WO2016163483A1 - 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス - Google Patents

蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス Download PDF

Info

Publication number
WO2016163483A1
WO2016163483A1 PCT/JP2016/061449 JP2016061449W WO2016163483A1 WO 2016163483 A1 WO2016163483 A1 WO 2016163483A1 JP 2016061449 W JP2016061449 W JP 2016061449W WO 2016163483 A1 WO2016163483 A1 WO 2016163483A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide layer
chromium oxide
steel foil
storage device
hydrated chromium
Prior art date
Application number
PCT/JP2016/061449
Other languages
English (en)
French (fr)
Inventor
雅晴 茨木
能勢 幸一
後藤 靖人
伸生 門脇
海野 裕人
Original Assignee
新日鐵住金株式会社
新日鉄住金マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 新日鉄住金マテリアルズ株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016560030A priority Critical patent/JP6127221B2/ja
Priority to CN201680019246.0A priority patent/CN107534099B/zh
Priority to US15/564,406 priority patent/US10741802B2/en
Publication of WO2016163483A1 publication Critical patent/WO2016163483A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a steel foil for a power storage device container, a container for a power storage device, and a power storage device.
  • Secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lithium ion batteries are widely used in electronic devices and electronic parts, especially mobile phones, notebook personal computers, video cameras, artificial satellites, electric or hybrid vehicles, etc. ing.
  • a secondary battery using a strong alkaline electrolyte such as a nickel-cadmium battery or a nickel-hydrogen battery uses a case made of a nickel-plated cold-rolled steel sheet or a plastic case.
  • non-aqueous electrolyte batteries such as lithium-ion batteries are used in a state where the non-aqueous electrolyte contained in the aluminum pouch is wrapped in a plastic case, nickel-plated steel plate, or stainless steel plate case. Yes.
  • Stainless steel foil is a material that satisfies these required characteristics.
  • the stainless steel foil is a foil obtained by thinning stainless steel to a thickness of 200 ⁇ m or less. Since the tensile strength and Vickers hardness of these metal foils are generally 2 to 10 times higher than that of plastic or aluminum and are high in strength, they are promising as thin-wall materials for secondary battery containers.
  • stainless steel foil is inferior in corrosion resistance in an electrolytic solution, and when used in a battery casing and lead wire, it may be corroded by a nonaqueous electrolytic solution. Therefore, as a measure to cover the weak point of corrosion resistance of the metal foil, an acid-modified polyolefin resin layer having a corrosion-causing substance barrier property was laminated on a chromium-based surface treatment such as trivalent chromium treatment and chromate treatment.
  • a metal foil is disclosed (Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 7-62596
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-357494
  • the present invention has been made in view of the above circumstances, and maintains an adhesive force with a resin layer even in a non-aqueous electrolyte and has good corrosion resistance, a steel foil for a power storage device container, a container for a power storage device, and a power storage device It is an issue to provide.
  • the steel foil for an electricity storage device container of the present invention can be used not only for a container filled with a non-aqueous electrolyte such as a secondary battery and a capacitor, but also for other electronic products.
  • the steel foil for electrical storage device containers may be called "steel foil for containers.”
  • the present invention is as follows. [1] A steel foil, a metal chromium layer laminated on the steel foil, and a hydrated chromium oxide layer laminated on the metal chromium layer are provided. Fe concentration at a depth of 10 nm from the surface of the hydrated chromium oxide layer is less than 10% by mass; In the surface of the hydrated chromium oxide layer, the area ratio occupied by the portion where the arithmetic average roughness Ra within a 1 ⁇ m visual field is 10 nm or more is less than 20%, The steel foil for electrical storage device containers whose arithmetic mean roughness Ra in a 1 micrometer visual field of the site
  • the present invention it is possible to provide a steel foil for an electricity storage device container, an electricity storage device container, and an electricity storage device that maintain good adhesion with a resin layer even in a non-aqueous electrolyte and have good corrosion resistance.
  • FIG. 1A is an SEM photograph of a hydrated chromium oxide layer before cold rolling, and is a photograph at a magnification of 1000 times.
  • FIG. 1B is a SEM photograph of the hydrated chromium oxide layer before cold rolling, and is a photograph at a magnification of 10,000 times.
  • FIG. 2A is a SEM photograph of the hydrated chromium oxide layer of the steel foil C103, which is a photograph at a magnification of 1000 times.
  • FIG. 2B is a SEM photograph of the hydrated chromium oxide layer of the steel foil C103, and is a photograph at a magnification of 10,000 times.
  • FIG. 1A is an SEM photograph of a hydrated chromium oxide layer before cold rolling, and is a photograph at a magnification of 1000 times.
  • FIG. 1B is a SEM photograph of the hydrated chromium oxide layer before cold rolling, and is a photograph at a magnification of 10,000 times.
  • FIG. 3A is a SEM photograph of the hydrated chromium oxide layer of the steel foil 1 and a photograph at a magnification of 1000 times.
  • FIG. 3B is a SEM photograph of the hydrated chromium oxide layer of the steel foil 1 and a photograph at a magnification of 10,000 times.
  • FIG. 4 is a graph showing the results of depth analysis of constituent elements of the hydrated chromium oxide layer before cold rolling.
  • FIG. 5 is a graph showing the results of depth analysis of the constituent elements of the hydrated chromium oxide layer of the steel foil C103.
  • FIG. 6 is a graph showing the results of depth analysis of the constituent elements of the hydrated chromium oxide layer of the steel foil 1.
  • FIG. 7A is an SEM photograph of a hydrated chromium oxide layer of steel foil C105, which is a photograph at a magnification of 1000 times.
  • FIG. 7B is a SEM photograph of the hydrated chromium oxide layer of the steel foil C105, and is a photograph at a magnification of 10,000 times.
  • FIG. 8 is a graph showing the results of depth analysis of the constituent elements of the hydrated chromium oxide layer of the steel foil C105.
  • FIG. 9 is an SEM photograph taken at 100 ⁇ m ⁇ 90 ⁇ m (1070 ⁇ 963 pixels) from the SEM photograph (magnification 1000 times) of the hydrated chromium oxide layer of the steel foil C103 shown in FIG. 2A.
  • FIG. 9 is an SEM photograph taken at 100 ⁇ m ⁇ 90 ⁇ m (1070 ⁇ 963 pixels) from the SEM photograph (magnification 1000 times) of the hydrated chromium oxide layer of the steel foil C103 shown in FIG. 2A.
  • FIG. 10 is a graph showing a histogram with respect to luminance in the SEM photograph of FIG.
  • FIG. 11 is a schematic diagram for explaining a method of obtaining the luminance threshold values of the consolidated part and the non-consolidated part from the enlarged view of the histogram shown in FIG.
  • FIG. 12 is an SEM photograph obtained by binarizing the SEM photograph of FIG. 9 with the luminance threshold values of the consolidated part and the unconsolidated part obtained from the enlarged view of the histogram shown in FIG.
  • FIG. 13 is an SEM photograph taken at 100 ⁇ m ⁇ 90 ⁇ m (1070 ⁇ 963 pixels) from the SEM photograph (magnification 1000 times) of the hydrated chromium oxide layer of the steel foil 1 shown in FIG. 3A.
  • FIG. 11 is a schematic diagram for explaining a method of obtaining the luminance threshold values of the consolidated part and the non-consolidated part from the enlarged view of the histogram shown in FIG.
  • FIG. 12 is an SEM photograph obtained by binar
  • FIG. 14 is a graph showing a histogram with respect to luminance in the SEM photograph of FIG.
  • FIG. 15 is a schematic diagram for explaining a method of obtaining the luminance threshold values of the consolidated part and the non-consolidated part from the enlarged view of the histogram shown in FIG.
  • FIG. 16 is an SEM photograph obtained by binarizing the SEM photograph of FIG. 9 with the luminance threshold values of the consolidated part and the unconsolidated part obtained from the enlarged view of the histogram shown in FIG.
  • FIG. 17 is a schematic diagram showing the surface properties of a steel sheet before cold rolling in which a metal chromium layer and a hydrated chromium oxide layer are laminated.
  • FIG. 18 is an AFM (Atomic Force Microscope) photograph showing the surface of the hydrated chromium oxide layer before cold rolling and having a 1 ⁇ m field on one side.
  • FIG. 19 is a schematic diagram for explaining the state of the metal chromium layer and the hydrated chromium oxide layer when the steel plate in which the metal chromium layer and the hydrated chromium oxide layer are laminated is cold-rolled under normal conditions. is there.
  • FIG. 20 is a schematic view showing a state in which a polyolefin resin layer is laminated on a hydrated chromium oxide layer of a container steel foil obtained by cold rolling under normal conditions.
  • FIG. 21 is a schematic diagram for explaining the state of the metal chromium layer and the hydrated chromium oxide layer when the steel plate in which the metal chromium layer and the hydrated chromium oxide layer are laminated is cold-rolled under specific conditions. is there.
  • FIG. 22 is an AFM (Atomic Force Microscope) photograph showing a surface of a hydrated chromium oxide layer after cold rolling under a specific condition and having a side of 1 ⁇ m.
  • FIG. 23 is a schematic view showing a state in which a polyolefin resin layer is laminated on a hydrated chromium oxide layer of a container steel foil obtained by cold rolling under specific conditions.
  • the steel foil for power storage device containers constituting the power storage device container is generally one in which a chromium-based surface treatment layer is formed on the surface of the steel foil and a polyolefin resin layer is further laminated.
  • the chromium-based surface treatment layer is a surface treatment layer formed by a chromium-based surface treatment such as trivalent chromium treatment or chromate treatment.
  • the container for the electricity storage device is always exposed to the non-aqueous electrolyte provided in the electricity storage device.
  • the non-aqueous electrolyte contains an organic solvent and a lithium salt, and the organic solvent or the lithium salt may be decomposed by long-term use to generate a corrosion-causing substance such as an acid.
  • a corrosion-causing substance such as an acid.
  • hydrofluoric acid may be generated as a corrosion-causing substance.
  • the corrosion-causing substance is generated in the organic solvent, the metal substrate is attacked, and the polyolefin resin layer may be peeled off.
  • a process of forming a chromium-based surface treatment layer on the surface of the steel foil is required, and the manufacturing process may be complicated.
  • the polyolefin resin layer is formed on the hydrated chromium oxide layer and then processed into the shape of the electricity storage device container, the polyolefin layer is easily damaged, and the hydrated chromium oxide layer itself is easily damaged. There is a possibility of reducing the corrosion resistance to the liquid.
  • a steel plate (hereinafter also referred to as “surface-treated steel plate”) in which a metal chromium layer and a hydrated chromium oxide layer are laminated, and the tension applied in the rolling direction of the steel plate.
  • This surface-treated steel sheet is cold-rolled into a steel foil for containers under conditions where the rolling load is set high from the initial rolling pass, and the adhesion force to the resin layer can be increased even in non-aqueous electrolyte.
  • the present invention succeeded in producing a steel foil for an electricity storage device container that is maintained and excellent in corrosion resistance to a non-aqueous electrolyte, in which a metal chromium layer and a hydrated chromium oxide layer are laminated on a steel foil. Specifically, it is as follows.
  • the surface-treated steel sheet before cold rolling has undulations with large undulations in the C cross section (cross section perpendicular to the rolling direction), and the L cross section (cross section parallel to the rolling direction) has a surface texture with few undulations.
  • SS indicates a surface-treated steel sheet
  • SSA indicates a steel sheet
  • MCL indicates a metal chromium layer
  • HCOL indicates a hydrated chromium oxide layer
  • RD indicates a rolling direction.
  • the surface is rough (for example, the arithmetic average roughness Ra is about 14.7 ⁇ m).
  • FIG. 17 SS indicates a surface-treated steel sheet
  • SSA indicates a steel sheet
  • MCL indicates a metal chromium layer
  • HCOL indicates a hydrated chromium oxide layer
  • RD indicates a rolling direction.
  • the surface is rough (for example, the arithmetic average roughness Ra is about 14.7 ⁇ m).
  • FIG. 18 shows the surface of the hydrated chromium oxide layer before cold rolling, and shows an AFM (atomic force microscope) photograph with one side of 1 ⁇ m field.
  • AFM atomic force microscope
  • the recesses on the surface-treated steel sheet surface shrink in the plate width direction, so that the recess depth becomes deep, and the rolling load in the initial rolling pass is small, so that the recesses are stretched in an unreduced state. That is, in the concave portion on the surface-treated steel sheet surface, the metal chromium layer is stretched in a non-pressed state, so that it is largely cracked and cannot follow the steel sheet (ground iron), and the exposed area of the steel foil on which the steel sheet is rolled increases. Since the hydrated chromium oxide layer is also stretched in a non-pressed state, the hydrated chromium oxide layer is not consolidated and is not filled in the gap between the metal chromium layers (see (2) in FIG. 19).
  • SS indicates a surface-treated steel sheet
  • SSA indicates a steel sheet
  • SSF indicates a steel foil
  • MCL indicates a metal chromium layer
  • HCOL indicates a hydrated chromium oxide layer
  • RO indicates a rolling roll.
  • RD indicates the rolling direction.
  • the metal chromium layer and the hydrated chromium oxide layer are both separated at wide intervals, and the exposed area of the steel foil (ground iron) is also large. Thus, there are many regions where the barrier property is low (that is, rough regions).
  • the polyolefin resin layer is formed on the hydrated chromium oxide layer, the resin adhesion strength per unit area is reduced (see FIG. 20).
  • both the metal chromium layer and the hydrated chromium oxide layer are divided at a wide interval, so that a gap with the resin layer is easily formed, and the amount of the intruding liquid of the non-aqueous electrolyte increases.
  • SF represents a steel foil for containers
  • SSF represents a steel foil
  • MCL represents a metal chromium layer
  • HCOL represents a hydrated chromium oxide layer
  • RL represents a polyolefin resin layer.
  • the surface-treated steel sheet having the above surface properties under the condition that the tension applied in the rolling direction of the steel sheet is relaxed and the rolling load is set higher than the initial rolling pass see (2) in FIG. 21.
  • the surface-treated steel sheet is rolled so as to extend in the sheet width direction due to relaxation of the tension in the rolling direction of the steel sheet.
  • the initial rolling load is large, in combination with the relaxation of the tension in the rolling direction of the steel sheet, shrinkage in the sheet width direction is further suppressed, and the surface-treated steel sheet is rolled so as to extend in the sheet width direction.
  • the surface-treated steel sheet surface having waviness in the sheet width direction is extended so as to spread in the sheet width direction, and the entire metal chromium layer and hydrated chromium oxide layer are rolled, and the rolling force Will be added evenly over the entire surface. That is, in any of the convex and concave portions on the surface-treated steel sheet surface, the metal chrome layer is finely cracked by the rolling and stretching, and follows the steel sheet (ground iron), so that the exposed area of the steel foil on which the steel sheet is rolled becomes small. .
  • the hydrated chromium oxide layer fills the gaps between the finely cracked metal chromium layers by rolling and stretching, and is consolidated by rolling to form a micro smooth surface (see (1) in FIG. 21). In FIG.
  • SS indicates a surface-treated steel sheet
  • SSA indicates a steel sheet
  • SSF indicates a steel foil
  • MCL indicates a metal chromium layer
  • HCOL indicates a hydrated chromium oxide layer
  • RO indicates a rolling roll.
  • RD indicates the rolling direction.
  • FIG. 22 shows the surface of the hydrated chromium oxide layer after cold rolling under specific conditions, and shows an AFM (atomic force microscope) photograph with one side of 1 ⁇ m field of view.
  • AFM atomic force microscope
  • the steel foil for containers obtained by cold rolling under the above specific conditions has many regions in which the hydrated chromium oxide layer is consolidated, fine and dense, and continuously forms a smooth surface. It becomes a state.
  • the metal chromium layer is finely cracked, the hydrated chromium oxide layer is filled in the gap between the metal chromium layers, so there is little exposure of the steel foil (ground iron), and the barrier property and repairability are high. It becomes.
  • the polyolefin resin layer is formed on the hydrated chromium oxide layer, the resin adhesion strength per unit area is increased (see FIG. 23).
  • SF represents a steel foil for containers
  • SSF represents a steel foil
  • MCL represents a metal chromium layer
  • HCOL represents a hydrated chromium oxide layer
  • RL represents a polyolefin resin layer.
  • the inventors of the steel foil for an electricity storage device container in which the metal chromium layer and the hydrated chromium oxide layer are laminated the surface of the hydrated chromium oxide layer is smooth, and the steel foil (ground iron) It has been found that if the steel foil for containers has a low Fe concentration at a depth of 10 nm from the surface of the hydrated chromium oxide layer so that the exposure is reduced, the corrosion resistance to the non-aqueous electrolyte is improved.
  • the steel foil for an electricity storage device container of the present embodiment includes a steel foil, a metal chromium layer laminated on the steel foil, and a hydrated chromium oxide layer laminated on the metal chromium layer, and is hydrated.
  • the total thickness of the steel foil, the metal chromium layer, and the hydrated chromium oxide layer is preferably 100 ⁇ m or less.
  • a polyolefin resin layer may be formed on the hydrated chromium oxide layer.
  • the steel foil for an electricity storage device container of the present embodiment has an Fe concentration at a depth from the surface of the hydrated chromium oxide layer to 10 nm of less than 10% by mass, and therefore can improve the corrosion resistance against the non-aqueous electrolyte. Further, the area ratio occupied by the portion where the arithmetic average roughness Ra in the 1 ⁇ m visual field is 10 nm or more is less than 20%, and the arithmetic average roughness Ra in the 1 ⁇ m visual field is less than 10 nm on the surface of the hydrated chromium oxide layer.
  • Arithmetic average roughness Ra within a 1 ⁇ m visual field of the part is 3 nm or less, and the adhesion to the resin layer can be maintained even in the non-aqueous electrolyte, and the corrosion resistance to the non-aqueous electrolyte can be improved. Also, since the surface roughness is relatively small, when the polyolefin resin layer is formed on the hydrated chromium oxide layer and then processed into the shape of the electricity storage device container, the polyolefin layer is damaged, and the hydrated chromium oxide layer itself Breakage is prevented and the corrosion resistance against the non-aqueous electrolyte can be improved.
  • the consolidated hydrated chromium oxide layer in the steel foil for the electricity storage device container of the present embodiment is in a state where the hydrated chromium oxide is filled in the gap between the finely cracked metal chromium layers by reduction and stretching.
  • the metal chrome layer is laminated.
  • the consolidated hydrated chromium oxide layer is in a state where there are many regions that become smoothed surfaces consolidated by reduction.
  • the consolidated hydrated chromium oxide layer is finely cracked, but the hydrated chromium oxide is filled in the gap between the metal chromium layers, so there is less exposure of the steel foil, barrier properties, and repair The state becomes high.
  • the resin adhesion strength per unit area is increased, and the formation of a smooth surface of the hydrated chromium oxide layer forms a gap with the polyolefin resin layer.
  • the corrosion resistance against the nonaqueous electrolytic solution should be improved.
  • the base material is steel foil.
  • the base material provided with the metal chromium layer and the hydrated chromium oxide layer is rolled without breaking. This is because it was necessary to use a steel plate having a relatively high strength as a base material to obtain a steel foil obtained by rolling the steel plate.
  • the adhesion amount of the metal chromium layer formed on the steel foil is preferably in the range of 30 to 170 mg / m 2 , more preferably in the range of 50 to 170 mg / m 2 , and still more preferably in the range of 85 to 120 mg / m 2 . If the metal chromium layer is less than 30 mg / m 2 , it may be difficult to sufficiently cover the steel foil surface and ensure corrosion resistance against the non-aqueous electrolyte. Moreover, when a metal chromium layer exceeds 170 mg / m ⁇ 2 >, the effect of ensuring favorable corrosion resistance will be saturated, and an economical demerit may generate
  • the hydrated chromium oxide layer is provided on the metal chromium layer.
  • the adhesion amount of the hydrated chromium oxide layer is preferably in the range of 5 to 21 mg / m 2 in terms of chromium, more preferably in the range of 6 to 21 mg / m 2 , and further preferably in the range of 9 to 14 mg / m 2 .
  • the hydrated chromium oxide layer is important for ensuring good adhesion to the polyolefin resin layer when the polyolefin resin layer is formed thereon. When the amount of hydrated chromium oxide is less than 5 mg / m 2 in terms of chromium, the adhesion with the polyolefin resin layer may be lowered, which is not preferable.
  • the amount of hydrated chromium oxide is more than 21 mg / m 2 in terms of chromium, the effect of ensuring good corrosion resistance is saturated and economic disadvantages occur, and the coating becomes thick and the appearance deteriorates. The problem may occur.
  • the presence of the metal chromium layer and the hydrated chromium oxide layer and the measuring method of the stacking order will be described in Examples described later.
  • the distribution of Cr concentration and O concentration is obtained by glow discharge emission analysis while etching from the surface of the steel foil for containers by argon sputtering. Thereby, the presence and stacking order of the metal chromium layer and the hydrated chromium oxide layer can be confirmed.
  • FIG. 6 shows the result of the depth analysis of the structural element of the hydrated chromium oxide layer of the steel foil 1.
  • FIG. 6 shows the result of the depth analysis of the structural element of the hydrated chromium oxide layer of the steel foil 1.
  • the Cr concentration reaches a peak at a depth of about 25 nm from the surface.
  • the metallic chromium layer is presumed to be formed near the peak of this Cr concentration.
  • the O concentration gradually decreases from the surface to the peak. Since hydrated chromium oxide is a position where Cr and O exist, it is presumed that it is formed from the surface to the position where the Cr concentration reaches a peak.
  • the boundary between the metal chromium layer and the hydrated chromium oxide layer is not necessarily flat.
  • the Fe concentration at a depth of 10 nm from the surface of the hydrated chromium oxide layer is less than 10% by mass. If the hydrated chromium oxide layer contains a large amount of Fe, Fe becomes a starting point of corrosion, and the corrosion resistance to the non-aqueous electrolyte in the hydrated chromium oxide layer is significantly reduced.
  • the Fe concentration is preferably less than 5% by mass.
  • the area ratio of the portion where the arithmetic average roughness Ra is 10 nm or more on the surface of the hydrated chromium oxide layer is less than 20% with respect to the entire surface of the hydrated chromium oxide layer.
  • the area ratio of the region where the arithmetic average roughness Ra is less than 10 nm accounts for 80% or more of the whole.
  • part from which arithmetic mean roughness Ra is less than 10 nm is 3 nm or less.
  • the arithmetic average roughness Ra of the part where the arithmetic average roughness Ra is less than 10 nm is an average value when a plurality of parts where the arithmetic average roughness Ra is less than 10 nm are measured.
  • the steel foil for an electricity storage device container according to this embodiment has a small area ratio in a region having a large surface roughness and a small surface roughness in a region having a small surface roughness. The damage of the film at the time of laminating and the damage of the hydrated chromium oxide layer itself are suppressed.
  • the area ratio of the part where the arithmetic average roughness Ra is 10 nm or more is preferably less than 15%, more preferably less than 7.5%. And the area ratio of the area
  • the lower limit of the area ratio of the part where the arithmetic average roughness Ra is 10 nm or more is not particularly limited, but is not 0% from a practical viewpoint. Further, the arithmetic average roughness Ra of the portion where the arithmetic average roughness Ra is less than 10 nm is preferably 2.5 or less. On the other hand, the lower limit of the arithmetic average roughness Ra of the portion where the arithmetic average roughness Ra is less than 10 nm is not particularly limited, but is not 0 nm from a practical viewpoint.
  • Arithmetic mean roughness Ra is measured in a 1 ⁇ m visual field.
  • the 1 ⁇ m visual field means a range occupied by a square of 1 ⁇ m in length and width. If the measurement range of the arithmetic surface roughness is larger than this range, it is not preferable because the surface undulation of the hydrated chromium oxide layer may be measured as the surface roughness.
  • Ra the arithmetic average roughness Ra in the 1 ⁇ m field of view
  • Nm nanometer.
  • Ra arithmetic average roughness Ra
  • a probe having a radius of curvature at the micrometer level ( ⁇ m) cannot accurately trace the irregularities at the nm level, and the tip is at the nm level. It is necessary to use a probe having a curvature radius of. Specifically, Ra is measured using a probe whose tip has a radius of curvature of 6 to 15 nm.
  • Ra Ra in a minute region
  • the measuring device has a probe having a tip having a radius of curvature of 6 to 15 nm.
  • a scanning probe microscope Scanning Probe Microscope
  • AFM atomic force microscope
  • the surface irregularities can be expressed as displacement in the Z axis direction perpendicular to the XY plane. That is, with the atomic force microscope, the unevenness of the sample can be measured as a three-dimensional (X, Y, Z) shape. Therefore, in the atomic force microscope, two-dimensional data (XZ plane and YZ plane) is obtained as a cross-sectional profile. Based on this data, the arithmetic average roughness is obtained in accordance with the method defined in JIS B601. What is necessary is just to calculate Ra. At this time, Ra may be calculated by performing data processing using analysis software attached to the atomic force microscope or commercially available analysis software.
  • the obtained measurement data includes noises other than the surface properties of the hydrated chromium oxide layer (for example, shape data due to deflection of the steel foil, macro wrinkles on the surface of the steel foil, etc.). Therefore, this measurement data does not correctly reflect the surface properties of the hydrated chromium oxide layer. Therefore, by removing such noise, it is possible to calculate highly accurate Ra in which the surface properties of the steel foil for containers (hydrated chromium oxide layer) are accurately reflected.
  • a known method may be used as a known method may be used. When Ra is calculated, flattening (flatten) processing or the like is exemplified.
  • a polynomial (about 0th to 3rd order) is fitted to the cross-sectional curve constituting the cross-sectional profile, and the best-fit polynomial is selected. Then, the cross-section curve is flattened by subtracting the best fitting polynomial from the cross-section curve.
  • Ra within a 1 ⁇ m field of view can be measured by measuring the size of the region where Ra is measured by scanning a square region with a side of 1 ⁇ m.
  • the total thickness of the steel foil, the metal chromium layer and the hydrated chromium oxide layer is more preferably 100 ⁇ m or less. This is because a thin container is desired for reducing the size and weight of the battery.
  • the lower limit is not particularly limited, but usually 5 ⁇ m or more is desirable in view of cost or thickness uniformity.
  • polyolefin resin layer examples include a resin layer of low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, cross-linked polyethylene, polypropylene, or a mixture of two or more of these.
  • the polyolefin resin layer may be a single layer or multiple layers.
  • a polyolefin resin layer may be coated with a resin such as polyolefin, polyester, polyamide, or polyimide to form a plurality of layers.
  • the preferred thickness range of the polyolefin resin layer is 0.5 to 200 ⁇ m, more preferably 15 to 100 ⁇ m. Even when a resin such as polyolefin, polyester, polyamide, or polyimide is laminated on the polyolefin resin layer, the total thickness of the laminated layers is preferably 0.5 to 200 ⁇ m, more preferably 15 to 100 ⁇ m. If the total thickness is less than 0.5 ⁇ m, the prevention of permeation of corrosion-causing substances contained in the non-aqueous electrolyte may be insufficient, and if it is greater than 200 ⁇ m, the workability may deteriorate. Inappropriate as a member for use, it may be difficult to achieve economic benefits (costs are expensive).
  • the tensile strength of the steel foil for an electricity storage device container is desirably 600 to 1200 MPa.
  • the tensile strength indicates a value at normal temperature.
  • the steel foil for containers may be deformed when used as a power storage device container due to expansion and contraction of the active material accompanying charge / discharge.
  • the tensile strength of the steel foil for an electricity storage device container exceeds 1200 MPa, it may be difficult to handle the steel foil for a container.
  • the method for manufacturing a steel foil for an electricity storage device container according to the present embodiment includes a step of forming a metal chromium layer and a hydrated chromium oxide layer on a steel plate, and a steel plate (surface-treated steel plate) provided with the metal chromium layer and the hydrated chromium oxide layer. ) Is cold rolled to form a steel foil for containers. By passing through such a process, the steel foil for containers which has a specific form (the steel foil for containers provided with the metal chromium layer and the hydrated chromium oxide layer) can be manufactured. Moreover, the manufacturing method of the steel foil for electrical storage device containers which concerns on this embodiment may also be equipped with the lamination process of a polyolefin resin layer.
  • the steel plate used for manufacturing the steel foil for an electricity storage device container according to the present embodiment is not particularly limited, and any of a hot rolled steel plate, a cold rolled steel plate, and a cold rolled annealed steel plate can be used.
  • a hot rolled steel plate it is often difficult to make a hot-rolled steel sheet into a foil having a thickness of 100 ⁇ m or less by cold rolling, which will be described later, and even if possible, it is inefficient and uneconomical. Therefore, it is preferable to use a cold-rolled steel sheet or a cold-rolled annealed steel sheet for manufacturing the steel foil for an electricity storage device container according to the present embodiment.
  • the component composition of the steel plate is not particularly limited. It is not an indispensable requirement to add a large amount of a specific element to a steel sheet for increasing the strength or improving the corrosion resistance. Although so-called high-strength steel can be applied, it is preferable to use a steel plate having a general component composition from the viewpoint of securing the rollability described later.
  • An example of the component composition is as follows. In addition,% is the mass%.
  • C (C: 0.0001 to 0.1%) C is an element that increases the strength of the steel, but if it is excessively contained, the strength increases excessively and the rollability decreases.
  • the steel foil for an electricity storage device container according to the present embodiment is increased in strength by work hardening with a large cumulative rolling rate. Therefore, considering the ease of rolling, the original steel material is preferably soft. . Therefore, the upper limit of the C content is preferably 0.1%. Although it is not necessary to specify the lower limit of the C content, the lower limit of the C content is preferably set to 0.0001% in consideration of refining costs. The C content is more preferably 0.001% to 0.01%.
  • Si is an element that increases the strength of the steel. However, if excessively contained, the strength of the steel increases excessively, and the rollability of the steel decreases. Therefore, the upper limit of the Si content is preferably 0.5%. Although the minimum of Si content is not prescribed
  • Mn 0.01 to 1%) Mn is an element that increases the strength of the steel. However, if excessively contained, the strength of the steel increases excessively and the rollability decreases. Therefore, the upper limit of the Mn content is preferably 1%. Although it is not necessary to specify the lower limit of the Mn content, it is preferable to set the lower limit of the Mn content to 0.01% in consideration of scouring costs. In order to ensure higher rollability, the Mn content is more preferably 0.01 to 0.5%.
  • P is an element that increases the strength of the steel, but if it is excessively contained, the strength of the steel increases excessively and the rollability decreases. Therefore, the upper limit of the P content is preferably 0.05%. Although it is not necessary to specify the lower limit of the P content, it is preferable that the lower limit of the P content is 0.001% in consideration of the scouring cost. In order to ensure higher rollability, the P content is more preferably 0.001 to 0.02%.
  • the upper limit of the S content is preferably 0.02%.
  • the lower limit of the S content is 0.0001% in consideration of the scouring cost. In order to ensure higher rollability and to obtain superiority in terms of cost, the S content is more preferably 0.001 to 0.01%.
  • Al 0.0005-0.2%
  • Al is added as a deoxidizing element for steel.
  • the upper limit of the Al content is preferably 0.2%.
  • the Al content is more preferably 0.001 to 0.1%.
  • the upper limit of the N content is preferably 0.1%.
  • the lower limit of the N content is preferably set to 0.0001% in consideration of the refining cost.
  • the N content is more preferably 0.0001 to 0.004%, and further preferably 0.001 to 0.01%.
  • the steel plate for producing the steel foil for an electricity storage device container according to the present embodiment may further contain Ti and / or Nb as an additional component.
  • Ti and / or Nb can fix C and N in the steel as carbides and nitrides to improve the workability of the steel.
  • the Ti content is 0.01 to 0.8% and the Nb content is 0.005 to 0.05%.
  • the steel plate for producing the steel foil for an electricity storage device container according to the present embodiment further includes one or more elements such as B, Cu, Ni, Sn, and Cr as additional components. You may contain in the range which does not impair the effect of.
  • a metal chromium layer is formed on the steel plate surface by a chromium plating process, and then a hydrated chromium oxide layer is formed on the metal chromium layer by an electrolytic chromic acid treatment process.
  • a metal chromium layer is formed on the surface of the steel sheet by performing cathodic electrolysis in an aqueous solution containing chromic acid as a main component.
  • the electrolytic chromic acid treatment step the steel sheet is subjected to electrolytic chromic acid treatment in a non-sulfuric acid aqueous solution mainly containing one or more of chromic acid, chromate and dichromate.
  • the composition of the chromium plating bath is preferably a bath containing 0.75 to 2 mol / l chromic anhydride, 0.05 to 0.4 mol / l halide, 0.01 to 0.1 mol / l sulfuric acid, and Cr 3+.
  • the electrolytic chromic acid treatment is preferably performed using a bath containing 0.1 to 2 mol / l of chromic anhydride and an inorganic salt or a water-soluble salt thereof.
  • the adhesion amount of the metal chromium layer applied to the steel sheet in the chromium plating step is in the range of 60 to 200 mg / m 2 , more preferably in the range of 100 to 140 mg / m 2 .
  • the metal chromium layer on the steel sheet is less than 60 mg / m 2 , when the surface-treated steel sheet is cold-rolled into a steel foil for containers, the surface of the steel foil cannot be sufficiently covered with the metal chromium layer, and non-water It may be difficult to ensure corrosion resistance to the electrolytic solution. If the metal chromium layer on the steel plate exceeds 200 mg / m 2 , the effect of ensuring good corrosion resistance is saturated and economic demerits may occur.
  • the adhesion amount of the hydrated chromium oxide layer applied to the steel sheet in the electrolytic chromic acid treatment step is in the range of 7 to 25 mg / m 2 , more preferably in the range of 10 to 16 mg / m 2 . If the hydrated chromium oxide layer on the steel sheet is less than 7 mg / m 2 , the adhesion amount of the hydrated chromium oxide layer after cold rolling the surface-treated steel sheet into a container steel foil may be 6 mg / m 2 or more. It may not be possible. In addition, if the hydrated chromium oxide layer on the steel sheet exceeds 25 mg / m 2 , the effect of ensuring good corrosion resistance is saturated and economical disadvantages occur, and the film becomes thick and the appearance deteriorates. May occur.
  • a steel sheet (surface-treated steel sheet) provided with a metal chromium layer and a hydrated chromium oxide layer is cold-rolled to form a foil strip having a thickness of 100 ⁇ m or less.
  • the Fe concentration at a depth of 10 nm from the surface of the hydrated chromium oxide layer is less than 10% by mass, and the arithmetic average roughness Ra is 10 nm or more on the surface of the hydrated chromium oxide layer. Is an area ratio of less than 20%, and the surface of the hydrated chromium oxide layer has an arithmetic average roughness Ra of less than 10 nm in the 1 ⁇ m visual field. Is obtained.
  • the cumulative rolling rate of cold rolling is 15% or more and 80% or less, preferably 15% or more and 30% or less, and more preferably 17% or more and 25% or less.
  • the cumulative rolling rate is a percentage of the cumulative reduction amount (the difference between the inlet plate thickness before the first pass and the outlet plate thickness after the final pass) with respect to the inlet plate thickness of the first rolling stand. If the cumulative rolling rate is small, the foil strength may be less than 600 MPa.
  • the consolidation of the hydrated chromium oxide layer is insufficient, and the polyolefin layer and the hydrated chromium oxide layer themselves are likely to be damaged when processed into the shape of the electricity storage device container, thereby reducing the corrosion resistance against the non-aqueous electrolyte. there is a possibility.
  • the Fe concentration at a depth of 10 nm from the surface of the hydrated chromium oxide layer may be 10% by mass or more.
  • the cold rolling is preferably carried out a plurality of rolling passes, specifically about 5 to 30 passes, more preferably about 5 to 25 passes, and further preferably about 10 to 20 passes.
  • the rolling load per rolling pass is preferably in the range of about 50 to 60 tons with respect to the material width of about 500 mm.
  • the load in the first half of the rolling pass is reduced and the rolling load is gradually increased when work hardening has progressed. It is preferable to perform a plurality of rolling operations continuously with the load applied.
  • a tension of about 29.4 to 49 MPa (3 to 5 kg / mm 2 ) is applied in the rolling direction (longitudinal direction) of the steel sheet.
  • the tension is 9.8 to 19.6 MPa. It is preferable to apply a weak tension of about (1 to 2 kg / mm 2 ).
  • a steel foil for a power storage device container is manufactured by cold rolling a steel plate (surface-treated steel plate) on which a metal chromium layer and a hydrated chromium oxide layer are formed under the above conditions.
  • a steel plate surface-treated steel plate
  • the steel sheet extends in the rolling direction and contracts in the sheet width direction.
  • the portion of the surface of the steel plate that has undulations in the plate width direction is greatly cracked because the metal chrome layer is stretched in a non-pressed state, and cannot follow the steel plate (ground iron), and the steel plate is rolled.
  • the exposed area of the steel foil increases.
  • the hydrated chromium oxide layer is also stretched in a non-pressed state, the hydrated chromium oxide layer is not consolidated and is divided without being filled in the gap between the metal chromium layers.
  • the portion where Fe is exposed on the surface increases, the surface properties of the hydrated chromium oxide layer also deteriorate (Ra increases to a value of 3 nm or more), and the resistance to the electrolytic solution decreases.
  • the tension in the rolling direction at the time of rolling is relaxed, and the steel plate surface having waviness in the plate width direction is rolled in the plate width direction by rolling the steel plate so as to extend in the plate width direction.
  • the metal chromium layer and the hydrated chromium oxide layer are rolled as a result of spreading so that the rolling force is evenly applied to the entire surface.
  • the rolling load is relatively small in the initial rolling pass, and the rolling load is gradually increased when work hardening has progressed, whereas in the present embodiment, a relatively high rolling load is initially set. Apply.
  • the crushing in the sheet width direction acts from the first rolling pass, combined with the low tension, the shrinkage in the sheet width direction is suppressed, and the sheet width direction has undulations.
  • the steel plate surface is extended so as to spread in the plate width direction, and the entire metal chromium layer and hydrated chromium oxide layer are rolled, so that the rolling force is evenly applied to the entire surface.
  • the Fe concentration at a depth of 10 nm from the surface of the hydrated chromium oxide layer is reduced. it can.
  • the area ratio occupied by the portion where the arithmetic average roughness Ra on the surface of the hydrated chromium oxide layer is 10 nm or more, and the arithmetic operation of the portion where the arithmetic average roughness Ra on the surface of the hydrated chromium oxide layer is less than 10 nm
  • the average roughness Ra can be reduced.
  • the surface-treated steel sheet under the above rolling conditions the surface is crushed and the arithmetic average roughness Ra is lowered, and the hydrated chromium oxide layer is consolidated and solidified.
  • the damage of the resin layer at the time of laminating the polyolefin resin layer and the damage of the hydrated chromium oxide layer itself are suppressed, and the electrolytic solution performance is improved.
  • the area ratio occupied by the area where the arithmetic average roughness Ra in the 1 ⁇ m visual field is 10 nm or more is less than 20%, and the arithmetic average roughness Ra in the 1 ⁇ m visual field is less than 10 nm. Since the arithmetic average roughness Ra in the 1 ⁇ m visual field of the part becomes 3 nm or less, the arithmetic average roughness Ra is reduced as a whole, and the electrolytic solution performance is improved.
  • a steel foil for a power storage device container similar to the present embodiment by forming a metal chromium layer and a hydrated chromium oxide layer on the steel foil, but such a steel foil for a power storage device container is rolled. Since the hydrated chromium oxide layer has not undergone the process, the area ratio occupied by the arithmetic average roughness Ra in the 1 ⁇ m visual field is less than 20% and the arithmetic average roughness Ra in the 1 ⁇ m visual field is less than 10 nm. The arithmetic average roughness Ra in the 1 ⁇ m visual field of the part to become does not satisfy 3 nm or less, and the hydrated chromium oxide layer does not become strong.
  • a polyolefin resin layer is formed on the hydrated chromium oxide layer of the steel foil for an electricity storage device container after cold rolling.
  • the polyolefin resin layer may be laminated by a heat laminating method.
  • the steel foil for an electricity storage device container thus manufactured is further processed into a container for an electricity storage device through press molding or the like.
  • an electrical storage device is manufactured by inserting an electrode in the container for electrical storage devices and injecting organic electrolyte solution.
  • a lithium ion secondary battery can be manufactured by using a positive electrode and a negative electrode capable of occluding and releasing lithium ions as electrodes and using an organic electrolyte containing a lithium salt as the organic electrolyte.
  • a capacitor can be manufactured by a combination of an electrode made of activated carbon and an organic electrolyte.
  • the conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Step foils 1 to 12 and steel foils C103 to C106 A cold-rolled steel sheet having a thickness of 120 ⁇ m and 140 ⁇ m having the composition shown in Table 1 was subjected to degreasing and pickling, followed by plating and electrolytic chromic acid treatment to form a metal chromium layer having an adhesion amount of 60 to 140 mg / m 2. After the formation, a surface-treated steel sheet on which a hydrated chromium oxide layer having an adhesion amount of 7 to 25 mg / m 2 in terms of chromium amount was formed was produced.
  • the surface-treated steel sheet was cold-rolled under the conditions shown in Table 2 to produce steel foils 1 to 12 and steel foils C103 to C106 each having a metal chromium layer and a hydrated chromium oxide layer on the steel foil.
  • tension indicates the tension applied in the rolling direction during cold rolling.
  • the numerical value on the left indicates a value in “MPa”
  • the numerical value on the right indicates a value in “kg / mm 2 ”.
  • Step foil C101 A steel foil C101 was produced in the same manner as the steel foil 1 except that the hydrated chromium oxide layer was not formed on the cold rolled steel sheet.
  • Step foil C102 A steel foil C102 was produced in the same manner as the steel foil 1 except that no metal chromium layer was formed on the cold-rolled steel sheet.
  • Step foil C107 A steel foil C107 was produced in the same manner as the steel foil 1 except that the surface-treated steel sheet was not cold-rolled.
  • Table 2 shows the types of cold-rolled steel sheets, the total thickness of surface-treated steel sheets, the amount of chromium layer deposited, the amount of hydrated chromium oxide layer deposited, cold rolling in steel foils 1 to 12 and steel foils C101 to C107.
  • the conditions, the total thickness of the steel foil, the adhesion amount of the chromium layer after rolling, and the adhesion amount of the hydrated chromium oxide layer after rolling are shown.
  • Table 3 also shows the average value of Fe concentration at the depth from the surface (0 nm) to 10 nm of the hydrated chromium oxide layer (hereinafter also referred to as “average Fe concentration at 10 nm depth”), the surface of the hydrated chromium oxide layer.
  • the area ratio occupied by the part where the arithmetic average roughness Ra in the 1 ⁇ m field of view is 10 nm or more (hereinafter also referred to as “area ratio occupied by the part where Ra is 10 nm or more”), 1 ⁇ m within the 1 ⁇ m field on the surface of the hydrated chromium oxide layer
  • the arithmetic average roughness Ra of the part where the arithmetic average roughness Ra in the visual field is less than 10 nm hereinafter also referred to as “Ra of the part where Ra is less than 10 nm”
  • the measured values in Tables 2 and 3 were measured according to the following measuring methods.
  • Quantification was performed by the following method using a fluorescent X-ray analyzer. First, chromium was counted by the fluorescent X-ray method to measure the total amount of Cr. A total of 9 points were used as the measured samples while cutting out the central portion and both end portions in the width direction and changing the position of the manufactured steel foil in the longitudinal direction. Next, the sample was immersed in a 7.5 normal sodium hydroxide solution at 90 to 100 ° C. for 5 minutes to remove the hydrated chromium oxide layer, and then the chromium count was measured by the fluorescent X-ray method.
  • the amount of chromium was measured by a calibration curve, and the amount of hydrated chromium oxide layer deposited in terms of chromium amount was obtained.
  • the metal chromium layer is completely removed by polishing or dipping in about 20% hot sulfuric acid solution, and then the chromium count of the iron is measured. From the difference from the chrome count, the amount of metal chromium layer deposited was determined by a calibration curve.
  • the Fe concentration was analyzed by glow discharge emission analysis.
  • the average Fe concentration in the range of 10 nm from the surface was determined.
  • the analyzed positions were three in total, taking three places, the central part and both end parts in the width direction, and changing the position in the longitudinal direction of the manufactured steel foil.
  • the glow discharge emission spectroscopic analysis was performed in a discharge range of 4 mm ⁇ using a GD-PROFILER 2 manufactured by HORIBA, Ltd. under a discharge condition of argon (Ar) pressure 600 Pa and 35 W constant power normal mode.
  • the secondary electron image has a high roughness, high undulation surface bright, and a low roughness, low undulation surface looks dark. For example, at a magnification of 1000 times, the contrast is sufficient in the range of luminance within the field of view. When the compaction surface and the non-consolidation surface are mixed in the visual field, the compaction surface is dark (blackish) and the non-consolidation surface is bright (whiter).
  • Pt deposition of 5 nm or more is performed by fixing it on an aluminum sample stand or the like with carbon tape, and after sufficient energization, SEM observation is performed, and a secondary electron image at a magnification of 1000 is stored as a digital image file.
  • focusing is performed at a high magnification of 10000 times or more, and a digital image is acquired with an accuracy that the square area is 90 to 110 ⁇ m on a side at 1000 times and the square area is 900 to 1100 pixels on a side.
  • Grayscale BMP file At this time, a higher-definition gradation and the number of pixels may be acquired, and the gradation and the number of pixels may be compressed to the specified range by an average method without arbitrary deterioration by image processing software or the like. .
  • FIG. 9 shows an SEM photograph taken at 100 ⁇ m ⁇ 90 ⁇ m (1070 ⁇ 963 pixels) from the SEM photograph (magnification 1000 times) of the hydrated chromium oxide layer of the steel foil C103 shown in FIG. 2A.
  • FIG. 13 shows an SEM photograph taken at 100 ⁇ m ⁇ 90 ⁇ m (1070 ⁇ 963 pixels) from the SEM photograph (magnification 1000 times) of the hydrated chromium oxide layer of the steel foil 1 shown in FIG. 3A.
  • each point in the SEM photograph is one of 256-tone values from 0 to 255, with 0 being completely black and 255 being completely white.
  • this file is subjected to a filtering process that averages 3 to 9 pixel points around the front, back, left and right at each pixel point. Remove such noise.
  • the maximum luminance value is high gradation of 200 to 253 and the minimum luminance value is 5 to 100 in the data after the above-mentioned noise removal. Low tone.
  • the brightness and contrast are set so that the maximum luminance and the minimum luminance are within the above-mentioned range. Need to be adjusted. If the maximum and minimum brightness values do not fall within this gradation, adjust the gain and contrast of the first secondary electron image acquisition, and adjust the image so that the maximum and minimum brightness values are in the above-mentioned range. To create an image file.
  • FIG. 10 is a diagram showing a histogram with respect to luminance in the SEM photograph of FIG.
  • FIG. 14 is a diagram showing a histogram with respect to luminance in the SEM photograph of FIG.
  • the luminance at the boundary between the non-consolidated portion and the consolidated portion is set as a threshold value, and a binarized diagram is created at the top and bottom. What is necessary is just to count the number of pixels.
  • the threshold value is the value of the bottom of the peak of the compacted portion
  • the luminance is a luminance that intersects the slope of the peak of the consolidated portion on the high luminance side linearly extending to the luminance axis.
  • FIG. 11 is a schematic diagram for explaining a method of obtaining the luminance threshold values of the consolidated part and the non-consolidated part from the enlarged view of the histogram shown in FIG.
  • FIG. 15 is a schematic diagram for explaining a method of obtaining the luminance threshold values of the consolidated part and the non-consolidated part from the enlarged view of the histogram shown in FIG.
  • FIG. 12 shows an SEM photograph obtained by binarizing the SEM photograph of FIG. 9 with the luminance threshold values of the consolidated part and the non-consolidated part obtained from the enlarged view of the histogram shown in FIG.
  • the area ratio of the non-consolidated region (white region) is calculated to be 21.9%.
  • FIG. 16 shows an SEM photograph obtained by binarizing the SEM photograph of FIG. 13 with the luminance threshold values of the consolidated part and the unconsolidated part obtained from the enlarged view of the histogram shown in FIG.
  • the area ratio of the non-consolidated region (white region) is calculated to be 5.6%.
  • the Ra in the 1 ⁇ m field of view is 10 nm or less on the consolidated surface
  • the Ra in the 1 ⁇ m field of view is 10 nm or more on the non-consolidated surface is a non-consolidated region (white region) other than the effective consolidated region.
  • On the processed SEM photograph displayed as: 1 ⁇ m or more away from the boundary between the consolidated surface and the unconsolidated surface from the black region for the consolidated surface and from the white region for the unconsolidated surface, respectively. It was confirmed by measuring with an AFM (atomic force microscope) at a certain position.
  • the area ratio of the manufactured steel foil 1 to steel foil 12 and steel foil C101 to steel foil C107 was measured by the portion having Ra of 10 nm or more.
  • Ra at a site where Ra is less than 10 nm was measured by AFM measurement in five different black areas on the SEM photograph, and obtained as an average value. For the different black areas, five large areas in the photograph were selected in order.
  • Ra of the manufactured steel foil 1 to steel foil 12 and steel foil C101 to steel foil C106 was measured at a site where Ra was less than 10 nm.
  • Ra in the 1 ⁇ m field of view is measured by AFM measurement at 10 or more points where there are no flaws or foreign objects at equal intervals from any place of the sample as much as possible. The ratio is determined with the surface of less than 10 nm as the consolidated surface.
  • Ra measurement method by atomic force microscope For measurement of Ra by an atomic force microscope (AFM), an atomic force microscope (Nanoscope 5 manufactured by Bruker AXS) was used.
  • the cantilever used was MPP11100 made by the same company, and the radius of curvature of the tip of the probe was 8 nm.
  • the non-consolidated surface having an arithmetic surface roughness Ra of 10 nm or more the center of the region that appears white (high brightness) is selected on the SEM photograph, and the compact surface having an arithmetic surface roughness Ra of less than 10 nm appears black on the SEM photograph ( The center of the area (low brightness) was selected.
  • the area measurement was repeated 5 times. That is, the measurement was performed for each of five regions of an arbitrary consolidated surface or non-consolidated surface on the steel foil for containers. Note that, using the software attached to the atomic force microscope, the measurement data of the five regions obtained were subjected to a flattening process to calculate the arithmetic average roughness Ra in each region. The average value of Ra in each obtained region was defined as the arithmetic average roughness Ra of the compacted surface or non-consolidated surface of the steel foil for containers.
  • a polypropylene film having a thickness of 30 ⁇ m was laminated on the hydrated chromium oxide layer.
  • a total of nine test pieces cut out of 5 mm ⁇ 40 mm were prepared while changing the position in the longitudinal direction from the center and both ends with respect to the width direction of the steel foil for containers laminated with polypropylene film. It was completely immersed in an electrolyte solution in a polypropylene bottle that can be sealed using and kept at 80 ° C. for 7 days.
  • a 180 ° peel test in accordance with JIS K 6854-2 was performed on both test pieces that were not immersed in the electrolyte solution, and the adhesion strength of the polypropylene film was measured. The percentage of decrease was evaluated by dividing the adhesion strength of the immersed test piece by the adhesion strength of the non-immersed test piece to obtain a percentage. The lower the decrease rate, the higher the electrolytic solution resistance.
  • the reduction rate of the steel foil C102 in this test is approximately 50%, but it is assumed that the steel foil C102 is better than the steel foil C102 if it is smaller than 30%, and the steel foil C102 is better than the steel foil C102 B, 45%. About 60% is better than steel foil C102 but inferior to "B" B-, about 50-60% is equivalent to steel foil C102 C, more than 60% is more than steel foil C102 It was set as D as a defect.
  • the electrolyte used was a lithium hexafluorophosphate (LiPF 6 ) diluted to a concentration of 1 mol / L with a 1: 1 mixture of ethylene carbonate and diethyl carbonate.
  • the shape of the die hole of the die was a rectangular shape with a length of 142 mm ⁇ width of 142 mm and a corner portion diameter of 4 mm, and the punch had a shape of length 140 mm ⁇ width 140 mm and corner portion diameter of 4 mm.
  • the pressing condition was a wrinkle pressing force of 6 tons
  • the lubricant used was a mixture of Johnson WAX122 and machine oil 1: 1, and the pressing speed was 60 mm / min.
  • a laminated steel foil having a length of 200 mm and a width of 200 mm was pressed to a depth of 5 mm with the side on which the polypropylene film was laminated facing the punch.
  • a total of 9 points are obtained by changing the position in the longitudinal direction of the test piece having a width of about 5 mm and a length of about 40 mm so as to include a corner portion from the processed member, and changing the position in the longitudinal direction from three places in the center and both ends with respect to the width direction. Cut out. Subsequently, the test piece was completely immersed in the electrolytic solution in a polypropylene bottle that can be sealed using a lid, and the test piece was held at 80 ° C. for 7 days.
  • the steel foils 1 to 12 exhibited good electrolytic solution resistance.
  • the steel foils C101 to C107 resulted in poor electrolytic solution resistance.
  • the steel foils 1 to 12 of the present invention showed good electrolytic solution resistance even at the site processed into the shape of the electricity storage device container.
  • the steel foils C101 to C107 were inferior in electrolytic solution resistance even in the parts processed into the shape of the electricity storage device container.
  • FIGS. 1A and 1B show SEM photographs of the hydrated chromium oxide layer before cold rolling
  • FIGS. 2A and 2B show SEM photographs of the hydrated chromium oxide layer of the steel foil C103
  • FIGS. 3A and 3B Shows an SEM photograph of the hydrated chromium oxide layer of the steel foil 1.
  • 1A, 2A, and 3A are photographs at a magnification of 1000 times
  • FIGS. 1B, 2B, and 3B are photographs at a magnification of 10000 times.
  • FIG. 2A a white portion is present along the rolling direction (RD direction in the figure).
  • FIG. 2B is an enlarged photograph of a white portion.
  • the steel foil 1 has many portions that appear black as a whole, and it can be seen that the entire surface is flat. This is because when the steel sheet before cold rolling had waviness along the sheet width direction, the tension in the rolling direction during rolling was lowered, so that the steel sheet not only in the rolling direction but also in the sheet width direction due to rolling. As a result, it is considered that the whole was flattened by receiving a rolling load uniformly.
  • FIG. 4 shows the results of the depth analysis of the constituent elements of the hydrated chromium oxide layer before cold rolling
  • FIG. 5 shows the depth analysis of the constituent elements of the hydrated chromium oxide layer of the steel foil C103.
  • a result is shown and the result of the depth analysis of the element of the hydrated chromium oxide layer of the steel foil 1 is shown in FIG.
  • the Fe concentration from the surface to a depth of 10 nm is almost 0%.
  • the Fe concentration from the surface to a depth of 10 nm exceeds 5%. This is because the tension in the rolling direction at the time of rolling was increased, so that the wavy valley portion (concave portion) was stretched without being reduced during cold rolling, and the metal chromium layer was divided at this portion, and the hydrated chromium oxide It is considered that the underlying Fe was partially exposed because there was no effect of filling the metal chromium layer dividing portion due to. Thereby, in steel foil C103, it is thought that the electrolyte solution resistance fell.
  • the Fe concentration from the surface to a depth of 10 nm is less than 5%. This is presumably because the tension in the rolling direction during rolling was lowered, so that the entire hydrated chromium oxide layer was uniformly rolled during cold rolling, and the underlying Fe was not exposed. Thereby, in the steel foil 1, it is thought that the electrolytic solution resistance was improved.
  • FIG. 7A and 7B show SEM photographs of the hydrated chromium oxide layer of the steel foil C105
  • FIG. 8 shows the results of depth analysis of the constituent elements of the hydrated chromium oxide layer of the steel foil C105.
  • 7A is a photograph at a magnification of 1000 times
  • FIG. 7B is a photograph at a magnification of 10000 times.
  • steel foil C105 In steel foil C105, the tension in the rolling direction is high, the cumulative rolling rate is high, and a very strong rolling load is applied. Therefore, as shown in FIGS. 7A and 7B, there are many portions that appear black as a whole. The whole surface became flat. Thus, the steel foil C105 is good in terms of surface roughness. However, as shown in FIG. 8, in the steel foil C105, the Fe concentration from the surface to a depth of 10 nm exceeds 10%. This is probably because a large rolling load was applied during rolling, so that the underlying Fe was entirely exposed. Thereby, in steel foil C105, it is thought that the electrolyte solution resistance fell.
  • Steel foil C106 has a very high cumulative rolling rate, so it is still good in terms of surface roughness, but the Fe concentration from the surface to a depth of 10 nm exceeds 10%. Thereby, in steel foil C106, it is thought that the electrolyte solution resistance fell.
  • the steel foil C107 is a steel foil that has not been cold-rolled, the hydrated chromium oxide layer is not consolidated and the surface is rough, so the electrolytic solution resistance is considered to have been reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Wrappers (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

鋼箔と、鋼箔上に積層された金属クロム層と、金属クロム層上に積層された水和酸化クロム層とが備えられ、水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が10質量%未満であり、水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm以上になる部位の占める面積率が20%未満であり、水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm未満になる部位の1μm視野内の算術平均粗さRaが3nm以下である蓄電デバイス容器用鋼箔を採用する。

Description

蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス
 本発明は、蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイスに関する。
 電子機器及び電子部品、特に携帯電話、ノート型パーソナルコンピュータ、ビデオカメラ、人工衛星、電気又はハイブリッド自動車等に、ニッケル-カドミウム電池、ニッケル-水素電池、リチウムイオン電池等の2次電池が広く使用されている。従来、ニッケル-カドミウム電池、ニッケル-水素電池等の強アルカリ電解質を使用する2次電池では、ニッケルめっきした冷延鋼板からなるケース又はプラスチックケースが使用されている。また、リチウムイオン電池のように非水電解質を使用する電池でも、アルミニウムパウチに内蔵された非水電解質をプラスチックケースで包んだり、ニッケルめっき鋼板、又はステンレス鋼板ケースで包んだりした状態で使用されている。
 近年、電子及び電気部品の小型化に伴い、2次電池にも小型化及び軽量化が要望されるようになってきた。これらの動向の中で、2次電池容器の薄肉化は、限定された容積により多くの電解液及び活物質を搭載し、電池容量を増大できるツールとして注目されている。しかし、薄肉化により容器の強度が低下すると、外力又は突き刺しが加えられた際に変形、あるいは破壊して内容物である電解液の液漏れが発生する危険性がある。電解液の液漏れは、2次電池が内蔵された装置に甚大な障害を与える可能性が高い。そのため、容器の部材がプラスチック又はアルミニウムである場合、肉厚が200μm以下では強度が不十分であり、さらなる薄肉化には強度の高い材料が必要である。また、量産を考慮すると汎用材料であることが好ましい。
 これらの要求特性を満たす材料としてステンレス鋼箔がある。ステンレス鋼箔は、ステンレス鋼を200μm厚み以下にまで薄肉化した箔である。これらの金属箔の引張強さ、ビッカース硬さは、一般にプラスチック又はアルミニウムの2~10倍で高強度であるため、2次電池容器の薄肉材料として有望である。
 近年では、エレクトロニクス分野において求められる厳しい使用条件を満たすために、ステンレス鋼箔の表面に金属クロム層と水和酸化クロム層を均一に形成させた改良ステンレス鋼箔の製造が試みられている(特許文献1)。
 しかし、ステンレス鋼箔は、電解液中での耐腐食性に劣り、電池の筐体及びリード線に使用すると、非水電解液により腐食する場合があった。そこで、金属箔の耐腐食性の弱点をカバーする方策として、3価クロム処理、クロメート処理などのクロム系表面処理をしたアルミニウム箔に、腐食原因物質バリア性のある酸変性ポリオレフィン樹脂層を積層した金属箔が開示されている(特許文献2)。
 以上のように、ステンレス鋼箔の加工性及び耐腐食性を向上させる試みが行われている。しかし、これまでのステンレス鋼箔は、コスト面、耐非水電解液性の面で不十分な点が多く、優れた耐電解液性能を有し、薄手のステンレス鋼箔が求められていた。
 特許文献1:日本国特開平7-62596号公報
 特許文献2:日本国特開2000-357494号公報
 本発明は、上記事情に鑑みてなされたもので、非水電解液中でも樹脂層との密着力を維持し、良好な耐腐食性を有する蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイスを提供することを課題とする。
 本発明の蓄電デバイス容器用鋼箔は、2次電池、キャパシタなどの非水電解液を満たす容器だけではなく、そのほかのエレクトロニクス製品にも使用可能である。なお、本明細書において、蓄電デバイス容器用鋼箔を「容器用鋼箔」と称する場合がある。
 本発明は、以下の通りである。
[1] 鋼箔と、前記鋼箔上に積層された金属クロム層と、前記金属クロム層上に積層された水和酸化クロム層とが備えられ、
 前記水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が10質量%未満であり、
 前記水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm以上になる部位の占める面積率が20%未満であり、
 前記水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm未満になる部位の1μm視野内の算術平均粗さRaが3nm以下である蓄電デバイス容器用鋼箔。
[2] 微細に割れた前記金属クロム層の間隙に水和酸化クロムが充填された状態で、前記金属クロム層上に前記水和酸化クロム層が積層されている、[1]に記載の蓄電デバイス容器用鋼箔。
[3] 前記鋼箔、前記金属クロム層及び前記水和酸化クロム層の合計厚みが100μm以下である、[1]または[2]に記載の蓄電デバイス容器用鋼箔。
[4] 前記水和酸化クロム層の表面に付着されたポリオレフィン系樹脂層を有する、[1]~[3]のいずれか1に記載の蓄電デバイス容器用鋼箔。
[5] [4]に記載の蓄電デバイス容器用鋼箔からなる蓄電デバイス用容器。
[6] [5]に記載の蓄電デバイス用容器を備えた蓄電デバイス。
 本発明によれば、非水電解液中でも樹脂層との密着力を維持し、良好な耐腐食性を有する蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイスを提供できる。
図1Aは、冷間圧延前の水和酸化クロム層のSEM写真であって、倍率1000倍の写真である。 図1Bは、冷間圧延前の水和酸化クロム層のSEM写真であって、倍率10000倍の写真である。 図2Aは、鋼箔C103の水和酸化クロム層のSEM写真であって、倍率1000倍の写真である。 図2Bは、鋼箔C103の水和酸化クロム層のSEM写真であって、倍率10000倍の写真である。 図3Aは、鋼箔1の水和酸化クロム層のSEM写真であって、倍率1000倍の写真である。 図3Bは、鋼箔1の水和酸化クロム層のSEM写真であって、倍率10000倍の写真である。 図4は、冷間圧延前の水和酸化クロム層の構成元素の深さ分析の結果を示すグラフである。 図5は、鋼箔C103の水和酸化クロム層の構成元素の深さ分析の結果を示すグラフである。 図6は、鋼箔1の水和酸化クロム層の構成元素の深さ分析の結果を示すグラフである。 図7Aは、鋼箔C105の水和酸化クロム層のSEM写真であって、倍率1000倍の写真である。 図7Bは、鋼箔C105の水和酸化クロム層のSEM写真であって、倍率10000倍の写真である。 図8は、鋼箔C105の水和酸化クロム層の構成元素の深さ分析の結果を示すグラフである。 図9は、図2Aに示す鋼箔C103の水和酸化クロム層のSEM写真(倍率1000倍)から、100μm×90μm(1070×963画素数)で切り取ったSEM写真である。 図10は、図9のSEM写真における輝度に対するヒストグラムを示すグラフである。 図11は、図10に示すヒストグラムの拡大図から、圧密部と非圧密部の輝度閾値を求める方法を説明するための模式図である。 図12は、図10に示すヒストグラムの拡大図から求めた圧密部と非圧密部の輝度閾値で、図9のSEM写真を二値化したSEM写真である。 図13は、図3Aに示す鋼箔1の水和酸化クロム層のSEM写真(倍率1000倍)から、100μm×90μm(1070×963画素数)で切り取ったSEM写真である。 図14は、図13のSEM写真における輝度に対するヒストグラムを示すグラフである。 図15は、図14に示すヒストグラムの拡大図から、圧密部と非圧密部の輝度閾値を求める方法を説明するための模式図である。 図16は、図14に示すヒストグラムの拡大図から求めた圧密部と非圧密部の輝度閾値で、図9のSEM写真を二値化したSEM写真である。 図17は、金属クロム層と水和酸化クロム層とを積層した冷間圧延前の鋼板の表面性状を示す模式図である。 図18は、冷間圧延前の水和酸化クロム層の表面を示す、1辺が1μm視野のAFM(原子間力顕微鏡)写真である。 図19は、金属クロム層と水和酸化クロム層とを積層した鋼板を、通常の条件で冷間圧延したときにおける、金属クロム層及び水和酸化クロム層の状態を説明するための模式図である。 図20は、通常の条件で冷間圧延して得られた容器用鋼箔の水和酸化クロム層上にポリオレフィン樹脂層を積層した様子を示す模式図である。 図21は、金属クロム層と水和酸化クロム層とを積層した鋼板を、特定の条件で冷間圧延したときにおける、金属クロム層及び水和酸化クロム層の状態を説明するための模式図である。 図22は、特定の条件での冷間圧延後の水和酸化クロム層の表面を示す、1辺が1μm視野のAFM(原子間力顕微鏡)写真である。 図23は、特定の条件で冷間圧延して得られた容器用鋼箔の水和酸化クロム層上にポリオレフィン樹脂層を積層した様子を示す模式図である。
 蓄電デバイス用容器を構成する蓄電デバイス容器用鋼箔は、鋼箔表面にクロム系表面処理層が形成され、更にポリオレフィン樹脂層が積層されたものが一般的である。クロム系表面処理層とは、3価クロム処理、クロメート処理などのクロム系表面処理によって形成された表面処理層である。
 蓄電デバイス用容器は、蓄電デバイスに備えられた非水電解液に常に曝される。非水電解液は有機溶媒とリチウム塩とを含んでおり、長期間の使用によって有機溶媒又はリチウム塩が分解して酸などの腐食原因物質が生成する場合がある。例えば、六ふっ化りん酸リチウムをリチウム塩として用いた場合は、腐食原因物質としてふっ酸が生成する場合がある。腐食原因物質が有機溶媒中に生成すると、金属基材を攻撃し、ポリオレフィン樹脂層の剥離が発生する場合がある。そこで、従来の蓄電デバイス用容器を構成する蓄電デバイス容器用鋼箔では、鋼箔表面にクロム系表面処理層を形成することで、鋼箔の腐食を防止し、ポリオレフィン樹脂層の剥離を抑制している。
 しかしながら、従来の蓄電デバイス容器用鋼箔を製造する際には、鋼箔表面にクロム系表面処理層を形成する工程が必要になり、製造工程が煩雑になる場合があった。また、めっき法等によって鋼箔表面に金属クロム層及び水和酸化クロム層からなるクロム系表面処理層を形成することは可能であるが、水和酸化クロム層表面の算術平均粗さが比較的大きくなる。このため、水和酸化クロム層上にポリオレフィン樹脂層を形成してから蓄電デバイス容器の形状へ加工した際に、ポリオレフィン層が破損、及び水和酸化クロム層自体が破損し易くなり、非水電解液に対する耐食性を低下させる可能性がある。
 そこで、本発明者らが鋭意検討したところ、金属クロム層と水和酸化クロム層とを積層した鋼板(以下、「表面処理鋼板」とも称する)を製造し、鋼板の圧延方向に付与する張力を緩和し、かつ、圧延荷重を初期の圧延パスから高く設定した条件で、この表面処理鋼板を冷間圧延して容器用鋼箔にすることで、非水電解液中でも樹脂層との密着力を維持し、非水電解液に対する耐食性に優れる、鋼箔上に金属クロム層及び水和酸化クロム層が積層された蓄電デバイス容器用鋼箔を製造することに成功した。具体的には、次の通りである。
 まず、冷間圧延前の表面処理鋼板は、C断面(圧延方向に垂直な断面)では起伏が大きいうねりを有しており、L断面(圧延方向に平行な断面)は起伏が少ない表面性状を有している(図17参照)。図17中、SSは表面処理鋼板を示し、SSAは鋼板を示し、MCLは金属クロム層を示し、HCOLは水和酸化クロム層を示し、RDは圧延方向を示す。
 また、水和酸化クロム層が圧密化されていないので、表面が粗い状態(例えば、算術平均粗さRaが14.7μm程度の状態)となっている。ここで、図18に、冷間圧延前の水和酸化クロム層の表面を示す、1辺が1μm視野のAFM(原子間力顕微鏡)写真を示す、図18に示すAFM写真では、凸部の高さが高い程白く表示され、凹部の深さが深い程色が濃く表示されており、冷間圧延前の水和酸化クロム層の表面が粗い状態であることが示されている。
 一方、通常の冷間圧延では、鋼板の長手方向に強い張力を印加しつつ、前半の圧延パスにおける圧延荷重を小さくし、加工硬化が進んできたところで徐々に圧延荷重を増やして圧延が行われる。
 図18の様な表面性状を持つ表面処理鋼板(図19の(3)参照)を、通常の条件で冷間圧延すると、圧延方向に強い張力の付与により、圧延方向に鋼板が伸びて、板幅方向には縮むことになる。そうすると、板幅方向にうねりを有する表面処理鋼板表面において表面が突出している凸部に集中的に圧下力が加わる。つまり、表面処理鋼板表面の凸部では、金属クロム層が圧下と延伸により微細に割れ、鋼板(地鉄)に追随するため、鋼板が圧延された鋼箔の露出面積は小さくなる。しかも、水和酸化クロム層は、圧下と延伸により、微細に割れた金属クロム層の間隙に充填されつつ、圧下により圧密化されてミクロに平滑化面を形成する(図19の(1)参照)。
 しかし、表面処理鋼板表面の凹部では、板幅方向に縮むため凹部深さが深くなり、しかも初期の圧延パスでの圧延荷重が小さいため、非圧下の状態で延伸される。つまり、表面処理鋼板表面の凹部では、金属クロム層が非圧下の状態で延伸されるため大きく割れ、鋼板(地鉄)に追随できず、鋼板が圧延された鋼箔の露出面積が大きくなる。水和酸化クロム層も、非圧下の状態で延伸されるため、圧密化されず、金属クロム層の間隙に充填されることなく、分断されてしまう(図19の(2)参照)。
 そして、高圧延率まで冷間圧延しても、上記金属クロム層及び水和酸化クロム層の状態、特に鋼板が圧延された鋼箔の露出した状態は、維持される。
 なお、図19中、SSは表面処理鋼板を示し、SSAは鋼板を示し、SSFは鋼箔を示し、MCLは金属クロム層を示し、HCOLは水和酸化クロム層を示し、ROは圧延ロールを示し、RDは圧延方向を示す。
 このように、通常の条件で冷間圧延して得られた容器用鋼箔は、金属クロム層及び水和酸化クロム層が共に広い間隔で分断され、鋼箔(地鉄)の露出面積も大きく、バリア性が低くなる領域(つまり粗い領域)が多い状態となる。そして、水和酸化クロム層上にポリオレフィン樹脂層を形成した場合には、単位面積当たりの樹脂密着強度が低くなる(図20参照)。しかも、金属クロム層及び水和酸化クロム層が共に広い間隔で分断され、樹脂層との隙間が形成され易く、非水電解液の侵入液量が多くなる。このため、非水電解液に対する耐食性が悪化する。
 なお、図20中、SFは容器用鋼箔を示し、SSFは鋼箔を示し、MCLは金属クロム層を示し、HCOLは水和酸化クロム層を示し、RLはポリオレフィン樹脂層を示す。
 これに対して、鋼板の圧延方向に付与する張力を緩和し、かつ、圧延荷重を初期の圧延パスから高く設定した条件で、上記表面性状を有する表面処理鋼板(図21の(2)参照)を冷間圧延すると、鋼板の圧延方向への張力の緩和により表面処理鋼板は板幅方向にも延びるように圧延される。しかも、初期の圧延荷重が大きいため、鋼板の圧延方向への張力の緩和ともあいまって、さらに板幅方向への縮みが抑制され、表面処理鋼板は板幅方向にも延ばすように圧延される。そうすると、板幅方向にうねりを有している表面処理鋼板表面が板幅方向に広がるように延ばされて、金属クロム層及び水和酸化クロム層の全体が圧延されることになり、圧下力が表面全体に均等に加わるようになる。
 つまり、表面処理鋼板表面の凸部及び凹部のいずれでも、金属クロム層が圧下と延伸により微細に割れ、鋼板(地鉄)に追随して、鋼板が圧延された鋼箔の露出面積は小さくなる。水和酸化クロム層は、圧下と延伸により、微細に割れた金属クロム層の間隙に充填されつつ、圧下により圧密化されてミクロに平滑面を形成する(図21の(1)参照)。
 なお、図21中、SSは表面処理鋼板を示し、SSAは鋼板を示し、SSFは鋼箔を示し、MCLは金属クロム層を示し、HCOLは水和酸化クロム層を示し、ROは圧延ロールを示し、RDは圧延方向を示す。
 そして、高圧延率まで冷間圧延しても、水和酸化クロム層が圧密化されつつ、上記金属クロム層及び水和酸化クロム層の状態は維持される。
 ここで、図22に、特定の条件での冷間圧延後の水和酸化クロム層の表面を示す、1辺が1μm視野のAFM(原子間力顕微鏡)写真を示す、図22に示すAFM写真では、凸部の高さが高い程白く表示され、凹部の深さが深い程色が濃く表示されており、冷間圧延前の水和酸化クロム層に比べて、水和酸化クロムの表面が平滑化された状態であることが示されている。
 このように、上記特定の条件で冷間圧延して得られた容器用鋼箔は、水和酸化クロム層が、圧密化され、微細且つ緻密で連続して、平滑面を形成した領域が多い状態となる。また、金属クロム層が微細に割れているものの、水和酸化クロム層が金属クロム層の間隙に充填されるため、鋼箔(地鉄)の露出が少なく、バリア性、及び修復性が高い状態となる。そして、水和酸化クロム層上にポリオレフィン樹脂層を形成した場合には、単位面積当たりの樹脂密着強度が高くなる(図23参照)。また、水和酸化クロム層の平滑面の形成により、樹脂層との隙間が形成され難く、非水電解液の侵入液量が少なくなる。このため、非水電解液に対する耐食性が向上する。
 なお、図23中、SFは容器用鋼箔を示し、SSFは鋼箔を示し、MCLは金属クロム層を示し、HCOLは水和酸化クロム層を示し、RLはポリオレフィン樹脂層を示す。
 以上の知見により、発明者らは、金属クロム層と水和酸化クロム層とを積層した蓄電デバイス容器用鋼箔において、水和酸化クロム層の表面が平滑面で、鋼箔(地鉄)の露出が少なくなるように、水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が低い容器用鋼箔とすれば、非水電解液に対する耐食性が向上することを見出した。
 すなわち、本実施形態の蓄電デバイス容器用鋼箔は、鋼箔と、鋼箔上に積層された金属クロム層と、金属クロム層上に積層された水和酸化クロム層とが備えられ、水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が10質量%未満であり、水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm以上になる部位の占める面積率が20%未満であり、水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm未満になる部位の1μm視野内の算術平均粗さRaが3nm以下の容器用鋼箔である。更に、本実施形態の蓄電デバイス容器用鋼箔は、鋼箔、金属クロム層及び水和酸化クロム層の合計厚みが100μm以下であることが好ましい。水和酸化クロム層上にはポリオレフィン樹脂層が形成されていてもよい。
 本実施形態の蓄電デバイス容器用鋼箔は、水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が10質量%未満であるので、非水電解液に対する耐食性を向上できる。また、1μm視野内の算術平均粗さRaが10nm以上になる部位の占める面積率が20%未満、かつ水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm未満になる部位の1μm視野内の算術平均粗さRaが3nm以下であり、非水電解液中でも樹脂層との密着力を維持し、非水電解液に対する耐食性を向上できる。また、表面粗さが比較的小さいので、水和酸化クロム層上にポリオレフィン樹脂層を形成してから蓄電デバイス容器の形状へ加工した際に、ポリオレフィン層の破損、及び水和酸化クロム層自体の破損が防止され、非水電解液に対する耐食性を向上できる。
 また、本実施形態の蓄電デバイス容器用鋼箔における、圧密化された水和酸化クロム層は、圧下と延伸により、微細に割れた金属クロム層の間隙に水和酸化クロムが充填された状態で、金属クロム層上に積層されている。そして、圧密化された水和酸化クロム層は、圧下により圧密化された平滑化面となる領域が多い状態となる。圧密化された水和酸化クロム層は、金属クロム層が微細に割れているものの、水和酸化クロムが金属クロム層の間隙に充填されるため、鋼箔の露出が少なく、バリア性、及び修復性が高い状態となる。よって、水和酸化クロム層上にポリオレフィン樹脂層を形成した場合には、単位面積当たりの樹脂密着強度が高くなり、水和酸化クロム層の平滑面の形成により、ポリオレフィン樹脂層との隙間が形成され難く、非水電解液の侵入液量が少なくなるため、非水電解液に対する耐食性が向上する 。
 以下、本実施形態の蓄電デバイス容器用鋼箔について説明する。
 基材を鋼箔としたのは、電解処理よりもコストと強度との点で有利であることに加え、金属クロム層及び水和酸化クロム層を備えた基材を破断させずに圧延するためには、基材として比較的強度に優れた鋼板を用いて、鋼板を圧延した鋼箔とすることが必要であったためである。
 鋼箔上に形成された金属クロム層の付着量は、30~170mg/mの範囲が好ましく、50~170mg/mの範囲がより好ましく、85~120mg/mの範囲がさらに好ましい。金属クロム層が30mg/m未満では鋼箔表面を十分に被覆し、非水電解液に対する耐食性を確保することが難しいことがある。また、金属クロム層が170mg/mを越えると良好な耐食性を確保するという効果が飽和するとともに経済的なデメリットが発生することがある。
 水和酸化クロム層は、金属クロム層の上に設ける。水和酸化クロム層の付着量は、クロム換算5~21mg/mの範囲が好ましく、6~21mg/mの範囲がより好ましく、9~14mg/mの範囲がさらに好ましい。水和酸化クロム層は、その上にポリオレフィン樹脂層を形成した場合に、ポリオレフィン樹脂層との良好な密着性を確保するために重要である。水和酸化クロム量がクロム換算で5mg/m未満の場合はポリオレフィン樹脂層との密着性が低下することがあるので好ましくない。また、水和酸化クロム量がクロム換算で21mg/m超であると、良好な耐食性を確保するという効果が飽和するとともに経済的なデメリットが発生し、また、皮膜が厚くなり外観が劣化するという問題が生じることもある。
 ここで、金属クロム層及び水和酸化クロム層の存在及び積層順序の測定方法は、後述する実施例において説明する。具体的には、アルゴンスパッタリングによって、容器用鋼箔の表面からエッチングしつつ、グロー放電発光分析によって、Cr濃度、O濃度の分布を求める。これにより、金属クロム層及び水和酸化クロム層の存在及び積層順序が確認できる。
 具体的に、鋼箔1の水和酸化クロム層の構成元素の深さ分析の結果を示す図6を使用して説明する。Cr濃度は表面から深さ25nm付近で濃度がピークに達している。金属クロム層は、このCr濃度のピーク付近に形成されていると推測される。O濃度は、表面をピークに徐々に濃度が低下している。水和酸化クロムはCrとOが存在する位置であるから、表面からCr濃度がピークに達する位置にかけて形成されていると推測される。そして、金属クロム層と水和酸化クロム層との境界は必ずしも平坦ではない。
 非水電解液に対する耐食性を向上するには、水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が10質量%未満であることが必要である。水和酸化クロム層内にFeが多く含まれると、Feが腐食の起点になり、水和酸化クロム層内の非水電解液に対する耐食性が大幅に低下するので好ましくない。Fe濃度は、好ましくは5質量%未満である。
 また、水和酸化クロム層の表面において、算術平均粗さRaが10nm以上になる部位の面積率が、水和酸化クロム層の全表面に対して20%未満である。言い換えると、算術平均粗さRaが10nm未満になる領域の面積率が、全体の80%以上を占める。そして、算術平均粗さRaが10nm未満になる部位の算術平均粗さRaは3nm以下である。なお、算術平均粗さRaが10nm未満になる部位の算術平均粗さRaは、算術平均粗さRaが10nm未満になる部位を複数個所測定したときの平均値である。
 このように、本実施形態に係る蓄電デバイス容器用鋼箔は、大きな表面粗さを有する領域の面積率が小さく、かつ小さい表面粗さを有する領域の表面粗さ自体も小さいので、ポリオレフィン樹脂層を積層する際のフィルムの破損、及び水和酸化クロム層自体の破損が抑制される。また、蓄電デバイス容器用鋼箔を蓄電デバイス容器に加工した際にも、ポリオレフィン樹脂層及び水和酸化クロム層自体の破損が抑制され、耐電解液性能が高まる。
 算術平均粗さRaが10nm以上になる部位の面積率は、好ましくは15%未満、より好ましくは7.5%未満である。そして、算術平均粗さRaが10nm未満になる領域の面積率は、好ましくは85%以上、より好ましく92.5%以上である。
一方で、算術平均粗さRaが10nm以上になる部位の面積率の下限は、特に制限はないが、実施上の現実的な観点から、0%になることはない。
 また、算術平均粗さRaが10nm未満になる部位の算術平均粗さRaは、好ましくは2.5以下である。一方で、算術平均粗さRaが10nm未満になる部位の算術平均粗さRaの下限は、特に制限はないが、実施上の現実的な観点から、0nmになることはない。
 算術平均粗さRaは、1μm視野内の領域で計測する。1μm視野内とは縦横1μmの正方形の占める範囲を意味する。算術表面粗さの測定範囲がこの範囲よりも大きくなると、水和酸化クロム層の表面のうねりを表面粗さとして計測する恐れがあるので好ましくない。
 ここで、1μm視野内の算術表面粗さRaの測定方法について説明する。
 圧延され、水和酸化クロム層が圧密化された部分の表面性状は、非常に小さい凹凸から構成されるため、1μm視野内の算術平均粗さRa(以下単に「Ra」とも称する)はナノメートル(nm)レベルである。このようなnmレベルのRaを測定するには、先端部がミクロンメートル(μm)レベルの曲率半径である探針では、nmレベルの凹凸を正確にトレースすることができず、先端部がnmレベルの曲率半径である探針を用いる必要がある。具体的には、先端部が6~15nmの曲率半径である探針を用いて、Raを測定する。
 微小領域のRaを測定するため、上記の先端部が6~15nmの曲率半径である探針を有する測定装置であれば、特に制限されないが、現実的には、走査型プローブ顕微鏡(Scanning Probe Microscope)を用いて測定を行う。以下では、走査型プローブ顕微鏡として、原子間力顕微鏡(AFM:Atomic Force Microscope)を用いる説明を行う。
 原子間力顕微鏡では、試料表面をX軸およびY軸を用いてXY平面として表した場合、表面の凹凸はXY平面に垂直なZ軸方向の変位として表すことができる。すなわち、原子間力顕微鏡では、試料の凹凸を3次元(X,Y,Z)形状として測定することができる。
したがって、原子間力顕微鏡では、断面プロファイルとして2次元データ(X-Z面およびY-Z面)が得られるため、このデータに基づき、JIS B601に規定されている方法に準じて、算術平均粗さRaを算出すればよい。このとき、原子間力顕微鏡に付属の解析ソフトウェアあるいは市販の解析ソフトウェアを用いてデータ処理を行って、Raを算出してもよい。
 得られた測定データには、水和酸化クロム層の表面性状以外のノイズ(例えば、鋼箔のたわみ、鋼箔表面のマクロな疵等に起因する形状データ)も含まれている。そのため、この測定データは、水和酸化クロム層の表面性状を正しく反映しているわけではない。そこで、このようなノイズを除去することにより、容器用鋼箔(水和酸化クロム層)の表面性状が正確に反映された精度の高いRaを算出することができる。ノイズを除去する方法としては、公知の方法を用いればよいが、Raを算出する場合、平坦化(Flatten:フラテン)処理等が例示される。
 平坦化処理では、断面プロファイルを構成する断面曲線に対し、多項式(0次から3次程度)をフィットさせて、最もフィットする多項式を選択する。そして、当該断面曲線から最もフィットする多項式を引くことで、断面曲線に対し平坦化処理を行う。この操作を、断面プロファイルを構成する断面曲線全体に適用することで、ノイズが除去され平坦化処理された断面プロファイルが得られる。
 そして、Raを測定する領域のサイズを、一辺が1μmの四角形の領域を走査して測定することで、1μm視野内のRaを測定できる。
 鋼箔、金属クロム層及び水和酸化クロム層の合計厚みは、100μm以下であることがより望ましい。これは、電池を小型化、及び軽量化していくうえで、容器も薄いものが望まれているからである。下限は、特に限定されないが、コスト、又は厚さの均一性を考えると、通常、5μm以上が望ましい。
 ポリオレフィン系樹脂層の具体例は、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、架橋型ポリエチレン、ポリプロピレン又はこれらの2種類以上の混合物の樹脂層を例示できる。
 ポリオレフィン系樹脂層は,単層でも複層でも構わない。また,ポリオレフィン系樹脂層の上に,ポリオレフィン、ポリエステル、ポリアミド、ポリイミド等の樹脂を被覆して複数層にしてもよい。
 ポリオレフィン系樹脂層の好ましい厚みの範囲は0.5~200μmであり,さらに好ましくは15~100μmである。また,ポリオレフィン系樹脂層の上層にポリオレフィン、ポリエステル、ポリアミド、ポリイミド等の樹脂を積層する場合であっても,積層された全層厚みの範囲は0.5~200μmが好ましく、さらに好ましくは15~100μmである。全層厚みが0.5μm未満では、非水電解液に含まれる腐食原因物質の透過防止が不十分になる場合があり,200μmより厚いと加工性が悪くなる場合がある等,2次電池容器用部材として不適切であり,経済メリットも発現し難い(コストが割高となってしまう)場合がある。
 本実施形態に係る蓄電デバイス容器用鋼箔の引張強度は、600~1200MPaが望ましい。ここで、引張強度とは、常温での値を示す。蓄電デバイス容器用鋼箔の引張強度が600MPa未満である場合、充放電に伴う活物質の膨張収縮により、蓄電デバイス容器として用いた場合に容器用鋼箔が変形する場合がある。蓄電デバイス容器用鋼箔の引張強度が1200MPaを越えると、容器用鋼箔の取り扱いが難しくなる場合がある。
 次に、本実施形態に係る蓄電デバイス容器用鋼箔の製造方法について説明する。本実施形態に係る蓄電デバイス容器用鋼箔の製造方法は、鋼板に金属クロム層及び水和酸化クロム層を形成する工程と、金属クロム層及び水和酸化クロム層を備えた鋼板(表面処理鋼板)に冷間圧延を施して容器用鋼箔にする冷間圧延工程とを備えている。このような工程を経ることによって、特定の形態を有する容器用鋼箔(金属クロム層及び水和酸化クロム層を備えた容器用鋼箔)を製造できる。また、本実施形態に係る蓄電デバイス容器用鋼箔の製造方法は、ポリオレフィン樹脂層の積層工程をも備えてもよい。
 本実施形態に係る蓄電デバイス容器用鋼箔の製造に用いる鋼板は、特に限定されず、熱延鋼板、冷延鋼板、及び冷延焼鈍鋼板のいずれも用いることができる。しかし、熱延鋼板を後述の冷間圧延で100μm以下の箔とすることは、圧延能力上、困難な場合が多く、可能であっても、非効率、非経済的となる。従って、本実施形態に係る蓄電デバイス容器用鋼箔の製造には冷延鋼板、又は冷延焼鈍鋼板を用いるのがよい。
 本実施形態に係る蓄電デバイス容器用鋼箔の製造においては、鋼板の成分組成も特に限定されない。高強度化のために、又は、耐食性の向上のために特定元素を鋼板に多量に添加することは、必須の要件でない。所謂、高強度鋼の適用も可能であるが、後述する圧延性の確保の点からは、一般的な成分組成の鋼板を用いることが好ましい。成分組成の一例は、次の通りである。なお、%は質量%である。
-鋼板の化学組成の一例-
 C:0.0001~0.1%、
 Si:0.001~0.5%、
 Mn:0.01~1%、
 P:0.001~0.05%、
 S:0.0001~0.02%、
 Al:0.0005~0.2%、
 N:0.0001~0.1%%、及び、
 残部:Fe及び不純物。
(C:0.0001~0.1%)
 Cは、鋼の強度を高める元素であるが、過剰に含有すると強度が上昇しすぎて、圧延性が低下する。本実施形態に係る蓄電デバイス容器用鋼箔は、後に述べるように、大きな累積圧延率の加工硬化によって高強度化するので、圧延の容易さを考慮すると、元の鋼材は軟質であることが好ましい。従って、C含有量の上限を0.1%とするのがよい。C含有量の下限を特に規定する必要はないが、精錬コストを考慮して、C含有量の下限は0.0001%とすることが好ましい。なお、C含有量は、より好ましくは0.001%~0.01%である。
(Si:0.001~0.5%)
 Siは、鋼の強度を高める元素であるが、過剰に含有させると鋼の強度が上昇しすぎて、鋼の圧延性が低下する。従って、Si含有量の上限を0.5%とすることが好ましい。Si含有量の下限は特に規定されないが、精練コストを考慮して、Si含有量の下限を0.001%とすることが好ましい。より高い圧延性を確保するためには、Si含有量は0.001~0.02%がより好ましい。
(Mn:0.01~1%)
 Mnは、鋼の強度を高める元素であるが、過剰に含有させると鋼の強度が上昇しすぎて、圧延性が低下する。従って、Mn含有量の上限を1%とすることが好ましい。Mn含有量の下限を特に規定する必要はないが、精練コストを考慮して、Mn含有量の下限を0.01%とすることが好ましい。より高い圧延性を確保するためには、Mn含有量は0.01~0.5%とすることがより好ましい。
(P:0.001~0.05%)
 Pは、鋼の強度を高める元素であるが、過剰に含有させると鋼の強度が上昇しすぎて、圧延性が低下する。従って、P含有量の上限を0.05%とすることが好ましい。P含有量の下限を特に規定する必要はないが、精練コストを考慮して、P含有量の下限を0.001%とすることが好ましい。より高い圧延性を確保するためには、P含有量は0.001~0.02%とすることがより好ましい。
(S:0.0001~0.02%)
 Sは、鋼の熱間加工性及び耐食性を低下させる元素であるので、少ないほど好ましい。S含有量の上限を0.02%とすることが好ましい。S含有量の下限を特に規定する必要はないが、精練コストを考慮して、S含有量の下限を0.0001%とすることが好ましい。より高い圧延性を確保するため、また、コストの点で優位性を得るためには、S含有量を0.001~0.01%とすることがより好ましい。
(Al:0.0005~0.2%)
 Alは、鋼の脱酸元素として添加される。脱酸による効果を得るためには、Alを0.0005%以上含有させることが好ましい。しかしながら、Alを過剰に含有させると鋼の圧延性が低下するので、Al含有量の上限を0.2%とすることが好ましい。より高い圧延性を確保するためには、Al含有量を0.001~0.1%とすることがより好ましい。
(N:0.0001~0.1%)
 Nは、鋼の熱間加工性及び加工性を低下させる元素であるので、少ないほど好ましい。従って、N含有量の上限を0.1%とすることが好ましい。N含有量の下限を特に規定する必要はないが、精錬コストを考慮して、N含有量の下限を0.0001%とすることが好ましい。また、また、コストの点で優位性を得るためには、N含有量を0.0001~0.004%とすることがより好ましく、0.001~0.01%とすることがさらに好ましい。
(残部:Fe及び不純物)
 鋼の残部は、Fe及び不純物である。不純物とは、不可避的に、原材料に含まれる成分、または、製造の過程で混入する成分であって、意図的に鋼板に含有させたものではない成分を指す。
 本実施形態に係る蓄電デバイス容器用鋼箔を製造するための鋼板は、さらに、付加成分として、Ti及び/又はNbを含有してもよい。Ti及び/又はNbは、鋼中のC及びNを炭化物及び窒化物として固定して、鋼の加工性を向上させることができる。この場合、Ti含有量を0.01~0.8%、Nb含有量を0.005~0.05%とすることが好ましい。
 本実施形態に係る蓄電デバイス容器用鋼箔を製造するための鋼板は、さらに、付加成分として、B、Cu、Ni、Sn、及びCr等の1種又は2種以上の元素を、本実施形態の効果を損なわない範囲で含有してもよい。
(クロムめっき工程及び電解クロム酸処理工程)
 本実施形態に係る蓄電デバイス容器用鋼箔を得るために、クロムめっき工程により鋼板表面に金属クロム層を形成し、次いで電解クロム酸処理工程により金属クロム層上に水和酸化クロム層を形成する。クロムめっき工程では、クロム酸を主成分とする水溶液中で陰極電解を行うことで、鋼板表面に金属クロム層を形成する。また、電解クロム酸処理工程では、クロム酸、クロム酸塩および重クロム酸塩のうちの1種または2種以上を主成分とする非硫酸系水溶液中で鋼板に電解クロム酸処理を行う。
 クロムめっき浴の組成としては、無水クロム酸0.75~2mol/l、ハロゲン化物0.05~0.4mol/l、硫酸0.01~0.1mol/l、及びCr3+を含む浴が好ましい。また、電解クロム酸処理は、無水クロム酸0.1~2mol/l、及び無機塩またはその水溶性塩を含む浴を用いるのが好ましい。
 クロムめっき工程にて鋼板に施される金属クロム層の付着量は60~200mg/mの範囲とし、より好ましくは100~140mg/mの範囲とする。鋼板上の金属クロム層が60mg/m未満では表面処理鋼板を冷間圧延して容器用鋼箔にした際に、金属クロム層によって鋼箔表面を十分に被覆することができず、非水電解液に対する耐食性を確保することが難しい場合がある。鋼板上の金属クロム層が200mg/mを越えると良好な耐食性を確保するという効果が飽和するとともに経済的なデメリットが発生する場合がある。
 電解クロム酸処理工程にて鋼板に施される水和酸化クロム層の付着量は7~25mg/mの範囲とし、より好ましくは10~16mg/mの範囲とする。鋼板上の水和酸化クロム層が7mg/m未満では表面処理鋼板を冷間圧延して容器用鋼箔にした後の水和酸化クロム層の付着量を6mg/m以上にすることができなくなることがある。また、鋼板上の水和酸化クロム層が25mg/mを越えると良好な耐食性を確保するという効果が飽和するとともに経済的なデメリットが発生し、また、皮膜が厚くなり外観が劣化するという問題が生じることもある。
(冷間圧延工程)
 金属クロム層及び水和酸化クロム層を備えた鋼板(表面処理鋼板)に冷間圧延を施し、厚さ100μm以下の箔帯とする。この手順を踏むことにより、水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が10質量%未満であり、水和酸化クロム層の表面において算術平均粗さRaが10nm以上になる部位の占める面積率が20%未満であり、水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm未満になる部位の算術平均粗さRaが3nm以下である容器用鋼箔が得られる。
 冷間圧延の累積圧延率は15%以上80%以下、好ましくは15%以上30%以下、より好ましくは17%以上25%以下である。ここで、累積圧延率とは、最初の圧延スタンドの入口板厚に対する累積圧下量(最初のパス前の入口板厚と最終パス後の出口板厚との差)の百分率である。累積圧延率が小さいと、箔強度が600MPaを下回る場合がある。また、水和酸化クロム層の圧密化が不十分で、蓄電デバイス容器の形状へ加工した際に、ポリオレフィン層及び水和酸化クロム層自体が破損し易くなり、非水電解液に対する耐食性を低下させる可能性がある。更に、蓄電デバイス容器に用いるのに好ましい薄さに出来ない場合がある。一方、累積圧延率が高すぎると、水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が10質量%以上になるおそれがある。
 冷間圧延は、複数回の圧延パスを実施することが好ましく、具体的には、5~30パス程度が好ましく、5~25パス程度がより好ましく、10~20パス程度がさらに好ましい。
 また、圧延1パス当たりの圧延荷重は素材幅500mm程度に対し50トン~60トン程度の範囲とすることが好ましい。通常の冷間圧延では、前半の圧延パスにおける荷重を小さくし、加工硬化が進んできたところで徐々に圧延荷重を増やすのに対し、本実施形態では最初から圧延荷重を高めに設定し、高い圧延荷重のまま、連続して複数回の圧延を行うことが好ましい。
 更に、通常の圧延時には、鋼板の圧延方向(長手方向)に29.4~49MPa(3~5kg/mm)程度の張力を印加するが、本実施形態では張力を9.8~19.6MPa(1~2kg/mm)程度と弱い張力を印加することが好ましい。
 金属クロム層及び水和酸化クロム層を形成した鋼板(表面処理鋼板)を上記の条件で冷間圧延することによって、本実施形態に係る蓄電デバイス容器用鋼箔を製造する。表面処理鋼板を圧延するにあたり、圧延方向に強い張力を付与した従来の圧延方法で圧延すると、圧延方向に鋼板が伸びて、板幅方向には縮むことになる。そうすると、板幅方向にうねりを有する鋼板表面において表面が凹んでいる部分は、金属クロム層が非圧下の状態で延伸されるため大きく割れ、鋼板(地鉄)に追随できず、鋼板が圧延された鋼箔の露出面積が大きくなる。水和酸化クロム層も、非圧下の状態で延伸されるため、圧密化されず、金属クロム層の間隙に充填されることなく、分断されてしまう。その結果、表面にFeが露出する部分が増大し、また、水和酸化クロム層の表面性状も悪化(Raが増加して、3nm以上の値になる)、電解液に対する耐性が低下する。
 本実施形態では、圧延時の圧延方向への張力を緩和して、鋼板を板幅方向にも延ばすように圧延することで、板幅方向にうねりを有している鋼板表面が板幅方向に広がるように延ばされて、金属クロム層及び水和酸化クロム層の全体が圧延されることになり、圧下力が表面全体に均等に加わるようになる。
 また、通常の圧延では、初期の圧延パスにおいて圧延荷重を比較的少なめにし、加工硬化が進んできたところで徐々に圧延荷重を高めるのに対し、本実施形態では最初から比較的高めの圧延荷重を印加する。そうすることで、板幅方向への潰しが最初の圧延パスから作用するので、低い張力であることと合わさって、板幅方向への縮みが抑制され、板幅方向にうねりを有している鋼板表面が板幅方向に広がるように延ばされ、金属クロム層及び水和酸化クロム層の全体が圧延されて、圧下力が表面全体に均等に加わるようになる。
 このように、鋼板の圧延方向に付与する張力を緩和し、かつ、圧延荷重を初期の圧延パスから高く設定することで、水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度を低減できる。これに加え、水和酸化クロム層の表面における算術平均粗さRaが10nm以上になる部位の占める面積率、及び水和酸化クロム層の表面における算術平均粗さRaが10nm未満になる部位の算術平均粗さRaが低減できる。
 なお、鋼板が板幅方向にうねりを有していたとしても、圧延荷重を大幅に高くして圧延することで強制的に全体を均一に圧延することは可能である。しかしながら、圧延荷重が高すぎると、水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が増大し、電解液に対する耐性が低下してしまうので好ましくない。
 また、上記の圧延条件で表面処理鋼板を冷間圧延することで、表面が潰されて算術平均粗さRaが低下し、また、水和酸化クロム層が圧密化されて固まることになる。これにより、ポリオレフィン樹脂層を積層した際の樹脂層の破損、及び水和酸化クロム層自体の破損が抑制され、耐電解液性能が高まる。具体的には、水和酸化クロム層において、1μm視野内の算術平均粗さRaが10nm以上になる部位の占める面積率が20%未満、かつ1μm視野内の算術平均粗さRaが10nm未満になる部位の1μm視野内の算術平均粗さRaが3nm以下になるので、算術平均粗さRaが全体として小さくなり、耐電解液性能が向上する。
 また、鋼箔に金属クロム層及び水和酸化クロム層を形成することで本実施形態に類似した蓄電デバイス容器用鋼箔を製造することは可能だが、このような蓄電デバイス容器用鋼箔は圧延工程を経ていないので、水和酸化クロム層において、1μm視野内の算術平均粗さRaが10nm以上になる部位の占める面積率が20%未満、かつ1μm視野内の算術平均粗さRaが10nm未満になる部位の1μm視野内の算術平均粗さRaが3nm以下を満たさなくなり、水和酸化クロム層も強固にならない。このため、ポリオレフィン樹脂層を積層した際の樹脂層の破損、及び水和酸化クロム層自体の破損が起きやすくなり、耐電解液性能が低下する。また、蓄電デバイス容器用鋼箔を蓄電デバイス容器に加工する際にも、ポリオレフィン樹脂層及び水和酸化クロム層自体が破損されやすくなる。
(ポリオレフィン樹脂層の形成工程)
 次に、冷間圧延後の蓄電デバイス容器用鋼箔の水和酸化クロム層上にポリオレフィン樹脂層を形成する。ポリオレフィン樹脂層は、熱ラミネート法によって積層すればよい。
 このようにして製造された蓄電デバイス容器用鋼箔は、更にプレス成形等を経て、蓄電デバイス用容器に加工される。そして、蓄電デバイス用容器に電極を挿入し、有機電解液を注液することで、蓄電デバイスが製造される。例えば、電極としてリチウムイオンを吸蔵放出可能な正極及び負極を用い、有機電解液としてリチウム塩を含む有機電解液を用いることで、リチウムイオン二次電池を製造できる。また、活性炭からなる電極と有機電解液との組み合わせによって、キャパシタを製造できる。
 以上説明したように、本実施形態によれば、電解液中でも樹脂層との密着力を維持し、良好な耐腐食性を有する蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイスを提供できる。
 次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (鋼箔1~12及び鋼箔C103~C106)
 表1に示す成分組成の板厚120μm、および140μmの冷延鋼板に対して、脱脂及び酸洗の後、めっき処理及び電解クロム酸処理により、付着量60~140mg/mの金属クロム層を形成させた後、クロム量換算で付着量7~25mg/mの水和酸化クロム層を形成させた表面処理鋼板を製造した。
 次いで、表2に示す条件で表面処理鋼板の冷間圧延を行い、鋼箔上に金属クロム層及び水和酸化クロム層を備えた鋼箔1~12及び鋼箔C103~C106を製造した。なお、表2中「テンション」とは、冷間圧延時の圧延方向に付与する張力を示す。また、テンションの欄において、「/」を挟んで、左側の数値は「MPa」単位の値を示し、右側の数値は「kg/mm」単位の値を示す。 
 (鋼箔C101)
 冷延鋼板に水和酸化クロム層を形成しなかったこと以外は上記鋼箔1と同様にして、鋼箔C101を製造した。
 (鋼箔C102)
 冷延鋼板に金属クロム層を形成しなかったこと以外は上記鋼箔1と同様にして、鋼箔C102を製造した。
 (鋼箔C107)
 表面処理鋼板に冷間圧延を行わなかった以外は、上記鋼箔1と同様にして、鋼箔C107を製造した。
Figure JPOXMLDOC01-appb-T000001
 表2に、鋼箔1~12及び鋼箔C101~C107における、冷延鋼板の種類、表面処理鋼板の全体の厚さ、クロム層の付着量、水和酸化クロム層の付着量、冷間圧延条件、鋼箔の全体の厚み、圧延後のクロム層の付着量、圧延後の水和酸化クロム層の付着量を示す。
 また、表3に、水和酸化クロム層の表面(0nm)から10nmまでの深さにおけるFe濃度の平均値(以下「深さ10nmの平均Fe濃度」とも表記)、水和酸化クロム層の表面における1μm視野内の算術平均粗さRaが10nm以上になる部位の占める面積率(以下「Ra10nm以上になる部位の占める面積率」とも表記)、水和酸化クロム層の表面における1μm視野内の1μm視野内の算術平均粗さRaが10nm未満になる部位の算術平均粗さRa(以下「Ra10nm未満になる部位のRa」とも表記)、及び耐電解液性を示す。
 表2、表3における測定値は、下記の測定方法の通りに測定した。
(Cr付着量、水和酸化Cr付着量の測定方法)
 蛍光X線分析装置を用い、次の方法により定量した。最初に蛍光X線法によってクロム・カウントを計ってCrの総量を計測した。計測した試料は、幅方向に対して中央部と両端部の3か所を切り出して、製造した鋼箔の長手方向の位置をかえながら、合計9点を使用した。次に、試料を90~100℃の7.5規定の水酸化ナトリウム溶液中に5分間浸漬して、水和酸化クロム層を除去してから、蛍光X線法によってクロム・カウントを計り、総量からの差から、検量線によってクロム量を計り、クロム量換算での水和酸化クロム層の付着量を得た。次に、研磨、または約20%の熱硫酸溶液に浸漬などにより金属クロム層を完全に除去してから地鉄のクロム・カウントを計り、地鉄のクロム・カウントと金属クロム層の除去前のクロム・カウントとの差より、検量線によって金属クロム層の付着量を求めた。
(深さ10nmの平均Fe濃度の測定方法)
 アルゴンスパッタリングによって水和酸化クロム層を1μmの深さまでエッチングしつつ、グロー放電発光分析によってFe濃度を分析した。表面から10nmの範囲の平均Fe濃度を求めた。分析した位置は、幅方向に対して中央部と両端部の3か所を取り、製造した鋼箔の長手方向の位置をかえながら、合計9点行った。
 なお、グロー放電発光分光分析は、堀場製作所社製GD-PROFILER2を使用し、アルゴン(Ar)圧力600Pa、35W定電力ノーマルモードの放電条件で、4mmφの放電範囲で実施した。
 (Ra10nm以上になる部位の占める面積率及びRa10nm未満になる部位のRaの測定方法)
 まず、金属クロム層、及び水和酸化クロム層を持つ一般の冷延鋼板を圧延した場合、表面において、ロールが接触し、十分に圧延され、算術平均粗さRaが10nm未満となる面(圧密面)と、ロールとの接触が不十分で十分に圧延されておらず、算術平均粗さRaが10nm以上となる面(非圧密面)が混在すると、走査型電子顕微鏡(SEM)において二次電子像を得た場合、圧密面と非圧密面においてコントラストが生じる。これは、それぞれの表面粗さのレベルが有意に異なることに起因する。二次電子像は、高粗度の、起伏の大きい面は明るく、低粗度の、起伏の小さい面は暗く見えるため、例えば、1000倍の倍率において、視野内の輝度の範囲で十分なコントラストが得られる様に調整すると、視野内に圧密面と非圧密面が混在する場合、圧密面は暗く(黒っぽく)、非圧密面は明るく(白っぽく)表示される。
 一般の鋼材では、圧密面と非圧密面はコントラストが大きく異なるため、その境界は明瞭であるが、不明瞭である場合は、視野内の最高輝度点を最も明るい点、視野内の最低輝度点を最も暗い点としてコントラストを調整し、その画像の全ての点の輝度でヒストグラムを書けば、高輝度領域(=非圧密面)と低輝度領域(=圧密面)の境界が明瞭になる。
具体的には、製造した鋼箔の疵又は異物の無い領域より、幅方向に対して中央部と両端部の3か所から、長手方向の位置をかえながら、5mm程度のサンプルを9点採取し、カーボンテープでアルミ試料台などに固定して5nm以上のPt蒸着を施し、十分な通電を取った後、SEM観察をし、倍率1000倍の二次電子像をデジタル画像ファイルとして保管する。この際、10000倍以上の高倍率でピントを合わせ、1000倍で一辺が90~110μmの四角形の領域を、その四角形の領域が一辺900~1100画素数となる精度でデジタル画像を取得し、8bitのグレースケールのBMPファイルとする。この際、より高精細な諧調、画素数の図を取得して、画像処理ソフトなどにより、恣意的な劣化の無い、平均的な方法により諧調及び画素数を前記指定範囲に圧縮しても良い。
 ここで、一例として、図9に、図2Aに示す鋼箔C103の水和酸化クロム層のSEM写真(倍率1000倍)から、100μm×90μm(1070×963画素数)で切り取ったSEM写真を示す。他の例として、図13に、図3Aに示す鋼箔1の水和酸化クロム層のSEM写真(倍率1000倍)から、100μm×90μm(1070×963画素数)で切り取ったSEM写真を示す。
 図9のSEM写真および図13のSEM写真に示すように、SEM写真の中の各点は、完全な黒色を0、完全な白色を255とする、0~255の256諧調の数値のどれかで表わされるが、生データでは、画素単位での細かいノイズがあるので、このファイルに対して、各画素点において前後左右の周囲の3~9画素点の平均値とするフィルター処理を行い、このようなノイズを除去する。
 二次電子像の取得段階で、視野内の明暗を適度に調整すると、前述のノイズ除去後のデータにおいて、最高輝度の値が200~253の高諧調に、最低輝度の値が5~100の低諧調となる。圧延の十分に施された圧密部の暗い箇所と、圧延が十分でない非圧密部の明るい箇所を明瞭に区別するためには、最高輝度と最低輝度が前述の範囲に収まるように、輝度及びコントラストを調整する必要がある。最高輝度と最低輝度の値が、この諧調に入らない場合は、最初の二次電子像取得のゲイン及びコントラストを調整し、最高輝度と最低輝度の値が前述の範囲となるように画像を調整して画像ファイルを作成する。
 SEM写真において、圧密部と非圧密部を区別するには、SEM写真データから各点の輝度のデータを取得し、輝度に対するヒストグラムを描けば良い。圧密部の存在するサンプルに対するSEM写真では、ヒストグラムの低輝度の領域に、圧密部の輝度の低い、暗い箇所からのピークが存在する。圧密部は、圧下により平滑面が生成するので、それぞれの粗度の値も低いが、圧密面同士の間でも、比較的、粗度の揃った面が生成し、輝度としては狭い輝度の範囲で分布するため、ピークを形成するのである。非圧密部の明るい部分のデータは、圧密部のピークからすそ野として高輝度側に分布するヒストグラムを形成する(図10および図14参照)。図10は、図9のSEM写真における輝度に対するヒストグラムを示す図である。図14は、図13のSEM写真における輝度に対するヒストグラムを示す図である。
 輝度に対するヒストグラムにおいて、非圧密部の面積率を計算するためには、便宜的に非圧密部と圧密部の境界の輝度を閾値として設定して、その上下で2値化した図を作成し、画素数を数えれば良い。
 閾値は、便宜的に、圧密部のピークの裾の値とし、便宜的には、圧密部のピークの高輝度側の傾斜を、輝度軸へ直線的に延長して交わった輝度とする。傾斜が明瞭でない場合は、圧密部のピークの輝度側のデータの、ピーク頻度の80%の頻度となる輝度と、ピーク頻度の50%の頻度となる輝度の、両者の間の輝度及び頻度のデータより最小二乗法で直線を求め、輝度軸との交点を求め、四捨五入して閾値とすればよい(図11および図15参照)。図11は、図10に示すヒストグラムの拡大図から、圧密部と非圧密部の輝度閾値を求める方法を説明するための模式図である。図15は、図14に示すヒストグラムの拡大図から、圧密部と非圧密部の輝度閾値を求める方法を説明するための模式図である。
 ここで、一例として、図12に、図10に示すヒストグラムの拡大図から求めた圧密部と非圧密部の輝度閾値で、図9のSEM写真を二値化したSEM写真を示す。図9において、非圧密領域(白色領域)の面積率を計算すると、21.9%となる。
 他の例として、図16に、図14に示すヒストグラムの拡大図から求めた圧密部と非圧密部の輝度閾値で、図13のSEM写真を二値化したSEM写真を示す。図13において、非圧密領域(白色領域)の面積率を計算すると、5.6%となる。
 なお、圧密面において、1μm視野内のRaが10nm以下であること、及び非圧密面において、1μm視野内のRaが10nm以上であることは、実効的圧密領域以外を非圧密領域(白色領域)として表示する処理したSEM写真(図13参照)上で、圧密面については黒色の領域から、非圧密面については、白色の領域から、それぞれ、圧密面と非圧密面との境界より1μm以上離れた位置においてAFM(原子間力顕微鏡)で測定して確認した。
 以上の操作により、製造した鋼箔1~鋼箔12、鋼箔C101~鋼箔C107についてRa10nm以上になる部位の占める面積率を測定した。
 一方、Ra10nm未満になる部位のRaを、SEM写真上の異なる5つの黒色領域においてAFM測定によりRaを測定して、その平均値として求めた。異なる黒色領域は、写真中の大きい領域を順番に5つ選択した。以下の操作により、製造した製造した鋼箔1~鋼箔12、鋼箔C101~鋼箔C106についてRa10nm未満になる部位のRaを測定した。鋼箔C107については、Ra10nm未満となる部位が無かった。
 なお、圧密面の面積率が非常に高い場合、又は非圧密面の面積率が非常に高い場合は、SEM写真では判別が難しい場合がある。その場合、サンプルの任意の場所より、なるべく等間隔で、傷及び異物の無い、10以上の箇所で、AFM測定により、1μm視野内のRaを測定し1μm視野内のRaが10nm以上を非圧密面、10nm未満を圧密面として比率を求める。
 以下、上記面積率及びRaの測定に利用する走査型電子顕微鏡(SEM)によるSEM写真及び原子間力顕微鏡(AFM)によるRaの測定の詳細について説明する。
(走査型電子顕微鏡(SEM)によるSEM写真の撮影方法)
 SEM写真は、日本電子株式会社製JSM-6500Fにより、5kVの加速電圧で得た。サンプルは白金(Pt)を5nm狙いで蒸着し、導電性を確保した。
(原子間力顕微鏡(AFM)によるRaの測定方法)
 原子間力顕微鏡(AFM)によるRaの測定は、原子間力顕微鏡(ブルカーAXS社製ナノスコープ5)を用いた。カンチレバーは同社製のMPP11100を用い、プローブの先端部の曲率半径は8nmとした。
 原子間力顕微鏡の測定モードをタッピングモードとし、容器用鋼箔(水和酸化クロム層の表面)が本来有しているRaが反映された測定データを得るために、容器用鋼箔上において、製造した鋼箔の疵のないように見える領域から、一辺が1μmの正方形の領域を幅方向に対して中央部と両端部の3か所から、長手方向の位置をかえながら合計9点を選択し、当該領域に対して測定を行った。ただし、算術表面粗さRa10nm以上の非圧密面としてはSEM写真上で白く見える(輝度の高い)領域の中央を選択し、算術表面粗さRa10nm未満の圧密面としてはSEM写真上で黒く見える(輝度の低い)領域の中央を選択した。領域測定は5回繰り返した。すなわち、容器用鋼箔上の任意の圧密面あるいは非圧密面のそれぞれ5領域について測定を行った。
 なお、原子間力顕微鏡に付属のソフトウェアを用いて、得られた5領域の測定データに対してフラテン(flatten)処理を行い、各領域での算術平均粗さRaを算出した。得られた各領域でのRaの平均値を、容器用鋼箔の圧密面、又は非圧密面の算術平均粗さRaとした。
(加工前の耐電解液性の測定方法)
 水和酸化クロム層の上に、厚さ30μmのポリプロピレンフィルムをラミネートした。
 ポリプロピレンフィルムをラミネートした容器用鋼箔の幅方向に対して中央部と両端部の3か所から、長手方向の位置をかえながら、5mm×40mmの切り出した試験片を合計9点作製し、蓋を用いて密閉できるポリプロピレン製の瓶の中で電解液に完全に浸漬し、80℃で7日間保持した。JIS K 6854-2に準拠した180°ピール試験を、電解液浸漬をしていない試験片とした試験片の両方に実施し、ポリプロピレンフィルムの密着強度を測定した。浸漬した試験片の密着強度を浸漬していない試験片の密着強度で割って百分率にしたものを低下率として評価した。低下率が低いほど耐電解液性が高いことを示す。
 本試験における鋼箔C102の低下率は概ね50%であるが、30%より小さいものを鋼箔C102より大幅に良いとしてA、30~45%程度のものを鋼箔C102より良いとしてB、45~60%程度のものを鋼箔C102より良いが「B」よりも劣るとしてB-、50~60%程度のものを鋼箔C102と同等としてC、60%以上のものを鋼箔C102よりも不良としてDとした。なお、電解液は、六ふっ化りん酸リチウム(LiPF)をエチレンカーボネートとジエチルカーボネートとを1:1に混合した溶媒で1mol/Lの濃度に希釈したものを用いた。
(加工部の耐電解液性の測定方法)
 鋼箔1~12及び鋼箔C101~107の鋼箔に形成された水和酸化クロム層上に、厚さ30μmのポリプロピレンフィルムをラミネートしてラミネート鋼箔とした。そして、ラミネート鋼箔に対して、蓄電デバイス容器としてよく使用される形状である角筒形状に絞り加工を実施した。ラミネート鋼箔を角筒形状に絞るプレス加工は以下の条件にて実施した。
 ダイスのダイス穴の形状を縦142mm×横142mm、コーナー部径4mmの四角形状とし、ポンチは縦140mm×横140mm、コーナー部径4mmの形状とした。プレス条件は、しわ押え力6トンとし、潤滑剤はJohnson WAX122とマシン油を1:1に混合したものを用い、プレス速度を60mm/分とした。
 そして、縦200mm×横200mmのラミネート鋼箔を、ポリプロピレンフィルムをラミネートした面をポンチ側にして、深さ5mmまでプレス加工した。この加工部材から
コーナー部を含むように幅5mm、長さ40mm程度のサイズの試験片を幅方向に対して中央部と両端部の3か所から、長手方向の位置をかえながら、合計9点切出した。
 次いで、蓋を用いて密閉できるポリプロピレン製の瓶の中で試験片を電解液に完全に浸漬し、80℃で7日間保持した。試験片を目視して、ポリプロピレンフィルムの浮きの有無を確認し、浮きがないものは加工部の耐電解液性が優れるとしてA、若干浮きがあるものはBとし、浮きがあるものは劣るとしてCとした。電解液は、加工前の耐電解液性の試験と同じものを用いた。
[規則26に基づく補充 25.04.2016] 
Figure WO-DOC-TABLE-2
[規則26に基づく補充 25.04.2016] 
Figure WO-DOC-TABLE-3
 表2及び表3に示すように、鋼箔1~12は、良好な耐電解液性を示した。一方、鋼箔C101~C107は、耐電解液性が劣る結果となった。また、本発明の鋼箔1~12は、蓄電デバイス容器形状に加工した部位においても良好な耐電解液性を示した。一方、鋼箔C101~C107は、蓄電デバイス容器形状に加工した部位においても耐電解液性が劣る結果となった。
 図1A及び図1Bには冷間圧延前の水和酸化クロム層のSEM写真を示し、図2A及び図2Bには鋼箔C103の水和酸化クロム層のSEM写真を示し、図3A及び図3Bには鋼箔1の水和酸化クロム層のSEM写真を示す。図1A、図2A及び図3Aは倍率1000倍の写真であり、図1B、図2B及び図3Bは倍率10000倍の写真である。
 図1に示すように、冷間圧延前の水和酸化クロム層は、表面が粗くなっていることが判る。そして、製造時に自然に発生したと思われる金属クロム層の間隙も観察された。
 次に、鋼箔C103では、図2Aにおける白く写る部分で表面が粗く、黒く写る部分で表面が平坦になっている。図2Aに示すように、白く写る部分が圧延方向(図中RD方向)に沿って存在している。なお、図2Bは白く写る部分の拡大写真である。
 鋼箔C103では、図2A及び図2Bに示すように表面が粗い部分と平滑な部分が混在した状態となっている。これは、冷間圧延前の鋼板が板幅方向に沿ってうねりを有していたところ、圧延時の圧延方向の張力を高くしたため、圧延によって鋼板が圧延方向にのみ延ばされ、板幅方向には延ばされずに縮んだ結果、冷間圧延時にうねりの山の部分が強く圧下されて平坦になり、うねりの谷の部分が弱く圧下されて粗いままになったためと考えられる。
 次に、鋼箔1では、図3Aに示すように、全体的に黒く写る部分が多く、表面全体が平坦になっていることがわかる。これは、冷間圧延前の鋼板が板幅方向に沿ってうねりを有していたところ、圧延時の圧延方向の張力を低くしたため、圧延によって鋼板が圧延方向のみならず板幅方向にも延ばされた結果、全体が均一に圧延荷重を受けて平坦化したと考えられる。
 次に、図4には冷間圧延前の水和酸化クロム層の構成元素の深さ分析の結果を示し、図5には鋼箔C103の水和酸化クロム層の構成元素の深さ分析の結果を示し、図6には鋼箔1の水和酸化クロム層の構成元素の深さ分析の結果を示す。
 図4に示すように、冷間圧延前の水和酸化クロム層は、表面から深さ10nmまでのFe濃度がほぼ0%になっている。
 一方、図5に示すように、鋼箔C103の水和酸化クロム層は、表面から深さ10nmまでのFe濃度が5%を超えている。これは、圧延時の圧延方向の張力を高くしたため、冷間圧延時にうねりの谷の部分(凹部)が圧下されずに延伸し、この部分で金属クロム層が分断してかつ、水和酸化クロムによる金属クロム層分断部の充填効果も無かったため、下地のFeが部分的に露出したためと考えられる。これにより鋼箔C103では、耐電解液性が低下したと考えられる。
 次に、図6に示すように、鋼箔1の水和酸化クロム層は、表面から深さ10nmまでのFe濃度が5%未満になっている。これは、圧延時の圧延方向の張力を低くしたため、冷間圧延時に水和酸化クロム層の全体が均一に圧延され、下地のFeが露出しなかったためと考えられる。これにより鋼箔1では、耐電解液性が向上したと考えられる。
 更に、図7A及び図7Bには鋼箔C105の水和酸化クロム層のSEM写真を示し、図8には鋼箔C105の水和酸化クロム層の構成元素の深さ分析の結果を示す。なお、図7Aは倍率1000倍の写真であり、図7Bは倍率10000倍の写真である。
 鋼箔C105では、圧延方向の張力を高く、かつ、累積圧延率を高くして、非常に強い圧延荷重を加えたため、図7A及び図7Bに示すように、全体的に黒く写る部分が多くなり、表面全体が平坦になった。
 このように鋼箔C105は、表面粗さの点では良好である。しかしながら図8に示すように、鋼箔C105では表面から深さ10nmまでのFe濃度が10%を超えている。これは、圧延時に大きな圧延荷重が加わったため、下地のFeが全体的に露出したためと考えられる。これにより鋼箔C105では、耐電解液性が低下したと考えられる。
 鋼箔C106では、累積圧延率を非常に高くしたため、やはり、表面粗さの点では良好であるが、表面から深さ10nmまでのFe濃度が10%を超えている。これにより鋼箔C106では、耐電解液性が低下したと考えられる。
 鋼箔C107は、冷間圧延を施していない鋼箔であるため、水和酸化クロム層が圧密化されておらず、表面が粗いままであるため、耐電解液性が低下したと考えられる。
 また、鋼板製造時に自然発生した微細に割れた金属クロム層の間隙が、圧延後に喪失したことが、図1~図3の鋼箔表面の様子から観察された。このことは、水和酸化クロム層が金属クロム層の間隙に充填されて積層されていることを示すものである。

Claims (6)

  1.  鋼箔と、前記鋼箔上に積層された金属クロム層と、前記金属クロム層上に積層された水和酸化クロム層とが備えられ、
     前記水和酸化クロム層の表面から10nmまでの深さにおけるFe濃度が10質量%未満であり、
     前記水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm以上になる部位の占める面積率が20%未満であり、
     前記水和酸化クロム層の表面において、1μm視野内の算術平均粗さRaが10nm未満になる部位の1μm視野内の算術平均粗さRaが3nm以下である蓄電デバイス容器用鋼箔。
  2.  微細に割れた前記金属クロム層の間隙に水和酸化クロムが充填された状態で、前記金属クロム層上に前記水和酸化クロム層が積層されている、請求項1に記載の蓄電デバイス容器用鋼箔。
  3.  前記鋼箔、前記金属クロム層及び前記水和酸化クロム層の合計厚みが100μm以下である、請求項1または2に記載の蓄電デバイス容器用鋼箔。
  4.  前記水和酸化クロム層の表面に付着されたポリオレフィン系樹脂層を有する、請求項1~3のいずれか1項に記載の蓄電デバイス容器用鋼箔。
  5.  請求項4に記載の蓄電デバイス容器用鋼箔からなる蓄電デバイス用容器。
  6.  請求項5に記載の蓄電デバイス用容器を備えた蓄電デバイス。
PCT/JP2016/061449 2015-04-09 2016-04-07 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス WO2016163483A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016560030A JP6127221B2 (ja) 2015-04-09 2016-04-07 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス
CN201680019246.0A CN107534099B (zh) 2015-04-09 2016-04-07 蓄电设备容器用钢箔、蓄电设备用容器及蓄电设备
US15/564,406 US10741802B2 (en) 2015-04-09 2016-04-07 Steel foil for electrical storage device container, container for electrical storage device, and electrical storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-080011 2015-04-09
JP2015080011 2015-04-09

Publications (1)

Publication Number Publication Date
WO2016163483A1 true WO2016163483A1 (ja) 2016-10-13

Family

ID=57073264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061449 WO2016163483A1 (ja) 2015-04-09 2016-04-07 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス

Country Status (5)

Country Link
US (1) US10741802B2 (ja)
JP (1) JP6127221B2 (ja)
CN (1) CN107534099B (ja)
TW (1) TWI594482B (ja)
WO (1) WO2016163483A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542620B2 (en) * 2018-02-09 2023-01-03 Nippon Steel Corporation Steel sheet for containers and method for producing steel sheet for containers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381101A (zh) * 2021-05-07 2021-09-10 厦门大学 一种散热性良好的电池软包装材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696094A (en) * 1979-12-29 1981-08-03 Nippon Steel Corp Manufacture of steel sheet treated with chromic acid
JPH05346000A (ja) * 1992-06-12 1993-12-27 Kawasaki Steel Corp 溶接缶用クロムめっき鋼板
JPH0762596A (ja) * 1993-08-19 1995-03-07 Nippon Steel Corp 樹脂あるいは塗料との密着性に優れたクロム含有箔
JPH0790690A (ja) * 1993-09-22 1995-04-04 Nippon Steel Corp 樹脂あるいは塗料との密着性に優れたクロム含有箔の製造法
JPH08209303A (ja) * 1995-02-03 1996-08-13 Nippon Steel Corp 色調の優れた電解クロム酸処理鋼板
JPH09171802A (ja) * 1995-10-20 1997-06-30 Toyo Kohan Co Ltd 電池ケース、その製造方法およびそのケースを用いた電池
JP2005264200A (ja) * 2004-03-17 2005-09-29 Jfe Steel Kk 表面色調に優れた錫鍍金鋼板
JP2012033295A (ja) * 2010-07-28 2012-02-16 Nippon Steel Materials Co Ltd 蓄電デバイス容器用ステンレス箔、蓄電デバイス容器用樹脂被覆ステンレス箔、及びそれらの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088544A (en) * 1976-04-19 1978-05-09 Hutkin Irving J Composite and method for making thin copper foil
US4916031A (en) * 1985-11-20 1990-04-10 Toyo Seikan Kaisha, Ltd. Surface-treated steel plate and bonded structure of metal material
JPH0762596B2 (ja) * 1987-10-07 1995-07-05 昭和アルミニウム株式会社 空気調和機用アルミニウム製凝縮器
AU690921B2 (en) * 1993-10-22 1998-05-07 Toyo Kohan Co. Ltd. Surface-treated steel sheet for battery case and battery case
JP3496090B2 (ja) 1999-06-14 2004-02-09 日本製箔株式会社 二次電池用外装材料及びその製造方法
TWI303672B (en) * 2002-07-29 2008-12-01 Jfe Steel Corp Coated steel sheet provided with electrodeposition painting having superior appearance
JP5080738B2 (ja) * 2005-12-20 2012-11-21 新日鉄マテリアルズ株式会社 樹脂被覆ステンレス鋼箔,容器及び2次電池
US7972449B2 (en) * 2008-01-03 2011-07-05 GM Global Technology Operations LLC Corrosion resistant metal composite for electrochemical devices and methods of producing the same
US8834734B2 (en) * 2011-06-06 2014-09-16 GM Global Technology Operations LLC Surface alloying of stainless steel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696094A (en) * 1979-12-29 1981-08-03 Nippon Steel Corp Manufacture of steel sheet treated with chromic acid
JPH05346000A (ja) * 1992-06-12 1993-12-27 Kawasaki Steel Corp 溶接缶用クロムめっき鋼板
JPH0762596A (ja) * 1993-08-19 1995-03-07 Nippon Steel Corp 樹脂あるいは塗料との密着性に優れたクロム含有箔
JPH0790690A (ja) * 1993-09-22 1995-04-04 Nippon Steel Corp 樹脂あるいは塗料との密着性に優れたクロム含有箔の製造法
JPH08209303A (ja) * 1995-02-03 1996-08-13 Nippon Steel Corp 色調の優れた電解クロム酸処理鋼板
JPH09171802A (ja) * 1995-10-20 1997-06-30 Toyo Kohan Co Ltd 電池ケース、その製造方法およびそのケースを用いた電池
JP2005264200A (ja) * 2004-03-17 2005-09-29 Jfe Steel Kk 表面色調に優れた錫鍍金鋼板
JP2012033295A (ja) * 2010-07-28 2012-02-16 Nippon Steel Materials Co Ltd 蓄電デバイス容器用ステンレス箔、蓄電デバイス容器用樹脂被覆ステンレス箔、及びそれらの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542620B2 (en) * 2018-02-09 2023-01-03 Nippon Steel Corporation Steel sheet for containers and method for producing steel sheet for containers

Also Published As

Publication number Publication date
TWI594482B (zh) 2017-08-01
CN107534099A (zh) 2018-01-02
US20180138468A1 (en) 2018-05-17
US10741802B2 (en) 2020-08-11
JPWO2016163483A1 (ja) 2017-04-27
CN107534099B (zh) 2020-11-24
JP6127221B2 (ja) 2017-05-10
TW201711246A (zh) 2017-03-16

Similar Documents

Publication Publication Date Title
KR102366582B1 (ko) 축전 디바이스 용기용 강박, 축전 디바이스용 용기 및 축전 디바이스, 및 축전 디바이스 용기용 강박의 제조 방법
KR101918008B1 (ko) 구리 피복 강박, 음극 집전체 및 그 제조법 및 전지
KR102306522B1 (ko) 축전 디바이스 용기용 강박, 축전 디바이스용 용기 및 축전 디바이스, 및 축전 디바이스 용기용 강박의 제조 방법
KR20200111805A (ko) 전지 용기용 표면 처리 강판 및 전지 용기용 표면 처리 강판의 제조 방법
KR101916984B1 (ko) 리튬 이온 이차 전지의 부극재 제조 방법 및 리튬 이온 이차 전지용 부극재
WO2021020338A1 (ja) 粗化ニッケルめっき材及びその製造方法
JP6127221B2 (ja) 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス
JP5726216B2 (ja) 銅被覆鋼箔、負極用電極及び電池
JP2013143314A (ja) リチウムイオン二次電池の負極用防錆金属シート、負極及びその製法並びに電池
US11984606B2 (en) Rolled copper foil for lithium ion battery current collector, and lithium ion battery
TW201700752A (zh) 電池包裝用不鏽鋼箔
JP2009272086A (ja) 銅箔及びその製造方法、並びにリチウムイオン二次電池用集電銅箔及びその製造方法
JP7023418B2 (ja) 粗化ニッケルめっき板
Yakar et al. Surface Dynamics and Electrochemical Examination of Co3O4 Films by Iron Doping

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016560030

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15564406

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776649

Country of ref document: EP

Kind code of ref document: A1