WO2016165553A1 - 蒸镀方法和蒸镀装置 - Google Patents

蒸镀方法和蒸镀装置 Download PDF

Info

Publication number
WO2016165553A1
WO2016165553A1 PCT/CN2016/077508 CN2016077508W WO2016165553A1 WO 2016165553 A1 WO2016165553 A1 WO 2016165553A1 CN 2016077508 W CN2016077508 W CN 2016077508W WO 2016165553 A1 WO2016165553 A1 WO 2016165553A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer substrate
vapor deposition
substrate
evaporation
evaporation source
Prior art date
Application number
PCT/CN2016/077508
Other languages
English (en)
French (fr)
Inventor
梁逸南
皇甫鲁江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/322,790 priority Critical patent/US10190207B2/en
Publication of WO2016165553A1 publication Critical patent/WO2016165553A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to the field of manufacturing of display devices, and in particular to an evaporation method and an evaporation device.
  • OLED Organic Light Emitting Diode
  • OLED has many advantages such as fast response, beautiful color, good temperature characteristics, wide viewing angle, and low power consumption. Therefore, organic electroluminescent devices have received increasing attention.
  • the OLED display device includes an organic material layer.
  • the mainstream technology for manufacturing organic material layers is a method using line source evaporation scanning.
  • a schematic diagram of performing vapor deposition scanning in the prior art is shown in Figures 1a and 1b.
  • the temperature of the evaporation source is high so that the evaporation material can be vapor-deposited toward the substrate at a relatively high speed.
  • the high temperature causes a certain deformation of the mask 50 and the target substrate 40, resulting in a decrease in vapor deposition accuracy.
  • the evaporation source 10 is usually disposed under the target substrate 40 and the mask 50, and the target substrate is viewed from below. Perform evaporation.
  • a large gap is generated between the position near the middle of the target substrate 40 and the mask 50, thereby affecting the vapor deposition precision.
  • the present invention provides an evaporation method comprising:
  • the evaporation source evaporates the vapor deposition material particles toward the one or more transfer substrates to form an intermediate material layer on the surface of the transfer substrate, wherein the one or more transfer substrates receive the evaporation material particles
  • the surface area is larger than the surface of the outlet of the evaporation source product
  • a distance between the evaporation source and the transfer substrate and a distance between the transfer substrate and the target substrate are both smaller than a preset distance.
  • the preset distance is between 200 mm and 600 mm.
  • a ratio of a distance between the transfer substrate and the target substrate and a distance between the evaporation source and the transfer substrate is in a range of 1/3 to 1/10.
  • the distance between the evaporation source and the transfer substrate is in the range of 100 mm to 200 mm.
  • a surface of the target substrate on which the target film layer is to be formed is provided with a mask.
  • the mask is located above the target substrate, and the transfer substrate is located above the mask.
  • the evaporation source is a line evaporation source, and in the step of evaporating the evaporation material particles toward the transfer substrate, the transfer substrate is located above the evaporation source.
  • the method further includes:
  • Detecting a thickness of the intermediate material layer on the transfer substrate wherein when the thickness of the intermediate material layer reaches a predetermined value, performing a step of heating the transfer substrate; and when the thickness of the intermediate material layer When the predetermined value is not reached, the step of evaporating the vapor deposition material particles toward the transfer substrate by the evaporation source is performed.
  • the present invention also provides an evaporation apparatus comprising: an evaporation source and one or more transfer substrates; the evaporation source for evaporating particles of the evaporation material to the one or more transfer substrates to The surface of the transfer substrate forms an intermediate material layer; after the one or more transfer substrates are heated, the intermediate material layer can be evaporated to the target substrate, wherein
  • the product is larger than the area of the outlet of the evaporation source.
  • a surface of the transfer substrate for forming an intermediate material layer is formed with an anti-shedding layer
  • the anti-shedding layer includes a plurality of protrusions, a diameter of the protrusions and a relationship between two adjacent protrusions The distance is less than 1/100 of the distance between the transfer substrate and the target substrate; or
  • the anti-shedding layer includes a plurality of recesses, and a diameter of the recess and a distance between two adjacent recesses are smaller than 1/100 of a distance between the transfer substrate and the target substrate.
  • the vapor deposition device further includes a detecting mechanism for detecting a thickness of the intermediate material layer on the transfer substrate, and when the detecting mechanism detects that the thickness of the intermediate material layer reaches a predetermined value, Prompt signal.
  • the vapor deposition material is first evaporated onto the transfer substrate by the evaporation source, and then the transfer substrate is heated so that the intermediate material layer faces.
  • the target substrate is vapor-deposited. According to the present invention, since the temperature after the transfer substrate is heated is lower than the temperature of the evaporation source, even if the temperature of the evaporation source is high, the target substrate is not directly affected, and the vapor deposition precision can be improved.
  • the intermediate material layer sublimates at a slower speed and does not affect the evaporation. effectiveness.
  • the distance between the evaporation source and the transfer substrate and the distance between the transfer substrate and the target substrate are small, thereby improving the evaporation material under the premise of ensuring the vapor deposition precision. Utilization rate.
  • 1a-1b are schematic views showing an evaporation process in the prior art
  • FIG. 2 is a flow chart of a vapor deposition method in an embodiment of the present invention.
  • 3a-3d are schematic views of respective steps of an evaporation method in an embodiment of the present invention.
  • an evaporation method is provided, as shown in FIG. 2, the method includes:
  • the evaporation source 10 evaporates the particles of the evaporation material toward the transfer substrate 20 (as shown in FIG. 3a) to form an intermediate material layer 30 (shown in FIG. 3b) on the surface of the transfer substrate 20, wherein the transfer substrate
  • the area of the surface of the vapor-receiving material particles 20 is greater than the exit area of the evaporation source 10;
  • the evaporation source 10 is first vapor-deposited toward the transfer substrate 20, and then subjected to a second evaporation from the intermediate material layer 30 on the transfer substrate to the target substrate, wherein the second The temperature of the secondary vapor deposition is lower than the temperature of the first vapor deposition. Therefore, even if the temperature of the evaporation source 10 is high, the high temperature does not act on the target substrate. In this way, the deformation of the target substrate or the mask due to high temperature can be reduced, thereby improving the vapor deposition precision.
  • the surface area of the vapor deposition material particles of the transfer substrate 20 is larger than the exit area of the evaporation source, that is, the area of the intermediate material layer 30 is larger than the exit area of the line evaporation source, even if the temperature of the transfer substrate is low
  • the intermediate material layer 30 is sublimated at a slower rate and does not affect the evaporation efficiency.
  • the evaporation method according to the present invention is particularly suitable for vapor deposition of an organic electroluminescence display material by which an organic electroluminescence display device is manufactured.
  • the distance between the evaporation source 10 and the transfer substrate 20 and the distance between the transfer substrate 20 and the target substrate 40 are both smaller than the preset distance.
  • the “preset distance” may be such that when the target substrate 40 is directly vapor-deposited using the evaporation source 10, the heat of the evaporation source 10 can be prevented from being targeted to the target base. The safety distance that the board 40 takes into account is affected.
  • the present invention performs two vapor depositions, since the vapor deposition distance per evaporation is small, the evaporation distance of the vapor deposition material can be reduced too much. The resulting material waste phenomenon improves the utilization rate of the vapor deposition material.
  • the preset distance may be between 200 and 600 mm.
  • the ratio between the distance between the transfer substrate 20 and the target substrate 40 and the distance between the evaporation source 10 and the transfer substrate 20 is in the range of 1/3 to 1/10. In this way, the evaporation efficiency can be improved and the utilization rate of the vapor deposition material can be improved.
  • the distance between the evaporation source 10 and the transfer substrate 20 is in the range of 100 mm to 200 mm.
  • the utilization rate of the evaporation material can usually reach 80% to 85%; when the distance between the evaporation source 10 and the target position is When 300 ⁇ 10mm, the utilization rate of the vapor deposition material can be usually 15% to 20%. It can be seen that the distance between the evaporation source 10 and the transfer substrate 20 in the present invention is greatly reduced as compared with the evaporation distance in the prior art. Therefore, when the evaporation source 10 performs the first vapor deposition on the transfer substrate 20, 80% to 85% of the vapor deposition material can be used; and when the intermediate material layer 30 on the transfer substrate 20 is used, the target substrate 40 is used.
  • the vapor deposition distance is further reduced, so that the utilization rate of the vapor deposition material at the time of the second vapor deposition is higher than that of the vapor deposition material at the time of the first vapor deposition. Therefore, compared with the prior art, although the vapor deposition material is vapor-deposited onto the target substrate by two vapor depositions, the evaporation distance of the present invention during the two vapor deposition periods is reduced, thereby improving the utilization rate of the evaporation material. At the same time, the evaporation precision can be improved.
  • the vapor deposition method can be applied to form a target film layer on the entire surface of the target substrate 40, and is also suitable for forming a target film layer having a certain shape on the target substrate 40.
  • the surface of the target substrate 40 on which the target film layer 60 is to be formed is provided with a mask 50.
  • a target film layer 60 (shown in Figure 3d) that conforms to the pattern of the mask 50 can be formed. Since the temperature of the transfer substrate 20 when heated is low, the high temperature can be reduced The influence on the mask 50 prevents the mask from being deformed and improves the vapor deposition precision.
  • the mask 50 can use a high precision metal mask (FMM).
  • the mask 50 is positioned above the target substrate 40, and the transfer substrate 20 is positioned above the mask 50. That is, the surface of the transfer substrate 20 on which the intermediate material layer 30 is formed faces downward. In this manner, after the transfer substrate 20 is heated, the particles produced by sublimation of the intermediate material layer 30 are deposited downward. By virtue of the gravity of the mask 50, the mask 50 and the target substrate 40 are more closely attached, so that the influence of the void on the vapor deposition precision is minimized.
  • the temperature of the transfer substrate 20 is low, and the mask 50 and the target substrate 40 are not deformed by high temperature.
  • the lower temperature causes the intermediate material layer 30 on the transfer substrate 20 to evaporate more slowly. Therefore, the time for heating the transfer substrate 20 in step S2 may be long until the desired pattern of the target film layer 60 is formed on the target substrate 40.
  • the evaporation source 10 is a line evaporation source.
  • the transfer substrate 20 is positioned above the evaporation source 10, so that the intermediate material layer 30 caused by the gravity action of the evaporation material can be reduced during the scanning evaporation of the on-line evaporation source. The phenomenon of uneven thickness distribution.
  • the evaporation method according to the present invention further comprises:
  • step S15 Detecting the thickness of the intermediate material layer 30 on the transfer substrate 20, wherein when the thickness of the intermediate material layer 30 reaches a predetermined value, step S2 is performed, and when the thickness of the intermediate material layer 30 does not reach a predetermined value, step S1 is performed. . In this manner, it is ensured that the thickness of the intermediate material layer 30 formed on the transfer substrate 20 is sufficient to form a desired film layer on the target substrate. Further, in this manner, it is also possible to prevent material waste caused by forming the excessive intermediate material layer 30 on the transfer substrate 20.
  • the thicknesses of the plurality of locations on the intermediate material layer 30 can be detected.
  • the thicknesses of the plurality of locations all reach a predetermined value and the thicknesses of the plurality of locations are uniform, the thickness of the surface intermediate material layer 30 is relatively uniform.
  • the transfer substrate 20 can be heated, so that the target substrate 40 can be finally shaped.
  • the film thickness is more uniform.
  • the plurality of locations may include at least an intermediate location and two end locations of the intermediate material layer 30. It will be readily understood that when more detection locations are selected on the intermediate material layer 30, it is ensured that the thickness of the intermediate material layer 30 is more uniform.
  • the temperature of the transfer substrate 20 when heated is lower than the temperature of the evaporation source 10. Therefore, the rate at which the evaporation source 10 evaporates into the evaporation material particles toward the transfer substrate 20 is large, and the rate at which the intermediate material layer on the transfer substrate 20 evaporates the material particles is small.
  • a plurality of transfer substrates 20 may be provided.
  • the intermediate material layer 30 of the same thickness on the plurality of transfer substrates 20 is used in the step S1 by the evaporation source 10. Then, the plurality of transfer substrates 20 are simultaneously heated in step S2, so that the intermediate material layers 30 on the plurality of transfer substrates 20 can be simultaneously vapor-deposited onto the target substrate, thereby improving process efficiency.
  • the vapor deposition device may include an evaporation source 10 and a transfer substrate 20.
  • the evaporation source 10 is for evaporating the vapor deposition material particles onto the transfer substrate 20 to form an intermediate material layer on the surface of the transfer substrate 20; after the transfer substrate 20 is heated, the intermediate material layer 30 can be vaporized to the target substrate 40.
  • the plating in which the area of the surface of the transfer substrate 20 that receives the particles of the evaporation material is larger than the area of the outlet of the evaporation source 10, and the temperature of the transfer substrate 20 after being heated is lower than the temperature of the evaporation source 10. Therefore, when the vapor deposition process is performed by the vapor deposition device, the temperature after the transfer substrate 20 is heated is lower than the temperature of the vapor deposition source 10.
  • the patterned target film layer 60 may be formed on the target substrate using the mask 50.
  • the mask 50 is disposed on the surface of the target substrate 40 where the target film layer is to be formed, so that a target film layer conforming to the pattern shape of the mask 50 can be formed on the target substrate 40. . Since the temperature of the transfer substrate 20 is lower than the temperature of the evaporation source 10, the possibility that the mask 50 is deformed due to high temperature is reduced, and the vapor deposition precision is improved.
  • the mask 50 is located above the target substrate 40, and the transfer substrate 20 is located above the mask 50.
  • the mask 50 and the target substrate 40 can be more closely adhered to each other, thereby improving the vapor deposition precision.
  • the evaporation source 10 is a line evaporation source.
  • the evaporation source 10 evaporates the vapor deposition material particles onto the transfer substrate 20, the transfer substrate 20 is positioned above the evaporation source 10.
  • the evaporation process can be carried out in the process chamber. Under the action of the electrode power of the process chamber, the vapor deposition material particles of the evaporation source can be evaporated upward.
  • the particles of the evaporation material evaporated by the evaporation source 10 are moved from bottom to top, the uneven distribution of the thickness of the intermediate material layer 30 due to the influence of gravity of the vapor deposition material particles during the scanning of the on-line evaporation source can be reduced.
  • the surface of the transfer substrate 20 for forming the intermediate material layer 30 is formed with an anti-shedding layer.
  • the anti-shedding layer may include a plurality of protrusions, and a diameter of the protrusion and a distance between two adjacent protrusions are smaller than 1/100 of a distance between the transfer substrate 20 and the target substrate 40; or
  • the anti-shedding layer includes a plurality of depressions, and the diameter of the depression and the distance between the adjacent two depressions are both less than 1/100 of the distance between the transfer substrate 20 and the target substrate 40.
  • the adhesion of the intermediate material layer 30 on the transfer substrate 20 can be increased, while the protrusions or depressions can allow the material particles on the intermediate material layer 30 to move in a plurality of directions upon sublimation by heat, This helps to achieve large area and uniform coating.
  • the vapor deposition device further includes a detecting mechanism for detecting a thickness of the intermediate material layer on the transfer substrate.
  • a detecting mechanism for detecting a thickness of the intermediate material layer on the transfer substrate.
  • a prompt signal is issued. The operator can judge based on the cue signal that the thickness of the intermediate material layer 30 on the transfer substrate has reached a predetermined value. Then, the operator can stop the evaporation source 10 to evaporate the evaporation material to the transfer substrate 20, and can heat the transfer substrate so that the intermediate material layer 30 is vapor-deposited toward the target substrate.
  • the detecting mechanism detects the thickness of the intermediate material layer, it is possible to separately detect a plurality of positions on the intermediate material layer 30.
  • the thicknesses at the plurality of locations are the same, it indicates that the thickness of the intermediate material layer 30 is relatively uniform.
  • the uniformity of the finally formed film layer on the target substrate 40 can be improved.
  • the plurality of locations may include at least an intermediate location and two end locations of the intermediate material layer 30. It will be readily understood that when more detection locations are selected on the intermediate material layer 30, it is ensured that the thickness of the intermediate material layer 30 is more uniform.
  • the detecting mechanism can also be applied to the target film layer formed on the target substrate.
  • the thickness is detected to determine whether the target film layer finally formed on the target substrate reaches the desired thickness.
  • a plurality of transfer substrates 20 may be provided.
  • the intermediate material layer 30 of the same thickness on the plurality of transfer substrates 20 is utilized by the evaporation source 10. Then, the plurality of transfer substrates 20 are simultaneously heated, so that the intermediate material layers 30 on the plurality of transfer substrates 20 can be simultaneously vapor-deposited onto the target substrate, thereby improving process efficiency.
  • the vapor deposition method and the vapor deposition apparatus provided by the present invention. It can be seen that when the target film layer is formed by vapor deposition on the target substrate by the evaporation source, the vapor deposition material is first evaporated onto the transfer substrate by the evaporation source. The transfer substrate is further heated so that the intermediate material layer is vapor-deposited toward the target substrate. According to the present invention, since the temperature after the transfer substrate is heated is lower than the temperature of the evaporation source, even if the temperature of the evaporation source is high, the target substrate is not directly affected, and the vapor deposition precision can be improved.
  • the intermediate material layer sublimates at a slower speed and does not affect the evaporation. effectiveness.
  • the distance between the evaporation source and the transfer substrate and the distance between the transfer substrate and the target substrate are small, thereby improving the evaporation material under the premise of ensuring the vapor deposition precision. Utilization rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种蒸镀方法,包括:蒸发源(10)朝向一个或多个转印基板(20)蒸发出蒸镀材料颗粒,以在转印基板(20)的表面形成中间材料层(30),其中,一个或多个转印基板(20)的接收蒸镀材料颗粒的表面的面积大于蒸发源(10)的出口的面积;对一个或多个转印基板(20)进行加热,使得转印基板(20)上的中间材料层(30)朝向目标基板(40)进行蒸镀,其中,被加热后的转印基板(20)的温度低于蒸发源(10)的温度。还提供了一种蒸镀装置。

Description

蒸镀方法和蒸镀装置 技术领域
本发明涉及显示器件的制造领域,具体涉及一种蒸镀方法和一种蒸镀装置。
背景技术
有机电致发光器件(Organic Light Emitting Diode,OLED)具有响应速度快、色彩绚丽、温度特性好、宽视角、低功耗等诸多优点。因此,有机电致发光器件受到了日益广泛的关注。
OLED显示器件包括有机材料层。目前,制造有机材料层的主流技术是采用线源蒸镀扫描的方法。如图1a和图1b示出了现有技术中进行蒸镀扫描的示意图。通常,蒸镀源的温度较高,以使得蒸镀材料能够以较快的速度朝向基板蒸镀。但是高温会使得掩膜板50和目标基板40产生一定的形变,从而导致蒸镀精度降低。在对高精度金属掩膜板(Fine Metal Mask,FMM)进行蒸镀时,由于线源热量对FMM蒸镀精度的影响,在操作中必须增加线源与器件基板之间的距离,从而造成蒸镀材料利用率下降。另外,为了使通过线源蒸镀扫描方法形成在目标基板上的目标膜层60的厚度更加均匀,通常将蒸发源10设置在目标基板40和掩膜板50的下方,并且从下方对目标基板进行蒸镀。但是由于掩膜板的重力较大,会导致目标基板40中部附近位置与掩膜板50之间产生较大的间隙,从而影响蒸镀精度。
发明内容
本发明的目的在于提供一种蒸镀方法和一种蒸镀装置,从而提高蒸镀精度。
为了实现上述目的,本发明提供一种蒸镀方法,包括:
蒸发源朝向一个或多个转印基板蒸发出蒸镀材料颗粒,以在所述转印基板的表面形成中间材料层,其中,所述一个或多个转印基板的接收所述蒸镀材料颗粒的表面的面积大于所述蒸发源的出口的面 积;
对所述一个或多个转印基板进行加热,使得所述转印基板上的中间材料层朝向目标基板进行蒸镀,其中,被加热后的转印基板的温度低于所述蒸发源的温度。
优选地,所述蒸发源与所述转印基板之间的距离以及所述转印基板与所述目标基板之间的距离均小于预设距离。
优选地,所述预设距离在200mm~600mm之间。
优选地,所述转印基板与所述目标基板之间的距离和所述蒸发源与所述转印基板之间的距离的比值在1/3~1/10的范围内。
优选地,所述蒸发源与所述转印基板之间的距离在100mm~200mm的范围内。
优选地,在对所述转印基板进行加热的步骤中,所述目标基板的待形成目标膜层的表面设置有掩膜板。
优选地,所述掩膜板位于所述目标基板上方,所述转印基板位于所述掩膜板的上方。
优选地,所述蒸发源为线蒸发源,并且在所述蒸发源朝向转印基板蒸发出蒸镀材料颗粒的步骤中,所述转印基板位于所述蒸发源的上方。
优选地,所述蒸发源朝向转印基板蒸发出蒸镀材料颗粒以在所述转印基板的表面形成中间材料层的步骤之后,所述方法还包括:
检测所述转印基板上的中间材料层的厚度,其中,当所述中间材料层的厚度达到预定值时,执行对所述转印基板进行加热的步骤;而当所述中间材料层的厚度未达到预定值时,执行所述蒸发源朝向转印基板蒸发出蒸镀材料颗粒的步骤。
相应地,本发明还一种蒸镀装置,包括:蒸发源和一个或多个转印基板;所述蒸发源用于向所述一个或多个转印基板蒸发出蒸镀材料颗粒,以在所述转印基板的表面形成中间材料层;在所述一个或多个转印基板被加热后,所述中间材料层能够向目标基板进行蒸镀,其中,
所述一个或多个转印基板的接收所述蒸镀材料颗粒的表面的面 积大于所述蒸发源的出口的面积。
优选地,所述转印基板的用于形成中间材料层的表面形成有防脱落层,所述防脱落层包括多个凸起,所述凸起的直径以及相邻两个凸起之间的距离均小于所述转印基板与所述目标基板之间的距离的1/100;或者,
所述防脱落层包括多个凹陷,所述凹陷的直径以及相邻两个凹陷之间的距离均小于所述转印基板与所述目标基板之间的距离的1/100。
优选地,所述蒸镀装置还包括检测机构,用于检测所述转印基板上的中间材料层的厚度,并且当所述检测机构测得所述中间材料层的厚度达到预定值时,发出提示信号。
在本发明的实施方式中,在利用蒸发源在目标基板上蒸镀形成目标膜层时,首先利用蒸发源向转印基板蒸发出蒸镀材料,再对转印基板进行加热使得中间材料层朝向目标基板进行蒸镀。根据本发明,由于转印基板被加热后的温度低于蒸发源的温度,因此,即使蒸发源的温度较高,也不会直接对目标基板产生影响,从而可以提高蒸镀精度。同时,由于转印基板的接收所述蒸镀材料颗粒的表面面积大于蒸发源的出口面积,因此,即使转印基板的温度较低,中间材料层升华的速度较慢,也不会影响蒸镀效率。和现有技术相比,在本发明中蒸发源与转印基板之间的距离以及转印基板与目标基板之间的距离都较小,从而在保证蒸镀精度的前提下提高蒸镀材料的利用率。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1a-图1b是示出现有技术中蒸镀过程的示意图;
图2是本发明的实施方式中蒸镀方法的流程图;
图3a-图3d是本发明的实施方式中蒸镀方法各步骤的示意图。
10、蒸发源;20、转印基板;30、中间材料层;40、目标基板; 50、掩膜板;60、目标膜层。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
作为本发明的一方面,提供一种蒸镀方法,如图2所示,该方法包括:
S1、蒸发源10朝向转印基板20蒸发出蒸镀材料颗粒(如图3a所示),以在转印基板20的表面形成中间材料层30(如图3b所示),其中,转印基板20的接收所述蒸镀材料颗粒的表面的面积大于蒸发源10的出口面积;
S2、对转印基板20进行加热,使得转印基板20上的中间材料层30朝向目标基板40进行蒸镀(如图3c所示),其中,被加热后的转印基板20的温度低于蒸发源10的温度。
在本发明中,具体地说,蒸发源10首先朝向转印基板20进行第一次蒸镀,然后再由转印基板上的中间材料层30向目标基板进行第二次蒸镀,其中第二次蒸镀的温度低于第一次蒸镀的温度。因此,即使蒸发源10的温度较高,该高温也不会作用于目标基板。这样,可以减少目标基板或掩膜板由于高温发生的形变,从而提高蒸镀精度。同时,由于转印基板20的接收所述蒸镀材料颗粒的表面面积大于蒸发源的出口面积,即中间材料层30的面积大于线蒸发源的出口面积,因此,即使转印基板的温度较低,中间材料层30升华的速度较慢,也不会影响蒸镀效率。
根据本发明的蒸镀方法尤其适用于有机电致发光显示材料的蒸镀,通过所述蒸镀方法制造有机电致发光显示器件。
为了提高蒸镀过程中蒸镀材料的利用率,在本发明中,蒸发源10与转印基板20之间的距离以及转印基板20与目标基板40之间的距离均小于预设距离。所述“预设距离”可以为:在使用蒸发源10对目标基板40直接进行蒸镀时,能够防止蒸发源10的热量对目标基 板40产生影响而采用的安全距离。
和现有技术中进行一次蒸镀的方法相比,虽然本发明进行了两次蒸镀,但是由于每次蒸镀的蒸镀距离较小,因而可以减少由于蒸镀材料的蒸镀距离过大而造成的材料浪费的现象,提高蒸镀材料的利用率。
具体地,所述预设距离可以在200~600mm之间。
优选地,转印基板20与目标基板40之间的距离和蒸发源10与转印基板20之间的距离的比值在1/3~1/10的范围内。这样,可以保证蒸镀精度的同时,提高蒸镀材料的利用率。
在本发明的优选实施例中,蒸发源10与转印基板20之间的距离在100mm~200mm的范围内。发明人发现:在蒸镀过程中,蒸发材料的利用率与蒸镀距离有关;在相同的蒸镀条件下,蒸镀材料的利用率与蒸镀距离的平方成反比。在实际蒸镀过程中,当蒸发源与目标位置之间的距离为100±10mm时,蒸镀材料的利用率通常可以达到80%~85%;当蒸发源10与目标位置之间的距离在300±10mm时,蒸镀材料的利用率通常可以为15%~20%。可以看出,本发明中蒸镀源10与转印基板20之间的距离和现有技术中的蒸镀距离相比大大减小。因此,在蒸发源10向转印基板20进行第一次蒸镀时,可以利用80%~85%的蒸镀材料;而当使用转印基板20上的中间材料层30对目标基板40进行第二次蒸镀时,蒸镀距离进一步减小,使得在第二次蒸镀时蒸镀材料利用率比在第一次蒸镀时蒸镀材料利用率更高。因此,和现有技术相比,虽然通过两次蒸镀将蒸镀材料蒸镀到目标基板上,但是本发明在两次蒸镀期间的蒸镀距离减小,从而可以提高蒸镀材料利用率,同时可以提高蒸镀精度。
所述蒸镀方法可以适用于在目标基板40上形成整面的目标膜层,也适用于在目标基板40上形成具有一定形状的目标膜层。作为本发明的一种具体实施方式,在对转印基板进行加热的步骤中,如图3c所示,目标基板40的待形成目标膜层60的表面设置有掩膜板50。这样,可以形成与掩膜板50的图形一致的目标膜层60(如图3d所示)。由于转印基板20在被加热时的温度较低,所以可以减小高温 对掩膜板50的影响,防止掩膜板发生形变,提高蒸镀精度。在本发明的优选实施例中,掩膜板50可以使用高精度金属掩膜板(Fine Metal Mask,FMM)。
优选地,在步骤S2中,掩膜板50位于目标基板40上方,转印基板20位于掩膜板50的上方。即,转印基板20的形成有中间材料层30的表面朝下。按照这种方式,在转印基板20被加热之后,中间材料层30升华产生的颗粒向下沉积。借助掩膜板50的重力作用,会使得掩膜板50与目标基板40之间贴合得更加紧密,从而将空隙对蒸镀精度造成影响将至最低。
在本发明的步骤S2中,转印基板20的温度较低,不会使得掩膜板50和目标基板40受高温发生形变。较低的温度使得转印基板20上的中间材料层30蒸发得较慢。因此,在步骤S2中对转印基板20加热的时间可能较长,直至在目标基板40上形成所需要的目标膜层60的图形。
具体地,蒸发源10为线蒸发源。如图3a所示,在步骤S2中,转印基板20位于蒸发源10的上方,从而在线蒸发源的扫描蒸镀的过程中,可以减少因蒸镀材料的重力作用而引起的中间材料层30的厚度分布不均匀的现象。
进一步优选地,如图2所示,在步骤S1之后,根据本发明的蒸镀方法还包括:
S15、检测转印基板20上的中间材料层30的厚度,其中,当中间材料层30的厚度达到预定值时,执行步骤S2,当中间材料层30的厚度未达到预定值时,执行步骤S1。按照这种方式,可以保证形成在转印基板20上的中间材料层30的厚度足够在目标基板上形成所需的膜层。另外,按照这种方式,也可以防止在转印基板20上形成过厚的中间材料层30而造成的材料浪费。
具体地,在检测所述中间材料层30的厚度时,可以检测中间材料层30上的多个位置的厚度。当多个位置的厚度均达到预定值并且多个位置的厚度一致时,则表面中间材料层30的厚度比较均匀。此时,可以对转印基板20进行加热,从而可以使得目标基板40最终形 成的膜层厚度更加均匀。例如,所述多个位置可以至少包括中间材料层30的中间位置和两端位置。容易理解的是,当在所述中间材料层30上选取更多的检测位置时,可以保证所述中间材料层30的厚度更均匀。
如上文中所述,转印基板20在被加热时的温度低于蒸发源10的温度。因此,蒸发源10向转印基板20蒸发成蒸镀材料颗粒的速率较大,而转印基板20上的中间材料层蒸发出材料颗粒的速率较小。
另外,在实际生产中,可以提供多个转印基板20。在步骤S1中利用蒸发源10在多个转印基板20上同一厚度的中间材料层30。然后,在步骤S2中对多个转印基板20同时加热,使得多个转印基板20上的中间材料层30可以同时蒸镀到目标基板上,从而提高工艺效率。
作为本发明的另一方面,还提供了一种蒸镀装置。所述蒸镀装置可以包括:蒸发源10和转印基板20。蒸发源10用于向转印基板20蒸发出蒸镀材料颗粒,以在转印基板20的表面形成中间材料层;在转印基板20被加热后,中间材料层30能够向目标基板40进行蒸镀,其中,转印基板20的接收所述蒸镀材料颗粒的表面的面积大于蒸发源10的出口的面积,并且被加热后的转印基板20的温度低于蒸发源10的温度。因此,当利用该蒸镀装置进行蒸镀工艺时,转印基板20被加热后的温度低于蒸镀源10的温度。
具体地,当利用所述蒸镀装置进行蒸镀工艺时,可以使用掩膜板50在目标基板上形成图形化的目标膜层60。在根据本发明的优选实施例中,掩膜板50设置在目标基板40的待形成目标膜层的表面上,从而能够在目标基板40上形成与掩膜板50的图案形状一致的目标膜层。由于转印基板20的温度低于蒸发源10的温度,从而减少掩膜板50因高温而发生形变的可能性,提高蒸镀精度。
优选地,掩膜板50位于目标基板40的上方,而转印基板20位于掩膜板50的上方。按照这种方式,借助掩膜板50的重力作用,可以使得掩膜板50与目标基板40之间更加紧密地贴合,从而提高蒸镀精度。
在本发明的实施例中,蒸发源10为线蒸发源。当蒸发源10向转印基板20蒸发出蒸镀材料颗粒时,转印基板20位于蒸发源10的上方。可以理解的是,蒸镀过程可以在工艺腔室内进行。在工艺腔室的电极功率的作用下,蒸发源的蒸镀材料颗粒可以向上蒸发出。当蒸发源10蒸发出的蒸镀材料颗粒由下至上移动时,可以减少在线蒸发源的扫描过程中由于蒸镀材料颗粒受重力影响而引起的中间材料层30厚度分布不均匀的现象。
进一步地,转印基板20的用于形成中间材料层30的表面形成有防脱落层。所述防脱落层可以包括多个凸起,所述凸起的直径以及相邻两个凸起之间的距离均小于转印基板20与目标基板40之间的距离的1/100;或者,所述防脱落层包括多个凹陷,所述凹陷的直径以及相邻两个凹陷之间的距离均小于转印基板20与目标基板40之间的距离的1/100。按照这种方式,可以增大中间材料层30在转印基板20上的附着力,同时,所述凸起或凹陷可以允许中间材料层30上的材料颗粒在受热升华时朝向多个方向移动,从而有助于实现大面积并均匀地镀膜。
更进一步地,所述蒸镀装置还包括检测机构,用于检测所述转印基板上的中间材料层的厚度。当所述检测机构检测到中间材料层的厚度达到预定值时,发出提示信号。操作人员可以根据该提示信号判断出转印基板上的中间材料层30的厚度已经达到预定值。然后,操作人员可以停止蒸发源10向转印基板20蒸发出蒸镀材料,并且可以对转印基板进行加热,使得中间材料层30向目标基板进行蒸镀。
具体地,在所述检测机构检测中间材料层的厚度时,可以对中间材料层30上的多个位置处分别进行检测。当多个位置处的厚度一致时,则表明中间材料层30的厚度比较均匀。这时,可以对转印基板20进行加热时,从而可以提高目标基板40上的最终形成的膜层的均匀性。例如,所述多个位置可以至少包括中间材料层30的中间位置和两端位置。容易理解的是,当在所述中间材料层30上选取更多的检测位置时,可以保证所述中间材料层30的厚度更均匀。
当然,所述检测机构也可以对目标基板上所形成的目标膜层的 厚度进行检测,从而判断目标基板上最终所形成的目标膜层是否达到所需要的厚度。
另外,在实际生产中,可以提供多个转印基板20。利用蒸发源10在多个转印基板20上同一厚度的中间材料层30。然后,对多个转印基板20同时加热,使得多个转印基板20上的中间材料层30可以同时蒸镀到目标基板上,从而提高工艺效率。
以上为对本发明提供的蒸镀方法和蒸镀装置的描述,可以看出,在利用蒸发源在目标基板上蒸镀形成目标膜层时,首先利用蒸发源向转印基板蒸发出蒸镀材料,再对转印基板进行加热使得中间材料层朝向目标基板进行蒸镀。根据本发明,由于转印基板被加热后的温度低于蒸发源的温度,因此,即使蒸发源的温度较高,也不会直接对目标基板产生影响,从而可以提高蒸镀精度。同时,由于转印基板的接收所述蒸镀材料颗粒的表面面积大于蒸发源的出口面积,因此,即使转印基板的温度较低,中间材料层升华的速度较慢,也不会影响蒸镀效率。和现有技术相比,在本发明中蒸发源与转印基板之间的距离以及转印基板与目标基板之间的距离都较小,从而在保证蒸镀精度的前提下提高蒸镀材料的利用率。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种蒸镀方法,其特征在于,所述方法包括:
    蒸发源朝向一个或多个转印基板蒸发出蒸镀材料颗粒,以在所述转印基板的表面形成中间材料层,其中,所述一个或多个转印基板的接收所述蒸镀材料颗粒的表面的面积大于所述蒸发源的出口的面积;
    对所述一个或多个转印基板进行加热,使得所述转印基板上的中间材料层朝向目标基板进行蒸镀,其中,被加热后的转印基板的温度低于所述蒸发源的温度。
  2. 根据权利要求1所述的蒸镀方法,其特征在于,
    所述蒸发源与所述转印基板之间的距离以及所述转印基板与所述目标基板之间的距离均小于预设距离。
  3. 根据权利要求2所述的蒸镀方法,其特征在于,
    所述预设距离在200mm~600mm之间。
  4. 根据权利要求2所述的蒸镀方法,其特征在于,
    所述转印基板与所述目标基板之间的距离和所述蒸发源与所述转印基板之间的距离的比值在1/3~1/10的范围内。
  5. 根据权利要求1至4中任意一项所述的蒸镀方法,其特征在于,
    所述蒸发源与所述转印基板之间的距离在100mm~200mm的范围内。
  6. 根据权利要求1至4中任意一项所述的蒸镀方法,其特征在于,
    在对所述转印基板进行加热的步骤中,所述目标基板的待形成 目标膜层的表面设置有掩膜板。
  7. 根据权利要求6所述的蒸镀方法,其特征在于,
    所述掩膜板位于所述目标基板上方,所述转印基板位于所述掩膜板的上方。
  8. 根据权利要求1至4中任意一项所述的蒸镀方法,其特征在于,
    所述蒸发源为线蒸发源,并且
    在所述蒸发源朝向转印基板蒸发出蒸镀材料颗粒的步骤中,所述转印基板位于所述蒸发源的上方。
  9. 根据权利要求1至4中任意一项所述的蒸镀方法,其特征在于,
    所述蒸发源朝向转印基板蒸发出蒸镀材料颗粒以在所述转印基板的表面形成中间材料层的步骤之后,所述方法还包括:
    检测所述转印基板上的中间材料层的厚度,其中,当所述中间材料层的厚度达到预定值时,执行对所述转印基板进行加热的步骤;而当所述中间材料层的厚度未达到预定值时,执行所述蒸发源朝向转印基板蒸发出蒸镀材料颗粒的步骤。
  10. 一种蒸镀装置,其特征在于,所述装置包括:蒸发源和一个或多个转印基板;
    所述蒸发源用于向所述一个或多个转印基板蒸发出蒸镀材料颗粒,以在所述转印基板的表面形成中间材料层;并且
    在所述一个或多个转印基板被加热后,所述中间材料层能够向目标基板进行蒸镀,其中,
    所述一个或多个转印基板的接收所述蒸镀材料颗粒的表面的面积大于所述蒸发源的出口的面积。
  11. 根据权利要求8所述的蒸镀装置,其特征在于,
    所述转印基板的用于形成中间材料层的表面形成有防脱落层,所述防脱落层包括多个凸起,所述凸起的直径以及相邻两个凸起之间的距离均小于所述转印基板与所述目标基板之间的距离的1/100;或者,
    所述防脱落层包括多个凹陷,所述凹陷的直径以及相邻两个凹陷之间的距离均小于所述转印基板与所述目标基板之间的距离的1/100。
  12. 根据权利要求10或11所述的蒸镀装置,其特征在于,
    所述蒸镀装置还包括检测机构,用于检测所述转印基板上的中间材料层的厚度,并且
    当所述检测机构测得所述中间材料层的厚度达到预定值时,发出提示信号。
PCT/CN2016/077508 2015-04-15 2016-03-28 蒸镀方法和蒸镀装置 WO2016165553A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/322,790 US10190207B2 (en) 2015-04-15 2016-03-28 Evaporation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510178158.2 2015-04-15
CN201510178158.2A CN104762599A (zh) 2015-04-15 2015-04-15 蒸镀方法和蒸镀装置

Publications (1)

Publication Number Publication Date
WO2016165553A1 true WO2016165553A1 (zh) 2016-10-20

Family

ID=53644682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077508 WO2016165553A1 (zh) 2015-04-15 2016-03-28 蒸镀方法和蒸镀装置

Country Status (3)

Country Link
US (1) US10190207B2 (zh)
CN (1) CN104762599A (zh)
WO (1) WO2016165553A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762599A (zh) * 2015-04-15 2015-07-08 京东方科技集团股份有限公司 蒸镀方法和蒸镀装置
US10658630B2 (en) 2017-11-01 2020-05-19 Boe Technology Group Co., Ltd. Evaporation plate for depositing deposition material on substrate, evaporation apparatus, and method of depositing deposition material on substrate
CN110431251A (zh) * 2017-12-14 2019-11-08 京东方科技集团股份有限公司 用于将沉积材料沉积在受体基板上的供体基板、用于沉积沉积材料的方法、以及制造供体基板的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200628618A (en) * 2004-11-26 2006-08-16 Univ Kyoto Film forming method, deposition source substrate and preparation method thereof
JP2007154283A (ja) * 2005-12-07 2007-06-21 Jfe Steel Kk 成形性および形状凍結性に優れる高強度鋼板
CN102051580A (zh) * 2009-11-05 2011-05-11 日立造船株式会社 蒸镀装置以及蒸镀方法
CN102477538A (zh) * 2010-11-26 2012-05-30 财团法人工业技术研究院 面型蒸镀源及其蒸镀方法与系统
CN104762599A (zh) * 2015-04-15 2015-07-08 京东方科技集团股份有限公司 蒸镀方法和蒸镀装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114088A (en) 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
EP1597407B1 (en) * 2003-02-24 2011-08-31 Tekna Plasma Systems Inc. Process for the manufacture of a sputtering target
JP2007095324A (ja) * 2005-09-27 2007-04-12 Hitachi Displays Ltd 有機el表示パネルの製造方法、及びこの製造方法により製造した有機el表示パネル
JP4449890B2 (ja) * 2005-11-21 2010-04-14 ソニー株式会社 転写用基板および転写方法ならびに表示装置の製造方法
JP2007154253A (ja) 2005-12-05 2007-06-21 Denso Corp 蒸着パターン形成装置及び蒸着パターン形成方法
JP2007173145A (ja) * 2005-12-26 2007-07-05 Sony Corp 転写用基板、転写方法、および有機電界発光素子の製造方法
TWI477195B (zh) * 2007-04-27 2015-03-11 Semiconductor Energy Lab 發光裝置的製造方法
US8153201B2 (en) * 2007-10-23 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light-emitting device, and evaporation donor substrate
JP2010153051A (ja) 2008-12-24 2010-07-08 Sony Corp 転写用基板および表示装置の製造方法
CN102473861A (zh) 2009-11-27 2012-05-23 卡帝瓦公司 使用旋转源来沉积薄膜的方法和设备
JP2013073907A (ja) * 2011-09-29 2013-04-22 Toyota Motor Corp 電極合材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200628618A (en) * 2004-11-26 2006-08-16 Univ Kyoto Film forming method, deposition source substrate and preparation method thereof
JP2007154283A (ja) * 2005-12-07 2007-06-21 Jfe Steel Kk 成形性および形状凍結性に優れる高強度鋼板
CN102051580A (zh) * 2009-11-05 2011-05-11 日立造船株式会社 蒸镀装置以及蒸镀方法
CN102477538A (zh) * 2010-11-26 2012-05-30 财团法人工业技术研究院 面型蒸镀源及其蒸镀方法与系统
CN104762599A (zh) * 2015-04-15 2015-07-08 京东方科技集团股份有限公司 蒸镀方法和蒸镀装置

Also Published As

Publication number Publication date
US20180066351A1 (en) 2018-03-08
US10190207B2 (en) 2019-01-29
CN104762599A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
KR101359066B1 (ko) 진공 증착 방법
US9663853B2 (en) Vacuum vapor deposition apparatus
US8177912B2 (en) Evaporation source and vacuum evaporator using the same
KR20070080635A (ko) 유기물증발 보트
WO2016165553A1 (zh) 蒸镀方法和蒸镀装置
JP2007291506A (ja) 成膜方法
EP3187620B1 (en) Evaporation equipment and evaporation method
WO2017173875A1 (zh) 一种线性蒸发源、蒸发源系统及蒸镀装置
JP5798171B2 (ja) 量産用蒸発装置および方法
KR20160112293A (ko) 증발원 및 이를 포함하는 증착장치
JP2009228091A (ja) 蒸着装置
WO2014198112A1 (zh) 有机镀膜装置及镀膜方法
WO2019148570A1 (zh) 蒸镀设备及蒸镀方法
US20170067144A1 (en) Vacuum evaporation source apparatus and vacuum evaporation equipment
JP2006200040A (ja) 加熱容器支持台及びそれを備えた蒸着装置
JP2011068916A (ja) 成膜方法および成膜装置
JP2004091919A (ja) 薄膜形成装置及び薄膜形成方法
KR20150113742A (ko) 증발원 및 이를 포함하는 증착장치
KR20170071984A (ko) 증착장치
JP3735287B2 (ja) 真空蒸着装置及び真空蒸着方法
KR102188345B1 (ko) 기상 증착 장치 및 기판 처리 방법
KR102666177B1 (ko) 멀티홀 구조의 oled 증착기 소스
KR100804700B1 (ko) 증착 장치
JP2008106310A (ja) 蒸着装置および蒸着方法
WO2020107589A1 (zh) 蒸镀装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15322790

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779528

Country of ref document: EP

Kind code of ref document: A1