电式喷头和气泡式喷头,本发明的各实施例均以压电式喷头为例来进行说明。然而,本领域技术人员在阅读完本发明的说明书之后,可以容易地将本发明构思应用于气泡式喷头。
图2是根据本发明的示例性实施例的打印喷头的结构示意图, 图中虚线箭头表示墨水流动方向。图3是图2所示的打印喷头的导流槽在导流槽平面的投影示意图。图4是图3所示的打印喷头的俯视图。
参考图2至图4,根据本发明的示例性实施例的打印喷头可以包括多个子喷头100(图2中示出了三个子喷头100)。每个子喷头100包括基底101和设置在基底101上的多个导流槽1011,每个导流槽1011的一端连接至子喷头100的一个喷嘴1012连接。基底101可以为硅基材料。
各个子喷头100的全部导流槽1011沿第一投影方向t在导流槽平面α(即,第一平面)上的投影以相等间距排列(参见图4)。参见图3,导流槽平面α为子喷头100上的各个导流槽1011的排列方向p与导流槽的长度方向c所确定的平面。第一投影方向t为打印时打印喷头相对于打印面的位移方向(该方向也称打印方向)。每个子喷头100上的各个导流槽1011之间的间距大于全部导流槽沿所述第一投影方向t在导流槽平面α上的投影之间的间距。
需要说明的是,对于压电式喷头而言,在每个子喷头的导流槽上可以覆盖保护膜和压电材料(如压电陶瓷)。可以通过胶粘剂将保护膜和压电材料粘附在基底101上,并覆盖导流槽。然而,本发明构思可以应用于其他类型的打印喷头(例如,气泡式喷头),因此没有在图中示出压电式喷头的保护膜和压电材料。
如图3所示,三个子喷头100a、100b和100c在导流槽平面α的投影1011a、1011b和1011c在导流槽平面α上以相等间距排列。需要说明的是,导流槽平面α仅为一个理论平面,即,由各导流槽的排列方向p与导流槽的长度方向c所确定的平面。虽然在图3中将导流槽平面α示出为子喷头100a的顶面,导流槽平面α可以为与子喷头100a的顶面平行的任何平面。
如图3所示,任意两个相邻的投影对应的导流槽属于不同的子喷头。因而对于相同的像素间距,根据本发明的实施例的打印喷头中子喷头上的各导流槽的间距大于现有技术中全部喷嘴形成在同一喷头上的各导流槽的间距,从而使得子喷头的制造难度降低,并且由于子喷头上相邻的两个导流槽之间用于固定压电材料的分隔体(图3 中未标出)的厚度增大,使得压电材料(或在压电材料下方的保护膜)与分隔体之间接触面积增大,进而增加压电材料的连接可靠性。此外,每个子喷头还可以设置有与该子喷头的所有导流槽连通的墨槽。在图3中,子喷头100a的上设置有墨槽u1,子喷头100b的上设置有墨槽u2,并且子喷头100c的上设置有墨槽u3。墨槽u1、u2和u3的两端分别为进墨口和出墨口。
图5是现有技术中的打印喷头与根据本发明的示例性实施例的打印喷头的对比示意图。
如图5所示,在相同的像素间距下,现有技术中的打印喷头相邻喷嘴的间距q1小于根据本发明的示例性实施例的打印喷头中的子喷头的相邻喷嘴的间距q2,因而根据本发明的实施例的打印喷头可以减小相邻喷嘴间的干扰。
综上所述,根据本发明的实施例的打印喷头,通过将喷嘴设置在多个子喷头上,因此在相同的像素间距下,使得每个子喷头上的喷嘴数量相对较少(即,降低了每个子喷头上的喷嘴密度),因而与每个喷嘴对应的导流槽间的间距相对较大,从而减小了同一压电材料在各个喷嘴间造成的干扰,提高了打印质量。需要说明的是,虽然降低了每个子喷头上的喷嘴密度,但是整个打印喷头的喷嘴密度并没有减少,从而保证了打印分辨率的需求。
图6是根据本发明的另一示例性实施例的打印喷头的结构示意图。
如图6所示,与前述实施例的打印喷头相比,每个子喷头上设置有滑动机构102,用于调节各个子喷头间的相对位置。例如,滑动机构102可以为滑动轨道,每个子喷头可以在对应的滑动轨道上滑动来调节各个子喷头间的相对位置。此外,滑动机构102还可以为在喷嘴1012的排列方向z上设置有多个通孔的条形板,子喷头可以通过穿过通孔的螺钉固定在条形板的不同位置,以便调节多个子喷头间的相对位置。需要说明的是,喷嘴1012通常为管状,喷嘴1012的出液方向y可以与喷嘴1012的轴线方向一致,并且各个喷嘴1012的排列方向z可以为各个喷嘴1012的轴线的排列方向。需要说明的是,滑 动机构102还可以是其他能够使子喷头滑动的机构,诸如传送带、滚轮,步进马达等,本发明对此不做限定。
图7是图6所示的打印喷头中的子喷头的剖面示意图。
喷嘴平面(即,第二平面)为喷嘴1012的排列方向z与喷嘴1012的出液方向y所确定的平面。如图7所示,在喷嘴1012的出液方向y与导流槽的长度方向c一致时,喷嘴平面与导流槽平面平行。
需要说明的是,喷嘴的出液方向y与导流槽的长度方向c还可以呈一定角度。图8是根据本发明的另一示例性实施例的打印喷头中的子喷头的剖面示意图。如图8所示,喷嘴1012的出液方向y与导流槽1011的长度方向c之间有夹角j1,此时喷嘴平面与导流槽平面之间也有夹角j1。
图9是根据本发明的另一示例性实施例的打印喷头的结构示意图,图10是图9所示的打印喷头的正视图。
根据本发明的示例性实施例的打印喷头还可以包括角度调节机构(图9中未示出),用于调节子喷头的导流槽1011的排列方向p(或喷嘴1012的排列方向z)与第一投影方向t的夹角j2。例如,角度调节机构可以为圆盘,所有子喷头都固定在该圆盘上,当圆盘围绕其中心轴线旋转时(如图9所示的旋转方向h),可以调节子喷头的导流槽1011的排列方向p,从而改变导流槽的排列方向p与第一投影方向t的夹角j2。
参照图10,各个子喷头的导流槽的排列方向彼此平行,任意两个相邻的子喷头的顶面之间的距离l相等,各个子喷头的喷嘴1012数量相等,并且喷嘴平面β与导流槽平面α平行(即,喷嘴的出液方向y与导流槽的长度方向c平行)。滑动机构102可以调节多个子喷头上的喷嘴1012沿第一投影方向t在喷嘴平面β上的投影间距e,角度调节结构可以配和滑动机构102,使投影的间距e与像素间距f满足转角公式:cos(k-90)=f/e,k为喷嘴平面β与第一投影方向t的大于或等于90°的夹角。
此外,每个子喷头的起始喷嘴沿第一投影方向t在喷嘴平面β上的投影等间距排列,起始喷嘴为每个子喷头在同一方向上的第一个 喷嘴。例如,喷嘴r1、r2和r3分别为图10所示的三个子喷头的起始喷嘴,这三个起始喷嘴r1、r2和r3沿第一投影方向t在喷嘴平面β上的投影之间的间距为e。
需要补充的是,各个子喷头的导流槽的排列方向p可以是不平行的。图11是根据本发明的另一示例性实施例的打印喷头的正视图。
如图11所示,其中一个子喷头的导流槽的排列方向p'与另两个子喷头的导流槽的排列方向p交叉。然而,只要保证各个子喷头的喷嘴1012沿第一投影方向t在喷嘴平面β上的投影等间距排列,即可以实现根据本发明的打印喷头。喷嘴平面β与导流槽的排列方向p与导流槽的长度方向c所确定的导流槽平面α平行。只要喷嘴1012沿第一投影方向t在喷嘴平面β上的投影等间距排列,与每个喷嘴1012对应的导流槽沿第一投影方向t在导流槽平面α上的投影也为等间距排列。
图12是根据本发明的另一示例性实施例的打印喷头的结构示意图。
如图12所示,打印喷头还可以包括公共进墨口i和公共出墨口o。所有墨槽的一端都与公共进墨口i连通,所有墨槽的另一端都与公共出墨口o连通。
图13和图14是图9所示的打印喷头的打印示意图。
如图13所示,喷嘴的出液面(喷嘴的开口所在平面)与打印面平行(即,喷嘴的出液方向y与打印面垂直),像素点位于打印面上。为了方便观看与理解,图13示出的打印像素点喷嘴的出液面在同一平面上。各像素点x之间的距离f与多个子喷头上的喷嘴1012沿第一投影方向t在喷嘴平面β上的投影的间距e满足转角公式:cos(k-90)=f/e,k为喷嘴平面β与第一投影方向t的大于或等于90°的夹角。由此可见,根据本发明的实施例的打印喷头可以使各像素点x之间的距离f小于子喷头上的各喷嘴1012的间距。如图3所示,子喷头上的各喷嘴1012的间距为3e,f小于e,进而f小于3e,于是各像素点x之间的距离f小于子喷头上的各喷嘴1012的间距。这对于像素间距f较小的高分辨率打印特别有利。
根据本发明的实施例,喷嘴1012的周边区域可以覆盖疏液性功能薄膜103。疏液性功能薄膜103不易粘附液体(例如,墨滴),从而能够方便操对于喷嘴1012的周边区域的清洁操作。
如图14所示,喷嘴平面β与第一投影方向t间的夹角k等于90°。子喷头上的各喷嘴1012的间距为3e,f等于e,进而f小于3e,于是各像素点x之间的距离f小于子喷头上的各喷嘴1012的间距。
在进行打印时,需要将图像数据转换成每个喷嘴的数据。这个转换称为光栅图像处理(Raster Image Process,RIP)。通常,图像数据以x和y两个坐标来进行定位,因而施加给每个喷嘴的数据为坐标数据。
图15是示出根据本发明的示例性实施例的打印喷头的打印过程的示意图。
如图15所示,以三个子喷头组成的打印喷头为例,自下而上每个子喷头的首个喷嘴分别为喷嘴V1、V2和V3。虚线框表示打印面,以打印面左上角为原点(0,0)建立直角坐标系。打印喷头从位置1行进至位置2。喷嘴V1在坐标(1,1),(1,2),(1,3)处喷墨,喷嘴V2在坐标(2,1),(2,2),(2,3)处喷墨,喷嘴V3在坐标(3,1),(3,2),(3,3)处喷墨,其他喷嘴喷墨坐标以此类推,即可打印出如图15所示的墨点组成的矩形方阵。
根据本发明的各实施例的打印喷头,与现有技术的打印喷头相比,增大了子喷头上的各导流槽的间距,进而增大了子喷头上的各喷嘴的间距,降低了制造难度。由于子喷头上相邻的两个导流槽之间用于固定压电材料的分隔体的厚度增大,使得压电材料(或在压电材料下方的保护膜)与分隔体之间接触面积增大,进而增大压电材料的连接可靠性。
根据本发明的各实施例的打印喷头的每个子喷头上的喷嘴数目一致,因此在进行制造时,可以将各个子喷头按照同一规格进行制造,方便批量生产,降低了制造成本。
根据本发明的各实施例的打印喷头,通过设置滑动机构与角度调节机构,可以调节各个子喷头上的喷嘴在喷嘴平面上的投影的间 距,从而能够满足不同的像素间距需求,对于高分辨率打印特别有利。
根据本发明的各实施例的打印喷头,通过为每个子喷头设置一个墨槽,避免不同子喷头共用墨槽时产生干扰。
此外,根据本发明的各实施例的打印喷头,通过将喷嘴设置在多个子喷头上,因此在相同的像素间距下,使得每个子喷头上的喷嘴数量相对较少,因而与每个喷嘴对应的导流槽间的间距相对较大,从而减小了同一压电材料在各个喷嘴间造成的干扰,提高了打印质量。
根据本发明的各实施例的打印喷头,例如图2所示实施例的打印喷头、图6所示实施例的打印喷头、图9所示实施例的打印喷头、图11所示实施例的打印喷头或图12所示实施例的打印喷头,可以应用于各种喷墨打印设备。
虽然已经参考本发明的各实施例对本发明构思进行了说明,但本发明不限于所陈述的各实施例。对示出的各实施例作出的任何修改、等同替换、改进等,均包含在本发明的保护范围之内。

Claims (11)

  1. 一种打印喷头,包括多个子喷头,每个子喷头包括基底和设置在基底上的多个导流槽,每个导流槽的一端连接至该子喷头的一个喷嘴,
    全部导流槽沿第一投影方向在第一平面上的投影以相等间距排列,所述第一平面为子喷头上的各个导流槽的排列方向与导流槽的长度方向所确定的平面,所述第一投影方向为打印时打印喷头相对于打印面的位移方向,
    其中,每个子喷头上的各个导流槽之间的间距大于全部导流槽沿所述第一投影方向在所述第一平面上的投影之间的间距。
  2. 根据权利要求1所述的打印喷头,其中,
    在所述第一平面上任意两个相邻的投影所对应的导流槽属于不同的子喷头。
  3. 根据权利要求1所述的打印喷头,其中,
    每个子喷头还包括设置在基底上与各个导流槽连通的墨槽。
  4. 根据权利要求3所述的打印喷头,还包括公共进墨口和公共出墨口,
    其中,每个子喷头的墨槽的一端连接至公共进墨口,另一端连接至公共出墨口。
  5. 根据权利要求1所述的打印喷头,其中,
    全部导流槽的排列方向平行。
  6. 根据权利要求1所述的打印喷头,其中,
    每个子喷头的起始喷嘴沿所述第一投影方向在第二平面上的投影以相等间距排列,所述起始喷嘴为每个子喷头在同一方向上的第一 个喷嘴,所述第二平面为子喷头的各个喷嘴的排列方向与喷嘴的出液方向所确定的平面。
  7. 根据权利要求1所述的打印喷头,其中,
    每个子喷头还包括滑动机构,用于调节所述多个子喷头之间在导流槽的排列方向上的相对位置。
  8. 根据权利要求7所述的打印喷头,还包括角度调节机构,用于调节子喷头的各个导流槽的排列方向与所述第一投影方向的夹角,以满足公式:
    cos(k-90)=f/e
    其中,k为第二平面与所述第一投影方向的大于或等于90°的夹角,所述第二平面为子喷头的各个喷嘴的排列方向与喷嘴的出液方向所确定的平面,e为全部喷嘴沿所述第一投影方向在所述第二平面上的投影的间距,f为像素间距。
  9. 根据权利要求1所述的打印喷头,其中,
    任意两个相邻的子喷头的顶面之间的距离相等。
  10. 根据权利要求1所述的打印喷头,其中,
    各个子喷头的喷嘴数量相等。
  11. 一种喷墨打印设备,包括根据权利要求1至10中任一所述的打印喷头。
PCT/CN2015/087515 2015-04-21 2015-08-19 打印喷头和喷墨打印设备 WO2016169167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/913,724 US9738073B2 (en) 2015-04-21 2015-08-19 Printing head and ink-jet printing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510189023.6A CN104742524B (zh) 2015-04-21 2015-04-21 打印喷头和喷墨打印设备
CN201510189023.6 2015-04-21

Publications (1)

Publication Number Publication Date
WO2016169167A1 true WO2016169167A1 (zh) 2016-10-27

Family

ID=53583024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087515 WO2016169167A1 (zh) 2015-04-21 2015-08-19 打印喷头和喷墨打印设备

Country Status (3)

Country Link
US (1) US9738073B2 (zh)
CN (1) CN104742524B (zh)
WO (1) WO2016169167A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104742524B (zh) 2015-04-21 2016-09-28 京东方科技集团股份有限公司 打印喷头和喷墨打印设备
CN108099409B (zh) * 2018-01-03 2023-12-22 京东方科技集团股份有限公司 打印喷头和喷墨打印设备
CN109980084B (zh) * 2019-04-09 2020-12-01 京东方科技集团股份有限公司 喷墨打印头和喷墨打印设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017051A1 (en) * 1990-05-08 1991-11-14 Xaar Limited Drop-on-demand printing apparatus and method of manufacture thereof
EP0713775A2 (de) * 1994-11-25 1996-05-29 Francotyp-Postalia GmbH Anordnung für einen Tintendruckkopf aus einzelnen Tintendruckmodulen
US6281914B1 (en) * 1996-11-13 2001-08-28 Brother Kogyo Kabushiki Kaisa Ink jet-type printer device with printer head on circuit board
US20020071009A1 (en) * 2000-12-12 2002-06-13 Olympus Optical., Ltd. Apparatus for ejecting liquid droplets
CN102114731A (zh) * 2009-12-31 2011-07-06 香港应用科技研究院有限公司 用于热喷墨打印的打印头及其打印方法
CN104742524A (zh) * 2015-04-21 2015-07-01 京东方科技集团股份有限公司 打印喷头和喷墨打印设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243755A (en) * 1990-11-02 1993-09-14 Canon Kabushiki Kaisha Ink-jet head assembling apparatus and method
KR100219736B1 (ko) * 1994-10-28 1999-09-01 사토 게니치로 잉크제트 프린트 헤드 및 이에 사용되는 노즐판
US6092887A (en) * 1996-07-22 2000-07-25 Minolta Co., Ltd. Ink-jet printer
JP2002103618A (ja) * 2000-01-17 2002-04-09 Seiko Epson Corp インクジェット式記録ヘッド及びその製造方法並びにインクジェット式記録装置
US7232207B2 (en) * 2002-12-27 2007-06-19 Konica Minolta Holdings, Inc. Ink jet head
US7798606B2 (en) * 2004-03-19 2010-09-21 Konica Minolta Medical & Graphic, Inc. Inkjet recording apparatus
TWI480175B (zh) * 2010-01-06 2015-04-11 Ind Tech Res Inst 噴墨總成和噴墨機台
ES2370632B1 (es) * 2010-02-09 2012-11-06 Tkt Brainpower S.L. Sistema de ajuste de la base del cabezal de impresión de una máquina trazadora.
JP5941645B2 (ja) * 2011-09-27 2016-06-29 エスアイアイ・プリンテック株式会社 液体噴射ヘッド及び液体噴射装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017051A1 (en) * 1990-05-08 1991-11-14 Xaar Limited Drop-on-demand printing apparatus and method of manufacture thereof
EP0713775A2 (de) * 1994-11-25 1996-05-29 Francotyp-Postalia GmbH Anordnung für einen Tintendruckkopf aus einzelnen Tintendruckmodulen
US6281914B1 (en) * 1996-11-13 2001-08-28 Brother Kogyo Kabushiki Kaisa Ink jet-type printer device with printer head on circuit board
US20020071009A1 (en) * 2000-12-12 2002-06-13 Olympus Optical., Ltd. Apparatus for ejecting liquid droplets
CN102114731A (zh) * 2009-12-31 2011-07-06 香港应用科技研究院有限公司 用于热喷墨打印的打印头及其打印方法
CN104742524A (zh) * 2015-04-21 2015-07-01 京东方科技集团股份有限公司 打印喷头和喷墨打印设备

Also Published As

Publication number Publication date
US20170057226A1 (en) 2017-03-02
US9738073B2 (en) 2017-08-22
CN104742524A (zh) 2015-07-01
CN104742524B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
US8944567B2 (en) Liquid jet head and liquid jet apparatus
US20170057231A1 (en) Liquid ejecting head and liquid ejecting apparatus
US8733895B2 (en) Ink-jet head
JP2019064051A (ja) インクジェット印刷装置
US9365039B2 (en) Liquid jet head, method for manufacturing liquid jet head, and liquid jet apparatus
WO2016169167A1 (zh) 打印喷头和喷墨打印设备
US9044955B2 (en) Liquid jetting apparatus
JP2017213844A (ja) 液体噴射ヘッド及び液体噴射装置
US10259221B2 (en) Element substrate, liquid ejection head, and liquid ejection apparatus
JP5849831B2 (ja) 記録装置
KR100657952B1 (ko) 경사진 프린트헤드 어레이를 가진 잉크젯 헤드
US9550361B2 (en) Liquid ejecting apparatus
US7845766B2 (en) Inkjet recording head
US20190134980A1 (en) Liquid jet head and liquid jet recording device
JP6172585B2 (ja) 記録装置
US7914130B2 (en) Droplet ejection device and printer
JP2012111087A (ja) 液体噴射ヘッド及び液体噴射装置
US7976126B2 (en) Liquid jet head, line type liquid jet head, printer, line type printer and film forming apparatus
WO2017169548A1 (ja) インクジェットヘッド及びインクジェット記録装置
JP2014188697A (ja) 印刷装置、およびその製造方法
JP2019084703A (ja) 液体噴射ヘッドおよび液体噴射記録装置
US20150224773A1 (en) Method for manufacturing liquid ejection head and liquid ejection head
JP2009208255A (ja) 液滴噴射装置
JP2014188696A (ja) 印刷装置、およびその製造方法
JP2009178895A (ja) インクジェットプリンタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14913724

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889655

Country of ref document: EP

Kind code of ref document: A1